1
|
Sennett C, Pula G. Trapped in the NETs: Multiple Roles of Platelets in the Vascular Complications Associated with Neutrophil Extracellular Traps. Cells 2025; 14:335. [PMID: 40072064 PMCID: PMC11898727 DOI: 10.3390/cells14050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Neutrophil extracellular traps (NETs) have received significant attention in recent years for their role in both the immune response and the vascular damage associated with inflammation. Platelets have been described as critical components of NETs since the initial description of this physio-pathological response of neutrophils. Platelets have been shown to play a dual role as responders and also as stimulators of NETs. The direct interaction with DNA leads to the entrapment of platelets into NETs, a phenomenon that significantly contributes to the thrombotic complications of inflammation and neutrophil activation, while the direct and paracrine stimulation of neutrophils by platelets has been shown to initiate the process of NET formation. In this review, we provide a comprehensive description of our current understanding of the molecular mechanisms underlying the entrapping of platelets into NETs and, in parallel, the platelet-driven cellular responses promoting NET formation. We then illustrate established examples of the contribution of NETs to vascular pathologies, describe the important questions that remain to be answered regarding the contribution of platelets to NET formation and NET-dependent cardiovascular complication, and highlight the fundamental steps taken towards the application of our understanding of platelets' contribution to NETs for the development of novel cardiovascular therapies.
Collapse
Affiliation(s)
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
2
|
Lee RH, Ballard-Kordeliski A, Jones SR, Bergmeier W. Impact of antiplatelet therapy on hemostatic plug formation in the setting of thrombocytopenia. Res Pract Thromb Haemost 2025; 9:102672. [PMID: 39902096 PMCID: PMC11788864 DOI: 10.1016/j.rpth.2024.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 02/05/2025] Open
Abstract
Background Antiplatelet therapy (APT), mainly aspirin and P2Y12 receptor inhibitors, reduces the incidence of recurrent arterial thrombosis but also increases bleeding risk. Therefore, management of APT in patients with thrombocytopenia, itself an independent risk factor for bleeding, is a clinical challenge with few evidence-based guidelines. Data are lacking on the combined impact of thrombocytopenia and APT on hemostasis. Objectives To systematically investigate the combined effect of thrombocytopenia and APT in mouse models of hemostasis and thrombosis. Methods Platelet-depleted mice were repleted with donor platelets inhibited with aspirin and/or clopidogrel at low (<1 × 108/mL) or normal (>2) platelet counts. Hemostasis was assessed in the saphenous vein laser injury model, and thrombosis was assessed in the carotid artery ferric chloride model. Results In the saphenous vein laser injury model, neither single nor dual APT significantly increased bleeding compared with vehicle at platelet counts >2 × 108/mL. However, for platelet counts <1, clopidogrel prolonged the time to the first hemostatic plug, and dual APT prolonged the time to the first plug and total bleeding time compared with vehicle and aspirin treatment. In the carotid artery ferric chloride thrombosis model, clopidogrel was entirely protected against platelet-rich thrombus formation, while aspirin had minimal effect. Conclusion Our experimental data suggests that for severe thrombocytopenia, single APT provides an appropriate balance of antithrombotic effect and limited bleeding, with clopidogrel demonstrating a greater antithrombotic effect but slightly increased bleeding compared with aspirin.
Collapse
Affiliation(s)
- Robert H. Lee
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Abigail Ballard-Kordeliski
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Summer R. Jones
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Janus-Bell E, Receveur N, Mercier L, Mouriaux C, Magnenat S, Reiser J, Lanza F, Hechler B, Ho-Tin-Noé B, Mangin PH. Cooperation Between Platelet β1 and β3 Integrins in the Arrest of Bleeding Under Inflammatory Conditions in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:2213-2222. [PMID: 39145395 DOI: 10.1161/atvbaha.124.321104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Platelets prevent bleeding in a variety of inflammatory settings, the adhesion receptors and activation pathways involved being highly context-dependent and functionally redundant. In some situations, platelets recruited to inflammatory sites act independently of aggregation. The mechanisms underlying stable platelet adhesion in inflamed microvessels remain incompletely understood, in particular, whether and if so, how β1 and β3 integrins are involved. METHODS The impact of isolated or combined platelet deficiency in β1 and β3 integrins on inflammation-associated hemostasis was investigated in 3 models of acute inflammation: immune complex-based cutaneous reverse passive Arthus reaction, intranasal lipopolysaccharide-induced lung inflammation, and cerebral ischemia-reperfusion following transient (2-hour) occlusion of the middle cerebral artery. RESULTS Mice with platelet-directed inactivation of Itgb1 (PF4Cre-β1-/-) displayed no bleeding in any of the inflammation models, while mice defective in platelet Itgb3 (PF4Cre-β3-/-) exhibited bleeding in all 3 models. Remarkably, the bleeding phenotype of PF4Cre-β3-/- mice was exacerbated in the reverse passive Arthus model by the concomitant deletion of β1 integrins, PF4Cre-β1-/-/β3-/- animals presenting increased bleeding. Intravital microscopy in reverse passive Arthus experiments highlighted a major defect in the adhesion of PF4Cre-β1-/-/β3-/- platelets to inflamed microvessels. Unlike PF4Cre-β1-/- and PF4Cre-β3-/- mice, PF4Cre-β1-/-/β3-/- animals developed early hemorrhagic transformation 6 hours after transient middle cerebral artery occlusion. PF4Cre-β1-/-/β3-/- mice displayed no more bleeding in lipopolysaccharide-induced lung inflammation than PF4Cre-β3-/- animals. CONCLUSIONS Altogether, these results show that the requirement for and degree of functional redundancy between platelet β1 and β3 integrins in inflammation-associated hemostasis vary with the inflammatory situation.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Nicolas Receveur
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Luc Mercier
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Clarisse Mouriaux
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Stéphanie Magnenat
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL (J.R.)
| | - François Lanza
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Béatrice Hechler
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| | - Benoit Ho-Tin-Noé
- Université de Paris Descartes, INSERM, Hôpital Bichat, UMR-S1148, France (B.H.-T.-N.)
| | - Pierre H Mangin
- Institut national de la santé et de la recherche médicale (INSERM), EFS (Etablissement français du sang) Grand Est, BPPS (Biologie et pharmacologie des plaquettes sanguines: hémostase, thrombose, transfusion) UMR (Unité mixte de recherche)-S1255, FMTS (Fédération de médecine translationnelle de Strasbourg), Université de Strasbourg, France (E.J.-B., N.R., L.M., C.M., S.M., F.L., B.H., P.H.M.)
| |
Collapse
|
4
|
Sun L, Wang Z, Liu Z, Mu G, Cui Y, Xiang Q. C-type lectin-like receptor 2: roles and drug target. Thromb J 2024; 22:27. [PMID: 38504248 PMCID: PMC10949654 DOI: 10.1186/s12959-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
C-type lectin-like receptor-2 (CLEC-2) is a member of the C-type lectin superfamily of cell surface receptors. The first confirmed endogenous and exogenous ligands of CLEC-2 are podoplanin and rhodocytin, respectively. CLEC-2 is expressed on the surface of platelets, which participates in platelet activation and aggregation by binding with its ligands. CLEC-2 and its ligands are involved in pathophysiological processes, such as atherosclerosis, cancer, inflammatory thrombus status, maintenance of vascular wall integrity, and cancer-related thrombosis. In the last 5 years, different anti- podoplanin antibody types have been developed for the treatment of cancers, such as glioblastoma and lung cancer. New tests and new diagnostics targeting CLEC-2 are also discussed. CLEC-2 mediates thrombosis in various pathological states, but CLEC-2-specific deletion does not affect normal hemostasis, which would provide a new therapeutic tool for many thromboembolic diseases. The CLEC-2-podoplanin interaction is a target for cancer treatment. CLEC-2 may be applied in clinical practice and play a therapeutic role.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China.
