1
|
Tang Y, Frisendahl C, Piltonen TT, Arffman RK, Lalitkumar PG, Gemzell-Danielsson K. Human Endometrial Pericytes: A Comprehensive Overview of Their Physiological Functions and Implications in Uterine Disorders. Cells 2024; 13:1510. [PMID: 39273080 PMCID: PMC11394273 DOI: 10.3390/cells13171510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Pericytes are versatile cells integral to the blood vessel walls of the microcirculation, where they exhibit specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, and maintaining homeostasis and are involved in the tissue repair process. The human endometrium is a unique and complex tissue that serves as a natural scar-free healing model with its cyclical repair and regeneration process every month. The regulation of pericytes has gained increasing attention due to their involvement in various physiological and pathological processes. However, endometrial pericytes are less well studied compared to the pericytes in other organs. This review aims to provide a comprehensive overview of endometrial pericytes, with a focus on elucidating their physiological function and potential implications in uterine disorders.
Collapse
Affiliation(s)
- Yiqun Tang
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland; (T.T.P.); (R.K.A.)
| | - Caroline Frisendahl
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
| | - Terhi T. Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland; (T.T.P.); (R.K.A.)
| | - Riikka K. Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland; (T.T.P.); (R.K.A.)
| | - Parameswaran Grace Lalitkumar
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
| | - Kristina Gemzell-Danielsson
- WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden; (Y.T.); (C.F.); (P.G.L.)
| |
Collapse
|
2
|
Li S, Liu H, Li D, Chen F. Female reproductive health during the COVID-19 pandemic: latest evidence and understanding. Arch Gynecol Obstet 2023; 308:1691-1696. [PMID: 36856820 PMCID: PMC9976669 DOI: 10.1007/s00404-023-06976-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed a heavy burden on medical systems. In addition to the respiratory system, the virus also causes injuries to other organs and systems such as the gastroenteric system, kidneys, and reproductive system. Female reproductive health requires more attention in this context. METHODS We have performed a thorough review of the relevant literature that addresses the impacts of SARS-CoV-2 infection and COVID-19 vaccination on the female reproductive system. RESULTS Most evidence shows that SARS-CoV-2 does not infect the female reproductive system. However, the virus may indirectly influence sex hormone concentrations through inflammation associated with cytokine storms and nervous system damage. Menstrual disorders in women infected with SARS-CoV-2 may be caused by down-regulation of angiotensin-converting enzyme 2, abnormal hormone levels, medications, and stress. There is no significant difference in ovarian follicle quality and in vitro fertilization parameters between the pre- and post-COVID-19 vaccination groups. In addition, most symptoms due to side effects of vaccination could recover within a short period of time. CONCLUSION SARS-CoV-2 infection affects female reproductive system function through multiple mechanisms. It is recommended that women of childbearing age be vaccinated with COVID-19 vaccine.
Collapse
Affiliation(s)
- Shuhui Li
- Department of Physiology, Jining Medical University, 133 Hehua Road, Jining, 272067, China
| | - Hongxin Liu
- Department of Physiology, Jining Medical University, 133 Hehua Road, Jining, 272067, China
| | - Di Li
- Department of Physiology, Jining Medical University, 133 Hehua Road, Jining, 272067, China
| | - Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Road, Jining, 272067, China.
| |
Collapse
|
3
|
Qi R, Zhang T, Zhang Y, Chung JPW, Yang WJ, Wang CC. Association of angiotensin II and receptors in peri-implantation endometrium with microvessel density and pregnancy outcomes of women with recurrent implantation failure after embryo transfer. Front Endocrinol (Lausanne) 2023; 14:1206326. [PMID: 37711897 PMCID: PMC10497869 DOI: 10.3389/fendo.2023.1206326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose Investigate whether local angiotensin II (AngII) and its AngII type 1 and 2 receptors (AT1R, AT2R) in the endometrium are different and correlate with microvessel density in women with reproductive failure and pregnancy outcomes. Methods Endometrium during the window of implantation from 40 women with recurrent miscarriage (RM) and 40 with recurrent implantation failure (RIF) were compared with 27 fertile women. Peri-implantation endometrium from 54 women prior to euploid embryo transfer were collected and compared in women with successful pregnancy and unsuccessful pregnancy. Results Compared with fertile women, expression of AT2R was significantly lower, while AT1R/AT2R expression ratio was significantly higher in the stroma of the RIF group. Endometrium arteriole MVD was significantly lower and negatively correlated with the AT1R/AT2R expression ratio in the stroma of the RIF group. No significant differences and correlations were found in the RM group. Compared with the pregnancy group, expression of AT1R and AT2R were significantly lower in all compartments, but only AT1R/AT2R ratio was significantly higher in the stroma of the non-pregnancy group. Similarly, endometrium arteriole MVD was also significantly lower and negatively correlated with the AT1R/AT2R ratio in the stroma of the non-pregnancy group. Conclusion Local renin-angiotensin system is dysregulated in peri-implantation endometrium and associated with abnormal angiogenesis in RIF and poor implantation outcome after embryo transfer.
Collapse
Affiliation(s)
- Ruofan Qi
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yingying Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wen-Jui Yang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu, Taiwan
- Department of Fertility and Reproductive Medicine, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Vesce F, Battisti C, Crudo M. The Inflammatory Cytokine Imbalance for Miscarriage, Pregnancy Loss and COVID-19 Pneumonia. Front Immunol 2022; 13:861245. [PMID: 35359975 PMCID: PMC8961687 DOI: 10.3389/fimmu.2022.861245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
Pregnancy can be defined a vascular event upon endocrine control. In the human hemo-chorial placentation the chorionic villi penetrate the wall of the uterine spiral arteries, to provide increasing amounts of nutrients and oxygen for optimal fetal growth. In any physiological pregnancy the natural maternal response is of a Th1 inflammatory type, aimed at avoiding blood loss through the arteriolar wall openings. The control of the vascular function, during gestation as in any other condition, is achieved through the action of two main types of prostanoids: prostaglandin E2 and thromboxane on the one hand (for vasoconstriction and coagulation), prostacyclin on the other (for vasodilation and blood fluidification). The control of the maternal immune response is upon the responsibility of the fetus itself. Indeed, the chorionic villi are able to counteract the natural maternal response, thus changing the inflammatory Th1 type into the anti-inflammatory Th2. Clinical and experimental research in the past half century address to inflammation as the leading cause of abortion, pregnancy loss, premature delivery and related pulmonary, cerebral, intestinal fetal syndromes. Increased level of Interleukin 6, Interleukin 1-beta, Tumor Necrosis Factor-alfa, Interferon-gamma, are some among the well-known markers of gestational inflammation. On the other side, COVID-19 pneumonia is a result of extensive inflammation induced by viral replication within the cells of the respiratory tract. As it may happen in the uterine arteries in the absence of an effective fetal control, viral pneumonia triggers pulmonary vascular coagulation. The cytokines involved in the process are the same as those in gestational inflammation. As the fetus breathes throughout the placenta, fetal death from placental thrombosis is similar to adult death from pulmonary thrombosis. Preventing and counteracting inflammation is mandatory in both conditions. The most relevant literature dealing with the above-mentioned concepts is reviewed in the present article.
