1
|
Hromić-Jahjefendić A, Sezer A, Mahmuljin I. The impact of COVID-19 on autoimmune diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:315-345. [PMID: 40246348 DOI: 10.1016/bs.pmbts.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Various autoantibodies, such as antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon type I (IFN-I), have been frequently detected in COVID-19 patients, indicating a significant prevalence of autoimmune reactions following viral exposure. Additionally, the identification of human proteins with structural similarities to SARS-CoV-2 peptides as potential autoantigens underscores the complex interplay between the virus and the immune system in triggering autoimmunity. The chapter discusses probable pathways contributing to COVID-19-related autoimmunity, including bystander activation due to hyperinflammatory states, viral persistence, and the formation of neutrophil extracellular traps. These mechanisms illuminate a spectrum of autoimmune-related symptoms that can manifest, ranging from organ-specific to systemic autoimmune and inflammatory diseases. Importantly, there is emerging evidence of de novo autoimmunity arising after COVID-19 infection or vaccination, where new autoimmune conditions develop in previously healthy individuals. While various COVID-19 vaccines have received emergency use authorization, concerns regarding potential autoimmune side effects persist. Ongoing research is crucial to clarify these relationships and enhance our understanding of the risks associated with COVID-19 infections and vaccinations.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irma Mahmuljin
- Association of Biologists in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Abraham DR, van Coller A, Tattersall MM, Mohlake E, Yunis NA, Webb K, Zunza M, van der Zalm MM, Rabie H, Glashoff RH. Cellular and soluble plasma immune markers at presentation in multisystem inflammatory syndrome in children and Kawasaki disease in South Africa: An observational study. Medicine (Baltimore) 2025; 104:e41516. [PMID: 39961004 PMCID: PMC11835083 DOI: 10.1097/md.0000000000041516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Immune and inflammatory alterations in multisystem inflammatory syndrome in children (MIS-C) as compared to Kawasaki disease (KD) were investigated in South Africa, a region of unique genetic background and high infectious disease burden. The observational study included MIS-C and KD patients during 4 severe acute respiratory syndrome coronavirus 2 waves (June 1, 2020-March 31, 2023) plus 12 healthy controls. Clinical features, routine inflammatory markers, hematological parameters, lymphocyte subsets and plasma inflammatory cytokines/chemokines were compared between groups. We enrolled 68 MIS-C, 18 KD, and 12 healthy controls. MIS-C patients had higher rates of Intensive Care Unit admission compared to KD (46% vs 17%; P = .03) and longer hospital stay (8.5 vs 6 days; P < .001). 8 MIS-C but no KD patients had an ejection fraction of < 40% (P = .07). Median lymphocyte counts were decreased in MIS-C, 1.2 cells/μL (interquartile range 0.7-2.3) versus KD 2.5 cells/μL (interquartile range 1.2-3.7), P = .02. Median CD3 + T-cell counts were lower in MIS-C (P = .04). Children with MIS-C had a higher median N-terminal pro-B-type natriuretic peptide of 5836 ng/L (1784-25,698) versus 7 ng/L (88-3262), P < .001 and Troponin T 25 ng/L (9-73) versus 7 ng/L (4-24), P = .01. Majority of cytokines/chemokines were elevated in both MIS-C and KD. When MIS-C was stratified by severity, significant differences in C-reactive protein (P < .001), total lymphocytes (P = .01), and N-terminal pro-B-type natriuretic peptide (P = .01) were observed. Inflammatory cytokine and chemokine levels were markedly raised in both KD and MIS-C. 3 markers were highlighted as indicators of MIS-C severity. There is a strong overlap in inflammatory marker alterations between MIS-C and KD at presentation in the African setting.
Collapse
Affiliation(s)
- Deepthi R. Abraham
- Department of Pediatrics and Child Health, Tygerberg Academic Hospital and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ansia van Coller
- Immunology Unit, Division of Medical Microbiology, Department of Pathology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Megan M. Tattersall
- Immunology Unit, Division of Medical Microbiology, Department of Pathology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Edwin Mohlake
- Immunology Unit, Division of Medical Microbiology, Department of Pathology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nurea A. Yunis
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Moleen Zunza
- Division of Epidemiology & Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marieke M. van der Zalm
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helena Rabie
- Division of Paediatric Infectious Diseases, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Richard H. Glashoff
- Immunology Unit, Division of Medical Microbiology, Department of Pathology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Barreto TMM, Souza RS, São Pedro RB, Paiva IM, Silva AS, Nogueira AL, Bellinat APN, Dias NLS, Nunes S, Britto GSG, Amaral EHB, Rocha GD, Silva-Carvalho C, Lyra R, Kehdy FSG, Campos TL, Moura PMMF, Tarazona-Santos E, Cunha TM, Tavares NM, Oliveira-Sá MVB, Ramos RCF, Carmo RF, Vasconcelos LRS, Oliveira PRS. Rare Genetic Variants of NLRP12 in Admixed Latino-American Children With SARS-CoV-2-Related Multisystem Inflammatory Syndrome. J Infect Dis 2024; 230:1400-1409. [PMID: 39328079 DOI: 10.1093/infdis/jiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare, potentially fatal complication of SARS-CoV-2 infection. Genetic defects in inflammation-related pathways have been linked to MIS-C, but additional research is needed, especially in diverse ethnic groups. The present study aimed to identify genetic variants underlying MIS-C in Brazilian patients. Whole exome sequencing was performed, focusing on genes involved in the host immune response to SARS-CoV-2. Functional assays assessed the impact of selected variants on nuclear factor-κB signaling. Nine rare, potentially deleterious variants were found in 8 of 21 patients, located in the IL17RC, IFNA10, or NLRP12 gene. Unlike the wild type NLRP12 protein, which inhibits nuclear factor-κB activation in HEK 293T cells, the mutant NLRP12 proteins have significantly reduced inhibitory properties. In conclusion, our results indicate that rare autosomal variants in immune-related genes may underlie MIS-C, highlighting the potential role of NLRP12 in its predisposition. These findings provide new insights for the appropriate management of MIS-C.
Collapse
Affiliation(s)
- Thaís M M Barreto
- Instituto de Biologia, Universidade Federal da Bahia, Salvador
- Emergência Pediátrica, Instituto Couto Maia, Salvador
| | | | | | - Isadora M Paiva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | - Andréia S Silva
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | - Ana L Nogueira
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | | | | | - Sara Nunes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador
| | | | | | - Gabriela D Rocha
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
| | - Carolina Silva-Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Ricardo Lyra
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | | | - Túlio L Campos
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife
| | - Patrícia M M F Moura
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Thiago M Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | | | | | - Regina C F Ramos
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | - Rodrigo F Carmo
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
- Colegiado de Medicina, Universidade Federal do Vale do São Francisco, Petrolina
| | | | | |
Collapse
|
4
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
5
|
Dourdouna MM, Tatsi EB, Syriopoulou V, Michos A. Proteomic Signatures of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1174. [PMID: 39457139 PMCID: PMC11505985 DOI: 10.3390/children11101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND/OBJECTIVES Multisystem Inflammatory Syndrome in Children (MIS-C) is a post-infectious complication of COVID-19. MIS-C has overlapping features with other pediatric inflammatory disorders including Kawasaki Disease (KD), Macrophage Activation Syndrome (MAS), Toxic Shock Syndrome and sepsis. The exact mechanisms responsible for the clinical overlap between MIS-C and these conditions remain unclear, and biomarkers that could distinguish MIS-C from its clinical mimics are lacking. This study aimed to provide an overview of how proteomic methods, like Mass Spectrometry (MS) and affinity-based proteomics, can offer a detailed understanding of pathophysiology and aid in the diagnosis and prognosis of MIS-C. METHODS A narrative review of relevant studies published up to July 2024 was conducted. RESULTS We identified 15 studies and summarized their key proteomic findings. These studies investigated the serum or plasma proteome of MIS-C patients using MS, Proximity Extension, or Aptamer-based assays. The studies associated the proteomic profile of MIS-C with laboratory and clinical parameters and/or compared it with that of other diseases including acute COVID-19, KD, MAS, pediatric rheumatic diseases, sepsis and myocarditis or pericarditis following COVID-19 mRNA immunization. Depending on the method and the control group, different proteins were increased or decreased in the MIS-C group. The limitations and challenges in MIS-C proteomic research are also discussed, and future research recommendations are provided. CONCLUSIONS Although proteomics appear to be a promising approach for understanding the pathogenesis and uncovering candidate biomarkers in MIS-C, proteomic studies are still needed to recognize and validate biomarkers that could accurately discriminate MIS-C from its clinical mimics.
Collapse
Affiliation(s)
| | | | | | - Athanasios Michos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (M.-M.D.); (E.-B.T.); (V.S.)
| |
Collapse
|
6
|
Netea SA, Biesbroek G, van Stijn D, Nagelkerke SQ, Kuipers IM, Kuijpers TW. Kawasaki Disease Diagnosis and Treatment in over 1000 Patients: A Continuum of Dysregulated Inflammatory Responses. Biomedicines 2024; 12:2014. [PMID: 39335528 PMCID: PMC11428402 DOI: 10.3390/biomedicines12092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a pediatric vasculitis, leading to coronary artery aneurysms (CAAs) in ~4-14%. Attention to the etiology and course of KD was generated by the close mimic of a SARS-CoV-2-induced phenotype, called multisystem inflammatory syndrome in children (MIS-C). METHODS A total of 1179 cases were collected from 2012 with ~50% of cases retrospectively included. Clinical characteristics were described and risk factors for CAA (persistence) were investigated. Phenotypic patterns of the prospectively included KD patients were evaluated. These patterns were also compared to the seronegative KD and seropositive MIS-C cases identified during the SARS-CoV-2 pandemic. RESULTS KD mostly affected boys and children < 5 years. IVIG resistance, CAAs, and giant CAAs occurred in 24.5%, 21.4%, and 6.6%, respectively. Giant CAAs were significantly more likely to normalize to a normal Z score in patients that were younger than 2.5 years old at the time of initial giant CAA (χ2 test p = 0.02). In our prospective (SARS-CoV-2-seronegative) KD series, there was a diminishing male predominance over time, whereas the proportions of incomplete presentations (p < 0.001) and patients with circulatory shock (p = 0.04) increased since the COVID-19 pandemic. Pre- and post-pandemic KD cases presented with different levels of C-reactive protein, thrombocyte counts, and hemoglobin levels over the years. Compared to pandemic KD, SARS-CoV-2-seropositive MIS-C patients were older (p < 0.001), and more often required intensive care admission (p < 0.001), with a gradual decrease over time between 2020 and 2022 (p = 0.04). KD carried a substantial risk of CAA development in contrast to MIS-C. CONCLUSION the phenotypic changes seen over the last twelve years of our prospective follow-up study suggest a spectrum of hyperinflammatory states with potentially different triggering events within this clinical entity.
Collapse
Affiliation(s)
- Stejara A. Netea
- Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (G.B.); (D.v.S.); (S.Q.N.); (T.W.K.)
