1
|
Zhang M, Ji Y, Liu M, Dai Y, Zhang H, Tong S, Cai Y, Liu M, Qu N. Nano-delivery of STING agonists: Unraveling the potential of immunotherapy. Acta Biomater 2025; 197:104-120. [PMID: 40164370 DOI: 10.1016/j.actbio.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The cyclic GMP-AMP synthetase-interferon gene stimulator (cGAS-STING) pathway possesses tremendous potential in immune responses, viral defense, and anti-tumor treatment. Currently, an increasing number of nanocarriers are being engineered to convey STING agonists, with the goal of booSTING the conveying capacity of cGAS-STING agonists and augment the therapeutic potency of STING agonists. In this review, we explore the mechanisms of cGAS-STING activators, the application of different nanocarriers in the STING pathway, and the application of nanocarriers in anti-tumor therapy, antiviral therapy and autoimmune diseases. Additionally, we also discuss the adverse effects of STING pathway activation and the challenges encountered in nano delivery, we hope that future research will delve into the development of new nanocarriers and the clinical translation of nanocarriers in STING-mediated immunotherapy. STATEMENT OF SIGNIFICANCE: The cyclic GMP-AMP synthetase-interferon gene stimulator (cGAS-STING) pathway possesses tremendous potential in immune responses, viral defense, and anti-tumor treatment. In this review, we first explore the activation mechanism of cGAS-STING signal pathway and the diverse array of nanocarriers that have been employed in the context of the STING pathway, such as natural carrier, lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, highlighting their unique properties and the challenges they present in clinical applications. Furthermore, we discuss the research progress regarding nanocarriers in STING-mediated immunotherapy, such as the application of nanocarriers in anti-tumor therapy, antiviral therapy and autoimmune diseases therapy. Finally, the side effects of STING pathway activation and the issues encountered in nano delivery will be discussed, hoping that future research will delve into the development of new nanocarriers and the clinical translation of nanocarriers in STING-mediated immunotherapy.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yating Ji
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Mingxia Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yixin Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Hongxia Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Shiyu Tong
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yuqing Cai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Mengjiao Liu
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Na Qu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
2
|
Hendrikse J, Bont LJ, Schellekens PAWJF, de Groot-Mijnes JDF, de Boer JH, Kuiper JJW. Paediatric autoimmune uveitis is associated with intraocular antibodies against Epstein-Barr virus Nuclear Antigen 1 (EBNA-1). EBioMedicine 2025; 115:105681. [PMID: 40239467 PMCID: PMC12020872 DOI: 10.1016/j.ebiom.2025.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Non-infectious uveitis is an immune-mediated disease characterized by vision-threatening inflammation within the eye. Increasing evidence indicates that microbial agents promote non-infectious uveitis, but the natural history of immune responses to pathogens in patients remains unexplored. We determined intraocular antibodies against pathogens in paediatric uveitis. METHODS We used peptide microarrays containing 3760 linear B-cell epitopes from 196 human pathogens to profile IgG levels in eye fluid biopsies and paired serum samples from 18 Dutch paediatric patients and 6 age-matched controls. We compared intensities of single epitopes and clusters based on overlapping amino acid sequence of peptides. Next-generation sequencing data was obtained to determine the HLA-DRB1∗15:01 genotype. FINDINGS Intraocular antibody profiles largely matched serum profiles and were characterized by high IgG against the conserved PALTAVET-motif of enterovirus family members, as well as broad epitope reactivity against Epstein-Barr virus (EBV). The aqueous humour of patients showed elevated levels of antibodies against peptides containing the RRPFFHPV-motif of Epstein-Barr Virus Nuclear Antigen 1 [EBNA-1]. Antibody levels against the RRPFFHPV-motif of EBNA1 were significantly higher in individuals that carry the HLA-DRB1∗15:01 risk allele of paediatric uveitis. INTERPRETATION Intraocular antibodies against an immunogenic epitope of EBV showed an association with paediatric uveitis, particularly HLA-DRB1∗15:01 positive uveitis, indicating a potential link between EBV-specific immune responses and autoimmune uveitis. FUNDING Funding for this research was received from Fischer Stichting (UZ2022-3), ODAS (2021-02), LSBS and ANVVB.
Collapse
Affiliation(s)
- Jytte Hendrikse
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands.
| | - Louis J Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| |
Collapse
|
3
|
Wang T, Duan R, Li Z, Zhang B, Jiang Q, Jiang L, Lv J, Su W, Feng L. Lipid metabolism analysis reveals that DGAT1 regulates Th17 survival by controlling lipid peroxidation in uveitis. JCI Insight 2025; 10:e184072. [PMID: 40197365 PMCID: PMC11981632 DOI: 10.1172/jci.insight.184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
Lipid metabolism is closely linked with antitumor immunity and autoimmune disorders. However, the precise role of lipid metabolism in uveitis pathogenesis is not clear. In our study, we analyzed the single-cell RNA-Seq (scRNA-Seq) data from cervical draining lymph nodes (CDLNs) of mice with experimental autoimmune uveitis (EAU), revealing an increased abundance of fatty acids in Th17 cells. Subsequent scRNA-Seq analysis identified the upregulation of DGAT1 expression in EAU and its marked reduction under various immunosuppressive agents. Suppression of DGAT1 prevented the conversion of fatty acids into neutral lipid droplets, resulting in the accumulation of lipid peroxidation and subsequent reduction in the proportion of Th17 cells. Inhibiting lipid peroxidation by Ferrostatin-1 effectively restored Th17 cell numbers that were decreased by DGAT1 inhibitor. Moreover, we validated the upregulation of DGAT1 in CD4+ T cells from patients with Vogt-Koyanagi-Harada (VKH) disease, a human uveitis. Inhibiting DGAT1 induced lipid peroxidation in human CD4+ T cells and reduced the proportion of Th17 cells. Collectively, our study focused on elucidating the regulatory mechanisms underlying Th17 cell survival and proposed that targeting DGAT1 may hold promise as a therapeutic approach for uveitis.
Collapse
Affiliation(s)
- Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Bowen Zhang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lei Feng
- Eye center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Gong X, Fan J, Huang H, Xu F, Hu K, Liu J, Tan Y, Chen F. Plasma Metabolic Profiles of Chronic and Recurrent Uveitis Treated by Artesunate in Lewis Rats. Biomedicines 2025; 13:821. [PMID: 40299394 DOI: 10.3390/biomedicines13040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the plasma metabolic profile of recurrent autoimmune uveitis remains unclear. This study aims to explore the effect of ART on the plasma metabolic features of recurrent experimental autoimmune uveitis (EAU) in a Lewis rat. Methods: Rats were clinically and pathologically evaluated for the development of recurrent EAU induced by inter-photoreceptor retinoid-binding protein (IRBP) R16 peptide-specific T-cells (tEAU). The disruptive effects of ART on tEAU were investigated to evaluate the potential role of rat recurrent EAU. Differentially expressed metabolites were identified in the plasma of rats by untargeted metabolomics analysis after ART treatment. The differential metabolites were applied to subsequent pathway analysis and biomarker analysis by MetaboAnalyst. Results: ART can significantly alleviate the severity of clinical signs and pathological injuries of eyeballs with tEAU. Both non-supervised principal component analysis and orthogonal partial least-squares discriminant analysis showed 84 differential metabolites enriched in 16 metabolic pathways in the tEAU group compared with heathy controls and 51 differential metabolites enriched in 17 metabolic pathways, including arginine and proline metabolism, alanine metabolism, and aminoacyl-tRNA biosynthesis, in the ART-treated group compared with the tEAU group. Particularly, upregulated L-alanine levels in both alanine metabolism and aminoacyl-tRNA biosynthesis were associated with T-cell activation, while elevated spermidine and N-acetyl putrescine levels in arginine and proline metabolism related to T-cell differentiation proved to be valuable biomarkers for ART treatment. Conclusions: Our study demonstrates that ART treatment can alleviate recurrent uveitis by altering the plasma metabolic characteristics associated with T-cell activation and differentiation, which might provide novel insights for potential therapeutic treatments.
Collapse
Affiliation(s)
- Xinyi Gong
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Jingchuan Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hui Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Fei Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Kaijiao Hu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Jianping Liu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Feilan Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| |
Collapse
|
5
|
Zong Y, Tong X, Chong WP. Th17 Response in Uveitis: A Double-Edged Sword in Ocular Inflammation and Immune Regulation. Clin Rev Allergy Immunol 2025; 68:26. [PMID: 40072803 PMCID: PMC11903535 DOI: 10.1007/s12016-025-09038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Uveitis involves a complex interplay of immune cell infiltration and cytokine imbalances, with Th17 cells playing a central role in this process. Th17 cells contribute to disease pathogenesis by promoting inflammation, recruiting additional immune cells, and directly damaging retinal tissues. This review discusses the current knowledge on therapeutic strategies targeting Th17-related cytokines, including cytokine blockade, small molecule inhibitors, and immunomodulatory approaches. Traditionally, Th17-related cytokines have been viewed as pro-inflammatory agents in uveitis. However, emerging research has highlighted the capacity of the Th17 response to express immunoregulatory cytokines, notably IL-10, IL-24, and TGF-β. This suggest that the Th17 response may have a dualistic role that includes immune suppression. In this review, we will discuss this paradoxical nature of Th17 cells in immune regulation and inflammation that they can both promote and mitigate uveitis. We expected that a deeper understanding of these mechanisms is imperative for the innovation of novel therapeutics that could consider the dual role of Th17 response in the pathogenesis of uveitis. By finely tuning the Th17 response to preserve retinal integrity and function, these new treatments could bring significant benefits to patients with uveitis. This review aims to shed light on the complexities of the Th17 response in uveitis and its implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Xue Tong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
6
|
Zhou H, Hu Y, Qin G, Kong J, Hong X, Guo C, Zou J, Feng L. The Signature of Serum Modified Nucleosides in Uveitis. Invest Ophthalmol Vis Sci 2025; 66:68. [PMID: 40014362 PMCID: PMC11875031 DOI: 10.1167/iovs.66.2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 02/28/2025] Open
Abstract
Purpose This study aims to evaluate the metabolism of serum-modified nucleosides in uveitis by using liquid chromatography-tandem mass spectrometry (LC-MS) and to develop potential diagnostic biomarkers for uveitis. Methods Forty-two patients with different subtypes of uveitis (idiopathic uveitis, Vogt-Koyanagi-Harada [VKH] disease, and ankylosing spondylitis [AS]) and 32 healthy controls were recruited in this retrospective case-control study. The concentrations of 23 modified nucleosides in patient serum were quantified by LC-MS. The data was statistically analyzed with SPSS and GraphPad Prism. Results The data revealed that 13 out of 23 modified nucleosides (m6A, m1A, m6Am, Cm, ac4C, Gm, m1G, m2G, m2,2G, Um, m3U, m5U, and m5Um) effectively showed quantifiable chromatographic peaks. The statistical results indicated that there were extremely significant differences for m2G, Gm, Cm, and m1G between healthy controls and uveitis patients. The differences for Gm, m6A,and m5U were able to further assort idiopathic uveitis and uveitis with systemic inflammation including VKH and AS. Interestingly, each specific subtype of uveitis is characterized by its signature combination of serum-modified nucleotides comparing with healthy controls. Conclusions This study revealed that the metabolism of serum-modified nucleosides in uveitis patients display significant differences from healthy controls. The signature combination of serum modified nucleotides for each subtype of uveitis may be applied for the potential diagnosis of uveitis.