Collapse
Affiliation(s)
- Fortunato Vesce
- OB & Gyn Complex Unit, Arcispedale Sant’Anna – Ferrara University, Ferrara, Italy
| | | | | |
Collapse
|
5
|
Liu Y, Hao H, Lan T, Jia R, Cao M, Zhou L, Zhao Z, Pan W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front Endocrinol (Lausanne) 2022; 13:1080285. [PMID: 36619582 PMCID: PMC9817105 DOI: 10.3389/fendo.2022.1080285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
The local Renin-Angiotensin System (RAS) has been demonstrated to exist in a wide range of tissues and organs, In the female reproductive system, it is mainly found in the ovary, uterus and placenta. The RAS system is made up of a series of active substances and enzymes, in addition to the circulating endocrine renin-angiotensin system. The active peptides Angiotensin II (Ang II) and Angiotensin (1-7) (Ang-(1-7)), in particular, appear to have distinct activities in the local RAS system, which also controls blood pressure and electrolytes. Therefore, in addition to these features, angiotensin and its receptors in the reproductive system seemingly get involved in reproductive processes, such as follicle growth and development, as well as physiological functions of the placenta and uterus. In addition, changes in local RAS components may induce reproductive diseases as well as pathological states such as cancer. In most tissues, Ang II and Ang- (1-7) seem to maintain antagonistic effects, but this conclusion is not always true in the reproductive system, where they play similar functions in some physiological and pathological roles. This review investigated how Ang II, Ang- (1-7) and their receptors were expressed, localized, and active in the female reproductive system. This review also summarized their effects on follicle development, uterine and placental physiological functions. The changes of local RAS components in a series of reproductive system diseases including infertility related diseases and cancer and their influence on the occurrence and development of diseases were elucidated. This article reviews the physiological and pathological roles of Ang II and Ang- (1-7) in female reproductive system,a very intricate system of tissue factors that operate as agonists and antagonists was found. Besides, the development of novel therapeutic strategies targeting components of this system may be a research direction in future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haomeng Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Lan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Jia
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Mingya Cao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Zhou
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| |
Collapse
|
6
|
Abstract
Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The worldwide spread of COVID-19 has caused millions of confirmed cases and morbidity, and the crisis has greatly affected global economy and daily life and changed our attitudes towards life. The reproductive system, as a potential target, is at a high risk of SARS-CoV-2 infection, and females are more vulnerable to viral infection compared with males. Therefore, female fertility and associated reproductive health care in the COVID-19 era need more attention. This review summarises the mechanism of SARS-CoV-2 infection in the female reproductive system and discusses the impact of the COVID-19 crisis on female fertility. Studies have proven that COVID-19 might affect female fertility and interfere with assisted reproductive technology procedures. The side effects of vaccines against the virus on ovarian reserve and pregnancy have not yet been well investigated. In the future, the female fertility after SARS-CoV-2 infection and vaccination needs more attention because of the uncertainty of COVID-19.
Collapse
|
7
|
Renu K, Subramaniam MD, Chakraborty R, Myakala H, Iyer M, Bharathi G, Siva K, Vellingiri B, Valsala Gopalakrishnan A. The role of Interleukin-4 in COVID-19 associated male infertility - A hypothesis. J Reprod Immunol 2020; 142:103213. [PMID: 33080435 PMCID: PMC7526609 DOI: 10.1016/j.jri.2020.103213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
COVID-19 is a present-day complex pandemic infection with unpredictable levels of morbidity and mortality in various global populations. COVID-19 is associated with the different comorbidities with its change in biological function such as causing heart dysfunction via deregulating ACE-2 receptor, gastrointestinal risk via causing vomiting, diarrhea, and abdominal pain, chronic kidney disease via proteinuria and hematuria, diabetes mellitus, liver injury via increasing ALT, AST and bilirubin level, lung injury, CNS risk, ocular risk, and cancer risk. In this, we are focused on the COVID-19 connected with male infertility. Some of the studies show that the patients of COVID-19 are associated with impaired spermatogenesis. Impaired spermatogenesis via COVID-19 decreases the level of testosterone by disturbing cytokines such as TNF-α, IL-4, IL-6, and IL-12 and further, attenuates the sperm count. COVID-19 is causing inflammation via TNF-α and interferons. IL-4 plays an eminent role in the activation of the JAK-STAT pathway and leads to the disturbing pro-inflammatory cytokine as well as further cause's male infertility. Th2 activates the IL-4 through IgG and IgE and mediates apoptosis with the triggering of STAT signaling. The activated STAT signaling augments Batf/Irf4, and the Bach2/Batf pathway. On the other hand, SARS-CoV-2 is activating the level of Th2 cells. So, we hypothesized that the augmented Th2 cells would disturb the level of IL-4, JAK-STAT signaling, Batf/Irf4, and Bach2/Batf pathway. The disturbed IL-4 decreases the level of the ACE-2 with the inflammation. This further leads to male infertility in COVID-19 patients. So, in this hypothesis, we focused on the role of IL-4 in COVID-19 patients associated with male infertility via Th2 cells and JAK-STAT signaling.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600 006, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Geetha Bharathi
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kamalakannan Siva
- National Center for Disease Control, Ministry of Health and Family Welfare, Government of India, New Delhi 110054, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | | |
Collapse
|
8
|
Aldosterone from endometrial glands is benefit for human decidualization. Cell Death Dis 2020; 11:679. [PMID: 32826848 PMCID: PMC7442827 DOI: 10.1038/s41419-020-02844-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
Abstract
Local renin-angiotensin system (RAS) in female reproductive system is involved in many physiological and pathological processes, such as follicular development, ovarian angiogenesis, ovarian, and endometrial cancer progress. However, studies on the functional relevance of RAS in human endometrium are limited, especially for renin-angiotensin-aldosterone system (RAAS). In this study, we defined the location of RAS components in human endometrium. We found that angiotensin II type-1 receptor (AT1R) and aldosterone synthase (CYP11B2), major components of RAAS, are specifically expressed in endometrial gland during mid-secretory phase. Aldosterone receptor, mineralocorticoid receptor (MR), is elevated in stroma in mid-secretory endometrium. In vitro, MR is also activated by aldosterone during decidualization. Activated MR initiates LKB1 expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. The impact of PDK4 on decidualization is independent on PDHE1α inactivation. Based on co-immunoprecipitation, PDK4 interacts with p-CREB to prevent its ubiquitination for facilitating decidualization via FOXO1. Restrain of MR activation interrupts LKB1/p-AMPK/PDK4/p-CREB/FOXO1 pathway induced by aldosterone, indicating that aldosterone action on decidualization is mainly dependent on MR stimulation. Aldosterone biosynthesized in endometrial gland during mid-secretory phase promotes decidualization via activating MR/LKB1/p-AMPK/PDK4/p-CREB/FOXO1 signaling pathway. This study provides the valuable information for understanding the underlying mechanism during decidualization.
Collapse
|
9
|
Jing Y, Run-Qian L, Hao-Ran W, Hao-Ran C, Ya-Bin L, Yang G, Fei C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod 2020; 26:367-373. [PMID: 32365180 PMCID: PMC7239105 DOI: 10.1093/molehr/gaaa030] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The 2019 novel coronavirus (2019-nCoV) appeared in December 2019 and then spread throughout the world rapidly. The virus invades the target cell by binding to angiotensin-converting enzyme (ACE) 2 and modulates the expression of ACE2 in host cells. ACE2, a pivotal component of the renin-angiotensin system, exerts its physiological functions by modulating the levels of angiotensin II (Ang II) and Ang-(1-7). We reviewed the literature that reported the distribution and function of ACE2 in the female reproductive system, hoping to clarify the potential harm of 2019-nCoV to female fertility. The available evidence suggests that ACE2 is widely expressed in the ovary, uterus, vagina and placenta. Therefore, we believe that apart from droplets and contact transmission, the possibility of mother-to-child and sexual transmission also exists. Ang II, ACE2 and Ang-(1-7) regulate follicle development and ovulation, modulate luteal angiogenesis and degeneration, and also influence the regular changes in endometrial tissue and embryo development. Taking these functions into account, 2019-nCoV may disturb the female reproductive functions through regulating ACE2.