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Giske Biesbroek
- Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (G.B.); (D.v.S.); (S.Q.N.); (T.W.K.)
| | - Diana van Stijn
- Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (G.B.); (D.v.S.); (S.Q.N.); (T.W.K.)
| | - Sietse Q. Nagelkerke
- Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (G.B.); (D.v.S.); (S.Q.N.); (T.W.K.)
- Department of Molecular Hematology, Sanquin Research Institute, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | | - Irene M. Kuipers
- Pediatric Cardiology, Emma Children’s Hospital, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Taco W. Kuijpers
- Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (G.B.); (D.v.S.); (S.Q.N.); (T.W.K.)
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Molecular Hematology, Sanquin Research Institute, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kane AS, Godfrey M, Noval Rivas M, Arditi M, Fasano A, Yonker LM. The Spectrum of Postacute Sequelae of COVID-19 in Children: From MIS-C to Long COVID. Annu Rev Virol 2024; 11:327-341. [PMID: 38631806 DOI: 10.1146/annurev-virology-093022-011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The effects of SARS-CoV-2 infection on children continue to evolve following the onset of the COVID-19 pandemic. Although life-threatening multisystem inflammatory syndrome in children (MIS-C) has become rare, long-standing symptoms stemming from persistent immune activation beyond the resolution of acute SARS-CoV-2 infection contribute to major health sequelae and continue to pose an economic burden. Shared pathophysiologic mechanisms place MIS-C and long COVID within a vast spectrum of postinfectious conditions characterized by intestinal dysbiosis, increased gut permeability, and varying degrees of immune dysregulation. Insights obtained from MIS-C will help shape our understanding of the more indolent and prevalent postacute sequelae of COVID and ultimately guide efforts to improve diagnosis and management of postinfectious complications of SARS-CoV-2 infection in children.
Collapse
Affiliation(s)
- Abigail S Kane
- Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Madeleine Godfrey
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Magali Noval Rivas
- Infectious and Immunologic Diseases Research Center and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Infectious and Immunologic Diseases Research Center and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alessio Fasano
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Lael M Yonker
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Areti S, Parrillo M, Baker L, Meszaros A, Dram A, Remy KE. Multisystem inflammatory syndrome in children: an evolving understanding of a syndrome amid the inflammatory continuum. Minerva Pediatr (Torino) 2024; 76:545-555. [PMID: 37335186 DOI: 10.23736/s2724-5276.23.07279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare hyperinflammatory and immunosuppressed condition affecting children exposed to COVID-19. MIS-C has been associated with an over-exaggerated innate and adaptive immune response characterized by a 'selective' cytokine production and T cell suppression. As COVID-19 information has evolved, the knowledge and field surrounding MIS-C is ever evolving. Thus, a comprehensive clinical review that concisely presents current literature findings regarding common clinical presentations and comparisons with similar conditions, associations with the COVID-19 vaccine effects and relevant epigenetic markers and evaluates treatment and long-term outcomes to help guide future studies is needed and provided.
Collapse
Affiliation(s)
- Sathya Areti
- Department of Medicine, Case Western University School of Medicine, University Hospitals of Cleveland, Cleveland, OH, USA
- Department of Pediatrics, Case Western University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Marissa Parrillo
- Department of Pediatrics, Case Western University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Lena Baker
- Department of Pediatrics, Case Western University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Alexandra Meszaros
- Division of Basic Research, Washington University in St. Louis, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Alexandra Dram
- Division of Basic Research, Washington University in St. Louis, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Kenneth E Remy
- Department of Medicine, Case Western University School of Medicine, University Hospitals of Cleveland, Cleveland, OH, USA -
- Department of Pediatrics, Case Western University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
9
|
van den Berg S, Sun T. Describing Elephants: An Update on the Immunopathology of Multisystem Inflammatory Syndrome in Children. Immunol Invest 2024; 53:962-974. [PMID: 38847319 DOI: 10.1080/08820139.2024.2363833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
First described in 2020, multi-system inflammatory syndrome in children (MIS-C) is an, initially life-threatening, disease characterised by severe inflammation and following exposure to SARS-CoV-2. The immunopathology of MIS-C involves a hyperinflammation characterised by a cytokine storm and activation of both the innate and adaptive immune system, eventually leading to multi-organ failure. Several etiological theories are described in literature. Firstly, it is suggested that the gut plays an important role in the translocation of microbial products to the systemic circulation. Additionally, the production of autoantibodies that develop after the initial infection with SARS-CoV-2 might lead to many of its broad clinical symptoms. Finally, the superantigen theory where non-specific binding of the SARS-CoV-2 spike glycoprotein to the T-cell receptor leads to a subsequent activation of T cells, generating a powerful immune response. Despite the sudden outbreak of MIS-C and alarming messages, as of 2024, cases have declined drastically and subsequently show a less severe clinical spectrum. However, subacute cases not meeting current diagnostic criteria might be overlooked even though they represent a valuable research population. In the future, research should focus on adjusting these criteria to better understand the broad pathophysiology of MIS-C, aiding early detection, therapy, and prediction.
Collapse
Affiliation(s)
- Sarah van den Berg
- Peadiatric Intensive Care Unit, Amsterdam Universitair Medische Centra, Amsterdam, Netherlands
| | - Thomas Sun
- Peadiatrics, Guy's and St. Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Bodansky A, Mettelman RC, Sabatino JJ, Vazquez SE, Chou J, Novak T, Moffitt KL, Miller HS, Kung AF, Rackaityte E, Zamecnik CR, Rajan JV, Kortbawi H, Mandel-Brehm C, Mitchell A, Wang CY, Saxena A, Zorn K, Yu DJL, Pogorelyy MV, Awad W, Kirk AM, Asaki J, Pluvinage JV, Wilson MR, Zambrano LD, Campbell AP, Thomas PG, Randolph AG, Anderson MS, DeRisi JL. Molecular mimicry in multisystem inflammatory syndrome in children. Nature 2024; 632:622-629. [PMID: 39112696 PMCID: PMC11324515 DOI: 10.1038/s41586-024-07722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/14/2024] [Indexed: 08/16/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.
Collapse
Affiliation(s)
- Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Kristin L Moffitt
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Haleigh S Miller
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA, USA
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA, USA
| | - Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Colin R Zamecnik
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jayant V Rajan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Kortbawi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Aditi Saxena
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David J L Yu
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mikhail V Pogorelyy
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walid Awad
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allison M Kirk
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James Asaki
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - John V Pluvinage
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Laura D Zambrano
- COVID-19 Response Team and Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Angela P Campbell
- COVID-19 Response Team and Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adrienne G Randolph
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Mark S Anderson
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA.
| |
Collapse
|
11
|
Guo J, Wang L. The complex landscape of immune dysregulation in multisystem inflammatory syndrome in children with COVID-19. LIFE MEDICINE 2024; 3:lnae034. [PMID: 39872865 PMCID: PMC11749780 DOI: 10.1093/lifemedi/lnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs. This review aims to explore the complex landscape of immune dysregulation in MIS-C, focusing on innate, T cell-, and B cell-mediated immunity, and discusses the role of SARS-CoV-2 spike protein as a superantigen in MIS-C pathophysiology. Understanding these mechanisms is crucial for improving the management and outcomes for affected children.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China
| |
Collapse
|
12
|
Tsay GJ, Zouali M. Cellular pathways and molecular events that shape autoantibody production in COVID-19. J Autoimmun 2024; 147:103276. [PMID: 38936147 DOI: 10.1016/j.jaut.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
A hallmark of COVID-19 is the variety of complications that follow SARS-CoV-2 infection in some patients, and that target multiple organs and tissues. Also remarkable are the associations with several auto-inflammatory disorders and the presence of autoantibodies directed to a vast array of antigens. The processes underlying autoantibody production in COVID-19 have not been completed deciphered. Here, we review mechanisms involved in autoantibody production in COVID-19, multisystem inflammatory syndrome in children, and post-acute sequelae of COVID19. We critically discuss how genomic integrity, loss of B cell tolerance to self, superantigen effects of the virus, and extrafollicular B cell activation could underly autoantibody proaction in COVID-19. We also offer models that may account for the pathogenic roles of autoantibodies in the promotion of inflammatory cascades, thromboembolic phenomena, and endothelial and vascular deregulations.
Collapse
Affiliation(s)
- Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Reiter A, Verweyen EL, Queste E, Fuehner S, Jakob A, Masjosthusmann K, Hinze C, Wittkowski H, Foell D, Meinzer U, Melki I, Kessel C. Proteomic mapping identifies serum marker signatures associated with MIS-C specific hyperinflammation and cardiovascular manifestation. Clin Immunol 2024; 264:110237. [PMID: 38723855 DOI: 10.1016/j.clim.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) shares several clinical and immunological features with Kawasaki Disease (KD) and pediatric hyperinflammation, but the immuno-phenotypic overlap among these clinical mimics is still incompletely understood. Here we analyzed serum samples from treatment-naïve patients with MIS-C (n = 31) and KD (n = 11), pediatric hyperinflammation (n = 13) and healthy controls (HC, n = 10) by proximity extension assay (PEA) to profile 184 blood biomarkers. Collectively, immunophenotypic overlap between MIS-C and hyperinflammation exceeds overlap with KD. Overexpression of IL-17A in MIS-C and KD could best separate these conditions from hyperinflammatory conditions, while those were hallmarked by overabundance of adenosin deaminase and IL-18. Depletion in serum TNF-related subfamily member 9 (TNFRSF9) and apoptosis inducing ligand (TRAIL) linked with cardiovascular manifestations and myocarditis in MIS-C. Altogether, our analysis highlights important differences in molecular marker signatures also across different MIS-C and KD cohorts and suggests several previously unidentified molecular associations in context of cardiovascular inflammation.
Collapse
Affiliation(s)
- Andrea Reiter
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany
| | - Emely L Verweyen
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany
| | - Emmanuelle Queste
- Department of General Pediatrics, Pediatric Internal Medicine, Rheumatology and Infectious Diseases, National Reference Centre for Rare Pediatric Inflammatory Rheumatisms and Systemic Autoimmune diseases (RAISE), Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, F-75019 Paris, France; Université Paris Cité, INSERM, Centre de Recherche sur l'inflammation UMR 1149, Paris, France
| | - Sabrina Fuehner
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany
| | - André Jakob
- Division of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilians University, Munich, Germany
| | - Katja Masjosthusmann
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Claas Hinze
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany
| | - Ulrich Meinzer
- Department of General Pediatrics, Pediatric Internal Medicine, Rheumatology and Infectious Diseases, National Reference Centre for Rare Pediatric Inflammatory Rheumatisms and Systemic Autoimmune diseases (RAISE), Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, F-75019 Paris, France; Université Paris Cité, INSERM, Centre de Recherche sur l'inflammation UMR 1149, Paris, France
| | - Isabelle Melki
- Department of General Pediatrics, Pediatric Internal Medicine, Rheumatology and Infectious Diseases, National Reference Centre for Rare Pediatric Inflammatory Rheumatisms and Systemic Autoimmune diseases (RAISE), Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, F-75019 Paris, France; Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, F-33000 Bordeaux, France; Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
| | - Christoph Kessel
- Department of Pediatric Rheumatology & Immunology, University Children's Hospital, Muenster, Germany.
| |
Collapse
|
14
|
Nygaard U, Nielsen AB, Dungu KHS, Drici L, Holm M, Ottenheijm ME, Nielsen AB, Glenthøj JP, Schmidt LS, Cortes D, Jørgensen IM, Mogensen TH, Schmiegelow K, Mann M, Vissing NH, Wewer Albrechtsen NJ. Proteomic profiling reveals diagnostic signatures and pathogenic insights in multisystem inflammatory syndrome in children. Commun Biol 2024; 7:688. [PMID: 38839859 PMCID: PMC11153518 DOI: 10.1038/s42003-024-06370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe disease that emerged during the COVID-19 pandemic. Although recognized as an immune-mediated condition, the pathogenesis remains unresolved. Furthermore, the absence of a diagnostic test can lead to delayed immunotherapy. Using state-of-the-art mass-spectrometry proteomics, assisted by artificial intelligence (AI), we aimed to identify a diagnostic signature for MIS-C and to gain insights into disease mechanisms. We identified a highly specific 4-protein diagnostic signature in children with MIS-C. Furthermore, we identified seven clusters that differed between MIS-C and controls, indicating an interplay between apolipoproteins, immune response proteins, coagulation factors, platelet function, and the complement cascade. These intricate protein patterns indicated MIS-C as an immunometabolic condition with global hypercoagulability. Our findings emphasize the potential of AI-assisted proteomics as a powerful and unbiased tool for assessing disease pathogenesis and suggesting avenues for future interventions and impact on pediatric disease trajectories through early diagnosis.