Collapse
Affiliation(s)
- Haoze Zhou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guangming Qin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfeng Kong
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China
| | - Lei Feng
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Jiang L, Duan R, Yu X, Huang Z, Peng X, Wang T, Li Z, Liu X, Wang M, Su W. An analysis of single-cell data reveals therapeutic effects of AMG487 in experimental autoimmune uveitis. Biochem Pharmacol 2025; 232:116671. [PMID: 39615601 DOI: 10.1016/j.bcp.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Uveitis, an ocular autoimmune disease that poses a significant threat to vision, is caused by immune cells erroneously attacking retinal cells and currently lacks specific and effective therapeutic interventions. The CXC chemokine receptor 3 (CXCR3) facilitates the migration of immune cells to sites of inflammation. AMG487, a CXCR3 antagonist, holds potential for treating autoimmune diseases by blocking immunes cells chemotaxis. However, its effects and mechanisms in uveitis remain unclear. Using single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing, we observed increased expression of CXCR3 and chemotactic pathways in peripheral blood of Vogt-Koyanagi-Harada patients and cervical lymph nodes of experimental autoimmune uveitis mice. AMG487 treatment in experimental autoimmune uveitis was shown to be therapeutically effective. Analysis of flow cytometry and single-cell RNA sequencing in AMG487-treated mice revealed reduced expression of inflammatory genes in immune cells. Specifically, AMG487 decreased the proportion of plasma cell in B cells, restored the ratio between effector T cells and regulatory T cells, and diminished T helper (Th) 17 cell pathogenicity by suppressing highly inflammatory granulocyte-macrophage colony-stimulating factor-producing Th17 cells while enhancing anti-inflammatory interleukin-10-producing Th17 cells. Our study presents an exhaustive single-cell transcriptional analysis of immune cells under AMG487 treatment, thereby elucidating potential mechanisms and providing a potential reference for the development of novel therapeutic strategies for autoimmune diseases.
Collapse
Affiliation(s)
- Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Djebbara S, Belguendouz H, Soufli I, Hannachi L, Ameur F, Benazzouz S, Benkhelifa S, Terrahi M, Achour K, Amir ZC, Amri M, Touil-Boukoffa C. Laminated Layer Extract from Echinococcus Granulosus cyst Attenuates Ocular Damages and Inflammatory Responses in an Experimental Autoimmune Uveitis Model. Acta Parasitol 2025; 70:34. [PMID: 39853513 DOI: 10.1007/s11686-024-00944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE Since extract of the laminated layer (LL) from E. granulosus showed immuno-modulatory effects in vitro and in vivo, we sought to determine its effect on the onset, development, and evolution of experimental auto-immune uveitis (EAU). The latter is a model of some human diseases with ocular inflammation that can cause blindness. METHODS E. granulosus LL extract was either injected before EAU induction for the pretreated group or later for treated group. Ocular exploration was made by retinal histological and immunohistological (CD86, CD4, CD8) analysis. Myeloperoxidase (MPO), Superoxide dismutase (SOD), Catalase enzymatic activities (CAT), and Malondialdehyde (MDA), Nitric oxide (NO), Urea, and TNF-α levels were measured in plasma. RESULTS LL injection attenuated retinal histological damage and reduced cells infiltration. Also, LL decreased systemic inflammatory and oxidative markers as well as TNF-α production and increased antioxidant parameters. CONCLUSIONS Interestingly, we observed a protective effect of E. granulosus LL extract during EAU. LL appears to ameliorate retinal damage by down-regulating inflammatory responses. Our results support LL immunomodulatory effects during autoimmune diseases and offer a promising prospect for helminthic therapy during autoimmune uveitis.
Collapse
Affiliation(s)
- Sara Djebbara
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Houda Belguendouz
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Imene Soufli
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Leila Hannachi
- Department of Pathological Anatomy, University Hospital Center Mustapha Pacha, Algiers, Algeria
| | - Fahima Ameur
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Sara Benazzouz
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012, Bern, Switzerland
| | - Sarra Benkhelifa
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Malika Terrahi
- Department of Ophthalmology, University Hospital Center Nafissa Hammoud, Algiers, Algeria
| | - Karima Achour
- Thoracic Surgery Department, University Hospital Center Bab El Oued, Algiers, Algeria
| | - Zine-Charaf Amir
- Department of Pathological Anatomy, University Hospital Center Mustapha Pacha, Algiers, Algeria
| | - Manel Amri
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Chafia Touil-Boukoffa
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria.
- Algerian Academy for Science and Technology (AAST), Algiers, Algeria.
| |
Collapse
|
9
|
Li Z, Li Z, Hu Y, Xie Y, Shi Y, Chen G, Huang J, Xiao Z, Zhu W, Huang H, Wang M, Chen J, Chen X, Liang D. Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis. JCI Insight 2025; 10:e180248. [PMID: 39846254 PMCID: PMC11790022 DOI: 10.1172/jci.insight.180248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases. Here, we found that NETs were elevated in patients with active AU, and this was verified in an experimental AU (EAU) mouse model. Depletion of neutrophils or degradation of NETs with deoxyribonuclease-I (DNase I) could decrease CD4+ effector T cell (Teff) infiltration in retina and spleen to alleviate EAU. Moreover, we found that the expression of adhesion molecules, selectin, and antigen-presenting molecules was elevated in EAU retina and in retinal microvascular endothelial cells (RMECs) cocultured with NETs. The stimulated RMECs further facilitated CD4+ T cell adhesion, activation, and differentiation into Teffs. Mechanistically, NETs trigger RMEC activation by hastening cell senescence through the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Slowing down senescence or inhibiting the cGAS/STING pathway in RMECs reduces the activation and differentiation of CD4+ T cells. These results suggest a deleterious role of NETs in AU. Targeting NETs would offer an effective therapeutic method.
Collapse
Affiliation(s)
- Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yunwei Hu
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jun Huang
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiqiang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| |
Collapse
|
10
|
Stafford LS, Plummer CE, Smith WC, Gibson DJ, Sharma J, Vicuna V, Diakite S, Larkin J. A peptide mimic of SOCS1 modulates equine peripheral immune cells in vitro and ocular effector functions in vivo: implications for recurrent uveitis. Front Immunol 2025; 15:1513157. [PMID: 39867889 PMCID: PMC11757128 DOI: 10.3389/fimmu.2024.1513157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases. Topical administration of SOCS1-KIR, a peptide mimic of SOCS1, was previously correlated to reduced ocular pathologies within ERU patients. Methods To further assess the translational potential of a SOCS1 mimetic to treat RU, we assessed peptide-mediated modulation of immune functions in vitro, using equine peripheral blood mononuclear cells (PBMC), and in vivo through topical administration of SOCS1-KIR into the eyes of experimental (non-uveitic) horses. Equine PBMCs from non-uveitic control and ERU horses were cultured with or without SOCS1-KIR pretreatment, followed by 72 hours of mitogen stimulation. Proliferation was assessed using MTT, and cytokine production within cell supernatants was assessed by Luminex. SOCS1-KIR or carrier eye-drops were topically applied to experimental horse eyes twice daily for 21 days, followed by enucleation and isolation of ocular aqueous and vitreous humor. Histology was used to assess peptide treatment safety and localization within treated equine eyes. Cytokine secretion within aqueous humor and vitreous, isolated from experimental equine eyes, was measured by Luminex. Results Following SOCS1-KIR pretreatment, cell proliferation significantly decreased in control, but not ERU-derived PBMCs. Despite differential regulation of cellular proliferation, SOCS1-KIR significantly reduced TNFα and IL-10 secretion in PHA-stimulated control and ERU equine PBMC. SOCS1-KIR increased PBMC secretion of IL-8. Topically administered SOCS1-KIR was well tolerated. Although SOCS1-KIR was undetectable within the eye, topically treated equine eyes had significant reductions in TNFα and IL-10. Interestingly, we found that while SOCS1-KIR treatment reduced TNFα and IL-10 production in healthy and ERU PBMC, SOCS1-KIR differentially modulated proliferation, IP-10 production, and RANTES within these two groups suggesting possible differences in cell types or activation status. Discussion Topical administration of a SOCS1 peptide mimic is safe to the equine eye and reduces ERU associated cytokines IL-10 and TNFα serving as potential biomarkers of drug efficacy in a future clinical trial.
Collapse
Affiliation(s)
- Lauren Stewart Stafford
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Caryn E. Plummer
- Departments of Large and Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - W. Clay Smith
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Gibson
- Capstone College of Nursing, University of Alabama, Tuscaloosa, AL, United States
| | - Jatin Sharma
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Valeria Vicuna
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Sisse Diakite
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Zhang J, Yang H, Li L, Hu S, Liu Y, Li S, Wu L, He T. Genetic evidence supports the causal effects of exposure to ambient air pollution on autoimmune eye diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-14. [PMID: 39757986 DOI: 10.1080/09603123.2025.2449968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Previous observational studies have reported inconsistent associations between air pollution and autoimmune eye diseases (AEDs). The primary objective of this Mendelian randomization (MR) study was to investigate the causal link of air pollution with AEDs risk. The instrumental variables were selected based on genome-wide association study data. Univariable and multivariable MR analyses were conducted to disentangle the causality of air pollutants with AEDs. The estimates of univariable MR analysis revealed a suggestively causal link between NO2 or NOx exposure and diabetic retinopathy (OR=1.29, 95% CI=1.05-1.58, P=0.015; OR=1.33, 95% CI=1.05-1.69, P=0.019, respectively). A suggestive association was observed between PM2.5 exposure and age-related macular degeneration (OR=1.46, 95% CI=1.09-1.97, P=0.013). In addition, multivariable MR indicated that the observed association was remained consistent and robust. Rigorous sensitivity analyses confirmed the robustness and consistency of these findings. Our study firstly provided the genetic evidence linking air pollution, specially NO2, NOx and PM2.5, to AEDs susceptibility.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Hongxia Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Lu Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Shuqiong Hu
- Department of Ophthalmology, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei Province, The People's Republic of China
| | - Yongqing Liu
- Department of Ophthalmology, Hanchuan People's Hospital, Hanchuan, Hubei Province, The People's Republic of China
| | - Suyan Li
- Department of Ophthalmology, Enshi Central Hospital, Enshi, Hubei Province, The People's Republic of China
| | - Li Wu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, The People's Republic of China
| |
Collapse
|
12
|
Yu J, Gao Y, Bi H, Zhang Y, Tang K, Guo D, Xie X. Preliminary exploration of metagenomic sequencing for pathogenic identification in infectious uveitis. J Ophthalmic Inflamm Infect 2024; 14:70. [PMID: 39739208 DOI: 10.1186/s12348-024-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
PURPOSE To evaluate the advantages and clinical utility of metagenomic sequencing (MGS) in diagnosing infectious uveitis pathogens. METHODS A retrospective study was conducted on 20 infectious uveitis patients (20 eyes) who received treatments at the Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine from May 2020 to February 2021. Anterior aqueous humor of the patients was collected and analyzed using MGS. Then, pathogenic microorganisms that cause uveitis were identified through bioinformatic analyses based on the sequencing data of MGS. Finally, the pathogens identified by MGS were verified using both enzyme-linked immune sorbent assay (ELISA) and quantitative PCR (qPCR). RESULTS MGS was used to detect viral pathogens in four patients, bacterial pathogens in two patients, and viral and bacterial pathogens in one patient. Among these seven subjects, five were verified by either ELISA or qPCR. CONCLUSIONS MGS holds significant value and promising potential in diagnosing infectious uveitis pathogens. However, it cannot completely replace the traditional diagnostic techniques and still needs to be integrated with conventional methods to enhance the sensitivity and specificity of pathogen detection. As a pioneering technology, MGS will advance the field of pathogen diagnosis in infectious uveitis.