- Institute of Clinical Pharmacology, Peking University, Beijing, China.
| |
Collapse
|
5
|
Le Chapelain O, Jadoui S, Gros A, Barbaria S, Benmeziane K, Ollivier V, Dupont S, Solo Nomenjanahary M, Mavouna S, Rogozarski J, Mawhin MA, Caligiuri G, Delbosc S, Porteu F, Nieswandt B, Mangin PH, Boulaftali Y, Ho-Tin-Noé B. The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent. J Exp Clin Cancer Res 2024; 43:84. [PMID: 38493157 PMCID: PMC10944607 DOI: 10.1186/s13046-024-03001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Collapse
Affiliation(s)
- Ophélie Le Chapelain
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Soumaya Jadoui
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Angèle Gros
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Samir Barbaria
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Véronique Ollivier
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Sébastien Dupont
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Mialitiana Solo Nomenjanahary
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Sabrina Mavouna
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Marie-Anne Mawhin
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Sandrine Delbosc
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, F-67065, France
| | - Yacine Boulaftali
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Benoit Ho-Tin-Noé
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
6
|
Li Z, Wang C, Zhang X, Xu X, Wang M, Dong L. Crosstalk between septic shock and venous thromboembolism: a bioinformatics and immunoassay analysis. Front Cell Infect Microbiol 2023; 13:1235269. [PMID: 38029239 PMCID: PMC10666789 DOI: 10.3389/fcimb.2023.1235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Herein, we applied bioinformatics methods to analyze the crosstalk between septic shock (SS) and venous thromboembolism (VTE), focusing on the correlation with immune infiltrating cells. Methods Expression data were obtained from the Gene Expression Omnibus (GEO) database, including blood samples from SS patients (datasets GSE64457, GSE95233, and GSE57065) and VTE patients (GSE19151). We used the R package "limma" for differential expression analysis (p value<0.05,∣logFC∣≥1). Venn plots were generated to identify intersected differential genes between SS and VTE and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment analysis. The protein-protein interaction (PPI) network of intersected genes was constructed by Cytoscape software. The xCell analysis identified immune cells with significant changes in VTE and SS and correlated them with significant molecular pathways of crosstalk. Finally, we validated the mRNA expression of crosstalk genes by qPCR, while Matrix Metalloprotein-9 (MMP-9) protein levels were assessed through Western blotting (WB) and Immunohistochemistry (IHC) in human umbilical vein endothelial cells (HUVECs) and mice. Results In the present study, we conducted a comparison between 88 patients with septic shock and 55 control subjects. Additionally, we compared 70 patients with venous thromboembolism to 63 control subjects. Twelve intersected genes and their corresponding three important molecular pathways were obtained: Metabolic, Estrogen, and FOXO signaling pathways. The resulting PPI network has 194 nodes and 388 edges. The immune microenvironment analysis of the two diseases showed that the infiltration levels of M2 macrophages and Class-switched memory B cells were correlated with the enrichment scores of metabolic, estrogen, and FOXO signaling pathways. Finally, qPCR confirmed that the expression of MMP9, S100A12, ARG1, SLPI, and ANXA3 mRNA in the SS with VTE group was significantly elevated. WB and IHC experiments revealed that MMP9 protein was significantly elevated in the experimental group. Conclusion Metabolic, estrogen, and FOXO pathways play important roles in both SS and VTE and are related to the immune cell microenvironment of M2 macrophages and Class-switched memory B cells. MMP9 shows promise as a biomarker for diagnosing sepsis with venous thrombosis and a potential molecular target for treating this patient population.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaolan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Zhang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaolin Xu
- School of Statistics, Renmin University of China, Bejing, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Larsen HJ, Byrne D, Özpolat T, Chauhan A, Bailey SL, Rhoads N, Reed F, Stolla MC, Adili R, Holinstat M, Fu X, Stolla M. Loss of 12-Lipoxygenase Improves the Post-Transfusion Function of Stored Platelets. Arterioscler Thromb Vasc Biol 2023; 43:1990-2007. [PMID: 37650322 PMCID: PMC10538391 DOI: 10.1161/atvbaha.123.319021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Platelets for transfusion are stored for 5 to 7 days. Previous studies have shown that HETE levels in the storage bag negatively correlate with platelet performance in vivo, suggesting that the dysregulation of bioactive lipid mediators may contribute to the storage lesion. In the current study, we sought to understand how genetic deletion and pharmacological inhibition of 12-LOX (12-lipoxygenase) affects platelets during storage and after transfusion. METHODS Platelets from 12-LOX+/+ (wild-type [WT]) and 12-LOX-/- mice were stored for 24 and 48 hours and profiled using liquid chromatography-tandem mass spectrometry-multiple reaction monitoring or transfused into thrombocytopenic hIL4R (human interleukin 4 receptor)-transgenic mice. Platelet function was assessed by flow cytometry and in vivo thrombosis and hemostasis models. To test the role of the COX-1 (cyclooxygenase-1) pathway, donor mice were treated with acetylsalicylic acid. Human platelets were treated with the 12-LOX inhibitor, VLX-1005, or vehicle, stored, and transfused to NOD/SCID (nonobese diabetic/severe combined immunodeficiency) mice. RESULTS Polyunsaturated fatty acids increased significantly in stored platelets from 12-LOX-/- mice, whereas oxylipin concentrations were significantly higher in WT platelets. After transfusion to thrombocytopenic mice, we observed significantly more baseline αIIbβ3 integrin activation in 12-LOX-/- platelets than in WT platelets. Stored platelets from 12-LOX-/- mice occluded vessels significantly faster than stored WT platelets. In hemostasis models, significantly more stored 12-LOX-/- than WT platelets accumulated at the site of venous injury leading to reduced blood loss. Inhibition of COX-1 abrogated both increased integrin activation and thromboxane generation in stored 12-LOX-/- platelets, highlighting the critical role of this pathway for improved post-transfusion function. Consistent with our mouse studies, human platelets stored with VLX-1005, showed increased integrin activation compared with vehicle-treated platelets after transfusion. CONCLUSIONS Deleting 12-LOX improves the post-transfusion function of stored murine platelets by increasing thromboxane generation through COX-1-dependent arachidonic acid metabolism. Future studies should determine the feasibility and safety of 12-LOX-inhibited platelets transfused to humans.