Collapse
Affiliation(s)
- Ulrikka Nygaard
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Annelaura Bach Nielsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kia Hee Schultz Dungu
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lylia Drici
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Holm
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maud Eline Ottenheijm
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Bybeck Nielsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jonathan Peter Glenthøj
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital North Zealand, Hillerød, Denmark
| | - Lisbeth Samsø Schmidt
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Dina Cortes
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Inger Merete Jørgensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital North Zealand, Hillerød, Denmark
| | | | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nadja Hawwa Vissing
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
15
|
Yeoh S, Estrada-Rivadeneyra D, Jackson H, Keren I, Galassini R, Cooray S, Shah P, Agyeman P, Basmaci R, Carrol E, Emonts M, Fink C, Kuijpers T, Martinon-Torres F, Mommert-Tripon M, Paulus S, Pokorn M, Rojo P, Romani L, Schlapbach L, Schweintzger N, Shen CF, Tsolia M, Usuf E, van der Flier M, Vermont C, von Both U, Yeung S, Zavadska D, Coin L, Cunnington A, Herberg J, Levin M, Kaforou M, Hamilton S. Plasma Protein Biomarkers Distinguish Multisystem Inflammatory Syndrome in Children From Other Pediatric Infectious and Inflammatory Diseases. Pediatr Infect Dis J 2024; 43:444-453. [PMID: 38359342 PMCID: PMC11003410 DOI: 10.1097/inf.0000000000004267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious hyperinflammatory complication following infection with severe acute respiratory syndrome coronavirus 2. The mechanisms underpinning the pathophysiology of MIS-C are poorly understood. Moreover, clinically distinguishing MIS-C from other childhood infectious and inflammatory conditions, such as Kawasaki disease or severe bacterial and viral infections, is challenging due to overlapping clinical and laboratory features. We aimed to determine a set of plasma protein biomarkers that could discriminate MIS-C from those other diseases. METHODS Seven candidate protein biomarkers for MIS-C were selected based on literature and from whole blood RNA sequencing data from patients with MIS-C and other diseases. Plasma concentrations of ARG1, CCL20, CD163, CORIN, CXCL9, PCSK9 and ADAMTS2 were quantified in MIS-C (n = 22), Kawasaki disease (n = 23), definite bacterial (n = 28) and viral (n = 27) disease and healthy controls (n = 8). Logistic regression models were used to determine the discriminatory ability of individual proteins and protein combinations to identify MIS-C and association with severity of illness. RESULTS Plasma levels of CD163, CXCL9 and PCSK9 were significantly elevated in MIS-C with a combined area under the receiver operating characteristic curve of 85.7% (95% confidence interval: 76.6%-94.8%) for discriminating MIS-C from other childhood diseases. Lower ARG1 and CORIN plasma levels were significantly associated with severe MIS-C cases requiring inotropes, pediatric intensive care unit admission or with shock. CONCLUSION Our findings demonstrate the feasibility of a host protein biomarker signature for MIS-C and may provide new insight into its pathophysiology.
Collapse
Affiliation(s)
- Sophya Yeoh
- From the Department of Infectious Disease, Faculty of Medicine
| | - Diego Estrada-Rivadeneyra
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Heather Jackson
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Ilana Keren
- From the Department of Infectious Disease, Faculty of Medicine
| | | | - Samantha Cooray
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Priyen Shah
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Philipp Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Romain Basmaci
- Service de Pédiatrie-Urgences, AP-HP, Hôpital Louis-Mourier, Colombes, France
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité, Inserm, IAME, Paris, France
| | - Enitan Carrol
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, United Kingdom
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University
- Paediatric Infectious Diseases and Immunology Department, Newcastle upon Tyne Hospitals Foundation Trust, Great North Children’s Hospital
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Colin Fink
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre
- Sanquin Research, Department of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Federico Martinon-Torres
- Translational Paediatrics and Infectious Diseases, Hospital Clínico Universitario, Universidad de Santiago de Compostela
- Genetics, Vaccines and Paediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), Galicia, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Stephane Paulus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marko Pokorn
- Division of Pediatrics, University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit, Pediatric Department, Hospital Doce de Octubre, Madrid, Spain
| | - Lorenza Romani
- Infectious Disease Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luregn Schlapbach
- Department of Intensive Care and Neonatology, Children’s Research Center, University Children`s Hospital, Zurich, Switzerland
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Nina Schweintzger
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Maria Tsolia
- Second Department of Paediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athina, Athens, Greece
| | - Effua Usuf
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Michiel van der Flier
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Clementien Vermont
- Department of Paediatric Infectious Diseases and Immunology, Erasmus MC Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Ulrich von Both
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Dr von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Shunmay Yeung
- Clinical Research Department, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dace Zavadska
- Children’s Clinical University Hospital, Rīga, Latvia
| | - Lachlan Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aubrey Cunnington
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Jethro Herberg
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Michael Levin
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Myrsini Kaforou
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Shea Hamilton
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Patel MA, Fraser DD, Daley M, Cepinskas G, Veraldi N, Grazioli S. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol Med 2024; 30:51. [PMID: 38632526 PMCID: PMC11022403 DOI: 10.1186/s10020-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada.
- Children's Health Research Institute, N6C 4V3, London, ON, Canada.
- Pediatrics, Western University, N6A 3K7, London, ON, Canada.
- Clinical Neurological Sciences, Western University, N6A 3K7, London, ON, Canada.
- Physiology & Pharmacology, Western University, N6A 3K7, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, N6A 5W9, London, ON, Canada.
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
- Computer Science, Western University, N6A 3K7, London, ON, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada
- Medical Biophysics, Western University, N6A 3K7, London, ON, Canada
| | - Noemi Veraldi
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Grazioli
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neonatal and Pediatric Intensive Care, Department of Child, Woman, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Bline KE, Wilt AL, Alexander RN, Andrews AN, Mertz SE, Ye F, Steele LM, Wolfe AL, Mejias A, Ramilo O. Myeloid-derived suppressor cells and T cell populations in children with Multisystem Inflammatory Syndrome. Pediatr Res 2024; 95:1288-1294. [PMID: 38042945 DOI: 10.1038/s41390-023-02919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) represents a hyperinflammatory state that can result in multi-organ dysfunction and death. Myeloid-derived suppressor cells (MDSC) are an immunosuppressive cell population that expands under inflammatory conditions and suppresses T cell function. We hypothesized that MDSC would be increased in children with MIS-C and that MDSC expansion would be associated with T cell lymphopenia. METHODS We conducted a prospective, observational study. Initial blood samples were collected within 48 h of admission. Age-matched healthy controls underwent sampling once. MDSC and T cell populations were identified by flow cytometric methods. RESULTS We enrolled 22 children with MIS-C (12 ICU, 10 ward) and 21 healthy controls (HC). Children with MIS-C demonstrated significantly higher MDSC compared to HC, and MDSC expansion persisted for >3 weeks in the ICU group. Children with MIS-C admitted to the ICU demonstrated significantly lower absolute numbers of T cells and natural killer cells. There were no significant associations between MDSC and cardiac dysfunction, duration of hospitalization, or vasoactive inotrope score. CONCLUSIONS Our study suggests that children critically ill with MIS-C have expansion of MDSC and associated decreased T cell and NK cell populations. Our results did not demonstrate associations between MDSC and clinical outcomes. IMPACT Multisystem inflammatory syndrome in children (MIS-C) is a dysregulated immune response occurring several weeks after SARS-CoV-2 infection that can result in multi-organ dysfunction and death. Children severely ill with MIS-C demonstrated increased myeloid-derived suppressor cells and decreased absolute numbers of CD4+ and CD8 + T cells and NK cells compared to healthy controls. There was no significant association between MDSC numbers and clinical outcomes; including cardiac dysfunction, length of stay, or requirement of vasoactive support, in children with MIS-C.
Collapse
Affiliation(s)
- Katherine E Bline
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Anna L Wilt
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Robin N Alexander
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, OH, USA
| | - Angel N Andrews
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara E Mertz
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Fang Ye
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lisa M Steele
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amber L Wolfe
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
18
|
Serebrovskaya EO, Bryushkova EA, Lukyanov DK, Mushenkova NV, Chudakov DM, Turchaninova MA. Toolkit for mapping the clonal landscape of tumor-infiltrating B cells. Semin Immunol 2024; 72:101864. [PMID: 38301345 DOI: 10.1016/j.smim.2024.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Our current understanding of whether B cell involvement in the tumor microenvironment benefits the patient or the tumor - in distinct cancers, subcohorts and individual patients - is quite limited. Both statements are probably true in most cases: certain clonal B cell populations contribute to the antitumor response, while others steer the immune response away from the desired mechanics. To step up to a new level of understanding and managing B cell behaviors in the tumor microenvironment, we need to rationally discern these roles, which are cumulatively defined by B cell clonal functional programs, specificities of their B cell receptors, specificities and isotypes of the antibodies they produce, and their spatial interactions within the tumor environment. Comprehensive analysis of these characteristics of clonal B cell populations is now becoming feasible with the development of a whole arsenal of advanced technical approaches, which include (1) methods of single-cell and spatial transcriptomics, genomics, and proteomics; (2) methods of massive identification of B cell specificities; (3) methods of deep error-free profiling of B cell receptor repertoires. Here we overview existing techniques, summarize their current application for B cells studies and propose promising future directions in advancing B cells exploration.