Collapse
Affiliation(s)
- Jinxia Yu
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Department of Ophthalmology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Yane Gao
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Hongsheng Bi
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Youhua Zhang
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Kai Tang
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Xiaofeng Xie
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
13
|
Hu Y, Zheng J, He L, Hu J, Yang Z. Association between dietary inflammatory index and visual impairment among adults in the NHANES 2005-2008. Sci Rep 2024; 14:30668. [PMID: 39730384 DOI: 10.1038/s41598-024-75950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/09/2024] [Indexed: 12/29/2024] Open
Abstract
The association between the dietary inflammatory index (DII) and visual impairment remains unclear. This study aimed to investigate the relationship between the DII and non-refractive visual impairment among US populations. A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2008, including dietary information and visual impairment assessment. Participants with presenting visual impairment, defined as presenting visual acuity in the better-seeing eye worse than 20/40, were included. Participants whose visual acuity in the better-seeing eye could be corrected to 20/40 or better through automated refraction, were classified as having uncorrected refractive error, while others were considered to have non-refractive visual impairment. Logistic regression models, restricted cubic spline (RCS) analysis, subgroup analyses, and propensity score matching (PSM) were performed to assess the association between DII and the prevalence of non-refractive visual impairment. After adjusting for potential confounding factors, a positive association was observed between DII scores and the prevalence of non-refractive visual impairment (odds ratio [OR] = 1.277, 95% confidence interval [CI] = 1.017-1.603, P < 0.05). RCS analysis demonstrated that there was no nonlinear relationship between them (P for nonlinear > 0.05). Furthermore, sensitivity analysis by PSM indicated the robustness of this positive association. This study revealed a positive correlation between the DII and the prevalence of non-refractive visual impairment among those with presenting visual impairment in the United States. Further prospective studies are warranted to confirm a causal relationship and elucidate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yudie Hu
- Department of Breast, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jiang Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
| | - Lun He
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jinhui Hu
- Department of Breast, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| | - Zheng Yang
- Department of Breast, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
14
|
Tian X, Anantrasirichai N, Nicholson L, Achim A. The quest for early detection of retinal disease: 3D CycleGAN-based translation of optical coherence tomography into confocal microscopy. BIOLOGICAL IMAGING 2024; 4:e15. [PMID: 39776613 PMCID: PMC11704141 DOI: 10.1017/s2633903x24000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/18/2024] [Accepted: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. In vivo OCT offers rapid, noninvasive imaging but can suffer from clarity issues and motion artifacts, while ex vivo confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired in vivo OCT to ex vivo confocal microscopy images. This marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color domain of confocal microscopy. We also introduce a unique dataset, OCT2Confocal, comprising mouse OCT and confocal retinal images, facilitating the development of and establishing a benchmark for cross-modal image translation research. Our model has been evaluated both quantitatively and qualitatively, achieving Fréchet inception distance (FID) scores of 0.766 and Kernel Inception Distance (KID) scores as low as 0.153, and leading subjective mean opinion scores (MOS). Our model demonstrated superior image fidelity and quality with limited data over existing methods. Our approach effectively synthesizes color information from 3D confocal images, closely approximating target outcomes and suggesting enhanced potential for diagnostic and monitoring applications in ophthalmology.
Collapse
Affiliation(s)
- Xin Tian
- Visual Information Laboratory, University of Bristol, Bristol, UK
| | | | - Lindsay Nicholson
- Autoimmune Inflammation Research, University of Bristol, Bristol, UK
| | - Alin Achim
- Visual Information Laboratory, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Barroso-García N, Martín-Varillas JL, Ferraz-Amaro I, Sánchez-Bilbao L, Martín-Gutiérrez A, Adán A, Hernanz-Rodríguez I, Beltrán-Catalán E, Cordero-Coma M, Díaz-Valle D, Hernández-Garfella M, Martínez-Costa L, Díaz-Llopis M, Herreras JM, Maíz-Alonso O, Torre-Salaberri I, Atanes-Sandoval A, Insúa S, Almodóvar-González R, Fanlo P, Aberasturi JRDD, García-Aparicio Á, Rodríguez-Montero S, Jovaní V, Moya-Alvarado P, Peña Sainz-Pardo E, Calvo-Río V, Demetrio-Pablo R, Hernández JL, Blanco R. Comparative Study of Adalimumab, Infliximab and Certolizumab Pegol in the Treatment of Cystoid Macular Edema Due to Behçet's Disease. J Clin Med 2024; 13:7388. [PMID: 39685848 DOI: 10.3390/jcm13237388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The leading cause of blindness due to non-infectious uveitis is cystoid macular edema (CME). Behçet's disease (BD) is one of the most commonly conditions related to CME. Objectives: To compare the effectiveness and safety of adalimumab (ADA), infliximab (IFX) and certolizumab (CZP) in refractory CME due to BD. Methods: Multicenter study of BD-CME patients with no response to glucocorticoids (GCs) and at least one conventional immunosuppressive drug. At baseline, all patients presented CME, defined by OCT > 300 µ. The effectiveness of ADA, IFX and CZP was assessed over a 2-year period from baseline using the following ocular parameters: macular thickness (µm), visual acuity (BCVA), anterior chamber (AC) cells and vitritis. Mixed-effects regression models were applied. Results: a total of 50 patients (75 eyes) were studied (ADA = 25; IFX = 15 and CZP = 10). No significant differences in demographic parameters were found among the three groups. However, individuals in the CZP group had a significantly extended time from diagnosis to treatment onset (72 (36-120) months, p = 0.03) and had received a higher number of biological therapies (1.7 ± 1.1) compared to the ADA and IFX groups. Within the CZP group, ADA and IFX were previously administrated in seven patients. After 2 years of follow-up, a rapid and sustained reduction in macular thickness was noted in all three groups with no significant differences between them. Additionally, enhancements in BCVA, AC cells and vitritis were also observed. No serious adverse events were reported in the CZP group, although one isolated case of bacteremia was documented in the ADA group. ADA, IFX and CZP appear to be effective and safe treatments for refractory CME in BD. CZP seems to remain effective even in patients with an insufficient response to ADA and/or IFX. Conclusions: ADA, IFX and CZP appear to be effective and safe treatments for refractory CME in BD. CZP seems to remain effective even in patients with an insufficient response to ADA and/or IFX.
Collapse
Affiliation(s)
- Nuria Barroso-García
- Rheumatology, Hospital Regional Universitario, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - José Luis Martín-Varillas
- Rheumatology, Hospital de Laredo, Instituto de Investigación Valdecilla (IDIVAL), 39770 Cantabria, Spain
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Iván Ferraz-Amaro
- Rheumatology, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
| | - Lara Sánchez-Bilbao
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Rheumatology, Ophthalmology and Internal Medicine, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Adrián Martín-Gutiérrez
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Rheumatology, Ophthalmology and Internal Medicine, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Alfredo Adán
- Ophthalmology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | | | | | - Miguel Cordero-Coma
- Ophthalmology, HM Hospitales & Hospital Regional Universitario, 29010 Málaga, Spain
| | | | | | | | | | - José M Herreras
- Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Olga Maíz-Alonso
- Rheumatology, Hospital Universitario de Donosti, 20014 San Sebastián, Spain
| | | | | | - Santos Insúa
- Rheumatology, Hospital Universitario de Santiago de Compostela, 15706 A Coruña, Spain
| | | | - Patricia Fanlo
- Internal Medicine, Complejo Hospitalario Universitario de Navarra, 31008 Navarra, Spain
| | | | | | | | - Vega Jovaní
- Rheumatology, Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | | | | | - Vanesa Calvo-Río
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Rheumatology, Ophthalmology and Internal Medicine, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Rosalía Demetrio-Pablo
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Rheumatology, Ophthalmology and Internal Medicine, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José Luis Hernández
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Rheumatology, Ophthalmology and Internal Medicine, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Ricardo Blanco
- Immunopathology Group, Marqués de Valdecilla University Hospital, Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Rheumatology, Ophthalmology and Internal Medicine, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| |
Collapse
|
16
|
Wang Z, Yang Y, Chen G, Chen G, Luo J, Li Y, Shi J, Chen H. Unravelling T-cell dynamics and immune responses in initial and recurrent uveitis. Scand J Immunol 2024; 100:e13417. [PMID: 39511764 DOI: 10.1111/sji.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to identify novel serological targets and investigate immune responses in patients with non-infectious uveitis, focusing on differences between initial onset and recurrent episodes. Differential gene expression analysis, immunocyte typing and T-cell receptor (TCR) gene analysis were conducted on RNA-sequenced peripheral blood samples from healthy individuals (n = 6) and non-infectious uveitis patients (n = 12), divided into 6 patients each at initial onset and recurrent stages. Peripheral blood T-cell types were analysed using flow cytometry. Bioinformatics methods included tools for RNA sequencing data processing, CIBERSORT for immune cell type prediction and specialized software for TCR repertoire analysis. Findings indicated that individuals with recurrent uveitis demonstrated a stronger adaptive immune response and a more pronounced immune imbalance compared to those with initial onset. Memory T cells were predominant in recurrent episodes, suggesting their potential role as biomarkers for disease progression. Significant differences in TCR diversity and V(D)J gene usage were observed between the various uveitis groups and healthy controls. Importantly, 38 uveitis-specific TCR sequences showed substantial expansion in the uveitis patients compared to controls. An elevated expansion of these specific TCR sequences was associated with an increased risk of uveitis development. The study highlights the critical role of adaptive immune responses and specific immune cell types in the pathogenesis of recurrent uveitis. Identification of the uveitis-specific TCR repertoire set could provide deeper insights into the disease and facilitate the development of targeted therapies for uveitis patients.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuanyuan Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, Hunan, China
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gong Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jingming Shi
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Clinical Immunology Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Abdelrahman MSI, Tohamy D, Osman NS, Saleh MGA. Nailfold capillaroscopic assessment in pediatric patients with autoimmune uveitis: a case-control study. Clin Rheumatol 2024; 43:3855-3861. [PMID: 39465443 PMCID: PMC11582209 DOI: 10.1007/s10067-024-07183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Uveitis is a major cause of visual impairment. Most uveitis cases have autoimmune etiology. Pediatric autoimmune uveitis may be associated with systemic diseases such as juvenile idiopathic arthritis or may arise as an isolated disorder. It may be accompanied by retinal vasculitis due to retinal microcirculation involvement. Nailfold capillaroscopy, a digital microscope, is a non-invasive tool for systemic microcirculation evaluation. We aimed to evaluate systemic microcirculation abnormalities in pediatric autoimmune uveitis. Twenty-five patients with pediatric autoimmune uveitis and 21 healthy children underwent detailed capillaroscopic evaluation. We assessed capillary density/mm, capillary morphology, capillary dimensions, and the presence or absence of microhemorrhages and avascular areas. The mean age of the study and control groups was 11.24 ± 3.03 and 9.9 ± 4.17 years, respectively. Most included patients had isolated uveitis and juvenile idiopathic arthritis (64% and 24%, respectively). The predominant uveitis subtype in the study was anterior uveitis (48%). A significant difference was found between cases and controls regarding mean capillary density (p-value = 0.0003) and the number of subjects having capillary density less than 7 (p-value = 0.002). Other capillaroscopic abnormalities did not show any significant difference between the studied groups. Mean capillary density did not correlate significantly with age, disease duration, or acute phase reactants. Children with autoimmune uveitis, whether isolated or as a part of systemic disease, may have systemic microcirculation involvement. Key Points • Idiopathic autoimmune uveitis is not always an isolated intraocular condition. • Systemic microcirculation involvement may occur in pediatric autoimmune uveitis, even in cases with isolated uveitis. • Nailfold capillaroscopy showed that capillary density in children with autoimmune uveitis is significantly reduced compared to healthy controls.