Collapse
Affiliation(s)
- Yan Jing
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Li Run-Qian
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Wang Hao-Ran
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Chen Hao-Ran
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Liu Ya-Bin
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Gao Yang
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Chen Fei
- Department of Physiology, Jining Medical University, 272067 Jining, China
| |
Collapse
|
10
|
Mizutani S, Matsumoto K, Kato Y, Mizutani E, Mizutani H, Iwase A, Shibata K. New insights into human endometrial aminopeptidases in both implantation and menstruation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140332. [PMID: 31765716 DOI: 10.1016/j.bbapap.2019.140332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/16/2023]
Abstract
The endometrium cycle involves proliferation of endometrial epithelial cells in preparation for implantation of fertilized ovum. With ovulation, the endometrium secretes nutrients such as peptides and amino acids into the endometrial cavity. The histological evidence of ovulation in normal menstrual cycle includes subnuclear glycogen vacuoles surrounded by placental leucine aminopeptidase (P-LAP) in endometrial epithelial cells. P-LAP is an essentially involved in intracellular trafficking of glucose transporter (GLUT) 4 which is primarily important for glucose uptake in skeletal muscles and fat tissues. On the other hand, glucose influx from blood into endometrial epithelial cells is not mainly mediated by GLUTs, but by coincident appearing progesterone just after ovulation. Progesterone increases permeability of not only plasma membranes, but also lysosomal membranes, and this may be primarily involved in glucose influx. Progesterone also expands the exocytosis in the endometrium after ovulation, and endometrial secretion after ovulation is possibly apocrine and holocrine, which is augmented and exaggerated exocytosis of the lysosomal contents. The endometrial spiral arteries/arterioles are surrounded by endometrial stromal cells which are differentiated into decidual/pre-decidual cells. Decidual cells are devoid of aminopeptidase A (APA), possibly leading to enhancement of Angiotensin-II action in decidual cell area due to loss of its degradation by APA. Angiotensin-II is thought to exert growth-factor-like effects in post-implantation embryos in decidual cells, thereby contributing to implantation. Without implantation, angiotensin-II constricts the endometrial spiral arteries/arterioles to promote menstruation. Thus, P-LAP and APA may be involved in homeostasis in uterus via regulating glucose transport and vasoconstrictive peptides.
Collapse
Affiliation(s)
- Shigehiko Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eita Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Okazaki Municipal Hospital, 3-1 Koryuji-cho, Okazaaki 444-8553, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| |
Collapse
|
11
|
Matysiak-Burzyńska ZE, Nowakowska M, Domińska K, Kowalska K, Płuciennik E, Piastowska-Ciesielska AW. Silencing of angiotensin receptor 1 interferes with angiotensin II oncogenic activity in endometrial cancer. J Cell Biochem 2018; 119:9110-9121. [PMID: 30105775 DOI: 10.1002/jcb.27174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
In mammalian cells, angiotensin II (AngII) binds to 2 distinct high-affinity plasma membrane receptors: angiotensin receptor 1 (AT1R) and angiotensin receptor 2 (AT2R). Healthy human endometrium from women of reproductive age expresses all of the components of the renin-angiotensin system. Many studies suggest that AngII, acting via AT1R, may have a role in the development and progression of cancer, which changes the expression of angiogenic factors, AngII and AT1R are correlated with the presence of endometrial cancer (EC). The aim of the current study was to identify the effects of AngII on the proliferation, cell cycle progression, apoptosis and mobility of ISHIKAWA, MFE296 and MFE280 EC cells with silenced AT1R. It also examines epithelial-mesenchymal transition markers by gene expression analysis. The obtained results suggest that the silencing of AT1R expression alters the migration and invasion ability of EC cells. However, this silencing is not sufficient to inhibit the effects of AngII on EC cells, suggesting that AngII plays a more complex role in the development of EC.
Collapse
Affiliation(s)
- Zuzanna E Matysiak-Burzyńska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, Poland
| | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Kamila Domińska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Karolina Kowalska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Agnieszka W Piastowska-Ciesielska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Casalechi M, Dela Cruz C, Lima LC, Maciel LP, Pereira VM, Reis FM. Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation. Peptides 2018; 101:145-149. [PMID: 29367076 DOI: 10.1016/j.peptides.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology.
Collapse
Affiliation(s)
- Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza C Lima
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana P Maciel
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Virgínia M Pereira
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Sanders J, Harris J, Cooper J, Gohlke P, Humphries SE, Montgomery H, Woods DR. Lack of change in serum angiotensin-converting enzyme activity during the menstrual cycle. J Renin Angiotensin Aldosterone Syst 2016; 7:231-5. [PMID: 17318793 DOI: 10.3317/jraas.2006.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introduction. The Deletion (D) rather than Insertion (I) variant of the angiotensin-converting enzyme (ACE) gene is associated with higher circulating ACE activity. Meanwhile, coronary risk rises with the menstrual nadir in oestrogen levels, exogenous oestrogen reduces serum ACE activity (with a greater reduction the higher the baseline ACE activity), and pharmacological reduction in ACE activity is cardioprotective. Alterations in coronary risk associated with the menstrual cycle may thus be mediated through (genotype-dependent) changes in ACE activity. We have examined this hypothesis. Materials and methods. Twenty-three healthy female subjects (12 II, 11 DD genotype) were studied. None were taking oral contraceptive agents. Blood was assayed for oestrogen, follicle stimulating hormone (FSH), luteinising hormone (LH), progesterone and ACE activity every three days throughout their menstrual cycle. Results ACE activity was unrelated to oestrogen, FSH or LH during the menstrual cycle, irrespective of ACE genotype. Conclusions. The increase in myocardial ischaemia during low oestrogen phases of the menstrual cycle does not appear mediated through a fall in serum ACE activity.
Collapse
Affiliation(s)
- Julie Sanders
- Rayne Institute, UCL Centre for Cardiovascular Genetics, 5 University Street, London, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Liang Y, Yao S. Potential role of estrogen in maintaining the imbalanced sympathetic and sensory innervation in endometriosis. Mol Cell Endocrinol 2016; 424:42-9. [PMID: 26777300 DOI: 10.1016/j.mce.2016.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Endometriosis, one of the most common benign gynecological diseases, affects millions of women of childbearing age. Endometriosis-associated pain is a major cause of disability and compromised quality of life in women. Neuropathic mechanisms are believed to play an important role. An imbalanced sympathetic and sensory innervation (reduced sympathetic innervation, with unchanged or increased sensory innervation in endometriotic lesions) has been demonstrated in endometriosis in recent studies. And it is believed to contribute to the pathogenesis of endometriosis-associated pain. It is primarily considered to be a natural adaptive program to endometriosis-associated inflammation. However, it is important to further clarify whether other potential modulating factors are involved in this dysregulation. It is generally accepted that endometriosis is an estrogen dependent disease. Higher estrogen biosynthesis and lower estrogen inactivation in endometriosis can lead to an excess of local estrogen in endometriotic lesions. In addition to its proliferative and anti-inflammatory actions, local estrogen in endometriosis also exerts potential neuromodulatory effects on the innervation in endometriosis. The aim of this review is to highlight the role of estrogen in mediating this imbalanced sympathetic and sensory innervation in endometriosis, through direct and indirect mechanisms on sympathetic and sensory nerves. Theoretical elaboration of the underlying mechanisms provides new insights in supporting the therapeutic role of estrogen in endometriosis-associated pain.
Collapse
Affiliation(s)
- Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Matysiak ZE, Ochędalski T, Piastowska-Ciesielska AW. The evaluation of involvement of angiotensin II, its receptors, and androgen receptor in endometrial cancer. Gynecol Endocrinol 2015; 31:1-6. [PMID: 25231075 DOI: 10.3109/09513590.2014.958991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. Alterations of angiogenic factors including angiotensin (AngII) or VEGF are observed in EC. Expression of angiotensin receptor 1 (AT1) is correlated with EC. Moreover, the expression of VEGF is up-regulated by AngII. Androgens are involved in the pathogenesis of EC. Genetic variations in androgen receptor (AR) gene may increase EC risk. This review proved strong correlation among EC, AngII, its receptors and AR, where AT influence on AR and, as a result, induce the expression of genes related to carcinogenesis.