Collapse
Affiliation(s)
- E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, 119049, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
19
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
20
|
Vella LA, Berna AZ, Blatz AM, Logan J, Sharma P, Liu Y, Tedesco J, Toland C, Babiker L, Hafertepe K, Kammerman S, Novacek J, Akaho E, Gonzalez AK, Taylor D, Diorio C, Balamuth F, Bassiri H, Odom John AR. Metabolomic and Immunologic Discriminators of MIS-C at Emergency Room Presentation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.11.24301110. [PMID: 38293197 PMCID: PMC10827247 DOI: 10.1101/2024.01.11.24301110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Multisystem Inflammatory Syndrome in Childhood (MIS-C) follows SARS-CoV-2 infection and frequently leads to intensive care unit admission. The inability to rapidly discriminate MIS-C from similar febrile illnesses delays treatment and leads to misdiagnosis. To identify diagnostic discriminators at the time of emergency department presentation, we enrolled 104 children who met MIS-C screening criteria, 14 of whom were eventually diagnosed with MIS-C. Before treatment, we collected breath samples for volatiles and peripheral blood for measurement of plasma proteins and immune cell features. Clinical and laboratory features were used as inputs for a machine learning model to determine diagnostic importance. MIS-C was associated with significant changes in breath volatile organic compound (VOC) composition as well as increased plasma levels of secretory phospholipase A2 (PLA2G2A) and lipopolysaccharide binding protein (LBP). In an integrated model of all analytes, the proportion of TCRVβ21.3+ non-naive CD4 T cells expressing Ki-67 had a high sensitivity and specificity for MIS-C, with diagnostic accuracy further enhanced by low sodium and high PLA2G2A. We anticipate that accurate diagnosis will become increasingly difficult as MIS-C becomes less common. Clinical validation and application of this diagnostic model may improve outcomes in children presenting with multisystem febrile illnesses.
Collapse
|
21
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
22
|
Tseng CT, Lin JJ, Huang JL, Chiu CH, Wu CY. Clinical manifestations and outcomes associated with PICU admission in children with multisystem inflammatory syndrome in Taiwan: A retrospective cohort study. Int J Rheum Dis 2024; 27:e14970. [PMID: 37947261 DOI: 10.1111/1756-185x.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a rare and serious systemic inflammatory disorder that occurs following a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aims to investigate the clinical manifestations, risk factors associated with pediatric intensive care unit (PICU) admission, and outcome among children with MIS-C in Taiwan. METHODS A retrospective analysis was conducted among pediatric patients diagnosed with MIS-C between June 2022 and February 2023 at Chang Gung Memorial Hospital, Linkou, Taiwan. Data on demographics, clinical features, laboratory findings, treatment modalities, and outcomes were collected and analyzed. RESULTS Twenty-eight MIS-C patients, including 9 boys and 19 girls, with an average age of 5.3 ± 3.8 years old, were enrolled. Most of the cases (78.6%) were diagnosed following the first pandemic wave of COVID-19 in Taiwan. The leading clinical manifestations observed were fever (100%), skin rash (64.3%), tachycardia (46.4%), and vomiting (46.4%). Nine patients (32.1%) were admitted to the PICU due to hypotension or neurological manifestations. Higher levels of band-form white blood cells, procalcitonin, ferritin, d-dimer, prothrombin time, NT-proBNP, and lower platelet levels on arrival were associated with PICU admission (p = 3.9 × 10-2 ,9 × 10-3 , 4 × 10-3 ,1 × 10-3 , 5 × 10-3 , 4.1 × 10-2 , and 3.4 × 10-2 , respectively). Arrhythmia in one case (3.5%) and coronary artery abnormalities, including dilatation in two cases (7.1%) and small aneurysms in one case (3.5%) were identified. Regardless of ICU admission, no patients experienced systolic dysfunction or mortality following treatment. CONCLUSION MIS-C cases in Taiwan have a favorable outcome. Although one-third of the patients required PICU admission, none of the MIS-C cases resulted in severe cardiovascular morbidity or mortality. This study provides valuable insights into the clinical manifestations and outcomes associated with PICU admission in children with MIS-C in Taiwan.
Collapse
Affiliation(s)
- Chi-Teng Tseng
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan city, Taiwan
| | - Jainn-Jim Lin
- College of Medicine, Chang Gung University, Taoyuan city, Taiwan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan city, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan city, Taiwan
- College of Medicine, Chang Gung University, Taoyuan city, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei city, Taiwan
| | - Cheng-Hsun Chiu
- College of Medicine, Chang Gung University, Taoyuan city, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan city, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan city, Taiwan
- College of Medicine, Chang Gung University, Taoyuan city, Taiwan
| |
Collapse
|
23
|
Beltran JVB, Lin FP, Chang CL, Ko TM. Single-Cell Meta-Analysis of Neutrophil Activation in Kawasaki Disease and Multisystem Inflammatory Syndrome in Children Reveals Potential Shared Immunological Drivers. Circulation 2023; 148:1778-1796. [PMID: 37905415 DOI: 10.1161/circulationaha.123.064734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) share similar clinical manifestations, including cardiovascular complications, suggesting similar underlying immunopathogenic processes. Aberrant neutrophil activation may play a crucial role in the shared pathologies of KD and MIS-C; however, the associated pathogenic mechanisms and molecular drivers remain unknown. METHODS We performed a single-cell meta-analysis of neutrophil activation with 103 pediatric single-cell transcriptomic peripheral blood mononuclear cell data across 9 cohorts, including healthy controls, KD, MIS-C, compared with dengue virus infection, juvenile idiopathic arthritis, and pediatric celiac disease. We used a series of computational analyses to investigate the shared neutrophil transcriptional programs of KD and MIS-C that are linked to systemic damage and cardiac pathologies, and suggested Food and Drug Administration-approved drugs to consider as KD and MIS-C treatment. RESULTS We meta-analyzed 521 950 high-quality cells. We found that blood signatures associated with risks of cardiovascular events are enriched in neutrophils of KD and MIS-C. We revealed the expansion of CD177+ neutrophils harboring hyperactivated effector functions in both KD and MIS-C, but not in healthy controls or in other viral-, inflammatory-, or immune-related pediatric diseases. KD and MIS-C CD177+ neutrophils had highly similar transcriptomes, marked by conserved signatures and pathways related to molecular damage. We found the induction of a shared neutrophil expression program, potentially regulated by SPI1 (Spi-1 proto-oncogene), which confers enhanced effector functions, especially neutrophil degranulation. CD177 and shared neutrophil expression program expressions were associated with acute stages and attenuated during KD intravenous immunoglobulin treatment and MIS-C recovery. Network analysis identified hub genes that correlated with the high activation of CD177+ neutrophils. Disease-gene association analysis revealed that the KD and MIS-C CD177+ neutrophils' shared expression program was associated with the development of coronary and myocardial disorders. Last, we identified and validated TSPO (translocator protein) and S100A12 (S100 calcium-binding protein A12) as main molecular targets, for which the Food and Drug Administration-approved drugs methotrexate, zaleplon, metronidazole, lorazepam, clonazepam, temazepam, and zolpidem, among others, are primary candidates for drug repurposing. CONCLUSIONS Our findings indicate that CD177+ neutrophils may exert systemic pathological damage contributing to the shared morbidities in KD and MIS-C. We uncovered potential regulatory drivers of CD177+ neutrophil hyperactivation and pathogenicity that may be targeted as a single therapeutic strategy for either KD or MIS-C.
Collapse
Affiliation(s)
- Jan Vincent B Beltran
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
| | - Fang-Ping Lin
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (F.-P.L., C.-L.C., T.-M.K.)
| | - Chaw-Liang Chang
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (F.-P.L., C.-L.C., T.-M.K.)
- Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan (C.-L.C.)
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan (C.-L.C.)
| | - Tai-Ming Ko
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (J.V.B.B., T.-M.K.)
- Department of Biological Sciences and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan (F.-P.L., C.-L.C., T.-M.K.)
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan (T.-M.K.)
- School of Pharmacy, College of Pharmacy, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan (T.-M.K.)
| |
Collapse
|
24
|
Melgar M, Abrams JY, Godfred-Cato S, Shah AB, Garg A, Strunk A, Narasimhan M, Koptyev J, Norden A, Musheyev D, Rashid F, Tannenbaum R, Estrada-Y-Martin RM, Patel B, Karanth S, Achenbach CJ, Hall GT, Hockney SM, Caputo M, Abbo LM, Beauchamps L, Morris S, Cifuentes RO, de St Maurice A, Bell DS, Prabaker KK, Sanz Vidorreta FJ, Bryant E, Cohen DK, Mohan R, Libby CP, SooHoo S, Domingo TJ, Campbell AP, Belay ED. A Multicenter Retrospective Cohort Study to Characterize Patients Hospitalized With Multisystem Inflammatory Syndrome in Adults and Coronavirus Disease 2019 in the United States, 2020-2021. Clin Infect Dis 2023; 77:1395-1405. [PMID: 37384794 PMCID: PMC10654854 DOI: 10.1093/cid/ciad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated multisystem inflammatory syndrome in adults (MIS-A) requires distinguishing it from acute coronavirus disease 2019 (COVID-19) and may affect clinical management. METHODS In this retrospective cohort study, we applied the US Centers for Disease Control and Prevention case definition to identify adults hospitalized with MIS-A at 6 academic medical centers from 1 March 2020 to 31 December 2021. Patients MIS-A were matched by age group, sex, site, and admission date at a 1:2 ratio to patients hospitalized with acute symptomatic COVID-19. Conditional logistic regression was used to compare demographic characteristics, presenting symptoms, laboratory and imaging results, treatments administered, and outcomes between cohorts. RESULTS Through medical record review of 10 223 patients hospitalized with SARS-CoV-2-associated illness, we identified 53 MIS-A cases. Compared with 106 matched patients with COVID-19, those with MIS-A were more likely to be non-Hispanic black and less likely to be non-Hispanic white. They more likely had laboratory-confirmed COVID-19 ≥14 days before hospitalization, more likely had positive in-hospital SARS-CoV-2 serologic testing, and more often presented with gastrointestinal symptoms and chest pain. They were less likely to have underlying medical conditions and to present with cough and dyspnea. On admission, patients with MIS-A had higher neutrophil-to-lymphocyte ratio and higher levels of C-reactive protein, ferritin, procalcitonin, and D-dimer than patients with COVID-19. They also had longer hospitalization and more likely required intensive care admission, invasive mechanical ventilation, and vasopressors. The mortality rate was 6% in both cohorts. CONCLUSIONS Compared with patients with acute symptomatic COVID-19, adults with MIS-A more often manifest certain symptoms and laboratory findings early during hospitalization. These features may facilitate diagnosis and management.