Collapse
Affiliation(s)
- Maha S I Abdelrahman
- Department of Rheumatology, Rehabilitation, and Physical Medicine, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Dalia Tohamy
- Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Naglaa S Osman
- Pediatric Allergy, Immunology, and Rheumatology, Children Hospital, Assiut University, Assiut, Egypt
| | - Mohamed G A Saleh
- Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Hösel K, Chasan B, Tode J, Rose-John S, Roider JB, Ehlken C. Effect of intravitreal injection of anti-interleukin (IL)-6 antibody in experimental autoimmune uveitis in mice. J Ophthalmic Inflamm Infect 2024; 14:57. [PMID: 39497001 PMCID: PMC11535092 DOI: 10.1186/s12348-024-00441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
PURPOSE The aim of this study was to assess the functional and clinical impact of intravitreal administration of a neutralizing anti-IL-6 antibody in the treatment of experimental autoimmune uveitis (EAU) in mice. METHODS EAU was induced in 17 female B10.RIII mice by administering Inter-Photoreceptor-Binding-Protein (IRBP) in complete Freund's adjuvant, followed by a boost with Pertussis toxin. Intravitreal injections of anti-Interleukin (IL)-6 antibody were administered on days 10, 13, and 16 after EAU induction (day 0) into the randomized treatment eye, with an isotype antibody similarly injected into the fellow control eye. Visual acuity was assessed using the optomotor reflex via OptoDrum, and clinical scoring was performed via fundus imaging (utilizing 6 EAU grades) in a single-blinded manner on days 0, 10, 13, 16, and 18. RESULTS Uveitis developed in all 17 mice. Significantly higher visual acuity was observed in treated eyes compared to control eyes on days 13, 16, and 18. The most pronounced effect was noted on days 16 and 18 (p < 0.001). On days 13, 16, and 18 the number of eyes with lower EAU-score was significantly higher in the treatment group, with the most notable effect observed on day 18 (p < 0.003). CONCLUSION Intravitreal administration of anti-IL-6 treatment notably mitigates experimental autoimmune uveitis in mice, both functionally and clinically. Further investigations are warranted to assess the potential of intravitreal anti-IL-6 therapy as a treatment option for non-infectious uveitis in humans.
Collapse
Affiliation(s)
- Kristin Hösel
- Department of Ophthalmology, UKSH Kiel, Kiel, Germany.
| | - Büsra Chasan
- Department of Ophthalmology, UKSH Kiel, Kiel, Germany
| | - Jan Tode
- Department of Ophthalmology, MHH Hannover, Hannover, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Klinik für Augenheilkunde, CAU Kiel, Haus B2, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | | | | |
Collapse
|
19
|
Liao W, Luo Q, Zhang L, Wang H, Ge W, Wang J, Zuo Z. Genetic overlap between inflammatory bowel disease and iridocyclitis: insights from a genome-wide association study in a European population. BMC Genom Data 2024; 25:92. [PMID: 39472800 PMCID: PMC11520806 DOI: 10.1186/s12863-024-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is occasionally associated with ophthalmic diseases, including iridocyclitis (IC). The co-occurrence of IBD and IC has been increasingly observed, possibly due to shared genetic structures. METHODS A three-part analysis was executed utilizing genome-wide association study (GWAS) data on IBD and IC. First, the overall genetic correlation between the two traits was observed using linkage disequilibrium score regression (LDSC). Subsequent to this, a local genetic correlation analysis was conducted utilizing the heritability estimation from summary statistics (HESS) methodology. Finally, the conditional/conjunctional false discovery rate (cond/conjFDR) statistical framework was utilized to ascertain the degree of genetic overlap between the two traits. RESULTS Positive overall correlations were observed among IBD, ulcerative colitis (UC), and IC, encompassing both acute/subacute and chronic IC presentations. While a significant correlation was identified between Crohn's disease (CD) and IC, it was not evident for acute/subacute or chronic IC (P > 0.05). Notably, IBD (encompassing CD and UC) demonstrated local genetic correlations with IC and acute/subacute IC, with pronounced enrichment notably on chromosomes 1 and 6, though such correlations were not observed with chronic IC. The conjFDR analysis confirmed the genetic overlap between the two diseases. The shared genes overlapping between IBD (encompassing CD and UC) and IC were IL23R, GPR35, and ERAP1. For acute/subacute IC and chronic IC, there were six overlapping genes (GPR35, RPL23AP12, IL23R, SNAPC4, ERAP1, and INAVA) and one overlapping gene (INAVA), respectively. CONCLUSION This study confirms the existence of a shared genetic structure between IBD and IC, providing a biological basis for their comorbidity. Additionally, this finding has significant implications for preventing and treating these two diseases.
Collapse
Affiliation(s)
- Wu Liao
- Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qinghua Luo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Leichang Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei Ge
- Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jiawen Wang
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengyun Zuo
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, China.
| |
Collapse
|
20
|
Basu S, Hassman L, Kodati S, Chu CJ. Intraocular Immune Response in Human Uveitis: Time to Look Beyond Animal Models. Am J Ophthalmol 2024; 266:17-25. [PMID: 38703799 PMCID: PMC7616079 DOI: 10.1016/j.ajo.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To review the current and future approaches to investigating the intraocular immune response in human uveitis. DESIGN Perspective. METHODS Review of currently available methods for investigating the immune response in ocular tissues and fluids in patients with intraocular inflammation/ uveitis. The advantages and disadvantages of human studies have been compared to those of animal models of uveitis. RESULTS Animal models, while being excellent tools for mechanistic studies, do not replicate the clinical and immunologic heterogeneity of human uveitis. Opportunities for immunological studies in human uveitis are mostly limited to histological studies, or sampling of intraocular fluids and peripheral blood. Histopathological studies can be enhanced by revisiting published historical data, tissue repositories, or autopsy specimens. Intraocular fluids can be investigated by a variety of techniques. Among these, flow cytometry and single-cell RNA sequencing (scRNAseq) provide single-cell resolution. While the current technology is costly and labor-intensive, scRNAseq is less limited by the low cellular yield from intraocular fluids and allows unbiased immune profiling enabling discovery of new cellular subsets. Immunological phenotypes uncovered from human data can be further investigated in animal studies. CONCLUSION The diversity of the intraocular immune response in uveitis patients remains challenging but can be studied by multiple techniques including histopathology, flow cytometry, and scRNAseq. Human data can be combined with animal studies for translating uveitis research into novel therapies.
Collapse
Affiliation(s)
- Soumyava Basu
- From the Saroja A Rao Centre for Uveitis (S.B.), LV Prasad Eye Institute, Hyderabad, India.
| | - Lynn Hassman
- UCHealth Sue Anschutz-Rodgers Eye Center (L.H.), Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shilpa Kodati
- Kellogg Eye Center (S.K.), University of Michigan, Ann Arbor, Michigan, USA
| | - Colin J Chu
- NIHR Biomedical Research Centre (C.J.C.), Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
21
|
Wang M, Huang X, Shu J, Li H, Yang T, Li N, Yang P. Irisin Alleviates Autoimmune Uveitis Through Promoting Retinal Microglial M1 to M2 Phenotypic Polarization Mediated by HIF-1α Pathway. Inflammation 2024:10.1007/s10753-024-02149-5. [PMID: 39342514 DOI: 10.1007/s10753-024-02149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Irisin, proteolytically cleaved from Fndc5 protein, has been identified as an exercise-related hormone. Here, we investigated the irisin levels in aqueous humor and its involvement in the pathogenesis of uveitis. The results revealed that the irisin level in the aqueous humor was significantly decreased in Vogt-Koyanagi-Harada (VKH), and Behcet uveitis (BU) patients, and was negatively correlated with TNF-α in BU patients. Exogenous supplementation of irisin alleviated scores of experimental autoimmune uveitis (EAU) clinically and pathologically and suppressed the proportion of Th1 and Th17 cells in spleen. Fndc5-/- EAU mice exhibited more severe inflammatory manifestations with increased microglial activation in the retina. Irisin could mitigate M1 microglia and promote M2 microglia polarization. RNA sequencing of the retina showed that HIF-1α pathway was significantly enriched in Fndc5-/- EAU mice. HIF-1α pathway inhibitor significantly rescued EAU severity, associated with a decreased M1 microglial polarization in the retina of Fndc5-/- mice. In conclusion, we highlighted that irisin could alleviate uveitis by inhibiting Th1 and Th17 cells and reducing M1 microglial polarization via HIF-1α pathway.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Ophthalmology, Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan International, Henan Province Eye Hospital, Zhengzhou, P.R. China
| | - Xue Huang
- Department of Ophthalmology, Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan International, Henan Province Eye Hospital, Zhengzhou, P.R. China
| | - Jia Shu
- Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P.R. China
| | - Hongxi Li
- Southwest Hospital, Army Medical University, Chongqing, China
| | - Tao Yang
- Department of Ophthalmology, Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan International, Henan Province Eye Hospital, Zhengzhou, P.R. China
| | - Na Li
- Department of Ophthalmology, Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan International, Henan Province Eye Hospital, Zhengzhou, P.R. China
| | - Peizeng Yang
- Department of Ophthalmology, Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan International, Henan Province Eye Hospital, Zhengzhou, P.R. China.
| |
Collapse
|
22
|
Haghshenas L, Banihashemi S, Malekzadegan Y, Catanzaro R, Moghadam Ahmadi A, Marotta F. Microbiome as an endocrine organ and its relationship with eye diseases: Effective factors and new targeted approaches. World J Gastrointest Pathophysiol 2024; 15:96446. [PMID: 39355345 PMCID: PMC11440246 DOI: 10.4291/wjgp.v15.i5.96446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Microbiome is an endocrine organ that refers to both the complicated biological system of microbial species that colonize our bodies and their genomes and surroundings. Recent studies confirm the connection between the microbiome and eye diseases, which are involved in the pathogenesis of eye diseases, including age-related macular disorders, diabetic retinopathy, glaucoma, retinitis pigmentosa, dry eye, and uveitis. The aim of this review is to investigate the microbiome in relation to eye health. First, a brief introduction of the characteristics of the gut microorganisms terms of composition and work, the role of dysbiosis, the gut microbiome and the eye microbiome in the progression of eye illnesses are highlighted, then the relationship among the microbiome and the function of the immune system and eye diseases, the role of inflammation and aging and the immune system, It has been reviewed and finally, the control and treatment goals of microbiome and eye diseases, the role of food factors and supplements, biotherapy and antibiotics in relation to microbiome and eye health have been reviewed.