Collapse
|
16
|
Vaz-Silva J, Tavares RL, Ferreira MC, Honorato-Sampaio K, Cavallo IKD, Santos RAS, dos Reis AM, Reis FM. Tissue specific localization of angiotensin-(1–7) and its receptor Mas in the uterus of ovariectomized rats. J Mol Histol 2012; 43:597-602. [DOI: 10.1007/s10735-012-9427-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
17
|
Schwentner L, Wöckel A, Herr D, Wulff C. Is there a role of the local tissue RAS in the regulation of physiologic and pathophysiologic conditions in the reproductive tract? J Renin Angiotensin Aldosterone Syst 2011; 12:385-93. [PMID: 21824991 DOI: 10.1177/1470320311418140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The renin-angiotensin system is well known as a systemic endocrine pathway that regulates blood pressure and salt-water metabolism. In addition to the systemic renin-angiotensin system there is evidence in different species for the presence of a local tissue renin-angiotensin system, which allows local production of the bioactive peptides angiotensin II and angiotensin (1-7). The local renin-angiotensin system has been found in a variety of tissues including tissue of the human reproductive tract. Thus, it was suspected that it may have important functions in the local hormonal microenvironment. Here, a systematic literature search was undertaken to review whether there is evidence for regulatory functions of the local tissue renin-angiotensin system in the human reproductive tract under physiological and pathological conditions.
Collapse
Affiliation(s)
- Lukas Schwentner
- Department of Gynecology and Obstetrics, University Hospital Ulm, Germany
| | | | | | | |
Collapse
|
18
|
Tower CL, Lui S, Charlesworth NR, Smith SD, Aplin JD, Jones RL. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal–fetal interface: potential roles in early placental development. Reproduction 2010; 140:931-42. [DOI: 10.1530/rep-10-0307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Angiotensin II (Ang II) is locally generated in the placenta and regulates syncytial transport, vascular contractility and trophoblast invasion. It acts through two receptor subtypes, AGTR1 and AGTR2 (AT1 and AT2), which typically mediate antagonising actions. The objectives of this study are to characterise the cellular distribution of AGTR1 and AGTR2 at the maternal–fetal interface and explore the effects on cytotrophoblast turnover. Low levels ofAGTR2mRNA were detected in first trimester placental homogenates using real-time PCR. Immunohistochemistry using polyclonal antibodies against AGTR1 and AGTR2 detected the receptors in first trimester placenta, decidua basalis and villous tip outgrowths in culture. Serial staining with cytokeratin-7 was used to identify extravillous trophoblasts (EVTs). AGTR1 was found in the syncytiotrophoblast microvillous membrane, in a subpopulation of villous cytotrophoblasts, and in Hofbauer cells. AGTR1 was strongly upregulated in cytotrophoblasts in cell columns and villous tip outgrowths, but was absent in interstitial and endovascular EVTs within the decidua. AGTR2 immunostaining was present in Hofbauer cells and villous cytotrophoblasts, but was absent from syncytiotrophoblast. Faint staining was detected in cell column cytotrophoblasts and villous outgrowths, but not in EVTs within the decidua. Both receptors were detected in placental homogenates by western blotting. Ang II significantly increased proliferation of cytotrophoblasts in both villous explants and villous tip outgrowths, but did not affect apoptosis. Blockade of AGTR1 and AGTR2 together abrogated this effect. This study shows specific expression patterns for AGTR1 and AGTR2 in distinct trophoblast populations at the maternal–fetal interface and suggests that Ang II plays a role in placental development and generation of EVTs.
Collapse
|
19
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
20
|
Anton L, Merrill DC, Neves LAA, Diz DI, Corthorn J, Valdes G, Stovall K, Gallagher PE, Moorefield C, Gruver C, Brosnihan KB. The uterine placental bed Renin-Angiotensin system in normal and preeclamptic pregnancy. Endocrinology 2009; 150:4316-25. [PMID: 19520788 PMCID: PMC2736074 DOI: 10.1210/en.2009-0076] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/04/2009] [Indexed: 11/19/2022]
Abstract
Previously, we demonstrated activation of the renin-angiotensin system in the fetal placental chorionic villi, but it is unknown whether the immediately adjacent area of the maternal uterine placental bed is regulated similarly. This study measured angiotensin peptides, renin-angiotensin system component mRNAs, and receptor binding in the fundus from nonpregnant subjects (n = 19) and in the uterine placental bed from normal (n = 20) and preeclamptic (n = 14) subjects. In the uterine placental bed from normal pregnant women, angiotensin II peptide levels and angiotensinogen, angiotensin-converting enzyme, angiotensin receptor type 1 (AT(1)), AT(2), and Mas mRNA expression were lower as compared with the nonpregnant subjects. In preeclamptic uterine placental bed, angiotensin II peptide levels and renin and angiotensin-converting enzyme mRNA expression were significantly higher than normal pregnant subjects. The AT(2) receptor was the predominant receptor subtype in the nonpregnant fundus, whereas all angiotensin receptor binding was undetectable in normal and preeclamptic pregnant uterine placental bed compared with nonpregnant fundus. These findings suggest that the maternal uterine placental bed may play an endocrine role by producing angiotensin II, which acts in the adjacent placenta to vasoconstrict fetal chorionic villi vessels where we have shown previously that AT(1) receptors predominate. This would lead to decreased maternal-fetal oxygen exchange and fetal nutrition, a known characteristic of preeclampsia.
Collapse
Affiliation(s)
- Lauren Anton
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157-1032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vaz-Silva J, Carneiro MM, Ferreira MC, Pinheiro SVB, Silva DA, Silva-Filho AL, Witz CA, Reis AM, Santos RA, Reis FM. The vasoactive peptide angiotensin-(1-7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod Sci 2009; 16:247-56. [PMID: 19164480 DOI: 10.1177/1933719108327593] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Angiotensin (Ang)-(1-7) is one of the major active components of the renin-angiotensin system, produced from cleavage of Ang II by angiotensin-converting-enzyme type 2 (ACE2), which acts through a specific G protein-coupled receptor, Mas. We have investigated whether the human endometrium expresses these components during menstrual cycle. By radioimmunoassay, Ang-(1-7) was detected in endometrial wash fluid at picomolar concentrations. Using immunofluorescence, both the peptide and its receptor were identified in cultured endometrial epithelial and stromal cells. By immunohistochemistry, Ang(1-7) was localized in the endometrium throughout menstrual cycle, being more concentrated in the glandular epithelium of mid- and late secretory phase. This pattern corresponded to the ACE2 mRNA, which was more abundant in epithelial cells than in stromal cells (2-fold increase, p < 0.05) and in the secretory vs. proliferative phase (6.6-fold increase, p < 0.01). The receptor Mas was equally distributed between epithelial and stromal cells and did not change during menstrual cycle. The physiological role of this peptide system in normal and pathological endometrium warrants further investigation.
Collapse
Affiliation(s)
- J Vaz-Silva
- Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anton L, Brosnihan KB. Systemic and uteroplacental renin--angiotensin system in normal and pre-eclamptic pregnancies. Ther Adv Cardiovasc Dis 2008; 2:349-62. [PMID: 19124433 PMCID: PMC2692864 DOI: 10.1177/1753944708094529] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is characterized by an increase in many of the different components of the circulating renin-angiotensin system (RAS). However, the physiological mechanisms of stimulated RAS activity during pregnancy are unknown. Even less understood is how this system may be altered in pre-eclampsia, a hypertensive disorder of pregnancy. Additional studies have shown the presence of a local tissue specific RAS in the uteroplacental unit of normal and pre-eclamptic pregnancies. Differences in normal pregnant and pre-eclamptic RAS component regulation may provide insight into the mechanisms responsible for the clinical pathological features of pre-eclampsia. Specifically, this review summarizes the key findings in the circulating and uteroplacental RAS in normal and pre-eclamptic pregnancies.