Collapse
Affiliation(s)
| | - Daire Byrne
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | | | | | - Nicole Rhoads
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Franklin Reed
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Massiel C. Stolla
- University of Washington Medical Center, Department of Medicine, Division of Hematology, Seattle, WA
| | - Reheman Adili
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA
- University of Washington Medical Center, Department of Medicine, Division of Hematology, Seattle, WA
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA
- University of Washington Medical Center, Department of Medicine, Division of Hematology, Seattle, WA
- University of Washington Medical Center, Department of Laboratory Medicine and Pathology, Seattle, WA
| |
Collapse
|
8
|
Ballard-Kordeliski A, Lee RH, O'Shaughnessy EC, Kim PY, Jones S, Mackman N, Flick MJ, Paul DS, Adalsteinsson D, Bergmeier W. 4D intravital imaging studies identify platelets as the predominant cellular procoagulant surface in a mouse model of hemostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554449. [PMID: 37662350 PMCID: PMC10473702 DOI: 10.1101/2023.08.25.554449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Interplay between platelets, coagulation/fibrinolytic factors, and endothelial cells (ECs) is necessary for effective hemostatic plug formation. This study describes a novel four-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components with high spatiotemporal resolution. Fibrin accumulation following laser-induced endothelial ablation was observed at the EC-platelet plug interface, controlled by the antagonistic balance between fibrin generation and breakdown. Phosphatidylserine (PS) was first detected in close physical proximity to the fibrin ring, followed by exposure across the endothelium. Impaired PS exposure in cyclophilinD -/- mice resulted in a significant reduction in fibrin accumulation. Adoptive transfer and inhibitor studies demonstrated a key role for platelets, but not ECs, in fibrin generation during hemostatic plug formation. Inhibition of fibrinolysis with tranexamic acid (TXA) led to increased fibrin accumulation in WT mice, but not in cyclophilinD -/- mice or WT mice treated with antiplatelet drugs. These studies implicate platelets as the functionally dominant procoagulant surface during hemostatic plug formation. In addition, they suggest that impaired fibrin formation due to reduced platelet procoagulant activity is not reversed by TXA treatment.
Collapse
|
9
|
Huang Y, Lu M, Wang Y, Zhang C, Cao Y, Zhang X. Podoplanin: A potential therapeutic target for thrombotic diseases. Front Neurol 2023; 14:1118843. [PMID: 36970507 PMCID: PMC10033871 DOI: 10.3389/fneur.2023.1118843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
As a specific lymphatic marker and a key ligand of C-type lectin-like receptor 2 (CLEC-2), podoplanin (Pdpn) is involved in various physiological and pathological processes such as growth and development, respiration, blood coagulation, lymphangiogenesis, angiogenesis, and inflammation. Thrombotic diseases constitute a major cause of disability and mortality in adults, in which thrombosis and inflammation play a crucial role. Recently, increasing evidence demonstrates the distribution and function of this glycoprotein in thrombotic diseases such as atherosclerosis, ischemic stroke, venous thrombosis, ischemic-reperfusion injury (IRI) of kidney and liver, and myocardial infarction. Evidence showed that after ischemia, Pdpn can be acquired over time by a heterogeneous cell population, which may not express Pdpn in normal conditions. In this review, the research progresses in understanding the roles and mechanisms of podoplanin in thromobotic diseases are summarized. The challenges of podoplanin-targeted approaches for disease prognosis and preventions are also discussed.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Manli Lu
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunyuan Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongjun Cao
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Zhang
- Department of Neurology, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Tsuneoka H, Tosaka M, Nakata S, Ishii N, Osawa S, Shimauchi-Ohtaki H, Honda F, Yoshimoto Y. Emergent surgical evacuation of traumatic intracranial hematoma in patients with preoperative thrombocytopenia: surgical risk and early outcome. Acta Neurol Belg 2023; 123:161-171. [PMID: 34426955 DOI: 10.1007/s13760-021-01786-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Surgical evacuation of intracranial hematoma, including epidural, subdural, intracerebral, and intraventricular hematoma, is recommended in patients with traumatic brain injury (TBI) for prevention of cerebral herniation and possible saving of life. However, preoperative coagulopathy is a major concern for emergent surgery on patients with severe TBI. METHODS We reviewed 65 consecutive patients with severe TBI who underwent emergency craniotomy for intracranial hematomas. RESULTS Univariate analysis showed preoperative pupil abnormality, absence of pupil light reflex, respiratory failure, preoperative thrombocytopenia (< 100 × 109/L), increased activated partial thromboplastin time (> 36 s), low fibrinogen (< 150 mg/dL), platelet transfusion, red cell concentrate transfusion, and presence of brain contusion and traumatic subarachnoid hemorrhage (SAH) on computed tomography were correlated with poor outcome (death or vegetative state). Multivariate analysis revealed that pupil abnormality (p = 0.001; odds ratio [OR] 0.064, 95% confidence interval [CI] 0.012-0.344), preoperative thrombocytopenia (p = 0.016; OR 0.101, 95% CI 0.016-0.656), and traumatic SAH (p = 0.021; OR 0.211, 95% CI 0.057-0.791) were significant factors. Investigation of the 14 patients with preoperative thrombocytopenia found the emergency surgery was successful, with no postoperative bleeding during hospitalization. However, half of the patients died, and almost a quarter remained in the vegetative state mainly associated with severe cerebral edema. CONCLUSIONS Emergent craniotomy for patients with severe TBI who have preoperative thrombocytopenia is often successful, but the prognosis is often poor. Emergency medical care teams and neurosurgeons should be aware of this discrepancy between successful surgery and poor prognosis in these patients. Further study may be needed on the cerebral edema regulator function of platelets.
Collapse
Affiliation(s)
- Haruka Tsuneoka
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Tosaka
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Satoshi Nakata
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Nobukazu Ishii
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Sho Osawa
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroya Shimauchi-Ohtaki
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Fumiaki Honda
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
11
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
12
|
Valet C, Magnen M, Qiu L, Cleary SJ, Wang KM, Ranucci S, Grockowiak E, Boudra R, Conrad C, Seo Y, Calabrese DR, Greenland JR, Leavitt AD, Passegué E, Méndez-Ferrer S, Swirski FK, Looney MR. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J Clin Invest 2022; 132:e153920. [PMID: 35192546 PMCID: PMC8970674 DOI: 10.1172/jci153920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.