Collapse
Affiliation(s)
- Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA 02115, United States
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham NG1 4FQ, United Kingdom
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh 3919676651, Iran
| | - Roberto Catanzaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Catania, Italy
| | - Amir Moghadam Ahmadi
- Department of Neuroimmunology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Francesco Marotta
- Department of Human Nutrition and Food Sciences, Texas Women University, Milano 20154, Italy
| |
Collapse
|
23
|
Wang Q, Xu X, Ye J, Zhang Z. The role of cGAS/STING signaling in ophthalmological diseases. Biomed Pharmacother 2024; 177:117078. [PMID: 38968795 DOI: 10.1016/j.biopha.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
The eye is one of the most vulnerable parts of the human body. There are many kinds of ophthalmic diseases, which are caused by multiple factors. Generally, ophthalmic diseases have the characteristics of complicated etiology and difficult therapy. With the development of the times, ophthalmic diseases have become a major problem that affects people's lives. Inflammation, a major factor inducing ocular diseases, is one of the most popular research directions. The cGAS/STING pathway is a recently discovered inflammatory signaling pathway, which recognizes double-stranded DNA (dsDNA) as an activation signal to promote the expression of downstream cytokines that promote inflammatory response or autoimmune response. Since most of the current treatments for ophthalmic diseases mainly rely on surgery, it is of positive significance to explore the pathogenesis for the discovery of drug targets. This review summarize the research progress of the cGAS/STING pathway in major ophthalmic diseases by introducing the correlation between classical inflammatory pathway and ophthalmic diseases, in order to predict the research direction and methods targeting the cGAS/STING pathway in the pathogenesis of ophthalmic diseases, and also provide guidance for the mechanism as well as molecular targets of ophthalmic diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The First People's Hospital of Jingzhou City, Jingzhou 434000, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China.
| | - Zuhai Zhang
- Department of Ophthalmology, The First People's Hospital of Jingzhou City, Jingzhou 434000, China.
| |
Collapse
|
24
|
Wang Q, Ye X, Tan S, Jiang Q, Su G, Pan S, Li H, Cao Q, Yang P. 4-Octyl Itaconate Inhibits Proinflammatory Cytokine Production in Behcet's Uveitis and Experimental Autoimmune Uveitis. Inflammation 2024; 47:909-920. [PMID: 38183531 DOI: 10.1007/s10753-023-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024]
Abstract
4-octyl itaconate (4-OI) is an anti-inflammatory metabolite that activates the nuclear-factor-E2-related factor 2 (NRF2) signaling. In the current work, we investigated whether 4-OI could affect the production of proinflammatory cytokines in Behcet's uveitis (BU) and experimental autoimmune uveitis (EAU). Peripheral blood mononuclear cells (PBMCs) of active BU patients and healthy individuals with in vitro 4-OI treatment were performed to assess the influence of 4-OI on the proinflammatory cytokine production. EAU was induced and used for investigating the influence of 4-OI on the proinflammatory cytokine production in vivo. The flow cytometry, qPCR, and ELISA were performed to detect proinflammatory cytokine expression. NRF2 signaling activation was evaluated by qPCR and western blotting (WB). Splenic lymphocyte transcriptome was performed by RNA sequencing. The NRF2 expression by BU patients-derived PBMCs was lower than that by healthy individuals. After treatment with 4-OI, the proportion of Th17 cells, along with the expression of proinflammatory cytokines (IL-17, TNF-α, MCP-1, and IL-6) by PBMCs, were downregulated, and anti-inflammatory cytokine (IL-10) expression was upregulated, although IFN-γ expression was unaffected. The EAU severity was ameliorated by 4-OI in association with a lower splenic Th1/Th17 cell proportion and increased nuclear NRF2 expression. Additionally, 4-OI downregulated a set of 248 genes, which were enriched in pathways of positive regulation of immune responses. The present study shows an inhibitory effect of 4-OI on the proinflammatory cytokine production in active BU patients and EAU mice, possibly mediated through activating NRF2 signaling. These findings suggest that 4-OI could act as a potential therapeutic drug for the treatment and prevention of BU in the future study.
Collapse
Affiliation(s)
- Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
25
|
Derluyn N, Foucart V, Verce M, Abdo R, Vaudoisey L, Lipski D, Flamand V, Everard A, Bruyns C, Willermain F. High salt diet alleviates disease severity in native experimental autoimmune uveitis. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1370374. [PMID: 38984146 PMCID: PMC11182228 DOI: 10.3389/fopht.2024.1370374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/19/2024] [Indexed: 07/11/2024]
Abstract
Background Recent studies reported a link between high salt diet (HSD) and clinical exacerbation in mouse models of autoimmune diseases, mainly through the induction of pathogenic Th17 cells and/or HSD-induced dysbiosis. However, the topic remains controversial and not fully understood. Purpose In this study, we investigated the effects of HSD on the development of experimental autoimmune uveitis (EAU) in C57BL/6J mice. Methods and results Unexpectedly, our data showed a significant attenuating effect of HSD on disease severity of native EAU, induced by direct immunization with IRBP peptide. That said, HSD had no effect on EAU disease severity induced by adoptive transfer of semi-purified auto-reactive IRBP-specific T lymphocytes. Accordingly, HSD did not affect IRBP-specific systemic afferent immune response as attested by no HSD-linked changes in T lymphocytes proliferation, cytokine production and Treg proportion. Gut microbiota analysis from cecal samples in naïve and EAU mice demonstrated that HSD affected differentially α-diversity between groups, whereas β-diversity was significantly modified in all groups. Unknown Tannerellaceae was the only taxon associated to HSD exposure in all treatment groups. Interestingly, a significantly higher abundance of unknown Gastranaerophilales, with potential anti-inflammatory properties, appeared in HSD-fed native EAU mice, only. Discussion In conclusion, our study suggests a possible impact of HSD on gut microbiota composition and consequently on development and clinical severity of EAU. Further studies are required to investigate the potential beneficial role of Gastranaerophilales in EAU.
Collapse
Affiliation(s)
- Naomi Derluyn
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Foucart
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Rami Abdo
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Louis Vaudoisey
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Deborah Lipski
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Catherine Bruyns
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Willermain
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
26
|
Yuan F, Zhang R, Li J, Lei Q, Wang S, Jiang F, Guo Y, Xiang M. CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis. J Neuroinflammation 2024; 21:136. [PMID: 38802924 PMCID: PMC11131209 DOI: 10.1186/s12974-024-03134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.
Collapse
Affiliation(s)
- Fa Yuan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rong Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qiannan Lei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Fanying Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yanan Guo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Furst A, Gill T. Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Pract Res Clin Rheumatol 2024; 38:101961. [PMID: 38851970 DOI: 10.1016/j.berh.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The gut microbiota plays a pivotal role in regulating host immunity, and dysregulation of this interaction is implicated in autoimmune and inflammatory diseases, including spondyloarthritis (SpA). This review explores microbial dysbiosis and altered metabolic function observed in various forms of SpA, such as ankylosing spondylitis (AS), psoriatic arthritis (PsA), acute anterior uveitis (AAU), and SpA-associated gut inflammation. Studies on animal models and clinical samples highlight the association between gut microbial dysbiosis, metabolic perturbations and immune dysregulation in SpA pathogenesis. These studies have received impetus through next-generation sequencing methods, which have enabled the characterization of gut microbial composition and function, and host gene expression. Microbial/metabolomic studies have revealed potential biomarkers and therapeutic targets, such as short-chain fatty acids, and tryptophan metabolites, offering insights into disease mechanisms and treatment approaches. Further studies on microbial function and its modulation of the immune response have uncovered molecular mechanisms underlying various SpA. Understanding the complex interplay between microbial community structure and function holds promise for improved diagnosis and management of SpA and other autoimmune disorders.
Collapse
Affiliation(s)
- Alec Furst
- School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
28
|
Wang Y, Yang C, Hou Y, Wang J, Zhang K, Wang L, Sun D, Li X, Wei R, Nian H. Dimethyl itaconate inhibits antigen-specific Th17 cell responses and autoimmune inflammation via modulating NRF2/STAT3 signaling. FASEB J 2024; 38:e23607. [PMID: 38581245 DOI: 10.1096/fj.202302293rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Pathogenic Th17 cells play a crucial role in autoimmune diseases like uveitis and its animal model, experimental autoimmune uveitis (EAU). Dimethyl itaconate (DMI) possesses potent anti-inflammatory effects. However, there is still a lack of knowledge about the role of DMI in regulating pathogenic Th17 cells and EAU. Here, we reported that intraperitoneal administration of DMI significantly inhibited the severity of EAU via selectively suppressing Th17 cell responses. In vitro antigen stimulation studies revealed that DMI dramatically decreased the frequencies and function of antigen-specific Th17, but not Th1, cells. Moreover, DMI hampered the differentiation of naive CD4+ T cells toward pathogenic Th17 cells. DMI-treated DCs produced less IL-1β, IL-6, and IL-23, and displayed an impaired ability to stimulate antigen-specific Th17 activation. Mechanistically, DMI activated the NRF2/HO-1 pathway and suppressed STAT3 signaling, which subsequently restrains p-STAT3 nuclear translocation, leading to decreased pathogenic Th17 cell responses. Thus, we have identified an important role for DMI in regulating pathogenic Th17 cells, supporting DMI as a promising therapy in Th17 cell-driven autoimmune diseases including uveitis.
Collapse
Affiliation(s)
- Ying Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chao Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yubiao Hou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jiali Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lihua Wang
- Department of Kidney Diseases and Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
29
|
M. Bani Khalaf I, Jain H, Vora NM, ul Ain N, Murtaza F, Ram MD, Nankani A, Motwani J. A clearer vision: insights into juvenile idiopathic arthritis-associated uveitis. Proc AMIA Symp 2024; 37:303-311. [PMID: 38343470 PMCID: PMC10857453 DOI: 10.1080/08998280.2024.2305567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 12/13/2024] Open
Abstract
The aim of this narrative review is to synthesize existing evidence-based knowledge on juvenile idiopathic arthritis-associated uveitis (JIA-U). We highlight epidemiology, pathophysiology, causes and genetics, risk factors, clinical features, diagnosis and screening, laboratory biomarkers, treatment options, trials with recent advances, and research challenges pertaining to JIA-U. The prevalence of JIA-U varies with different JIA subtypes, most frequently associated with the oligoarticular subtype. The risk factors involved in the development of JIA-U include younger age, antinuclear antibody (ANA) positivity, and the oligoarticular subtype of JIA, along with some specific major histocompatibility complex genes. Certain laboratory biomarkers, such as ANA, rheumatoid factor, interferon-λ, erythrocyte sedimentation rate, and transthyretin, have been used in JIA-U diagnosis, progress monitoring, and prognostication. Clinical features of JIA-U can range from asymptomatic to ophthalmic symptoms like redness, blurred vision, decreased visual acuity, hypopyon, and posterior uveitis, which can lead to retinal detachment and macular edema. The management protocol involves topical and systemic steroids, cycloplegics, disease-modifying antirheumatic drugs, biologic drugs, and surgical options. Early detection combined with prompt treatment is crucial to preventing irreversible vision loss in JIA-U.