Collapse
Affiliation(s)
- Lauren Anton
- Hypertension and Vascular, Research Center, Wake, Forest University School, of Medicine, Winston-Salem, North Carolina, USA
| | - K. Bridget Brosnihan
- Hypertension and Vascular, Research Center, Wake, Forest University School, of Medicine, Winston-Salem, North Carolina, USA,
| |
Collapse
|
23
|
Renin-Angiotensin System. Cardiovasc Endocrinol 2008. [DOI: 10.1007/978-1-59745-141-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
24
|
Zhou CC, Ahmad S, Mi T, Abbasi S, Xia L, Day MC, Ramin SM, Ahmed A, Kellems RE, Xia Y. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension 2008; 51:1010-9. [PMID: 18259044 DOI: 10.1161/hypertensionaha.107.097790] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT(1)) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT(1) receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT(1) receptor to induce sFlt-1 synthesis and secretion by AT(1)-receptor activating autoantibodies. AT(1)-receptor activating autoantibody-induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Cissy Chenyi Zhou
- Department of Biochemistry and Molecular Biology, Medical School, University of Birmingham, Edgbaston, Birmingham, West Midlands, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou CC, Ahmad S, Mi T, Xia L, Abbasi S, Hewett PW, Sun C, Ahmed A, Kellems RE, Xia Y. Angiotensin II induces soluble fms-Like tyrosine kinase-1 release via calcineurin signaling pathway in pregnancy. Circ Res 2006; 100:88-95. [PMID: 17158338 PMCID: PMC3266823 DOI: 10.1161/01.res.0000254703.11154.18] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.
Collapse
Affiliation(s)
- Cissy Chenyi Zhou
- Department of Biochemistry & Molecular Biology, University of Texas-Houston Medical School, 6431 Fannin, MSB 6.200 Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
27
|
Critchley HOD, Kelly RW, Baird DT, Brenner RM. Regulation of human endometrial function: mechanisms relevant to uterine bleeding. Reprod Biol Endocrinol 2006; 4 Suppl 1:S5. [PMID: 17118169 PMCID: PMC1775065 DOI: 10.1186/1477-7827-4-s1-s5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This review focuses on the complex events that occur in the endometrium after progesterone is withdrawn (or blocked) and menstrual bleeding ensues. A detailed understanding of these local mechanisms will enhance our knowledge of disturbed endometrial/uterine function--including problems with excessively heavy menstrual bleeding, endometriosis and breakthrough bleeding with progestin only contraception. The development of novel strategies to manage these clinically significant problems depends on such new understanding as does the development of new contraceptives which avoid the endometrial side effect of breakthrough bleeding.
Collapse
Affiliation(s)
- Hilary O D Critchley
- Department of Reproductive and Developmental Sciences, University of Edinburgh, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | |
Collapse
|
28
|
Sarac K, Celik O, Hascalik S, Alkan A, Mizrak B. In vivo
proton magnetic resonance spectroscopy in the evaluation of the endometrium. Acta Obstet Gynecol Scand 2004; 83:751-7. [PMID: 15255848 DOI: 10.1111/j.0001-6349.2004.00435.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purposes of this study were to compare proton magnetic resonance (MR) spectroscopic evaluation of the endometrium with histology obtained by endometrial biopsy in women undergoing diagnostic curettage and to determine whether screening with MR spectroscopy (MRS) might be useful in the evaluation of the endometrium. METHODS Twenty-three consecutive women who were scheduled for endometrial biopsy were included in the study. The women were evaluated by MRS, performed immediately before the endometrial biopsy. The MRS results were compared with the histological findings obtained from the endometrial biopsy. RESULTS All of the cases were proven by pathological examination, and their diagnoses were secretory endometrium (11 cases), proliferative endometrium (seven cases) and disordered proliferative endometrium (five cases). The characteristically obtained signals of choline (Cho) and lipid were detected in all subjects in the secretory endometrium group. In the same group, eight patients showed lactate signals and six showed creatine (Cr) signals. In the disordered proliferative endometrium group, four patients showed lipid plus Cho signals. Two patients in the same group demonstrated both lactate and Cr signals. All patients in the proliferative endometrium group showed Cho signals, two patients demonstrated lactate plus Cho signals, and none of the patients in this group showed lipid and Cr signals. CONCLUSION Proton magnetic resonance spectra can register certain metabolic differences in human endometrium in its different stages.
Collapse
Affiliation(s)
- Kaya Sarac
- Department of Radiology, Inonu University, School of Medicine, Malatya, Turkey
| | | | | | | | | |
Collapse
|
29
|
Walther T, Menrad A, Orzechowski HD, Siemeister G, Paul M, Schirner M. Differential regulation of in vivo angiogenesis by angiotensin II receptors. FASEB J 2003; 17:2061-7. [PMID: 14597675 DOI: 10.1096/fj.03-0129com] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiotensin II (ANG II), a key regulator of blood pressure and body fluid homeostasis, exerts mitogenic effects on endothelial cells. We therefore hypothesized that ANG II could be a mediator between homeostatic changes within the vascular perfusion bed and growth factor-driven angiogenesis. In the present study, we applied the alginate implant angiogenesis model in mice with normal ANG II levels, elevated ANG II levels by transgenic overexpression of angiotensinogen (AOGEN), or in AT2 receptor-deficient mice. We demonstrate that a decrease in the amount of circulating ANG II by the angiotensin-converting enzyme (ACE) inhibitor enalapril or the AT1 receptor antagonist losartan induced a stimulation of in vivo angiogenesis implying an inhibitory function of ANG II through the AT1 receptor. However, the strong increase of angiogenesis in AOGEN-transgenic mice compared with mice with normal ANG II levels suggests additional stimulatory activity. We showed that the ANG II-induced stimulation of angiogenesis is linked to the AT2 receptor as an impaired induction of angiogenesis was obtained in AT2 receptor knockout mice. These findings provide the first evidence that the AT2 receptor mediates a stimulation of in vivo angiogenesis and indicate that ANG II is a humoral regulator of peripheral angiogenesis involving two receptor subtypes with opposing actions.
Collapse
MESH Headings
- Alginates
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Angiotensinogen/genetics
- Animals
- Cell Line, Tumor
- Enalapril/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Mice, Transgenic
- Microspheres
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neovascularization, Pathologic
- Receptor, Angiotensin, Type 2/genetics
- Receptors, Angiotensin/physiology
Collapse
Affiliation(s)
- Thomas Walther
- Research Laboratories of Schering AG, Experimental Oncology, 13342 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Koukoulas I, Mustafa T, Douglas-Denton R, Wintour EM. Angiotensin II receptor (type 1 and 2) expression peaks when placental growth is maximal in sheep. Am J Physiol Regul Integr Comp Physiol 2002; 283:R972-82. [PMID: 12228068 DOI: 10.1152/ajpregu.00070.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In sheep, placental size is maximal by midgestation, but blood flow continues to increase until term. No nerves are present and ANG II is thought to be a major regulator of vascular tone. We hypothesized that angiotensin type 2 receptors (AT(2)) would predominate over type 1 (AT(1)) until late in gestation and be primarily expressed in the vasculature. Real-time PCR, hybridization histochemistry, and ligand-binding studies were performed on placentae and fetal membranes at 27, 45, 66 +/- 1, 100 +/- 4, 130, and 140 days of gestation (term approximately 150 days) to determine quantitative changes and localization. The maximum level of AT(1) expression occurred in the 45-day placenta and was located predominantly in the maternal stromal cells. AT(1) receptors were expressed in the endothelial cells of the chorion in the first half of pregnancy, where later in gestation, both AT(1) and AT(2) receptors were predominant in blood vessels. These results suggest that ANG II, via the AT(1) receptor, may have hitherto unsuspected important roles in the growth/function on the ovine placenta during the maximal growth phase.