Collapse
Affiliation(s)
- Colin Valet
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mélia Magnen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Longhui Qiu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Simon J. Cleary
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Serena Ranucci
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Rafik Boudra
- Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yurim Seo
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | | | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, USA
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Filip K. Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
13
|
Lee CM, Chang ML, Chen RH, Chen FW, Liu JC, Kuo SL, Peng HH. Thrombin-Activated Platelets Protect Vascular Endothelium against Tumor Cell Extravasation by Targeting Endothelial VCAM-1. Int J Mol Sci 2022; 23:ijms23073433. [PMID: 35408794 PMCID: PMC8998259 DOI: 10.3390/ijms23073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
When activated by thrombin, the platelets release their granular store of factors. These thrombin-activated platelets (TAPLT) have been shown to be capable of ameliorating pro-inflammatory processes. In this study, we tested if TAPLT could also protect the endothelium against tumor-related pro-inflammatory changes that promote angiogenesis and metastasis. Using endothelial cell (EC) models in vitro, we demonstrated that TAPLT protected EC against tumor conditioned medium (TCM)-induced increases of reactive oxygen species (ROS) production, EC permeability and angiogenesis, and inhibited transendothelial migration that was critical for cancer cell extravasation and metastasis. In vivo observations of TAPLT-mediated inhibition of angiogenesis and pulmonary colonization in a BALB/c nude mouse model were consistent with the in vitro findings. Neutralization of vascular cell adhesion molecule-1 (VCAM-1) binding significantly inhibited the ability of TAPLT to interact with EC and abrogated the TAPLT-mediated protection of EC against tumor angiogenesis and metastasis. Taken together, these findings suggest that VCAM-1-mediated linkage to EC is required for TAPLT to confer protection of EC against tumor-induced permeation and angiogenesis, thereby resisting tumor extravasation and metastasis.
Collapse
Affiliation(s)
- Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (C.-M.L.); (R.-H.C.)
| | - Ming-Ling Chang
- Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ren-Hao Chen
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (C.-M.L.); (R.-H.C.)
| | - Fan-Wen Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Jo-Chuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shun-Li Kuo
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Hsin Peng
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3211-8800 (ext. 3772); Fax: +886-3211-8534
| |
Collapse
|
14
|
Peng Z, Zhang X, Yuan L, Li T, Chen Y, Tian H, Ma D, Deng J, Qi X, Yin X. Integrated endotoxin-adsorption and antibacterial properties of platelet-membrane-coated copper silicate hollow microspheres for wound healing. J Nanobiotechnology 2021; 19:383. [PMID: 34809612 PMCID: PMC8607565 DOI: 10.1186/s12951-021-01130-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serious infection caused by drug-resistant gram-negative bacteria and their secreted toxins (e.g., lipopolysaccharide) is a serious threat to human health. Thus, treatment strategies that efficiently kill bacteria and reducing the impact of their toxins simultaneously are urgently required. Herein, a novel antibacterial platform composed of a mesoporous copper silicate microsphere (CSO) core and a platelet membrane (PM) shell was prepared (CSO@PM). CSO@PM specifically targets bacteria owing to formyl peptide receptors on the PM and, combined with photothermal therapy (PTT), exhibits highly effective bacter icidal activity. Importantly, CSO@PM can adsorb lipopolysaccharide secreted by gram-negative bacteria, resulting in inflammation reduction. Thus, CSO@PM stimulates re-epithelialization and granulation-tissue formation, promoting wound healing. Moreover, this antibacterial platform exhibits no obvious toxicity at all the test concentrations in vitro and in vivo. Thus, CSO@PM exhibits a robust antibacterial effect and a strong toxin-adsorption capacity, facilitating the clinical treatment of many bacterial infections and the development of next-generation antibacterial nanoagents.
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ting Li
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dandan Ma
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
15
|
Jiang Y, Tang Y, Hoover C, Kondo Y, Huang D, Restagno D, Shao B, Gao L, Michael McDaniel J, Zhou M, Silasi-Mansat R, McGee S, Jiang M, Bai X, Lupu F, Ruan C, Marth JD, Wu D, Han Y, Xia L. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 2021; 28:3009-3021. [PMID: 33993195 PMCID: PMC8564511 DOI: 10.1038/s41418-021-00797-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f-/-) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f-/- mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.
Collapse
Affiliation(s)
- Yizhi Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yaqiong Tang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Christopher Hoover
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Yuji Kondo
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Dongping Huang
- grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Damien Restagno
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Bojing Shao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Liang Gao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - J. Michael McDaniel
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Meixiang Zhou
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Robert Silasi-Mansat
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Samuel McGee
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Miao Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Xia Bai
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Florea Lupu
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Changgeng Ruan
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Jamey D. Marth
- grid.133342.40000 0004 1936 9676Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106 USA
| | - Depei Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yue Han
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Lijun Xia
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| |
Collapse
|
16
|
Jadoui S, Le Chapelain O, Ollivier V, Mostefa-Kara A, Di Meglio L, Dupont S, Gros A, Nomenjanahary MS, Desilles JP, Mazighi M, Nieswandt B, Loyau S, Jandrot-Perrus M, Mangin PH, Ho-Tin-Noé B. Glenzocimab does not impact glycoprotein VI-dependent inflammatory haemostasis. Haematologica 2021; 106:2000-2003. [PMID: 33375772 PMCID: PMC8252939 DOI: 10.3324/haematol.2020.270439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Angèle Gros
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris
| | | | - Jean-Philippe Desilles
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France; Rothschild Foundation Hospital, Paris, France. Department of Interventional Neuroradiology
| | - Mikaël Mazighi
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France; Rothschild Foundation Hospital, Paris, France. Department of Interventional Neuroradiology
| | - Bernhard Nieswandt
- University Hospital Würzburg, Rudolf Virchow Center for Experimental Biomedicine, Würzburg
| | | | | | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | | |
Collapse
|
17
|
Hoover C, Kondo Y, Shao B, McDaniel MJ, Lee R, McGee S, Whiteheart S, Bergmeier W, McEver RP, Xia L. Heightened activation of embryonic megakaryocytes causes aneurysms in the developing brain of mice lacking podoplanin. Blood 2021; 137:2756-2769. [PMID: 33619517 PMCID: PMC8138551 DOI: 10.1182/blood.2020010310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/06/2021] [Indexed: 12/29/2022] Open
Abstract
During early embryonic development in mammals, including humans and mice, megakaryocytes (Mks) first originate from primitive hematopoiesis in the yolk sac. These embryonic Mks (eMks) circulate in the vasculature with unclear function. Herein, we report that podoplanin (PDPN), the ligand of C-type lectin-like receptor (CLEC-2) on Mks/platelets, is temporarily expressed in neural tissue during midgestation in mice. Loss of PDPN or CLEC-2 resulted in aneurysms and spontaneous hemorrhage, specifically in the lower diencephalon during midgestation. Surprisingly, more eMks/platelets had enhanced granule release and localized to the lower diencephalon in mutant mouse embryos than in wild-type littermates before hemorrhage. We found that PDPN counteracted the collagen-1-induced secretion of angiopoietin-1 from fetal Mks, which coincided with enhanced TIE-2 activation in aneurysm-like sprouts of PDPN-deficient embryos. Blocking platelet activation prevented the PDPN-deficient embryo from developing vascular defects. Our data reveal a new role for PDPN in regulating eMk function during midgestation.