Collapse
Affiliation(s)
- Ihda M. Bani Khalaf
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hritvik Jain
- Department of Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Nilofar M. Vora
- Department of Medicine, Terna Speciality Hospital and Research Centre, Navi Mumbai, India
| | - Noor ul Ain
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Farhan Murtaza
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Muskaan Doulat Ram
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Avinash Nankani
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Jatin Motwani
- Department of Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| |
Collapse
|
30
|
Zhang H, Houadj L, Wu KY, Tran SD. Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics (Basel) 2024; 14:336. [PMID: 38337852 PMCID: PMC10855398 DOI: 10.3390/diagnostics14030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to provide an understanding of the diagnostic and therapeutic challenges of uveitis associated with immune checkpoint inhibitors (ICI). In the wake of these molecules being increasingly employed as a treatment against different cancers, cases of uveitis post-ICI therapy have also been increasingly reported in the literature, warranting an extensive exploration of the clinical presentations, risk factors, and pathophysiological mechanisms of ICI-induced uveitis. This review further provides an understanding of the association between ICIs and uveitis, and assesses the efficacy of current diagnostic tools, underscoring the need for advanced techniques to enable early detection and accurate assessment. Further, it investigates the therapeutic strategies for ICI-related uveitis, weighing the benefits and limitations of existing treatment regimens, and discussing current challenges and emerging therapies in the context of their potential efficacy and side effects. Through an overview of the short-term and long-term outcomes, this article suggests recommendations and emphasizes the importance of multidisciplinary collaboration between ophthalmologists and oncologists. Finally, the review highlights promising avenues for future research and development in the field, potentially informing transformative approaches in the ocular assessment of patients under immunotherapy and the management of uveitis following ICI therapy.
Collapse
Affiliation(s)
- Huixin Zhang
- Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Lysa Houadj
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
31
|
Yin M, Smith JA, Chou M, Chan J, Jittayasothorn Y, Gould DB, Caspi RR, Anderson MS, DeFranco AL. Tracking the role of Aire in immune tolerance to the eye with a TCR transgenic mouse model. Proc Natl Acad Sci U S A 2024; 121:e2311487121. [PMID: 38261611 PMCID: PMC10835137 DOI: 10.1073/pnas.2311487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.
Collapse
Affiliation(s)
- Mianmian Yin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Jennifer A. Smith
- Diabetes Center, University of California, San Francisco, San Francisco, CA94143
| | - Marissa Chou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Jackie Chan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | | | - Douglas B. Gould
- Department of Ophthalmology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA94143
- Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA94143
| | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD20892-1857
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA94143
- Department of Medicine, University of California, San Francisco, San Francisco, CA94143
| | - Anthony L. DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
32
|
Dossantos J, An J. A Rare Case of Postoperative Uveitis and Obstructive Peripheral Anterior Synechiae Following Combined OMNI Canaloplasty and Hydrus Microstent Implantation. J Curr Glaucoma Pract 2024; 18:37-41. [PMID: 38585161 PMCID: PMC10997961 DOI: 10.5005/jp-journals-10078-1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose This study seeks to highlight and explore the occurrence of uveitis with obstructive peripheral anterior synechiae (PAS) after a combined OMNI canaloplasty and Hydrus microstent implantation with phacoemulsification, particularly in a patient with a background of psoriatic arthritis. Observations A 56-year-old male with a medical history of psoriatic arthritis (in remission for 10 years) and primary open-angle glaucoma (POAG) underwent a combined OMNI canaloplasty and Hydrus microstent with phacoemulsification. The surgical procedure was uncomplicated. However, within 2 weeks postsurgery, the patient presented with severe symptoms, including uveitis, elevated intraocular pressure (IOP), and a significant reduction in best-corrected visual acuity (BCVA). This postoperative response was unexpected, especially given the lack of any past history of uveitis in the patient. The complication, potentially influenced by the patient's history of psoriatic arthritis, led to the need for additional interventions, including the implantation of an Ahmed glaucoma valve. Conclusion This case underscores the potential for postoperative complications, specifically uveitis with obstructive PAS, following combined OMNI canaloplasty and Hydrus microstent with phacoemulsification, especially in patients with a history of autoimmune diseases. Careful preoperative history, postoperative monitoring, and a nuanced approach to surgical planning are crucial. The association between systemic inflammatory conditions and ocular complications warrants deeper exploration to ensure optimal patient care. How to cite this article Dossantos J, An J. A Rare Case of Postoperative Uveitis and Obstructive Peripheral Anterior Synechiae Following Combined OMNI Canaloplasty and Hydrus Microstent Implantation. J Curr Glaucoma Pract 2024;18(1):37-41.
Collapse
Affiliation(s)
- Jason Dossantos
- Department of Ophthalmology, GW School of Medicine and Health Sciences (SMHS), Washington, DC, State of Washington, United States of America
| | - Jella An
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, State of Washington, United States of America
| |
Collapse
|
33
|
Brar AS, Parameswarappa DC, Takkar B, Narayanan R, Jalali S, Mandal S, Fujinami K, Padhy SK. Gene Therapy for Inherited Retinal Diseases: From Laboratory Bench to Patient Bedside and Beyond. Ophthalmol Ther 2024; 13:21-50. [PMID: 38113023 PMCID: PMC10776519 DOI: 10.1007/s40123-023-00862-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
This comprehensive review provides a thorough examination of inherited retinal diseases (IRDs), encompassing their classification, genetic underpinnings, and the promising landscape of gene therapy trials. IRDs, a diverse group of genetic conditions causing vision loss through photoreceptor cell death, are explored through various angles, including inheritance patterns, gene involvement, and associated systemic disorders. The focal point is gene therapy, which offers hope for halting or even reversing the progression of IRDs. The review highlights ongoing clinical trials spanning retinal cell replacement, neuroprotection, pharmacological interventions, and optogenetics. While these therapies hold tremendous potential, they face challenges like timing optimization, standardized assessment criteria, inflammation management, vector refinement, and raising awareness among vision scientists. Additionally, translating gene therapy success into widespread adoption and addressing cost-effectiveness are crucial challenges to address. Continued research and clinical trials are essential to fully harness gene therapy's potential in treating IRDs and enhancing the lives of affected individuals.
Collapse
Affiliation(s)
- Anand Singh Brar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Deepika C Parameswarappa
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Raja Narayanan
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Sohini Mandal
- Dr Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India.
| |
Collapse
|
34
|
Tanaka H, Hasebe R, Murakami K, Sugawara T, Yamasaki T, Murakami M. Gateway reflexes describe novel neuro-immune communications that establish immune cell gateways at specific vessels. Bioelectron Med 2023; 9:24. [PMID: 37936169 PMCID: PMC10631009 DOI: 10.1186/s42234-023-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Neuroinflammation is an important biological process induced by complex interactions between immune cells and neuronal cells in the central nervous system (CNS). Recent research on the bidirectional communication between neuronal and immunological systems has provided evidence for how immune and inflammatory processes are regulated by nerve activation. One example is the gateway reflex, in which immune cells bypass the blood brain barrier and infiltrate the CNS to cause neuroinflammation. We have found several modes of the gateway reflex in mouse models, in which gateways for immune cells are established at specific blood vessels in the spinal cords and brain in experimental autoimmune encephalomyelitis and systemic lupus erythematosus models, at retinal blood vessels in an experimental autoimmune uveitis model, and the ankle joints in an inflammatory arthritis model. Several environmental stimulations, including physical and psychological stresses, activate neurological pathways that alter immunological responses via the gateway reflex, thus contributing to the development/suppression of autoimmune diseases. In the manuscript, we describe the discovery of the gateway reflex and recent insights on how they regulate disease development. We hypothesize that artificial manipulation of specific neural pathways can establish and/or close the gateways to control the development of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan.
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Nishi-11, Kita-21, Kuta-Ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
35
|
Salvador R, Horai R, Zhang A, Jittayasothorn Y, Tang J, Gupta A, Nagarajan V, Caspi RR. Too Much of a Good Thing: Extended Duration of Gut Microbiota Depletion Reverses Protection From Experimental Autoimmune Uveitis. Invest Ophthalmol Vis Sci 2023; 64:43. [PMID: 38019490 PMCID: PMC10691388 DOI: 10.1167/iovs.64.14.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Purpose Using the model of experimental autoimmune uveitis (EAU) induced by immunization with a retinal antigen, two studies have reported contradictory results on disease development following oral antibiotic treatment (ABX). We showed that long-term ABX did not affect EAU, but another study showed that short-term ABX was protective. We therefore studied the effects of ABX on EAU, gut microbiota, and host immune responses as a function of treatment duration. Methods EAU-susceptible mice were treated orally with broad-spectrum antibiotics starting at least 10 weeks (long-term) or 1 week (short-term) before immunization until termination of the experiment. Gut microbiota were characterized by 16S amplicon sequencing, and host gut immune elements were studied phenotypically and functionally. Results Long-term ABX had no effect, whereas short-term ABX delayed EAU, as previously reported by us and others, respectively. Microbial sequencing revealed progressive reduction of gut microbiota that showed some differences in the two ABX groups. Interestingly, duration of ABX was associated with a gradual disappearance of the CD4+ and CD4+CD8+ subset of gut intraepithelial lymphocytes (IELs). This IEL subset is microbiota dependent and is absent in germ-free mice. Relative abundance of Lactobacillus reuteri correlated with the frequencies of CD4+CD8+ IELs. IELs suppressed antigen-specific activation of autoreactive T cells in culture. Conclusions Gut microbiota may play dual roles in uveitis development: They promote EAU development but also help maintain IEL populations that have regulatory function against autoreactive T cells. We propose that the progressive loss of this population during long-term ABX reverses the EAU-ameliorating effects of microbiota depletion.