Collapse
Affiliation(s)
- Michael Melgar
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph Y Abrams
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shana Godfred-Cato
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ami B Shah
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amit Garg
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Andrew Strunk
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Mangala Narasimhan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Northwell Health LIJ/NSUH Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Jonathan Koptyev
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Alexandra Norden
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - David Musheyev
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Fahmida Rashid
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Rachel Tannenbaum
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Rosa M Estrada-Y-Martin
- Divisions of Critical Care, Pulmonary, and Sleep Medicine, McGovern Medical School at UTHealth, The University of Texas at Houston, Houston, Texas, USA
| | - Bela Patel
- Divisions of Critical Care, Pulmonary, and Sleep Medicine, McGovern Medical School at UTHealth, The University of Texas at Houston, Houston, Texas, USA
| | - Siddharth Karanth
- Divisions of Critical Care, Pulmonary, and Sleep Medicine, McGovern Medical School at UTHealth, The University of Texas at Houston, Houston, Texas, USA
| | - Chad J Achenbach
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gavin T Hall
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sara M Hockney
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lilian M Abbo
- Department of Infection Prevention and Control, Jackson Health System, Miami, Florida, USA
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Beauchamps
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen Morris
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Renzo O Cifuentes
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Annabelle de St Maurice
- Division of Infectious Diseases, Department of Pediatrics, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
- Department of Clinical Epidemiology and Infection Prevention, University of California, Los Angeles, Los Angeles, California, USA
| | - Douglas S Bell
- Division of General Internal Medicine, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
- Clinical and Translational Science Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Kavitha K Prabaker
- Department of Clinical Epidemiology and Infection Prevention, University of California, Los Angeles, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Fernando J Sanz Vidorreta
- Clinical and Translational Science Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Evan Bryant
- Department of Clinical Epidemiology and Infection Prevention, University of California, Los Angeles, Los Angeles, California, USA
| | - David K Cohen
- Department of Clinical Epidemiology and Infection Prevention, University of California, Los Angeles, Los Angeles, California, USA
| | - Rohith Mohan
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher P Libby
- Department of Emergency Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Spencer SooHoo
- Division of Informatics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tristel J Domingo
- Division of Informatics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela P Campbell
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ermias D Belay
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Andargie TE, Roznik K, Redekar N, Hill T, Zhou W, Apalara Z, Kong H, Gordon O, Meda R, Park W, Johnston TS, Wang Y, Brady S, Ji H, Yanovski JA, Jang MK, Lee CM, Karaba AH, Cox AL, Agbor-Enoh S. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:e171729. [PMID: 37651206 PMCID: PMC10617770 DOI: 10.1172/jci171729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Biology, Howard University, Washington DC, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tom Hill
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rohan Meda
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Woojin Park
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Trevor S. Johnston
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yi Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Brady
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Moon K. Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington DC, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Broberg MC, Mazer MB, Cheifetz IM. Cardiovascular effects of COVID-19 in children. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:533-541. [PMID: 38920204 DOI: 10.47102/annals-acadmedsg.202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Although severe acute respiratory failure is the primary cause of morbidity and mortality in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, this viral infection leads to cardiovascular disease in some individuals. Cardiac effects of the virus include myocarditis, pericarditis, arrhythmias, coronary aneurysms and cardiomyopathy, and can result in cardiogenic shock and multisystem organ failure. Method This review summarises cardiac manifesta-tions of SARS-CoV-2 in the paediatric population. We performed a scoping review of cardiovascular disease associated with acute coronavirus disease 2019 (COVID-19) infection, multisystem inflammatory syndrome in children (MIS-C), and mRNA COVID-19 vaccines. Also examined are special considerations for paediatric athletes and return to play following COVID-19 infection. Results Children presenting with acute COVID-19 should be screened for cardiac dysfunction and a thorough history should be obtained. Further cardiovascular evaluation should be considered following any signs/symptoms of arrhythmias, low cardiac output, and/or myopericarditis. Patients admitted with severe acute COVID-19 should be monitored with continuous cardiac monitoring. Laboratory testing, as clinically indicated, includes tests for troponin and B-type natriuretic peptide or N-terminal pro-brain natriuretic peptide. Echocardiography with strain evaluation and/or cardiac magnetic resonance imaging should be considered to evaluate diastolic and systolic dysfunction, coronary anatomy, the pericardium and the myocardium. For patients with MIS-C, combination therapy with intravenous immunoglobulin and glucocorticoid therapy is safe and potentially disease altering. Treatment of MIS-C targets the hyperimmune response. Supportive care, including mechanical support, is needed in some cases. Conclusion Cardiovascular disease is a striking feature of SARS-CoV-2 infection. Most infants, children and adolescents with COVID-19 cardiac disease fully recover with no lasting cardiac dysfunction. However, long-term studies and further research are needed to assess cardiovascular risk with variants of SARS-CoV-2 and to understand the pathophysiology of cardiac dysfunction with COVID-19.
Collapse
Affiliation(s)
- Meredith Cg Broberg
- Division of Cardiac Critical Care, UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Monty B Mazer
- Division of Cardiac Critical Care, UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Ira M Cheifetz
- Division of Cardiac Critical Care, UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
27
|
Klocperk A, Bloomfield M, Parackova Z, Aillot L, Fremuth J, Sasek L, David J, Fencl F, Skotnicova A, Rejlova K, Magner M, Hrusak O, Sediva A. B cell phenotype and serum levels of interferons, BAFF, and APRIL in multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C). Mol Cell Pediatr 2023; 10:15. [PMID: 37891416 PMCID: PMC10611647 DOI: 10.1186/s40348-023-00169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C) is a late complication of pediatric COVID-19, which follows weeks after the original SARS-CoV-2 infection, regardless of its severity. It is characterized by hyperinflammation, neutrophilia, lymphopenia, and activation of T cells with elevated IFN-γ. Observing the production of autoantibodies and parallels with systemic autoimmune disorders, such as systemic lupus erythematodes (SLE), we explored B cell phenotype and serum levels of type I, II, and III interferons, as well as the cytokines BAFF and APRIL in a cohort of MIS-C patients and healthy children after COVID-19. RESULTS We documented a significant elevation of IFN-γ, but not IFN-α and IFN-λ in MIS-C patients. BAFF was elevated in MIS-C patient sera and accompanied by decreased BAFFR expression on all B cell subtypes. The proportion of plasmablasts was significantly lower in patients compared to healthy post-COVID children. We noted the pre-IVIG presence of ENA Ro60 autoantibodies in 4/35 tested MIS-C patients. CONCLUSIONS Our work shows the involvement of humoral immunity in MIS-C and hints at parallels with the pathophysiology of SLE, with autoreactive B cells driven towards autoantibody production by elevated BAFF.
Collapse
Affiliation(s)
- Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic.
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic
- Department of Paediatrics, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Ludovic Aillot
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, IOCB Gilead Research Center, Prague, Czech Republic
| | - Jiri Fremuth
- Department of Paediatrics - PICU, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lumir Sasek
- Department of Paediatrics - PICU, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan David
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Filip Fencl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Aneta Skotnicova
- Department of Pediatric Hematology, CLIP - Childhood Leukaemia Investigation Prague, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Katerina Rejlova
- Department of Pediatric Hematology, CLIP - Childhood Leukaemia Investigation Prague, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Martin Magner
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondrej Hrusak
- Department of Pediatric Hematology, CLIP - Childhood Leukaemia Investigation Prague, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
28
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff LE, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Nguyen TT, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth. Cell 2023; 186:4632-4651.e23. [PMID: 37776858 PMCID: PMC10724861 DOI: 10.1016/j.cell.2023.08.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy" (iFIT), University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Allison R Burrell
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lindsay E Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine C Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Tran T Nguyen
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mary A Staat
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Constantin T, Pék T, Horváth Z, Garan D, Szabó AJ. Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. Inflammopharmacology 2023; 31:2221-2236. [PMID: 37460909 PMCID: PMC10518292 DOI: 10.1007/s10787-023-01272-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic caused by the coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) has significantly affected people around the world, leading to substantial morbidity and mortality. Although the pandemic has affected people of all ages, there is increasing evidence that children are less susceptible to SARS-CoV-2 infection and are more likely to experience milder symptoms than adults. However, children with COVID-19 can still develop serious complications, such as multisystem inflammatory syndrome in children (MIS-C). This narrative review of the literature provides an overview of the epidemiology and immune pathology of SARS-CoV-2 infection and MIS-C in children. The review also examines the genetics of COVID-19 and MIS-C in children, including the genetic factors that can influence the susceptibility and severity of the diseases and their implications for personalized medicine and vaccination strategies. By examining current evidence and insights from the literature, this review aims to contribute to the development of effective prevention and treatment strategies for COVID-19, MIS-C, and long COVID syndromes in children.
Collapse
Affiliation(s)
- Tamás Constantin
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary.
| | - Tamás Pék
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Zsuzsanna Horváth
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Diána Garan
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Attila J Szabó
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| |
Collapse
|
30
|
Burns MD, Bartsch YC, Davis JP, Boribong BP, Loiselle M, Kang J, Kane AS, Edlow AG, Fasano A, Alter G, Yonker LM. Long-term humoral signatures following acute pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children. Pediatr Res 2023; 94:1327-1334. [PMID: 37173406 PMCID: PMC10176275 DOI: 10.1038/s41390-023-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although most children experience mild symptoms during acute SARS-CoV-2 infection, some develop the severe post-COVID-19 complication, Multisystem Inflammatory Syndrome in Children (MIS-C). While acute presentations of COVID-19 and MIS-C have been well immunophenotyped, little is known about the lasting immune profile in children after acute illness. METHODS Children 2 months-20 years of age presenting with either acute COVID-19 (n = 9) or MIS-C (n = 12) were enrolled in a Pediatric COVID-19 Biorepository at a single medical center. We deeply profiled humoral immune responses and circulating cytokines following pediatric COVID-19 and MIS-C. RESULTS Twenty-one children and young adults provided blood samples at both acute presentation and 6-month follow-up (mean: 6.5 months; standard deviation: 1.77 months). Pro-inflammatory cytokine elevations resolved after both acute COVID-19 and MIS-C. Humoral profiles continue to mature after acute COVID-19, displaying decreasing IgM and increasing IgG over time, as well as stronger effector functions, including antibody-dependent monocyte activation. In contrast, MIS-C immune signatures, especially anti-Spike IgG1, diminished over time. CONCLUSIONS Here, we show the mature immune signature after pediatric COVID-19 and MIS-C, displaying resolving inflammation with recalibration of the humoral responses. These humoral profiles highlight immune activation and vulnerabilities over time in these pediatric post-infectious cohorts. IMPACT The pediatric immune profile matures after both COVID-19 and MIS-C, suggesting a diversified anti-SARS-CoV-2 antibody response after resolution of acute illness. While pro-inflammatory cytokine responses resolve in the months following acute infection in both conditions, antibody-activated responses remain relatively heightened in convalescent COVID-19. These data may inform long-term immunoprotection from reinfection in children with past SARS-CoV-2 infections or MIS-C.