Collapse
MESH Headings
- Aneurysm, Ruptured/embryology
- Aneurysm, Ruptured/etiology
- Angiopoietin-1/metabolism
- Animals
- Brain/blood supply
- Brain/embryology
- Cells, Cultured
- Cerebral Hemorrhage/embryology
- Cerebral Hemorrhage/etiology
- Collagen/pharmacology
- Diencephalon/blood supply
- Diencephalon/embryology
- Gene Expression Regulation, Developmental
- Gestational Age
- Intracranial Aneurysm/embryology
- Intracranial Aneurysm/etiology
- Intracranial Aneurysm/genetics
- Intracranial Aneurysm/pathology
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/physiology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Platelet Activation
- Platelet Aggregation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- Receptor, TIE-2/metabolism
Collapse
Affiliation(s)
- Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael J McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert Lee
- Department of Biochemistry and Biophysics-UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Sidney Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics-UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
18
|
Platelets docking to VWF prevent leaks during leukocyte extravasation by stimulating Tie-2. Blood 2021; 136:627-639. [PMID: 32369573 DOI: 10.1182/blood.2019003442] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophil extravasation requires opening of the endothelial barrier but does not necessarily cause plasma leakage. Leaks are prevented by contractile actin filaments surrounding the diapedesis pore, keeping this opening tightly closed around the transmigrating neutrophils. We have identified the receptor system that is responsible for this. We show that silencing, or gene inactivation, of endothelial Tie-2 results in leak formation in postcapillary venules of the inflamed cremaster muscle at sites of neutrophil extravasation, as visualized by fluorescent microspheres. Leakage was dependent on neutrophil extravasation, because it was absent upon neutrophil depletion. We identified the Cdc42 GTPase exchange factor FGD5 as a downstream target of Tie-2 that is essential for leakage prevention during neutrophil extravasation. Looking for the Tie-2 agonist and its source, we found that platelet-derived angiopoietin-1 (Angpt1) was required to prevent neutrophil-induced leaks. Intriguingly, blocking von Willebrand factor (VWF) resulted in vascular leaks during transmigration, indicating that platelets interacting with endothelial VWF activate Tie-2 by secreting Angpt1, thereby preventing diapedesis-induced leakiness.
Collapse
|
19
|
Branfield S, Washington AV. The enigmatic nature of the triggering receptor expressed in myeloid cells -1 (TLT- 1). Platelets 2021; 32:753-760. [PMID: 33560928 DOI: 10.1080/09537104.2021.1881948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptors are important pharmacological targets on cells. The Triggering Receptor Expressed on Myeloid Cells (TREM) - Like Transcript - 1 is an abundant, yet little understood, platelet receptor. It is a single Ig domain containing receptor isolated in the α-granules of resting platelets and brought to the platelet surface upon activation. On platelets, the integrin αIIbβ3 is the major receptor having roughly 80,000 copies. αIIbβ3 is a heterodimeric multidomain structure that mediates platelet aggregation through its interaction with the plasma protein fibrinogen. Anti-platelet drugs have successfully targeted αIIbβ3 to control thrombosis. Like αIIbβ3, TLT-1 also binds fibrinogen, making its role in platelet function somewhat obscure. In this review, we highlight the known structural features of TLT-1 and present the challenges of understanding TLT-1 function. In our analysis of the dynamics of the platelet surface after activation we propose a model in which TLT-1 supports αIIbβ3 function as a mechanoreceptor that may direct platelets toward immune function.
Collapse
Affiliation(s)
- Siobhan Branfield
- , Department of Biology, University of Puerto Rico- Rio Piedras- Molecular Science Research Center, San Juan, Puerto Rico
| | - A Valance Washington
- , Department of Biology, University of Puerto Rico- Rio Piedras- Molecular Science Research Center, San Juan, Puerto Rico
| |
Collapse
|
20
|
Xu RG, Gauer JS, Baker SR, Slater A, Martin EM, McPherson HR, Duval C, Manfield IW, Bonna AM, Watson SP, Ariëns RAS. GPVI (Glycoprotein VI) Interaction With Fibrinogen Is Mediated by Avidity and the Fibrinogen αC-Region. Arterioscler Thromb Vasc Biol 2021; 41:1092-1104. [PMID: 33472402 PMCID: PMC7901536 DOI: 10.1161/atvbaha.120.315030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: GPVI (glycoprotein VI) is a key molecular player in collagen-induced platelet signaling and aggregation. Recent evidence indicates that it also plays important role in platelet aggregation and thrombus growth through interaction with fibrin(ogen). However, there are discrepancies in the literature regarding whether the monomeric or dimeric form of GPVI binds to fibrinogen at high affinity. The mechanisms of interaction are also not clear, including which region of fibrinogen is responsible for GPVI binding. We aimed to gain further understanding of the mechanisms of interaction at molecular level and to identify the regions on fibrinogen important for GPVI binding. Approach and Results: Using multiple surface- and solution-based protein-protein interaction methods, we observe that dimeric GPVI binds to fibrinogen with much higher affinity and has a slower dissociation rate constant than the monomer due to avidity effects. Moreover, our data show that the highest affinity interaction of GPVI is with the αC-region of fibrinogen. We further show that GPVI interacts with immobilized fibrinogen and fibrin variants at a similar level, including a nonpolymerizing fibrin variant, suggesting that GPVI binding is independent of fibrin polymerization. Conclusions: Based on the above findings, we conclude that the higher affinity of dimeric GPVI over the monomer for fibrinogen interaction is achieved by avidity. The αC-region of fibrinogen appears essential for GPVI binding. We propose that fibrin polymerization into fibers during coagulation will cluster GPVI through its αC-region, leading to downstream signaling, further activation of platelets, and potentially stimulating clot growth.
Collapse
Affiliation(s)
- Rui-Gang Xu
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Julia S Gauer
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Stephen R Baker
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.).,Department of Physics, Wake Forest University, Winston Salem, NC (S.R.B.)
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Helen R McPherson
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Cédric Duval
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| | - Iain W Manfield
- School of Molecular and Cellular Biology, Faculty of Biological Sciences (I.W.M.), University of Leeds, United Kingdom
| | - Arkadiusz M Bonna
- Department of Biochemistry, University of Cambridge, United Kingdom (A.M.B.)
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (A.S., E.M.M., S.P.W.)
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Institute of Cardiovascular and Metabolic Medicine (R.-G.X., J.S.G., S.R.B., H.R.M., C.D., R.A.S.A.)
| |
Collapse
|
21
|
Vital SA, Senchenkova EY, Ansari J, Gavins FNE. Targeting AnxA1/Formyl Peptide Receptor 2 Pathway Affords Protection against Pathological Thrombo-Inflammation. Cells 2020; 9:cells9112473. [PMID: 33202930 PMCID: PMC7697101 DOI: 10.3390/cells9112473] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is a leading cause of death and disability globally and is associated with a number of co-morbidities including sepsis and sickle cell disease (SCD). Despite thrombo-inflammation underlying these co-morbidities, its pathogenesis remains complicated and drug discovery programs aimed at reducing and resolving the detrimental effects remain a major therapeutic challenge. The objective of this study was to assess whether the anti-inflammatory pro-resolving protein Annexin A1 (AnxA1) was able to reduce inflammation-induced thrombosis and suppress platelet activation and thrombus formation in the cerebral microvasculature. Using two distinct models of pathological thrombo-inflammation (lipopolysaccharide (LPS) and sickle transgenic mice (STM)), thrombosis was induced in the murine brain using photoactivation (light/dye) coupled with intravital microscopy. The heightened inflammation-induced microvascular thrombosis present in these two distinct thrombo-inflammatory models was inhibited significantly by the administration of AnxA1 mimetic peptide AnxA1Ac2-26 (an effect more pronounced in the SCD model vs. the endotoxin model) and mediated by the key resolution receptor, Fpr2/ALX. Furthermore, AnxA1Ac2-26 treatment was able to hamper platelet aggregation by reducing platelet stimulation and aggregation (by moderating αIIbβ3 and P-selectin). These findings suggest that targeting the AnxA1/Fpr2/ALX pathway represents an attractive novel treatment strategy for resolving thrombo-inflammation, counteracting e.g., stroke in high-risk patient cohorts.