Collapse
Affiliation(s)
- Ryan Salvador
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Amy Zhang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yingyos Jittayasothorn
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jihong Tang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Akriti Gupta
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijayaraj Nagarajan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
36
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
37
|
Lee JY, Kim S, Sohn HJ, Kim CH, Kim TG, Lee HS. Local Myeloid-Derived Suppressor Cells Impair Progression of Experimental Autoimmune Uveitis by Alleviating Oxidative Stress and Inflammation. Invest Ophthalmol Vis Sci 2023; 64:39. [PMID: 37878302 PMCID: PMC10615146 DOI: 10.1167/iovs.64.13.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Purpose To evaluate the immune regulatory effect of human cord blood myeloid-derived suppressor cells (MDSCs) in experimental autoimmune uveitis (EAU) models. Methods MDSCs (1 × 106) or PBS were injected into established C57BL/6 EAU mice via the subconjunctival route on days 0 and 7. The severity of intraocular inflammation was evaluated for up to 3 weeks. Tissue injury and inflammation were analyzed using immunolabelled staining, real-time PCR, and ELISA. In addition, immune cells in draining lymph nodes (LNs) were quantified using flow cytometry. Results After 21 days, the clinical scores and histopathological grades of EAU were lower in the MDSCs group compared with the PBS group. Local administration of MDSCs suppressed the oxidative stress and the expression of TNF-α and IL-1β in the retinal tissues. In addition, it inhibited the activation of pathogenic T helper 1 (Th1) and Th17 cells in draining LNs. MDSCs increased the frequency of CD25+ Foxp3+ regulatory T cells and the mRNA expression of IL-10, as an immune modulator. Conclusions MDSCs suppressed inflammation and oxidative stress in the retina and inhibited pathogenic T cells in the LNs in EAU. Therefore, ocular administration of MDSCs has therapeutic potential for uveitis.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sueon Kim
- ViGenCell Inc., Seoul, Republic of Korea
| | | | | | - Tai-Gyu Kim
- ViGenCell Inc., Seoul, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Soo Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
38
|
Cao F, Liu ZR, Ni QY, Zha CK, Zhang SJ, Lu JM, Xu YY, Tao LM, Jiang ZX, Pan HF. Emerging roles of air pollution and meteorological factors in autoimmune eye diseases. ENVIRONMENTAL RESEARCH 2023; 231:116116. [PMID: 37182831 DOI: 10.1016/j.envres.2023.116116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Autoimmune eye diseases (AEDs), a collection of autoimmune inflammatory ocular conditions resulting from the dysregulation of immune system at the ocular level, can target both intraocular and periorbital structures leading to severe visual deficit and blindness globally. The roles of air pollution and meteorological factors in the initiation and progression of AEDs have been increasingly attractive, among which the systemic and local mechanisms are both involved in. Exposure to excessive air pollution and extreme meteorological conditions including PM2.5/PM0.1, environmental tobacco smoke, insufficient sunshine, and high temperature, etc., can disturb Th17/Treg balance, regulate macrophage polarization, activate neutrophils, induce systemic inflammation and oxidative stress, decrease retinal blood flow, promote tissue fibrosis, activate sympathetic nervous system, adversely affect nutrients synthetization, as well as induce heat stress, therefore may together deteriorate AEDs. The crosstalk among inflammation, oxidative stress and dysregulated immune system appeared to be prominent. In the present review, we will concern and summarize the potential mechanisms underlying linkages of air pollution and meteorological factors to ocular autoimmune and inflammatory responses. Moreover, we concentrate on the specific roles of air pollutants and meteorological factors in several major AEDs including uveitis, Graves' ophthalmopathy (GO), ocular allergic disease (OAD), glaucoma, diabetic retinopathy (DR), etc.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhuo-Ran Liu
- Department of Ophthalmology, Ningbo Hospital, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1155 Binhaier Road, Ningbo, Zhejiang, China
| | - Qin-Yu Ni
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Chen-Kai Zha
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Shu-Jie Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jia-Min Lu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yue-Yang Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
39
|
Mellak Y, Achim A, Ward A, Nicholson L, Descombes X. A machine learning framework for the quantification of experimental uveitis in murine OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:3413-3432. [PMID: 37497491 PMCID: PMC10368067 DOI: 10.1364/boe.489271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 07/28/2023]
Abstract
This paper presents methods for the detection and assessment of non-infectious uveitis, a leading cause of vision loss in working age adults. In the first part, we propose a classification model that can accurately predict the presence of uveitis and differentiate between different stages of the disease using optical coherence tomography (OCT) images. We utilize the Grad-CAM visualization technique to elucidate the decision-making process of the classifier and gain deeper insights into the results obtained. In the second part, we apply and compare three methods for the detection of detached particles in the retina that are indicative of uveitis. The first is a fully supervised detection method, the second is a marked point process (MPP) technique, and the third is a weakly supervised segmentation that produces per-pixel masks as output. The segmentation model is used as a backbone for a fully automated pipeline that can segment small particles of uveitis in two-dimensional (2-D) slices of the retina, reconstruct the volume, and produce centroids as points distribution in space. The number of particles in retinas is used to grade the disease, and point process analysis on centroids in three-dimensional (3-D) shows clustering patterns in the distribution of the particles on the retina.
Collapse
Affiliation(s)
- Youness Mellak
- Université Côte d’Azur, INRIA, CNRS, I3S, Sophia Antipolis, France
| | - Alin Achim
- University of Bristol, Bristol, United Kingdom
| | - Amy Ward
- University of Bristol, Bristol, United Kingdom
| | | | - Xavier Descombes
- Université Côte d’Azur, INRIA, CNRS, I3S, Sophia Antipolis, France
| |
Collapse
|
40
|
Du L, Ho BM, Zhou L, Yip YWY, He JN, Wei Y, Tham CC, Chan SO, Schally AV, Pang CP, Li J, Chu WK. Growth hormone releasing hormone signaling promotes Th17 cell differentiation and autoimmune inflammation. Nat Commun 2023; 14:3298. [PMID: 37280225 DOI: 10.1038/s41467-023-39023-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Dysregulation of Th17 cell differentiation and pathogenicity contributes to multiple autoimmune and inflammatory diseases. Previously growth hormone releasing hormone receptor (GHRH-R) deficient mice have been reported to be less susceptible to the induction of experimental autoimmune encephalomyelitis. Here, we show GHRH-R is an important regulator of Th17 cell differentiation in Th17 cell-mediated ocular and neural inflammation. We find that GHRH-R is not expressed in naïve CD4+ T cells, while its expression is induced throughout Th17 cell differentiation in vitro. Mechanistically, GHRH-R activates the JAK-STAT3 pathway, increases the phosphorylation of STAT3, enhances both non-pathogenic and pathogenic Th17 cell differentiation and promotes the gene expression signatures of pathogenic Th17 cells. Enhancing this signaling by GHRH agonist promotes, while inhibiting this signaling by GHRH antagonist or GHRH-R deficiency reduces, Th17 cell differentiation in vitro and Th17 cell-mediated ocular and neural inflammation in vivo. Thus, GHRH-R signaling functions as a critical factor that regulates Th17 cell differentiation and Th17 cell-mediated autoimmune ocular and neural inflammation.
Collapse
Affiliation(s)
- Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Bo Man Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Linbin Zhou
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yolanda Wong Ying Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yingying Wei
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jian Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
41
|
Zhang T, Han X, Zhong Y, Kam HT, Qiao D, Chen Z, Chan KWY, Chong WP, Chen J. Regulatory T cell intravitreal delivery using hyaluronan methylcellulose hydrogel improves therapeutic efficacy in experimental autoimmune uveitis. BIOMATERIALS ADVANCES 2023; 151:213496. [PMID: 37290283 DOI: 10.1016/j.bioadv.2023.213496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Autoimmune uveitis refers to several intraocular inflammation conditions, which are mediated by autoreactive T cells. Regulatory T cells (Tregs) are immunosuppressive cells that have shown potential for resolving various autoimmune diseases, including uveitis. However, poor donor cell dispersion distal to the injection site and plasticity of Treg cells in an inflammatory microenvironment can present obstacles for this immunotherapy. We assessed the use of a physical blend of hyaluronan and methylcellulose (HAMC) as immunoprotective and injectable hydrogel cell delivery system to improve the efficacy of Treg-based therapy in treating experimental autoimmune uveitis (EAU). We demonstrated that the Treg-HAMC blend increased both the survival and stability of Tregs under proinflammatory conditions. Furthermore, we found that the intravitreal HAMC delivery system resulted in a two-fold increase in the number of transferred Tregs in the inflamed eye of EAU mice. Treg-HAMC delivery effectively attenuated ocular inflammation and preserved the visual function of EAU mice. It significantly decreased the number of ocular infiltrates, including the uveitogenic IFN-γ+CD4+ and IL-17+CD4+ T cells. In contrast, intravitreal injection of Treg cells without HAMC only achieved marginal therapeutic effects in EAU. Our findings suggest that HAMC may become a promising delivery vehicle for human uveitis Treg therapy.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yajie Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hio Tong Kam
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dijie Qiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zilin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
42
|
Zhao D, Zhao H, He Y, Zhang M. BMSC reduces ROS and inflammation levels by inhibiting TLR4/MYD88/NF-κB signaling axis to alleviate dry eye. RESEARCH SQUARE 2023:rs.3.rs-2739871. [PMID: 37131693 PMCID: PMC10153363 DOI: 10.21203/rs.3.rs-2739871/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective To investigate the therapeutic effect of Bone marrow mesenchymal stem cells (BMSCs) on dry eye mice, and to investigate the mechanism of TLR4/MYD88/NF-κB signaling pathway on corneal injury repair in dry eye mice. Methods To establish a hypertonic dry eye cell model. Western blot for measureing the protein expressions of caspase-1, IL-1β,NLRP3 and ASC,and Rt-qpcr for mRNA expression. Flow cytometry for detecting the ROS content and apoptosis rate. CCK-8 for detecting the proliferation activity of cells, and ELISA for the levels of inflammation-related factors.The levels of inflammation-related factors were detected by ELISA. The dry eye mouse model of benzalkonium chloride was established. Three clinical parameters used to evaluate ocular surface damage, namely tear secretion, tear film rupture time and corneal sodium fluorescein staining, were measured with phenol cotton thread. Flow cytometry and TUNEL staining are both for he apoptosis rate. Western blot also for detecting the protein expressions of TLR4, MYD88, NF-κB, inflammation-related factors and apoptosis-related factors . The pathological changes were evaluated by HE and PAS staining. Results In vitro, BMSCs and inhibitors of TLR4, MYD88 and NF-κB showed decreased ROS content, decreased inflammatory factor protein level, decreased apoptotic protein level and increased mRNA expression compared with NaCl group. BMSCS partially reversed cell apoptosis induced by NaCl and improved cell proliferation. In vivo, it reduces corneal epithelial defects, goblet cell loss and inflammatory cytokine production, and increases tear production. In vitro, BMSC and inhibitors of TLR4, MYD88 and NF-κB could protect mice from apoptosis induced by hypertonic stress. In terms of mechanism, NACL-induced NLRP3 inflammasome formation, caspase-1 activation and IL-1β maturation can be inhibited. Conclusion BMSCs treatment can reduce ROS and inflammation levels and alleviate dry eye by inhibiting TLR4/MYD88/NF-κBsignaling pathway.