Collapse
Affiliation(s)
- Madeleine D Burns
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Yannic C Bartsch
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jameson P Davis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Brittany P Boribong
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maggie Loiselle
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Jaewon Kang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Abigail S Kane
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Andrea G Edlow
- Harvard Medical School, Boston, MA, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Isaza-Correa J, Ryan L, Kelly L, Allen J, Melo A, Jones J, Huggard D, Ryan E, Ó Maoldomhnaigh C, Geoghehan S, Gavin P, Leahy TR, Butler K, Freyne B, Molloy EJ. Innate immune dysregulation in multisystem inflammatory syndrome in children (MIS-C). Sci Rep 2023; 13:16463. [PMID: 37777557 PMCID: PMC10542373 DOI: 10.1038/s41598-023-43390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
MIS-C is a systemic inflammation disorder with poorly characterised immunopathological mechanisms. We compared changes in the systemic immune response in children with MIS-C (n = 12, 5-13 years) to healthy controls (n = 14, 5-15 years). Analysis was done in whole blood treated with LPS. Expression of CD11b and Toll-like receptor-4 (TLR4) in neutrophils and monocytes were analysed by flow cytometry. Serum cytokines (IL-1β, IL-2, IL-6, IL-8, IL-10, IL-Ira, TNF-α, TNF-β, IFN-Υ, VEGF, EPO and GM-CSF) and mRNA levels of inflammasome molecules (NLRP3, ASC and IL-1β) were evaluated. Subpopulations of lymphocytes (CD3+, CD19+, CD56+, CD4+, CD8+, TCR Vδ1+, TCR Vδ2+) were assessed at basal levels. Absolute counts of neutrophils and NLR were high in children with MIS-C while absolute counts of lymphocytes were low. Children with MIS-C had increased levels of IL-6, IL-10, TNF-β and VEGF serum cytokines at the basal level, and significantly increased TNF-β post-LPS, compared to controls. IL-1RA and EPO decreased at baseline and post-LPS in MIS-C patients compared to controls. The percentage of CD3+ cells, NK cells and Vδ1 was lower while B cells were higher in children with MIS-C than in controls. Dysregulated immune response in children with MIS-C was evident and may be amenable to immunomodulation.
Collapse
Affiliation(s)
- Johana Isaza-Correa
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Laura Ryan
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Lynne Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - John Allen
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Ashanty Melo
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Jennifer Jones
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Dean Huggard
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Emer Ryan
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | | | - Sarah Geoghehan
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Patrick Gavin
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Timothy Ronan Leahy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Karina Butler
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Bridget Freyne
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland.
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Neonatology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Neurodisability, Children's Health Ireland at Tallaght, Dublin, Ireland.
- Neonatology, The Coombe Hospital, Dublin, Ireland.
- Discipline of Paediatrics, Trinity Centre for Health Sciences, Children's Hospital Ireland (CHI) at Tallaght, Tallaght University Hospital, Dublin 24, Ireland.
| |
Collapse
|
32
|
Johansson MW, Balnis J, Muehlbauer LK, Bukhman YV, Stefely MS, Overmyer KA, Vancavage R, Tiwari A, Adhikari AR, Feustel PJ, Schwartz BS, Coon JJ, Stewart R, Jaitovich A, Mosher DF. Decreased plasma cartilage acidic protein 1 in COVID-19. Physiol Rep 2023; 11:e15814. [PMID: 37667413 PMCID: PMC10477339 DOI: 10.14814/phy2.15814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cartilage acidic protein-1 (CRTAC1) is produced by several cell types, including Type 2 alveolar epithelial (T2AE) cells that are targeted by SARS-CoV2. Plasma CRTAC1 is known based on proteomic surveys to be low in patients with severe COVID-19. Using an ELISA, we found that patients treated for COVID-19 in an ICU almost uniformly had plasma concentrations of CRTAC1 below those of healthy controls. Magnitude of decrease in CRTAC1 distinguished COVID-19 from other causes of acute respiratory decompensation and correlated with established metrics of COVID-19 severity. CRTAC1 concentrations below those of controls were found in some patients a year after hospitalization with COVID-19, long COVID after less severe COVID-19, or chronic obstructive pulmonary disease. Decreases in CRTAC1 in severe COVID-19 correlated (r = 0.37, p = 0.0001) with decreases in CFP (properdin), which interacts with CRTAC1. Thus, decreases of CRTAC1 associated with severe COVID-19 may result from loss of production by T2AE cells or co-depletion with CFP. Determination of significance of and reasons behind decreased CRTAC1 concentration in a subset of patients with long COVID will require analysis of roles of preexisting lung disease, impact of prior acute COVID-19, age, and other confounding variables in a larger number of patients.
Collapse
Affiliation(s)
- Mats W Johansson
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Laura K Muehlbauer
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yury V Bukhman
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Rachel Vancavage
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Anish Raj Adhikari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Bradford S Schwartz
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Deane F Mosher
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Brodin P. Immune responses to SARS-CoV-2 infection and vaccination in children. Semin Immunol 2023; 69:101794. [PMID: 37536147 PMCID: PMC10281229 DOI: 10.1016/j.smim.2023.101794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
During the three years since SARS-CoV-2 infections were first described a wealth of information has been gathered about viral variants and their changing properties, the disease presentations they elicit and how the many vaccines developed in record time protect from COVID-19 severe disease in different populations. A general theme throughout the pandemic has been the observation that children and young people in general fare well, with mild symptoms during acute infection and full recovery thereafter. It has also become clear that this is not universally true, as some children develop severe COVID-19 hypoxic pneumonia and even succumb to the infection, while another group of children develop a rare but serious multisystem inflammatory syndrome (MIS-C) and some other children experience prolonged illness following acute infection, post-COVID. Here I will discuss some of the findings made to explain these diverse disease manifestations in children and young people infected by SARS-CoV-2. I will also discuss the vaccines developed at record speed and their efficacy in protecting children from disease.
Collapse
Affiliation(s)
- Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden; Department of Immunology and Inflammation, Imperial College London, W12 0NN London, UK.
| |
Collapse
|
34
|
Rybkina K, Bell JN, Bradley MC, Wohlbold T, Scafuro M, Meng W, Korenberg RC, Davis-Porada J, Anderson BR, Weller RJ, Milner JD, Moscona A, Porotto M, Luning Prak ET, Pethe K, Connors TJ, Farber DL. SARS-CoV-2 infection and recovery in children: Distinct T cell responses in MIS-C compared to COVID-19. J Exp Med 2023; 220:e20221518. [PMID: 37133746 PMCID: PMC10163842 DOI: 10.1084/jem.20221518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/09/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023] Open
Abstract
SARS-CoV-2 infection for most children results in mild or minimal symptoms, though in rare cases severe disease can develop, including a multisystem inflammatory syndrome (MIS-C) with myocarditis. Here, we present longitudinal profiling of immune responses during acute disease and following recovery in children who developed MIS-C, relative to children who experienced more typical symptoms of COVID-19. T cells in acute MIS-C exhibited transient signatures of activation, inflammation, and tissue residency which correlated with cardiac disease severity, while T cells in acute COVID-19 upregulated markers of follicular helper T cells for promoting antibody production. The resultant memory immune response in recovery showed increased frequencies of virus-specific memory T cells with pro-inflammatory functions in children with prior MIS-C compared to COVID-19 while both cohorts generated comparable antibody responses. Together our results reveal distinct effector and memory T cell responses in pediatric SARS-CoV-2 infection delineated by clinical syndrome, and a potential role for tissue-derived T cells in the immune pathology of systemic disease.
Collapse
Affiliation(s)
- Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joseph N. Bell
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marissa C. Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Teddy Wohlbold
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marika Scafuro
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca C. Korenberg
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Julia Davis-Porada
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Brett R. Anderson
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Rachel J. Weller
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Joshua D. Milner
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anne Moscona
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia Irving University Medical Center, New York, NY, USA
| |
Collapse
|
35
|
Robinson LA, Dale M, Gorelik M. Multisystem Inflammatory Syndrome in Children and Kawasaki Disease: A Spectrum of Postinfectious Hyperinflammatory Disease. Rheum Dis Clin North Am 2023; 49:661-678. [PMID: 37331739 DOI: 10.1016/j.rdc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Kawasaki disease and multisystem inflammatory syndrome in children are hyperinflammatory conditions that share similar emerging pathophysiology hypotheses, clinical features, treatment strategies, and outcomes. Although both conditions have key differences, growing evidence suggests that both conditions might be closely related on a larger spectrum of postinfectious autoimmune responses.
Collapse
Affiliation(s)
- Lauren Ambler Robinson
- Department of Medicine, Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA; Department of Pediatric Rheumatology, 535 East 70th Street, New York, NY 10021, USA
| | - Marissa Dale
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Morgan Stanley Children's Hospital, 3959 Broadway Central 5th Floor, New York, NY 10032, USA
| | - Mark Gorelik
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Medical Center, College of Physicians and Surgeons Building, P&S 10-451, 630 West 168th Street, New York NY 10032, USA.
| |
Collapse
|
36
|
Tasci O, Dogan K. Evaluation of tumour necrosis factor alpha-stimulated gene-6 and fibroblast growth factor-2 levels in patients diagnosed with multi-system inflammatory syndrome in children. Cardiol Young 2023; 33:1086-1091. [PMID: 36918343 DOI: 10.1017/s1047951123000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Investigations are still ongoing about the pathophysiology of multi-system inflammatory syndrome in children, which can progress with serious morbidity and mortality after COVID-19 infection. In this study, we aimed to investigate whether fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels play a role in the diagnosis of the disease and on cardiac involvement. Twenty-three patients (11 girls, 12 boys) and 26 healthy controls (10 girls, 16 boys) were included in the study. The mean age of the patient and control group was 8.45 ± 2.43 and 10.73 ± 4.27 years, respectively. There was no difference between the fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels of the patient and control groups. When the patients with myocardial involvement in the patient group were compared with the patients without myocardial involvement in terms of fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels, no difference was found between these groups. The correlation of fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels with other laboratory parameters was investigated in the patient group. Fibroblast growth factor-2 was moderately inversely correlated with white blood cell count (r = -0.541, p = 0.008), absolute neutrophil count (r = -0.502, p = 0.015) and C-reactive protein (r = -0.528, p = 0.010). Fibroblast growth factor-2 was strongly inversely correlated with erythrocyte sedimentation rate (r = -0.694, p =<0.001). Our data show that fibroblast growth factor-2 and tumour necrosis factor alpha stimulated gene-6 do not provide sufficient information about diagnosis and cardiac involvement in multi-system inflammatory syndrome in children.
Collapse
Affiliation(s)
- Onur Tasci
- Sivas Numune Hospital, Department of Pediatric Cardiology, Sivas, Turkey
| | - Kubra Dogan
- Sivas Numune Hospital, Department of Biochemistry, Sivas, Turkey
| |
Collapse
|
37
|
Silva Luz M, Lemos FFB, Rocha Pinheiro SL, Marques HS, de Oliveira Silva LG, Calmon MS, da Costa Evangelista K, Freire de Melo F. Pediatric multisystem inflammatory syndrome associated with COVID-19: Insights in pathogenesis and clinical management. World J Virol 2023; 12:193-203. [PMID: 37396702 PMCID: PMC10311577 DOI: 10.5501/wjv.v12.i3.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major challenge to be faced in recent years. While adults suffered the highest morbidity and mortality rates of coronavirus disease 2019, children were thought to be exclusively asymptomatic or to present with mild conditions. However, around April 2020, there was an outbreak of a new clinical syndrome related to SARS-CoV-2 in children - multisystemic inflammatory syndrome in children (MIS-C) - which comprises a severe and uncon-trolled hyperinflammatory response with multiorgan involvement. The Centers for Disease Control and Prevention considers a suspected case of MIS-C an individual aged < 21 years presenting with fever, high inflammatory markers levels, and evidence of clinically severe illness, with multisystem (> 2) organ involvement, no alternative plausible diagnoses, and positive for recent SARS-CoV-2 infection. Despite its severity, there are no definitive disease management guidelines for this condition. Conversely, the complex pathogenesis of MIS-C is still not completely understood, although it seems to rely upon immune dysregulation. Hence, in this study, we aim to bring together current evidence regarding the pathogenic mechanisms of MIS-C, clinical picture and management, in order to provide insights for clinical practice and implications for future research directions.