Collapse
Affiliation(s)
- Shantel A. Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
| | - Elena Y. Senchenkova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
| | - Junaid Ansari
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Felicity N. E. Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: ; Tel.: +44-(0)-1895-267151
| |
Collapse
|
22
|
Nicolai L, Schiefelbein K, Lipsky S, Leunig A, Hoffknecht M, Pekayvaz K, Raude B, Marx C, Ehrlich A, Pircher J, Zhang Z, Saleh I, Marel AK, Löf A, Petzold T, Lorenz M, Stark K, Pick R, Rosenberger G, Weckbach L, Uhl B, Xia S, Reichel CA, Walzog B, Schulz C, Zheden V, Bender M, Li R, Massberg S, Gaertner F. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun 2020; 11:5778. [PMID: 33188196 PMCID: PMC7666582 DOI: 10.1038/s41467-020-19515-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. Breakdown of vascular barriers is a major complication of inflammatory diseases. However, the mechanisms underlying platelet recruitment to inflammatory micro-environments remains unclear. Here, the authors identify haptotaxis as a key effector function of immune-responsive platelets
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Karin Schiefelbein
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Silvia Lipsky
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Alexander Leunig
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Marie Hoffknecht
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ben Raude
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Charlotte Marx
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Zhe Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Inas Saleh
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | | | - Achim Löf
- Ludwig-Maximilians-Universität, 80799, Munich, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Robert Pick
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, München, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Munich, Germany
| | - Gerhild Rosenberger
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ludwig Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolarynology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sheng Xia
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | | | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, München, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Vanessa Zheden
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany.
| | - Florian Gaertner
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany. .,Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
23
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
24
|
Vinholt PJ. The role of platelets in bleeding in patients with thrombocytopenia and hematological disease. Clin Chem Lab Med 2020; 57:1808-1817. [PMID: 31465290 DOI: 10.1515/cclm-2019-0380] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023]
Abstract
This review evaluates the role of platelets in bleeding risk among patients with hematological disease and thrombocytopenia. Platelets are pivotal in primary hemostasis, and possess non-hemostatic properties involved in angiogenesis, tissue repair, inflammation and metastatis. Also, platelets safeguard vascular integrity in inflamed vessels. Overall, bleeding risk depends on the underlying disease, and patients with cancer and platelet count <6-10 × 109/L have a markedly increased bleeding risk, while the platelet count does not correlate with bleeding risk at higher platelet counts. Other factors might affect platelet properties and thus bleeding risk, for example, drugs, low hematocrit, coagulation system impairments or transfusion of dysfunctional donor platelets. For patients with leukemia and immune thrombocytopenia, reduced platelet activation, platelet aggregation, or thrombopoiesis, reflected by the reduced presence of reticulated platelets, are associated with bleeding phenotype. However, mechanistic insight into the cause of reduced platelet function in different thrombocytopenic conditions is sparse, except for some inherited platelet disorders. Promising tools for platelet function studies in thrombocytopenia are flow cytometry and biomarker studies on platelet constituents. An important message from this current paper is that bleeding risk assessment must be tailored to specific patient populations and cannot be applied broadly to all patients with thrombocytopenia.
Collapse
Affiliation(s)
- Pernille J Vinholt
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws vej 4B, 5000 Odense C, Denmark.,University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Hemostasis vs. homeostasis: Platelets are essential for preserving vascular barrier function in the absence of injury or inflammation. Proc Natl Acad Sci U S A 2020; 117:24316-24325. [PMID: 32929010 DOI: 10.1073/pnas.2007642117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets are best known for their vasoprotective responses to injury and inflammation. Here, we have asked whether they also support vascular integrity when neither injury nor inflammation is present. Changes in vascular barrier function in dermal and meningeal vessels were measured in real time in mouse models using the differential extravasation of fluorescent tracers as a biomarker. Severe thrombocytopenia produced by two distinct methods caused increased extravasation of 40-kDa dextran from capillaries and postcapillary venules but had no effect on extravasation of 70-kDa dextran or albumin. This reduction in barrier function required more than 4 h to emerge after thrombocytopenia was established, reverting to normal as the platelet count recovered. Barrier dysfunction was also observed in mice that lacked platelet-dense granules, dense granule secretion machinery, glycoprotein (GP) VI, or the GPVI signaling effector phospholipase C (PLC) γ2. It did not occur in mice lacking α-granules, C type lectin receptor-2 (CLEC-2), or protease activated receptor 4 (PAR4). Notably, although both meningeal and dermal vessels were affected, intracerebral vessels, which are known for their tighter junctions between endothelial cells, were not. Collectively, these observations 1) highlight a role for platelets in maintaining vascular homeostasis in the absence of injury or inflammation, 2) provide a sensitive biomarker for detecting changes in platelet-dependent barrier function, 3) identify which platelet processes are required, and 4) suggest that the absence of competent platelets causes changes in the vessel wall itself, accounting for the time required for dysfunction to emerge.
Collapse
|
26
|
Paul DS, Bergmeier W. Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arterioscler Thromb Vasc Biol 2020; 40:1891-1904. [PMID: 32493172 DOI: 10.1161/atvbaha.120.314304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbβ3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.