Collapse
Affiliation(s)
- Irene Koukoulas
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, 3010 Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Desnoyers L, Simonette RA, Vandlen RL, Fendly BM. Novel non-isotopic method for the localization of receptors in tissue sections. J Histochem Cytochem 2001; 49:1509-18. [PMID: 11724898 DOI: 10.1177/002215540104901204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe a novel fluorescent method for the detection of receptors for chimeric proteins in tissue sections. The technique was developed using a recombinant human insulin-like growth factor (IGF-1) chimera, bearing six additional histidine residues at the carboxy-terminal end (IGF-1-His). We demonstrated that dehydration of the tissue sections was detrimental for binding and that its prevention dramatically increased sensitivity. The specificity of IGF-1-His interaction was shown by gradual abolition of the fluorescent signal in the presence of increasing concentrations of IGF-1. Combining immunofluorescence with in situ ligand binding, we showed that IGF-1-His binding corresponded to the IGF-1 receptor (IGFR-1) distribution in human fetal kidney. Moreover, incubation of the tissue sections with an anti-IGFR-1 blocking antibody abolished IGF-1-His binding, demonstrating that the interaction was mediated by the IGFR-1. The method was also used to localize the IGFR-1 in E18 rat embryo sagittal sections. The IGF-1-His binding pattern was observed in brain, cartilage, lung, skin, heart, diaphragm, and tongue, and paralleled the previously reported IGFR-1 distribution. We believe that this new non-isotopic in situ ligand binding method will facilitate rapid and accurate localization of receptors in tissue sections.
Collapse
Affiliation(s)
- L Desnoyers
- Departments of Cell Biology and Technology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
The human endometrium displays characteristic features, both structural and functional, across the menstrual cycle. It is the sex steroid hormones, oestrogen and progesterone, that drive the endometrium through the different phases of the cycle. Oestrogen and progesterone act sequentially to regulate cellular concentrations of their respective receptors, this interaction initiates gene transcription. Thereafter a cascade of local events prepares the endometrium for implantation, but in the absence of pregnancy, progesterone withdrawal leads to menstruation and cyclic repair. Withdrawal of progesterone from an oestrogen-progesterone primed endometrium is the initiating event for the cascade of molecular and cellular interactions that result in menstruation. Progesterone withdrawal first affects cells with progesterone receptors. Early events in the menstrual process are vasoconstriction and cytokine up-regulation. The activation of lytic mechanisms is a later event and involves cells that may lack progesterone receptors, for example, uterine leucocytes and epithelial cells. Hence progesterone withdrawal results in a local increase of inflammatory mediators and the enzymes responsible for tissue breakdown. The total complex of local factors implicated in normal menstrual and aberrant menstrual bleeding are yet to be fully defined.
Collapse
Affiliation(s)
- H O Critchley
- Centre for Reproductive Biology, The University of Edinburgh, UK.
| | | | | | | |
Collapse
|
33
|
Schauser KH, Nielsen AH, Dantzer V, Poulsen K. Angiotensin-converting enzyme activity in the bovine uteroplacental unit changes in relation to the cycle and pregnancy. Placenta 2001; 22:852-62. [PMID: 11718573 DOI: 10.1053/plac.2001.0740] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression of the angiotensin-forming enzymes, renin and angiotensin-converting enzyme (ACE), were examined in the bovine uteroplacental unit. The ACE activity was determined in cell membrane fractions, and ACE and renin were localized by autoradiography and immunohistochemistry, respectively. In the myometrium, the ACE activity was significantly higher in dioestrous than in oestrous. ACE activity correlated negatively with the day of gestation in the endometrium and myometrium but positively in the placentome and allantoamniotic membrane. Autoradiography showed, that ACE was localized in vascular endothelial cells in all compartments. ACE was also expressed in the endometrial stroma and uterine glands, most pronounced in the outer part of the basal zone. In the intercotyledonary membrane and the placentome, the mesenchymal cells located near the trophoblast cells expressed ACE. Solitary macrophage- or monocyte-like cells showing intense renin immunoreactivity were found in the uterus, while the uterine and the glandular epithelial cells displayed inconsistent reactivity. No renin was observed in the placentomes or in the fetal membranes. The findings demonstrate a regulated expression of angiotensin-forming enzymes throughout the bovine uteroplacental unit. Whether this local renin-angiotensin system contributes to the highly regulated morphological and functional changes throughout the oestrous cycle and gestation remains to be established.
Collapse
Affiliation(s)
- K H Schauser
- Department of Anatomy and Physiology, The Royal Veterinary and Agricultural University, Grønnegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
34
|
Fogarty DJ, Matute C. Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia 2001; 35:131-46. [PMID: 11460269 DOI: 10.1002/glia.1078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most of the physiological effects of brain angiotensins are currently believed to be mediated by angiotensin receptors located principally on neurons. However, numerous studies in vitro have demonstrated the presence of functional angiotensin receptors on brain astrocytes, raising the possibility that glial cells may also participate in mediating the effects of the central renin-angiotensin system. Nevertheless, it is uncertain whether these cells in situ express angiotensin receptors, raising questions about the physiological significance of results observed in cell cultures. We have examined the distribution of angiotensin receptor-like immunoreactivity in glial cells in white matter tracts in the adult CNS, using a panel of antisera to the AT1 and AT2 angiotensin receptors. Antiserum preadsorption and/or Western blot demonstrated the specificity of the antisera in brain tissue. In immunohistochemical experiments, the AT1 antisera selectively labeled AT1-expressing neurons in the piriform cortex, whereas the AT2 antiserum stained cells in the trigeminal motor nucleus, these being nuclei known to express AT1 and AT2 receptors, respectively. Using double-label immunohistochemistry, we observed AT1- and AT2-immunoreactive astrocytes and oligodendrocytes in white matter tracts, which include the rat cerebellar white matter, periventricular white matter, and optic nerve, in addition to the bovine corpus callosum and human subcortical white matter. In contrast, astrocytes in the gray matter region of the cerebral cortex were not found to be angiotensin receptor-like immunoreactive. These results demonstrate the presence of AT1 and/or AT2 angiotensin receptor-like immunoreactivity in brain white matter macroglial cells in situ and support the idea that glial cells may play a more important role in the central renin-angiotensin system than previously thought.
Collapse
Affiliation(s)
- D J Fogarty
- Department of Neurosciences, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | | |
Collapse
|
35
|
Takeda H, Kondo S. Immunohistochemical study of angiotensin receptors in normal human sweat glands and eccrine poroma. Br J Dermatol 2001; 144:1189-92. [PMID: 11422040 DOI: 10.1046/j.1365-2133.2001.04229.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Angiotensin II exerts its actions through its specific receptors. However, expression of these receptors has not been determined in sweat glands. OBJECTIVES To clarify the expression and localization of the angiotensin receptors in normal human sweat glands and eccrine poroma. METHODS Expression of angiotensin type 1 (AT1) and type 2 (AT2) receptors in normal human eccrine and apocrine sweat glands and 12 cases of eccrine poroma was studied using immunohistochemistry. RESULTS In eccrine sweat glands, the acrosyringium and the inner surfaces and luminal cells of the intradermal duct showed positive staining with AT1. In apocrine sweat glands, the intraepithelial duct and luminal cells of the intradermal duct showed positive staining with AT1. In 12 cases of eccrine poroma, some of the tumour cells in the tumour strands and cells surrounding the luminal structures stained positively. There were no positive findings with AT2. CONCLUSIONS Studying AT1 distribution may be useful in understanding the pathophysiology of sweat glands and sweat gland tumours.