Collapse
Affiliation(s)
- Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
38
|
Loy CJ, Sotomayor-Gonzalez A, Servellita V, Nguyen J, Lenz J, Bhattacharya S, Williams ME, Cheng AP, Bliss A, Saldhi P, Brazer N, Streithorst J, Suslovic W, Hsieh CJ, Bahar B, Wood N, Foresythe A, Gliwa A, Bhakta K, Perez MA, Hussaini L, Anderson EJ, Chahroudi A, Delaney M, Butte AJ, DeBiasi RL, Rostad CA, De Vlaminck I, Chiu CY. Nucleic acid biomarkers of immune response and cell and tissue damage in children with COVID-19 and MIS-C. Cell Rep Med 2023; 4:101034. [PMID: 37279751 PMCID: PMC10121104 DOI: 10.1016/j.xcrm.2023.101034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 06/08/2023]
Abstract
Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Sotomayor-Gonzalez
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Alexandre P Cheng
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Prachi Saldhi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte J Hsieh
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California San Francisco, Oakland, CA 94609
| | - Burak Bahar
- Children's National Hospital, Washington, DC 20010, USA
| | - Nathan Wood
- UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Abiodun Foresythe
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amelia Gliwa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kushmita Bhakta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria A Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Laila Hussaini
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Meghan Delaney
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberta L DeBiasi
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Diorio C, Teachey DT, Canna SW. Cytokine Storm Syndromes in Pediatric Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1636-1644. [PMID: 36990432 DOI: 10.1016/j.jaip.2023.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Cytokine storm syndromes (CSS) represent a diverse group of disorders characterized by severe overactivation of the immune system. In the majority of patients, CSS arise from a combination of host factors, including genetic risk and predisposing conditions, and acute triggers such as infections. CSS present differently in adults than in children, who are more likely to present with monogenic forms of these disorders. Individual CSS are rare, but in aggregate represent an important cause of severe illness in both children and adults. We present 3 rare, illustrative cases of CSS in pediatric patients that describe the spectrum of CSS.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa.
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Scott W Canna
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| |
Collapse
|
40
|
Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, Portman MA, Gennaro M, Rehman J. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86014. [PMID: 37233729 PMCID: PMC10219649 DOI: 10.7554/elife.86014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.
Collapse
Affiliation(s)
- Sindhu Mohandas
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashingtonUnited States
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, University of Arizona College of MedicineTucsonUnited States
| | - Erin Quinlan
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Michael A Portman
- Seattle Children’s Hospital, Division of Pediatric Cardiology, Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Marila Gennaro
- Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of MedicineChicagoUnited States
| |
Collapse
|
41
|
Yamazaki-Nakashimada MA, Márquez-González H, Miranda-Novales G, Neme Díaz GA, Prado Duran SA, Luévanos Velázquez A, Castilla-Peon MF, González-García N, Sánchez Duran MA, Márquez Aguirre MP, Villasis-Keever MA, Aragón Nogales R, Núñez-Enríquez JC, Martinez Bustamante ME, Aguilar Argüello C, Ramírez de los Santos J, Pérez Barrera A, Palacios Cantú LA, Membrila Mondragón J, Vizcarra Alvarado P, Jiménez Juárez RN, Olivar López V, Velasco-Segura R, López Chávez A. Characteristics and outcomes of multisystem inflammatory syndrome in children: A multicenter, retrospective, observational cohort study in Mexico. Front Pediatr 2023; 11:1167871. [PMID: 37274824 PMCID: PMC10233130 DOI: 10.3389/fped.2023.1167871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Multisystem inflammatory syndrome in children associated with coronavirus disease 2019 (MIS-C), a novel hyperinflammatory condition secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is associated with severe outcomes such as coronary artery aneurysm and death. Methods This multicenter, retrospective, observational cohort study including eight centers in Mexico, aimed to describe the clinical characteristics and outcomes of patients with MIS-C. Patient data were evaluated using latent class analysis (LCA) to categorize patients into three phenotypes: toxic shock syndrome-like (TSSL)-MIS-C, Kawasaki disease-like (KDL)-MIS-C, and nonspecific MIS-C (NS-MIS-C). Risk factors for adverse outcomes were estimated using multilevel mixed-effects logistic regression. Results The study included 239 patients with MIS-C, including 61 (26%), 70 (29%), and 108 (45%) patients in the TSSL-MIS-C, KDL-MIS-C, and NS-MIS-C groups, respectively. Fifty-four percent of the patients were admitted to the intensive care unit, and 42%, 78%, and 41% received intravenous immunoglobulin, systemic glucocorticoids, and anticoagulants, respectively. Coronary artery dilatation and aneurysms were found in 5.7% and 13.2% of the patients in whom coronary artery diameter was measured, respectively. Any cause in-hospital mortality was 5.4%. Hospitalization after ten days of symptoms was associated with coronary artery abnormalities (odds ratio [OR] 1.6, 95% confidence interval [CI] 1.2-2.0). Age ≥10 years (OR: 5.6, 95% CI: 1.4-2.04), severe underlying condition (OR: 9.3, 95% CI: 2.8-31.0), platelet count <150,000 /mm3 (OR: 4.2, 95% CI: 1.2-14.7), international normalized ratio >1.2 (OR: 3.8, 95% CI: 1.05-13.9), and serum ferritin concentration >1,500 mg/dl at admission (OR: 52, 95% CI: 5.9-463) were risk factors for death. Discussion Mortality in patients with MIS-C was higher than reported in other series, probably because of a high rate of cases with serious underlying diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria F. Castilla-Peon
- Hospital Psiquiatrico Infantil Juan N Navarro, Servicios de Atención Psiquiátrica, Mexico City, Mexico
| | - Nadia González-García
- Department of Rheumatology, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | | | | | | | - Ranferi Aragón Nogales
- XXI Century National Medical Center, Mexican Social Security Institute, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | - Víctor Olivar López
- Department of Rheumatology, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Roberto Velasco-Segura
- Instituto de Ciencias Aplicada y Tecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrián López Chávez
- Department of Rheumatology, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| |
Collapse
|
42
|
Patel H, Sintou A, Chowdhury RA, Rothery S, Iacob AO, Prasad S, Rainer PP, Martinón-Torres F, Sancho-Shimizu V, Shimizu C, Dummer K, Tremoulet AH, Burns JC, Sattler S, Levin M. Evaluation of Autoantibody Binding to Cardiac Tissue in Multisystem Inflammatory Syndrome in Children and COVID-19 Vaccination-Induced Myocarditis. JAMA Netw Open 2023; 6:e2314291. [PMID: 37200028 PMCID: PMC10196878 DOI: 10.1001/jamanetworkopen.2023.14291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 05/19/2023] Open
Abstract
Importance Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. Objective To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. Design, Setting, and Participants This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. Main Outcomes and Measures IgG, IgM and IgA antibody binding to cardiac tissue. Results By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11 060 [10 223-11 858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). Conclusions and Relevance This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms.
Collapse
Affiliation(s)
- Harsita Patel
- Department of Infectious Disease, Section of Paediatric Infectious Disease, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Rasheda A. Chowdhury
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Stephen Rothery
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Alma Octavia Iacob
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
- Royal Brompton & Harefield hospitals, Guy’s and St Thomas’ National Health Service Foundation Trust, United Kingdom
| | - Sanjay Prasad
- Royal Brompton & Harefield hospitals, Guy’s and St Thomas’ National Health Service Foundation Trust, United Kingdom
| | - Peter P. Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vanessa Sancho-Shimizu
- Department of Infectious Disease, Section of Paediatric Infectious Disease, Imperial College London, United Kingdom
- Department of Infectious Disease, Section of Virology, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chisato Shimizu
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego
- Rady Children’s Hospital, San Diego, California
| | - Kirsten Dummer
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego
- Rady Children’s Hospital, San Diego, California
| | - Adriana H. Tremoulet
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego
- Rady Children’s Hospital, San Diego, California
| | - Jane C. Burns
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego
- Rady Children’s Hospital, San Diego, California
| | - Susanne Sattler
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Michael Levin
- Department of Infectious Disease, Section of Paediatric Infectious Disease, Imperial College London, United Kingdom
| |
Collapse
|
43
|
Ferguson M, Vel J, Phan V, Ali R, Mabe L, Cherner A, Doan T, Manakatt B, Jose M, Powell AR, McKinney K, Serag H, Sallam HS. Coronavirus Disease 2019, Diabetes, and Inflammation: A Systemic Review. Metab Syndr Relat Disord 2023; 21:177-187. [PMID: 37130311 DOI: 10.1089/met.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
People with cardiometabolic diseases [namely type 2 diabetes (T2D), obesity, or metabolic syndrome] are more susceptible to coronavirus disease 2019 (COVID-19) infection and endure more severe illness and poorer outcomes. Hyperinflammation has been suggested as a common pathway for both diseases. To examine the role of inflammatory biomarkers shared between COVID-19 and cardiometabolic diseases, we reviewed and evaluated published data using PubMed, SCOPUS, and World Health Organization COVID-19 databases for English articles from December 2019 to February 2022. Of 248 identified articles, 50 were selected and included. We found that people with diabetes or obesity have (i) increased risk of COVID-19 infection; (ii) increased risk of hospitalization (those with diabetes have a higher risk of intensive care unit admissions) and death; and (iii) heightened inflammatory and stress responses (hyperinflammation) to COVID-19, which worsen their prognosis. In addition, COVID-19-infected patients have a higher risk of developing T2D, especially if they have other comorbidities. Treatments controlling blood glucose levels and or ameliorating the inflammatory response may be valuable for improving clinical outcomes in these patient populations. In conclusion, it is critical for health care providers to clinically evaluate hyperinflammatory states to drive clinical decisions for COVID-19 patients.
Collapse
Affiliation(s)
- Monique Ferguson
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jaysonn Vel
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vincent Phan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Roshaneh Ali
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lainie Mabe
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Annie Cherner
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thao Doan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bushra Manakatt
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mini Jose
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Audrey Ross Powell
- University of Texas Medical Branch Alumni, Galveston, Texas, USA
- Madrigal Pharmaceuticals, Conshohocken, Pennsylvania, USA
| | - Kevin McKinney
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hani Serag
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hanaa S Sallam
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
44
|
Druzak S, Iffrig E, Roberts BR, Zhang T, Fibben KS, Sakurai Y, Verkerke HP, Rostad CA, Chahroudi A, Schneider F, Wong AKH, Roberts AM, Chandler JD, Kim SO, Mosunjac M, Mosunjac M, Geller R, Albizua I, Stowell SR, Arthur CM, Anderson EJ, Ivanova AA, Ahn J, Liu X, Maner-Smith K, Bowen T, Paiardini M, Bosinger SE, Roback JD, Kulpa DA, Silvestri G, Lam WA, Ortlund EA, Maier CL. Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19. Nat Commun 2023; 14:1638. [PMID: 37015925 PMCID: PMC10073144 DOI: 10.1038/s41467-023-37269-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.