Collapse
Affiliation(s)
- David S Paul
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| |
Collapse
|
27
|
Tischler BY, Tosini NL, Cramer RA, Hohl TM. Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus fumigatus infection. PLoS Pathog 2020; 16:e1008544. [PMID: 32407390 PMCID: PMC7252636 DOI: 10.1371/journal.ppat.1008544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/27/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Beyond their canonical roles in hemostasis and thrombosis, platelets function in the innate immune response by interacting directly with pathogens and by regulating the recruitment and activation of immune effector cells. Thrombocytopenia often coincides with neutropenia in patients with hematologic malignancies and in allogeneic hematopoietic cell transplant recipients, patient groups at high risk for invasive fungal infections. While neutropenia is well established as a major clinical risk factor for invasive fungal infections, the role of platelets in host defense against human fungal pathogens remains understudied. Here, we examined the role of platelets in murine Aspergillus fumigatus infection using two complementary approaches to induce thrombocytopenia without concurrent neutropenia. Thrombocytopenic mice were highly susceptible to A. fumigatus challenge and rapidly succumbed to infection. Although platelets regulated early conidial phagocytosis by neutrophils in a spleen tyrosine kinase (Syk)-dependent manner, platelet-regulated conidial phagocytosis was dispensable for host survival. Instead, our data indicated that platelets primarily function to maintain hemostasis and lung integrity in response to exposed fungal antigens, since thrombocytopenic mice exhibited severe hemorrhage into the airways in response to fungal challenge in the absence of overt angioinvasion. Challenge with swollen, heat-killed, conidia was lethal in thrombocytopenic hosts and could be reversed by platelet transfusion, consistent with the model that fungus-induced inflammation in platelet-depleted mice was sufficient to induce lethal hemorrhage. These data provide new insights into the role of platelets in the anti-Aspergillus host response and expand their role to host defense against filamentous molds. Aspergillus fumigatus is a ubiquitous environmental mold that forms airborne spores, termed conidia. When inhaled by immune compromised individuals, A. fumigatus conidia can germinate into tissue-invasive hyphae and cause invasive aspergillosis, a major cause of infectious morbidity and mortality in patients with leukemia and in bone marrow transplant recipients. Although a low platelet count has been identified as a risk factor for clinical outcomes in patients with invasive aspergillosis, the precise role of platelets in the anti-fungal host response remains poorly understood. Here, we report an essential requirement for platelets in anti-Aspergillus host defence in a mouse model of fungal pneumonia. Although platelets play a role in activating the innate immune system after infection, they are critical for preventing lethal hemorrhage after A. fumigatus challenge. Our findings raise the question as to whether platelets can be used as a basis for therapeutic strategies in vulnerable patient populations.
Collapse
Affiliation(s)
- Benjamin Y. Tischler
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nicholas L. Tosini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Tobias M. Hohl
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Martyanov AA, Balabin FA, Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN. Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling. Biophys J 2020; 118:2641-2655. [PMID: 32396849 DOI: 10.1016/j.bpj.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets are blood cells responsible for vascular integrity preservation. The activation of platelet receptor C-type lectin-like receptor II-type (CLEC-2) could partially mediate the latter function. Although this receptor is considered to be of importance for hemostasis, the rate-limiting steps of CLEC-2-induced platelet activation are not clear. Here, we aimed to investigate CLEC-2-induced platelet signal transduction using computational modeling in combination with experimental approaches. We developed a stochastic multicompartmental computational model of CLEC-2 signaling. The model described platelet activation beginning with CLEC-2 receptor clustering, followed by Syk and Src family kinase phosphorylation, determined by the cluster size. Active Syk mediated linker adaptor for T cell protein phosphorylation and membrane signalosome formation, which resulted in the activation of Bruton's tyrosine kinase, phospholipase and phosphoinositide-3-kinase, calcium, and phosphoinositide signaling. The model parameters were assessed from published experimental data. Flow cytometry, total internal reflection fluorescence and confocal microscopy, and western blotting quantification of the protein phosphorylation were used for the assessment of the experimental dynamics of CLEC-2-induced platelet activation. Analysis of the model revealed that the CLEC-2 receptor clustering leading to the membrane-based signalosome formation is a critical element required for the accurate description of the experimental data. Both receptor clustering and signalosome formation are among the rate-limiting steps of CLEC-2-mediated platelet activation. In agreement with these predictions, the CLEC-2-induced platelet activation, but not activation mediated by G-protein-coupled receptors, was strongly dependent on temperature conditions and cholesterol depletion. Besides, the model predicted that CLEC-2-induced platelet activation results in cytosolic calcium spiking, which was confirmed by single-platelet total internal reflection fluorescence microscopy imaging. Our results suggest a refined picture of the platelet signal transduction network associated with CLEC-2. We show that tyrosine kinase activation is not the only rate-limiting step in CLEC-2-induced activation of platelets. Translocation of receptor-agonist complexes to the signaling region and linker adaptor for T cell signalosome formation in this region are limiting CLEC-2-induced activation as well.
Collapse
Affiliation(s)
- Alexey A Martyanov
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Fedor A Balabin
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, United Kingdom
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, United Kingdom
| | - Anastasia N Sveshnikova
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
29
|
Chauhan A, Sheriff L, Hussain MT, Webb GJ, Patten DA, Shepherd EL, Shaw R, Weston CJ, Haldar D, Bourke S, Bhandari R, Watson S, Adams DH, Watson SP, Lalor PF. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat Commun 2020; 11:1939. [PMID: 32321925 PMCID: PMC7176690 DOI: 10.1038/s41467-020-15584-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is the main cause of acute liver failure in the West. Specific efficacious therapies for acute liver failure (ALF) are limited and time-dependent. The mechanisms that drive irreversible acute liver failure remain poorly characterized. Here we report that the recently discovered platelet receptor CLEC-2 (C-type lectin-like receptor) perpetuates and worsens liver damage after toxic liver injury. Our data demonstrate that blocking platelet CLEC-2 signalling enhances liver recovery from acute toxic liver injuries (APAP and carbon tetrachloride) by increasing tumour necrosis factor-α (TNF-α) production which then enhances reparative hepatic neutrophil recruitment. We provide data from humans and mice demonstrating that platelet CLEC-2 influences the hepatic sterile inflammatory response and that this can be manipulated for therapeutic benefit in acute liver injury. Since CLEC-2 mediated platelet activation is independent of major haemostatic pathways, blocking this pathway represents a coagulopathy-sparing, specific and novel therapy in acute liver failure.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Lozan Sheriff
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammed T Hussain
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gwilym J Webb
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emma L Shepherd
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert Shaw
- Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christopher J Weston
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Debashis Haldar
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel Bourke
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rajan Bhandari
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - David H Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, Nottingham, UK
| | - Patricia F Lalor
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
30
|
Haining EJ, Lowe KL, Wichaiyo S, Kataru RP, Nagy Z, Kavanagh DP, Lax S, Di Y, Nieswandt B, Ho-Tin-Noé B, Mehrara BJ, Senis YA, Rayes J, Watson SP. Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets 2020; 32:352-367. [PMID: 32129691 PMCID: PMC8443399 DOI: 10.1080/09537104.2020.1734784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.
Collapse
Affiliation(s)
- Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kate L Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Surasak Wichaiyo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean Pj Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sian Lax
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Experimental Biomedicine, University of Würzburg and University Hospital of Würzburg, Würzburg, Germany
| | - Benoît Ho-Tin-Noé
- Institut National de la Santé et de la Recherche Médicale, UMR_S1148, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, Paris, France
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
31
|
Karhausen J, Choi HW, Maddipati KR, Mathew JP, Ma Q, Boulaftali Y, Lee RH, Bergmeier W, Abraham SN. Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury. SCIENCE ADVANCES 2020; 6:eaay6314. [PMID: 32206714 PMCID: PMC7080499 DOI: 10.1126/sciadv.aay6314] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 06/08/2023]
Abstract
Platelet responses have been associated with end-organ injury and mortality following complex insults such as cardiac surgery, but how platelets contribute to these pathologies remains unclear. Our studies originated from the observation of microvascular platelet retention in a rat cardiac surgery model. Ensuing work supported the proximity of platelet aggregates with perivascular mast cells (MCs) and demonstrated that platelet activation triggered systemic MC activation. We then identified platelet activating factor (PAF) as the platelet-derived mediator stimulating MCs and, using chimeric animals with platelets defective in PAF generation or MCs lacking PAF receptor, defined the role of this platelet-MC interaction for vascular leakage, shock, and tissue inflammation. In application of these findings, we demonstrated that inhibition of platelet activation in modeled cardiac surgery blunted MC-dependent inflammation and tissue injury. Together, our work identifies a previously undefined mechanism of inflammatory augmentation, in which platelets trigger local and systemic responses through activation of perivascular MCs.