Collapse
|
43
|
Ng TF, Taylor AW. Stimulating the Melanocortin System in Uveitis and Diabetes Preserves the Structure and Anti-Inflammatory Activity of the Retina. Int J Mol Sci 2023; 24:ijms24086928. [PMID: 37108092 PMCID: PMC10138492 DOI: 10.3390/ijms24086928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The endogenous neuropeptide α-Melanocyte Stimulating Hormone (α-MSH) is a potent suppressor of inflammation and has an essential role in maintaining the normal anti-inflammatory microenvironment of the retina. While the therapeutic use of α-MSH peptide in uveitis and diabetic retinopathy models has been demonstrated, its short half-life and instability limit its use as a therapeutic drug. A comparable analog, PL-8331, which has a stronger affinity to melanocortin receptors, longer half-life, and, so far, is functionally identical to α-MSH, has the potential to deliver melanocortin-based therapy. We examined the effects of PL-8331 on two mouse models of retinal disease, Experimental Autoimmune Uveoretinitis (EAU) and Diabetic Retinopathy (DR). PL-8331 therapy applied to mice with EAU suppressed EAU and preserved retinal structures. In diabetic mice, PL-8331 enhanced the survival of retinal cells and suppressed VEGF production in the retina. In addition, retinal pigment epithelial cells (RPE) from PL-8331-treated diabetic mice retained normal anti-inflammatory activity. The results demonstrated that the pan-melanocortin receptor agonist PL-8331 is a potent therapeutic drug to suppress inflammation, prevent retinal degeneration, and preserve the normal anti-inflammatory activity of RPE.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Andrew W Taylor
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
44
|
Ling J, Jenny LA, Zhou A, Tsang SH. Therapeutic Gene Editing in Inherited Retinal Disorders. Cold Spring Harb Perspect Med 2023; 13:a041292. [PMID: 36096547 PMCID: PMC10071418 DOI: 10.1101/cshperspect.a041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since the development of CRISPR/Cas9 gene editing in 2012, therapeutic editing research has produced several phase 1-2a trials. Here we provide an overview of the mechanisms and applications of various gene-editing technologies including adeno-associated virus vectors, lentiviruses, CRISPR/Cas9 systems, base and prime editing, antisense oligonucleotides, short-hairpin RNAs, Cas13, and adenosine deaminase acting on RNA for the treatment of various inherited retinal diseases (IRDs). We outline the various stages of clinical trials using these technologies and the impacts they have made in advancing the practice of medicine.
Collapse
Affiliation(s)
- Jinjie Ling
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Laura A Jenny
- Jonas Children's Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Edward Harkness Eye Institute, Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York 10032, USA
| | - Ashley Zhou
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Edward Harkness Eye Institute, Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
- Columbia Stem Cell Initiative, and Institute of Human Nutrition, Columbia University, New York, New York 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
45
|
Maccora I, Marrani E, Pagnini I, Mastrolia MV, de Libero C, Caputo R, Simonini G. Challenges and management of childhood non-infectious chronic uveitis. Expert Rev Clin Immunol 2023; 19:599-611. [PMID: 36996498 DOI: 10.1080/1744666x.2023.2198210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Childhood uveitis is a sight-threatening condition, because if not properly recognized and treated can lead to several ocular complications and blindness. It represents a real challenge not only from an etiologic/diagnostic point of view, but also for management and therapy. AREAS COVERED In this review we will discuss the main etiologies, the diagnostic approach, risk factors associated to childhood non-infectious uveitis (cNIU), and the difficulties in eye examination in childhood. Moreover, we will discuss the treatment of cNIU in term of therapeutic choice, timing of initiation and withdrawal. EXPERT OPINION Identification of specific diagnosis is mandatory to prevent severe complications, thus a thorough differential diagnosis is essential. Pediatric eye examination may be extremely challenging due to the scarce collaboration, but novel techniques and biomarkers will help in identify low grade of inflammation, eventually modify long-term outcomes. Once identified the appropriate diagnosis, recognition of children who may benefit of a systemic treatment is crucial. What, When and how long are the key questions to address in this field. Current evidence and future results of ongoing clinical trials will help in driving treatment. A proper ocular screening, not only in the context of systemic disease, should be discussed by experts.
Collapse
Affiliation(s)
- Ilaria Maccora
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA department, University of Florence, Florence, Italy
| | - Edoardo Marrani
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Ilaria Pagnini
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | - Roberto Caputo
- Ophthalmology Unit, Meyer Children's Hospital, Florence, Italy
| | - Gabriele Simonini
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA department, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Prednisone acetate modulates Th1/Th2 and Th17/Treg cell homeostasis in experimental autoimmune uveitis via orchestrating the Notch signaling pathway. Int Immunopharmacol 2023; 116:109809. [PMID: 36753985 DOI: 10.1016/j.intimp.2023.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Uveitis is an immune eye disease that can seriously impair vision. Glucocorticoids (GCS) have been extensively used to treat uveitis, though the mechanisms have not been fully elucidated. In this study, we investigated the regulatory effects of prednisone acetate (PA) on the Th1/Th2 and Th17/Treg balance in experimental autoimmune uveitis (EAU) through modulating the Notch signaling pathway. Briefly, Lewis rats were randomly divided into the normal control (NC), EAU, and EAU + PA groups. Rats in EAU and EAU + PA groups were induced EAU, while those in the EAU + PA group were treated with PA. Clinical and histopathological scores were employed to assess the progression of EAU. The expression levels of Notch signaling-related molecules (Notch1, Notch2, Dll3, Dll4, and Rbpj) and Th-associated cytokines (IFN-γ, IL-4, IL-10, and IL-17) were assessed via quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the frequencies of Th1, Th2, Th17 and Treg cells were detected by flow cytometry. These experimental results indicated that activation of the Notch signaling pathway occurred in EAU rats and resulted in a severe imbalance of the Th17/Treg and Th1/Th2 ratios. PA treatment significantly alleviated ocular inflammation, inhibited activation of the Notch signaling pathway, and declined Th1, and Th17 cell differentiation, thereby restoring the Th1/Th2 and Th17/Treg balance. Collectively, PA can positively enhance the systemic immune response and improve the intraocular microenvironmental homeostasis by inhibiting activation of the Notch signaling pathway and by restoring Th1/Th2 and Th17/Treg balance, thus achieving the goal of treating uveitis.
Collapse
|
47
|
Martens A, Schauwvlieghe PP, Madoe A, Casteels I, Aspeslagh S. Ocular adverse events associated with immune checkpoint inhibitors, a scoping review. J Ophthalmic Inflamm Infect 2023; 13:5. [PMID: 36811715 PMCID: PMC9947214 DOI: 10.1186/s12348-022-00321-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/11/2022] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have become an important part of the treatment of multiple cancers, especially for advanced melanoma and non-small cell lung cancer. Some tumors are capable of escaping immunosurveillance by stimulating checkpoints on T-cells. ICIs prevent activation of these checkpoints and thereby stimulate the immune system and indirectly the anti-tumor response. However, the use of ICIs is associated with various adverse events. Ocular side effects are rare but may have a major impact on the quality of life of the patient. METHODS A comprehensive literature search of the medical databases Web of Science, Embase and PubMed was performed. Articles that provided a comprehensive description of a case report containing 1) cancer patient(s) treated with (a combination of) immune checkpoint inhibitors, and 2) assessed occurrence of ocular adverse events, were included. A total of 290 case reports were included. RESULTS Melanoma (n = 179; 61.7%) and lung cancer (n = 56; 19.3%) were the most frequent reported malignancies. The primary used ICIs were nivolumab (n = 123; 42.5%) and ipilimumab (n = 116; 40.0%). Uveitis was most the common adverse event (n = 134; 46.2%) and mainly related to melanoma. Neuro-ophthalmic disorders, including myasthenia gravis and cranial nerve disorders, were the second most common adverse events (n = 71; 24.5%), mainly related to lung cancer. Adverse events affecting the orbit and the cornea were reported in 33 (11.4%) and 30 cases (10.3%) respectively. Adverse events concerning the retina were reported in 26 cases (9.0%). CONCLUSION The aim of this paper is to provide an overview of all reported ocular adverse events related to the use of ICIs. The insights retrieved from this review might contribute to a better understanding of the underlying mechanisms of these ocular adverse events. Particularly, the difference between actual immune-related adverse events and paraneoplastic syndromes might be relevant. These findings might be of great value in establishing guidelines on how to manage ocular adverse events related to ICIs.
Collapse
Affiliation(s)
- A Martens
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium.
| | - P P Schauwvlieghe
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - A Madoe
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - I Casteels
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - S Aspeslagh
- Department of Medical Oncology, University Hospital Brussels, Brussels, Belgium
| |
Collapse
|
48
|
Alam K, Sharma G, Forrester JV, Basu S. Antigen-Specific Intraocular Cytokine Responses Distinguish Ocular Tuberculosis From Undifferentiated Uveitis in Tuberculosis-Immunoreactive Patients. Am J Ophthalmol 2023; 246:31-41. [PMID: 36087765 PMCID: PMC7616051 DOI: 10.1016/j.ajo.2022.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To compare antigen-specific intraocular immune responses between different clinical phenotypes of tuberculin skin test (TST)-positive and TST-negative uveitis. DESIGN Single center, retrospective cross-sectional study. METHODS Patients requiring diagnostic or therapeutic vitrectomy for the management of intraocular inflammation were divided into 3 groups based on Standardization of Uveitis Nomenclature (SUN) classification criteria for tubercular uveitis. Group 1 included patients with ocular tuberculosis (OTB; n = 23) who were TST-positive patients, met the SUN criteria, and/or had a polymerase chain reaction (PCR)-positive test for TB. Group 2 included patients with uveitis of unknown origin (UNK; n = 24) who were undifferentiated TST-positive patients who had not met SUN criteria. Group 3 included non-TB uveitis patients (n = 24) who were TST-negative either with or without a well-defined non-TB diagnosis. Total vitreous cells were activated with Mycobacterium tuberculosis-specific Early Secreted Antigenic Target-6 (ESAT-6) or the retinal autoantigen, interphotoreceptor retinoid-binding protein peptide (pIRBP 1-20), stained for intracellular interferon gamma (IFNγ), tumor necrosis factor-alfa (TNFα), and interleukin 17 (IL-17), and analyzed by flow cytometry. Antigen-specific single and dual (polyfunctional) cytokine responses to ESAT-6 and IRBP were compared between the 3 groups. RESULTS All cytokine responses to ESAT-6 were higher in the UNK group compared with the non-TB control subjects, while all except IL-17 were comparable between the OTB and non-TB groups. Polyfunctional responses-IFNγ/IL-17 (P = .002), TNFα/IL-17 (P = .02), and TNFα/IFNγ (P = .01)-were significantly greater for UNK than the OTB group. Polyfunctional cells also produced more cytokine per cell than respective monofunctional cells. IRBP cytokine responses were comparable between different groups and were not affected by the clinical phenotype or duration of disease. CONCLUSION The intraocular polyfunctional cytokine response is stronger in undifferentiated TST-positive uveitis than in OTB patients, likely representing an exaggerated anti-TB immune response rather than active infection.
Collapse
Affiliation(s)
- Kaiser Alam
- Ocular Immunology Laboratory, Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Gunjan Sharma
- Ocular Immunology Laboratory, Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India; Multi-disciplinary Research Unit, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - John V Forrester
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Soumyava Basu
- Ocular Immunology Laboratory, Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India; Uveitis Service, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India.
| |
Collapse
|
49
|
P2X7-dependent immune pathways in retinal diseases. Neuropharmacology 2023; 223:109332. [PMID: 36372269 DOI: 10.1016/j.neuropharm.2022.109332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Adenosine triphosphate (ATP) is a signalling molecule acting as a neurotransmitter but also as a danger signal. The purinergic receptor P2X7 is the main sensor of high concentration of ATP released by damaged cells. In the eye, P2X7 is expressed by resident microglia and immune cells that infiltrate the retina in disease such as age-related macular degeneration (AMD), a degenerative retinal disease, and uveitis, an inflammatory eye disease. Activation of P2X7 is involved in several physiological and pathological processes: phagocytosis, activation of the inflammasome NLRP3, release of pro-inflammatory mediators and cell death. The aim of this review is to discuss the potential involvement of P2X7 in the development of AMD and uveitis.
Collapse
|
50
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|