Collapse
Affiliation(s)
- H Takeda
- Department of Dermatology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | | |
Collapse
|
36
|
Ibrahim J, Hughes AD, Sever PS. Action of angiotensin II on DNA synthesis by human saphenous vein in organ culture. Hypertension 2000; 36:917-21. [PMID: 11082167 DOI: 10.1161/01.hyp.36.5.917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II), an effector peptide of the renin-angiotensin system, has been reported to stimulate growth of blood vessels in vivo and smooth muscle cells in culture. In this study, the effect of Ang II on DNA synthesis was examined in deendothelialized human saphenous vein in organ culture. After 7 days' exposure to medium containing 0.4% fetal calf serum plus Ang II, there was a marked increase in DNA synthesis. The effect of Ang II was comparable to the response to platelet-derived growth factor. Responses to Ang II were partially inhibited by the AT(1) receptor antagonist candesartan. An AT(2) receptor antagonist, PD123319, had no effect on Ang II-induced DNA synthesis, either alone or in combination with candesartan. The Ang II peptide analogues [Sar(1), Ile(8)]-Ang II (saralasin) and [Sar(1),Thr(8)]-Ang II (sarthran) acted as agonists, increasing DNA synthesis. In the presence of saralasin, responses to Ang II were inhibited. Tyrphostin-23, a tyrosine kinase inhibitor, prevented Ang II-induced DNA synthesis and reduced DNA synthesis in tissues incubated in medium containing only 0.4% fetal calf serum. In conclusion, Ang II stimulates DNA synthesis in human saphenous vein in organ culture. The effect of Ang II was more marked than has been previously reported in isolated cultured saphenous vein smooth muscle cells, and this effect is mediated in part by an angiotensin type 1 receptor. It is possible that an undefined receptor for Ang II may also be involved in the stimulation of DNA synthesis in this preparation.
Collapse
Affiliation(s)
- J Ibrahim
- Clinical Pharmacology, National Heart and Lung Institute, Imperial College School of Medicine, St Mary's Hospital, London, UK
| | | | | |
Collapse
|
37
|
Abstract
The components of the renin-angiotensin system (RAS) are expressed in the uteroplacental unit. The expression varies between species, probably due to the marked species differences in placental architecture. The conditions for angiotensin (Ang) II formation exist and Ang II receptors are present throughout the human uteroplacental unit, indicating the presence of a functional local RAS. The uteroplacental RAS interacts with other regulatory systems and in this way modulates various aspects of tissue function. It is suggested that the uteroplacental RAS is important for the regeneration of the endometrium after shedding, and for decidualization, implantation and placentation. The RAS participates in the regulation of the uteroplacental blood flow, prostaglandin synthesis and oestradiol secretion. Disturbances of the uteroplacental RAS may lead to dysfunctional bleeding and to reduced uteroplacental blood flow in pregnancies complicated by pre-eclampsia and intrauterine growth retardation.
Collapse
Affiliation(s)
- A H Nielsen
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | | | |
Collapse
|
38
|
Abstract
The renin-angiotensin system (RAS) plays an important role in blood pressure control and in water and salt homeostasis. It is involved in the pathophysiology of hypertension and structural alterations of the vasculature, kidney, and heart, including neointima formation, nephrosclerosis, postinfarction remodeling, and cardiac left ventricular hypertrophy (LVH). Recently, an increased knowledge of the effector peptides of the RAS, their receptors, and their respective functions has led to a new principle of treatment for hypertension: the inhibition of angiotensin (Ang) II via angiotensin-converting enzyme inhibitors or Ang II-receptor antagonists. In this review, the Ang receptors AT1 and AT2 and the potential roles of shorter angiotensin fragments, including Ang III(2-8), Ang IV(3-8), and Ang(1-7), are discussed.
Collapse
Affiliation(s)
- U Stroth
- Department of Pharmacology, Christian Albrechts University, Kiel, Germany
| | | |
Collapse
|
39
|
Vinson GP, Saridogan E, Puddefoot JR, O'Mahony OA, Mahmood T, Djahanbakhch O. Renin-angiotensin systems and reproduction. Gynecol Endocrinol 1999; 13:56-70. [PMID: 10368799 DOI: 10.1080/09513599909167532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- G P Vinson
- Division of Biomedical Sciences, St Bartholomew's, London, UK
| | | | | | | | | | | |
Collapse
|
40
|
Schauser KH, Nielsen AH, Winther H, Dantzer V, Poulsen K. Autoradiographic localization and characterization of angiotensin II receptors in the bovine placenta and fetal membranes. Biol Reprod 1998; 59:684-92. [PMID: 9716570 DOI: 10.1095/biolreprod59.3.684] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Autoradiography and angiotensin (Ang) II receptor binding studies showed that all parts of the bovine placenta and fetal membranes contained high densities of Ang II receptors throughout gestation. The receptors were predominantly subtype 2 (AT2) receptors in the fetal and subtype 1 (AT1) receptors in the maternal compartment. In the allantoamnionic membrane, Ang II receptors were evenly distributed in the mesenchymal tissue, with the highest expression around the few arteries. In the intercotyledonary and cotyledonary allantochorionic membrane, AT2 receptors as well as the less-expressed AT1 receptors were located on mesenchymal cells, especially adjacent to the allantoic endoderm, trophoblast cell layer, and arteries. In the mesenchymal tissue of the placentome, Ang II receptors were mostly expressed at the main branches of the fetal villi of the cotyledons. In the maternal part of the placentome, mainly AT1 receptors but also low densities of AT2 receptors and non-AT1/non-AT2 Ang II binding sites were found close to the stalk and at the main branches of the maternal crypts. Autoradiography revealed no changes in the pattern of distribution of the Ang II receptors throughout gestation. It is suggested that Ang II has an effect on regulatory as well as growth processes in these tissues.
Collapse
Affiliation(s)
- K H Schauser
- Department of Anatomy and Physiology, The Royal Veterinary and Agricultural University, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
41
|
Ahmed A, Dearn S, Shams M, Li XF, Sangha RK, Rola-Pleszczynski M, Jiang J. Localization, quantification, and activation of platelet-activating factor receptor in human endometrium during the menstrual cycle: PAF stimulates NO, VEGF, and FAKpp125. FASEB J 1998; 12:831-43. [PMID: 9657523 DOI: 10.1096/fasebj.12.10.831] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Implantation is characterized by an inflammatory-like response with expansion of extracellular fluid volume, increased vascular permeability, and vasodilatation. These effects are believed to be mediated at the paracrine level by prostaglandin E2 and platelet-activating factor (PAF), but the cellular mechanism (or mechanisms) remains largely unknown. We demonstrate that PAF receptor (PAF-R) immunoreactivity and mRNA are detected in proliferative and secretory endometrial glands, however, the responsiveness of endometrium to physiological concentrations of PAF is confined predominantly to the secretory endometrium. Semiquantitative reverse transcription-polymerase chain reaction revealed that PAF-R transcript levels were highest in the mid-late proliferative and late secretory phases of the cycle. Interaction of PAF with its receptor resulted in the rapid release of nitric oxide (NO), increased expression of vascular endothelial growth factor (VEGF), and activation of FAKpp125, a focal adhesion kinase, demonstrating that the PAF-R is functionally active. Inhibition of NO synthesis by NG-monomethyl-L-arginine produced dose-dependent attenuation of PAF-evoked NO release, indicating NOS activation; the dependency of PAF-evoked NO release on PKC and extracellular Ca2+ was confirmed by PKC inhibitor Ro 31-8220 and by the removal of extracellular Ca2+. PAF up-regulated VEGF gene expression in a concentration- and time-dependent fashion in human endometrial epithelial cell lysates. Transcription of VEGF was rapidly followed by secretion of the protein. These data support our premise that this autocoid acts as an angiogenic mediator in the regeneration of the endometrium after menses and as a vasodilator to promote blastocyst attachment during the implantation process.
Collapse
Affiliation(s)
- A Ahmed
- Department of Obstetrics and Gynaecology, Birmingham Women's Hospital, University of Birmingham, Edgbaston, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The human placenta and related tissues are considered to be examples of the recently accepted local renin-angiotensin systems (RAS). The brain is another example of a system that is thought to be regulated independently of the kidney and the role of angiotensin within the CNS as a neural mediator has drawn considerable attention. It has been known for a long time that many of the neuroendocrine mediators and receptors are expressed in the placenta and it has been suggested that there are many parallels between the classical neuroendocrine system and the placental one. The present review summarizes information that components of the RAS are expressed in uteroplacental tissues, are regulated by endogenous substances, and have important biological functions within this reproductive system. A comparison of similarities and differences between the classical and the placental RAS may provide clues to functions in other endocrine and neuroendocrine systems. The major components of the placental RAS that are considered are renin, prorenin, angiotensin I, angiotensin II, angiotensin converting enzyme (ACE), angiotensin receptors, and angiotensinogen (renin substrate). The factors that regulate these components at the cellular and the nuclear level are described. It is concluded that prorenin via angiotensin-dependent and angiotensin-independent mechanisms influences functions within uteroplacental tissues. Some of these actions are direct and others are mediated by the release of different signalling molecules. These features are similar to many neuroendocrine systems and utilize some of the same messengers.