Collapse
Grants
- T32 GM142617 NIGMS NIH HHS
- P51 OD011132 NIH HHS
- R35 HL145000 NHLBI NIH HHS
- K99 HL150626 NHLBI NIH HHS
- T32 GM135060 NIGMS NIH HHS
- F31 DK126435 NIDDK NIH HHS
- R01 DK115213 NIDDK NIH HHS
- R38 AI140299 NIAID NIH HHS
- A F31 training fellowship from the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NIDDK), F31DK126435, supported S.A.D during the duration of this work. Stimulating Access to Research in Residency of the National Institutes of Health under Award Number R38AI140299 supported E.I. R35HL145000 supported E.I, Y.S, K.S.F and W.A.L. National Institutes of Health National Heart, Lung, and Blood Institute (NIH/NHLBI) HL150658, awarded to J.D.C. A training grant supported by the Biochemistry and Cell Developmental Biology program (BCDB) at Emory university, T32GM135060-02S1, to S.O.K. NIH/NIDDK Grant R01-DK115213 and Winship Synergy Award to E.A.O. NIH/NHLBI K99 HL150626-01 awarded to C.L.M. The lipidomics and metabolomics experiments were supported by the Emory Integrated Metabolomics and Lipidomics Core, which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities.
Collapse
Affiliation(s)
- Samuel Druzak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth Iffrig
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tiantian Zhang
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirby S Fibben
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yumiko Sakurai
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Kam Ho Wong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Anne M Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Susan O Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mario Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Marina Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel Geller
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Bureau of Investigation, Decatur, GA, USA
| | - Igor Albizua
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie M Arthur
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan J Anderson
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anna A Ivanova
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Jun Ahn
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Xueyun Liu
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Bowen
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Mirko Paiardini
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Steve E Bosinger
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Center for AIDS Research, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Center for AIDS Research, Emory University, Atlanta, GA, USA
| | - Wilbur A Lam
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Integrated Metabolomics and Lipidomics Core, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Cathal Roarty
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Thomas Waterfield
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
46
|
Bodansky A, Vazquez SE, Chou J, Novak T, Al-Musa A, Young C, Newhams M, Kucukak S, Zambrano LD, Mitchell A, Wang CY, Moffitt K, Halasa NB, Loftis LL, Schwartz SP, Walker TC, Mack EH, Fitzgerald JC, Gertz SJ, Rowan CM, Irby K, Sanders RC, Kong M, Schuster JE, Staat MA, Zinter MS, Cvijanovich NZ, Tarquinio KM, Coates BM, Flori HR, Dahmer MK, Crandall H, Cullimore ML, Levy ER, Chatani B, Nofziger R, Geha RS, DeRisi J, Campbell AP, Anderson M, Randolph AG. NFKB2 haploinsufficiency identified via screening for IFN-α2 autoantibodies in children and adolescents hospitalized with SARS-CoV-2-related complications. J Allergy Clin Immunol 2023; 151:926-930.e2. [PMID: 36509151 PMCID: PMC9733962 DOI: 10.1016/j.jaci.2022.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autoantibodies against type I IFNs occur in approximately 10% of adults with life-threatening coronavirus disease 2019 (COVID-19). The frequency of anti-IFN autoantibodies in children with severe sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE We quantified anti-type I IFN autoantibodies in a multicenter cohort of children with severe COVID-19, multisystem inflammatory syndrome in children (MIS-C), and mild SARS-CoV-2 infections. METHODS Circulating anti-IFN-α2 antibodies were measured by a radioligand binding assay. Whole-exome sequencing, RNA sequencing, and functional studies of peripheral blood mononuclear cells were used to study any patients with levels of anti-IFN-α2 autoantibodies exceeding the assay's positive control. RESULTS Among 168 patients with severe COVID-19, 199 with MIS-C, and 45 with mild SARS-CoV-2 infections, only 1 had high levels of anti-IFN-α2 antibodies. Anti-IFN-α2 autoantibodies were not detected in patients treated with intravenous immunoglobulin before sample collection. Whole-exome sequencing identified a missense variant in the ankyrin domain of NFKB2, encoding the p100 subunit of nuclear factor kappa-light-chain enhancer of activated B cells, aka NF-κB, essential for noncanonical NF-κB signaling. The patient's peripheral blood mononuclear cells exhibited impaired cleavage of p100 characteristic of NFKB2 haploinsufficiency, an inborn error of immunity with a high prevalence of autoimmunity. CONCLUSIONS High levels of anti-IFN-α2 autoantibodies in children and adolescents with MIS-C, severe COVID-19, and mild SARS-CoV-2 infections are rare but can occur in patients with inborn errors of immunity.
Collapse
Affiliation(s)
- Aaron Bodansky
- Department of Pediatric Critical Care Medicine, University of California, San Francisco, Calif
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San Francisco, Calif; Diabetes Center, School of Medicine, University of California, San Francisco, Calif
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Mass.
| | - Tanya Novak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston, Mass
| | - Amer Al-Musa
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Cameron Young
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Margaret Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Suden Kucukak
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Laura D Zambrano
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Ga
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San Francisco, Calif; Chan Zuckerberg Biohub, San Francisco, Calif
| | | | - Kristin Moffitt
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Mass; Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Natasha B Halasa
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tenn
| | - Laura L Loftis
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Stephanie P Schwartz
- Department of Pediatrics, University of North Carolina at Chapel Hill Children's Hospital, Chapel Hill, NC
| | - Tracie C Walker
- Department of Pediatrics, University of North Carolina at Chapel Hill Children's Hospital, Chapel Hill, NC
| | - Elizabeth H Mack
- Division of Pediatric Critical Care Medicine, Medical University of South Carolina, Charleston, SC
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Division of Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Shira J Gertz
- Department of Pediatrics, Division of Pediatric Critical Care, Cooperman Barnabas Medical Center, Livingston, NJ
| | - Courtney M Rowan
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, Ind
| | - Katherine Irby
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Ark
| | - Ronald C Sanders
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Ark
| | - Michele Kong
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Jennifer E Schuster
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children's Mercy Kansas City, Kansas City, Mo
| | - Mary A Staat
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matt S Zinter
- Department of Pediatrics, Divisions of Critical Care and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Natalie Z Cvijanovich
- Division of Critical Care Medicine, UCSF Benioff Children's Hospital, Oakland, Calif
| | - Keiko M Tarquinio
- Department of Pediatrics, Division of Critical Care Medicine, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Ga
| | - Bria M Coates
- Department of Pediatrics, Division of Critical Care Medicine, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Heidi R Flori
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Mott Children's Hospital and University of Michigan, Ann Arbor, Mich
| | - Mary K Dahmer
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Mott Children's Hospital and University of Michigan, Ann Arbor, Mich
| | - Hillary Crandall
- Department of Pediatrics, Division of Pediatric Critical Care, Primary Children's Hospital and University of Utah, Salt Lake City, Utah
| | - Melissa L Cullimore
- Department of Pediatrics, University of Nebraska Medical Center, College of Medicine, Children's Hospital and Medical Center, Omaha, Neb
| | - Emily R Levy
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Infectious Diseases, Division of Pediatric Critical Care Medicine, Mayo Clinic, Rochester, Minn
| | - Brandon Chatani
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, Fla
| | - Ryan Nofziger
- Department of Pediatrics, Division of Critical Care Medicine, Akron Children's Hospital, Akron, Ohio
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, Calif; Chan Zuckerberg Biohub, San Francisco, Calif
| | - Angela P Campbell
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Ga
| | - Mark Anderson
- Diabetes Center, School of Medicine, University of California, San Francisco, Calif
| | - Adrienne G Randolph
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Mass; Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston, Mass
| |
Collapse
|
47
|
Fraser R, Orta-Resendiz A, Dockrell D, Müller-Trutwin M, Mazein A. Severe COVID-19 versus multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. Eur Respir Rev 2023; 32:32/167/220197. [PMID: 36889788 PMCID: PMC10032586 DOI: 10.1183/16000617.0197-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 03/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with diverse host response immunodynamics and variable inflammatory manifestations. Several immune-modulating risk factors can contribute to a more severe coronavirus disease 2019 (COVID-19) course with increased morbidity and mortality. The comparatively rare post-infectious multisystem inflammatory syndrome (MIS) can develop in formerly healthy individuals, with accelerated progression to life-threatening illness. A common trajectory of immune dysregulation forms a continuum of the COVID-19 spectrum and MIS; however, severity of COVID-19 or the development of MIS is dependent on distinct aetiological factors that produce variable host inflammatory responses to infection with different spatiotemporal manifestations, a comprehensive understanding of which is necessary to set better targeted therapeutic and preventative strategies for both.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - David Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
48
|
Rivas MN, Arditi M. Kawasaki Disease and Multisystem Inflammatory Syndrome in Children: common inflammatory pathways of two distinct diseases. Rheum Dis Clin North Am 2023. [PMCID: PMC10020039 DOI: 10.1016/j.rdc.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA,Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA,Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA,Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA,Corresponding Author: Moshe Arditi –
| |
Collapse
|
49
|
Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D, Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt DR. Circulating Spike Protein Detected in Post-COVID-19 mRNA Vaccine Myocarditis. Circulation 2023; 147:867-876. [PMID: 36597886 PMCID: PMC10010667 DOI: 10.1161/circulationaha.122.061025] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P<0.0001). CONCLUSIONS Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine-induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.
Collapse
Affiliation(s)
- Lael M. Yonker
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Zoe Swank
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| | - Yannic C. Bartsch
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Madeleine D. Burns
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Abigail Kane
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Brittany P. Boribong
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Jameson P. Davis
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Maggie Loiselle
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Tanya Novak
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Anesthesiology, Critical Care and Pain Medicine (T.N., A.G.R.), Boston Children’s Hospital, MA
| | - Yasmeen Senussi
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| | - Chi-An Cheng
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| | - Eleanor Burgess
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology (A.G.E.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Vincent Center for Reproductive Biology (A.G.E.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Anesthesiology, Critical Care and Pain Medicine (T.N., A.G.R.), Boston Children’s Hospital, MA
| | - Janet Chou
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pediatrics, Division of Immunology (J.C.), Boston Children’s Hospital, MA
| | - Audrey Dionne
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Cardiology (A.D.), Boston Children’s Hospital, MA
| | - Duraisamy Balaguru
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Manuella Lahoud-Rahme
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center, and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (M.A.)
| | - Boris Julg
- Department of Medicine (B.J.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Adrienne G. Randolph
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Galit Alter
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - David R. Walt
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| |
Collapse
|
50
|
Abstract
In this nationwide retrospective study, a substantial decline in the incidence of multisystem inflammatory syndrome in children over 3 successive pandemic waves characterized by different severe acute respiratory syndrome coronavirus 2 variants was documented-from 3.4 of 1000 to 1.1 of 1000 and finally to 0.25 of 1000 confirmed severe acute respiratory syndrome coronavirus 2 positive cases (P < 0.0001), respectively, whereas clinical findings and severity did not significantly vary.
Collapse
|