Collapse
Affiliation(s)
- A M Poisner
- Department of Pharmacology, University of Kansas Medical Center, Kansas City 66160, USA
| |
Collapse
|
43
|
Smits JF, Passier RC, Daemen MJ. Should we aim at tissue renin-angiotensin systems? PHARMACY WORLD & SCIENCE : PWS 1998; 20:93-9. [PMID: 9618731 DOI: 10.1023/a:1008621913932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent developments in our knowledge of the renin-angiotensin system (RAS) necessitate an update of the classical view on this system. These developments pertain to the pathways leading to formation of angiotensin II and other active metabolites, their receptors, biological functions and the presence of renin-angiotensin systems in tissues. The implications of the above new developments for the current interest in tissue renin-angiotensin systems as potential targets for drug therapy in cardiovascular disease are discussed in this review.
Collapse
Affiliation(s)
- J F Smits
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Universiteit Maastricht, The Netherlands
| | | | | |
Collapse
|
44
|
Li X, Shams M, Zhu J, Khalig A, Wilkes M, Whittle M, Barnes N, Ahmed A. Cellular localization of AT1 receptor mRNA and protein in normal placenta and its reduced expression in intrauterine growth restriction. Angiotensin II stimulates the release of vasorelaxants. J Clin Invest 1998; 101:442-54. [PMID: 9435317 PMCID: PMC508584 DOI: 10.1172/jci119881] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Angiotensin II (ANG II) is a potent vasoconstrictor and growth promoter. Quantitative receptor autoradiography using the nonselective radioligand [125I]ANG II and subtype-selective competing compounds demonstrated the presence of both ANG II receptor (AT)1 and AT2 receptor recognition sites. In addition, a relatively small population of apparently non-AT1/non-AT2 sites was identified that may represent a novel high affinity ANG II recognition site in human placenta. Using placental membrane preparations, the AT2 receptor antagonist PD123177 failed to compete for [3H]ANG II binding at relevant concentrations, whereas the AT1 receptor antagonist losartan competed in a monophasic manner for all the specific binding, suggesting that the non-AT1/non-AT2 recognition site identified using autoradiography may be a cytosolic binding site. AT1 receptor binding was significantly reduced (P < 0. 02) in intraeuterine growth restriction (IUGR) pregnancies. Western blot analysis confirmed this showing a reduction in AT1 receptor protein. In situ hybridization and immunocytochemistry revealed that AT1 receptor mRNA and protein were localized throughout pregnancy in the cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast, as well as in or around the blood vessels of placental villi. The intensity of the hybridization signal for AT1 receptor mRNA over the syncytium was reduced in IUGR. ANG II evoked a rapid and concentration-dependent release of NO in first trimester cytotrophoblast-like cells that was abolished by the inclusion of the competitive NOS inhibitor NG-monomethyl-L-arginine. Neither losartan nor PD123177 alone significantly inhibited ANG II-evoked NO release, and when cells were stimulated with ANG II in the presence of losartan (10 microM) and PD123177 (10 microM) in combination, NO release was significantly inhibited (P < 0.05). These observations also suggest, for the first time, the existence of a cross-talk between AT1 or AT2 receptors in trophoblast and that the reduction in placental AT1 receptors in IUGR may, in part, account for poor placental function in this disorder.
Collapse
Affiliation(s)
- X Li
- The Reproductive Physiopathology Group, Department of Obstetrics and Gynecology, Birmingham Women's Hospital, University of Birmingham, Edgbaston, Birmingham B15 2TG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nielsen AH, Schauser K, Winther H, Dantzer V, Poulsen K. Angiotensin II receptors and renin in the porcine uterus: myometrial AT2 and endometrial AT1 receptors are down-regulated during gestation. Clin Exp Pharmacol Physiol 1997; 24:309-14. [PMID: 9143779 DOI: 10.1111/j.1440-1681.1997.tb01193.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. The aim of the present study was to characterize the angiotensin II (AngII) receptor subtypes in the porcine uterus and the variation of receptor densities and renin concentrations during gestation. 2. In myometrium from non-pregnant sows, the AngII receptors were almost exclusively AT2 receptors. During gestation, the AngII receptor density was decreased and the AT1 receptor became predominant in the last part of gestation as a result of a down-regulation of the AT2 receptor. 3. In the endometrium, the AT1 receptor was predominant both in non-pregnant sows and throughout gestation. The AngII receptor density was decreased during gestation as a consequence of down-regulation of the AT1 receptor. 4. The renin concentrations in the myometrium and endometrium of pregnant sows did not differ from those in non-pregnant animals. 5. The finding of enzymatically active renin and high densities of AngII receptors in the porcine uterus is in accordance with a functional renin-angiotensin system (RAS), which may be important for an increased vascular permeability and stimulated angiogenesis in early pregnancy and for contraction of the myometrial smooth muscle cells during parturition. The predominance of AT1 receptors in the endometrium of non-pregnant sows differs from an earlier finding in non-pregnant women, where AT2 receptors were predominant in the endometrium. This is in accordance with earlier studies, indicating species differences in the expression and possibly also the physiological roles of the RAS in reproductive tissues.
Collapse
Affiliation(s)
- A H Nielsen
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Regitz-Zagrosek V, Neuss M, Holzmeister J, Warnecke C, Fleck E. Molecular biology of angiotensin receptors and their role in human cardiovascular disease. J Mol Med (Berl) 1996; 74:233-51. [PMID: 8773261 DOI: 10.1007/bf00196577] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The actions of angiotensin II in the cardiovascular system are transmitted by two known and possibly some unknown angiotensin receptor types. AT1 and AT2 both correspond to G-protein-coupled receptors with seven hydrophobic transmembrane domains, several N-glycosylation sites and a potential G-protein binding site. Cloning of coding regions and promoter sequences contributed to the understanding of receptor protein function and regulation. Angiotensin receptors with atypical binding properties for the known AT1- and AT2-specific ligands are expressed on human cardiac fibroblasts and in the human ulcrus. In several animal models, receptors with high affinity for angiotensin (1-7) have been described. AT1 stimulation is mediated by the generation of phospholipid-derived second messengers, activation of protein kinase C, the MAPkinase pathway and of immediate early genes. Recently, phosphorylation and dephosphorylation of tyrosine kinases have been associated with AT1- and AT2-mediated signal transduction. ATR are regulated by phosphorylation, internalization, modification of transcription rate and mRNA stability. Regulation is highly cell and organ specific and includes upregulation of ATR in some pathophysiological situations where the renin angiotensin system is activated. Whereas the function of AT1 in the cardiovascular system is relatively well established, there is little information regarding the role of AT2. Recent hypotheses suggest an antagonism between AT1 and AT2 at the signal transduction and the functional level. Transgenic animal models, particularly with targeted disruption of the AT1 and AT2 genes, suggest the contribution of both genes to blood pressure regulation. Genetic polymorphisms have been described in the AT1 and AT2 gene or neighbored regions and are used to analyze the association between gene defects and cardiovascular diseases. AT1 antagonists are now being introduced into the treatment of hypertension and potentially heart failure, and more interesting pharmacological developments are expected from the ongoing basic studies.
Collapse
Affiliation(s)
- V Regitz-Zagrosek
- Department of Internal Medicine/Cardiology, Virchow-Klinikum, Humboldt Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|