Collapse
Affiliation(s)
- Jörn Karhausen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | | | - Joseph P. Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yacine Boulaftali
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Vascular Translational Science, U1148 Institute National de la Santé et de la Recherche Medicale (INSERM), Paris, France
| | - Robert Hugh Lee
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- UNC Center for Blood Research, University of North Carolina, Chapel Hill, NC, USA
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Le Chapelain O, Jadoui S, Boulaftali Y, Ho-Tin-Noé B. The reversed passive Arthus reaction as a model for investigating the mechanisms of inflammation-associated hemostasis. Platelets 2020; 31:455-460. [PMID: 32105152 DOI: 10.1080/09537104.2020.1732325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, accumulating evidence has indicated that platelets continuously repair vascular damage at sites of inflammation and/or infection. Studies in mouse models of inflammation have highlighted the fact that the mechanisms underlying bleeding prevention by platelets in inflamed organs can substantially differ from those supporting primary hemostasis following tail tip transection or thrombus formation in models of thrombosis. As a consequence, exploration of the hemostatic function of platelets in inflammation, as well as assessment of the risk of inflammation-induced bleeding associated with a platelet deficit and/or the use of anti-thrombotic drugs, require the use of dedicated experimental models. In the present review, we present the pros and cons of the cutaneous reversed passive Arthus reaction, a model of inflammation which has been instrumental in studying how inflammation causes vascular injury and how platelets continuously intervene to repair it. The limitations and common issues encountered when working with mouse models of inflammation for investigating platelet functions in inflammation are also discussed.
Collapse
Affiliation(s)
| | - Soumaya Jadoui
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France
| | | | | |
Collapse
|
33
|
Vögtle T, Baig AA, Volz J, Duchow TB, Pleines I, Dütting S, Nitschke L, Watson SP, Nieswandt B. Critical redundant functions of the adapters Grb2 and Gads in platelet (hem)ITAM signaling in mice. Platelets 2020; 31:801-811. [DOI: 10.1080/09537104.2019.1709633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ayesha A. Baig
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Julia Volz
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Timothy B. Duchow
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Lars Nitschke
- Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Rayes J, Bourne JH, Brill A, Watson SP. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res Pract Thromb Haemost 2020; 4:23-35. [PMID: 31989082 PMCID: PMC6971330 DOI: 10.1002/rth2.12266] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Beyond their role in hemostasis and thrombosis, platelets are increasingly recognized as key regulators of the inflammatory response under sterile and infectious conditions. Both platelet receptors and secretion are critical for these functions and contribute to their interaction with the endothelium and innate immune system. Platelet-leukocyte interactions are increased in thrombo-inflammatory diseases and are sensitive biomarkers for platelet activation and targets for the development of new therapies. The crosstalk between platelets and innate immune cells promotes thrombosis, inflammation, and tissue damage. However, recent studies have shown that these interactions also regulate the resolution of inflammation, tissue repair, and wound healing. Many of the platelet and leukocyte receptors involved in these bidirectional interactions are not selective for a subset of immune cells. However, specific heterotypic interactions occur in different vascular beds and inflammatory conditions, raising the possibility of disease- and organ-specific pathways of intervention. In this review, we highlight and discuss prominent and emerging interrelationships between platelets and innate immune cells and their dual role in the regulation of the inflammatory response in sterile and infectious thrombo-inflammatory diseases. A better understanding of the functional relevance of these interactions in different vascular beds may provide opportunities for successful therapeutic interventions to regulate the development, progression, and chronicity of various pathological processes.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
| | - Joshua H. Bourne
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alexander Brill
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
- Department of PathophysiologySechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Steve P. Watson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
| |
Collapse
|
35
|
Suzuki-Inoue K. Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:175-181. [PMID: 31808911 PMCID: PMC6913448 DOI: 10.1182/hematology.2019001388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with cancer have an increased risk of thromboembolism, which is the second leading cause of death in these patients. Several mechanisms of the prothrombotic state in these patients have been proposed. Among them are a platelet activation receptor, C-type lectin-like receptor 2 (CLEC-2), and its endogenous ligand podoplanin, which are the focus of this review. CLEC-2 is almost specifically expressed in platelets/megakaryocytes in humans. A membrane protein, podoplanin is expressed in certain types of cancer cells, including squamous cell carcinoma, brain tumor, and osteosarcoma, in addition to several normal tissues, including kidney podocytes and lymphatic endothelial cells but not vascular endothelial cells. In the bloodstream, podoplanin induces platelet activation by binding to CLEC-2 and facilitates hematogenous cancer metastasis and cancer-associated thrombosis. In an experimental lung metastasis model, the pharmacological depletion of CLEC-2 from platelets in mice resulted in a marked reduction of lung metastasis of podoplanin-expressing B16F10 cells. Control mice with B16F10 orthotopically inoculated in the back skin showed massive thrombus formation in the lungs, but the cancer-associated thrombus formation in CLEC-2-depleted mice was significantly inhibited, suggesting that CLEC-2-podoplanin interaction stimulates cancer-associated thrombosis. Thromboinflammation induced ectopic podoplanin expression in vascular endothelial cells or macrophages, which may also contribute to cancer-associated thrombosis. CLEC-2 depletion in cancer-bearing mice resulted in not only reduced cancer-associated thrombosis but also reduced levels of plasma inflammatory cytokines, anemia, and sarcopenia, suggesting that cancer-associated thrombosis may cause thromboinflammation and cancer cachexia. Blocking CLEC-2-podoplanin interaction may be a novel therapeutic strategy in patients with podoplanin-expressing cancer.
Collapse
Affiliation(s)
- Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
36
|
Washington AV, Esponda O, Gibson A. Platelet biology of the rapidly failing lung. Br J Haematol 2019; 188:641-651. [PMID: 31696941 DOI: 10.1111/bjh.16315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by a rapid-onset respiratory failure with a mortality rate of approximately 40%. This physiologic inflammatory process is mediated by disruption of the alveolar-vascular interface, leading to pulmonary oedema and impaired oxygen exchange, which often warrants mechanical ventilation to increase survival in the acute setting. One of the least understood aspects of ARDS is the role of the platelets in this process. Platelets, which protect vascular integrity, play a pivotal role in the progression and resolution of ARDS. The recent substantiation of the age-old theory that megakaryocytes are found in the lungs has rejuvenated interest in and raised new questions about the importance of platelets for pulmonary function. In addition to primary haemostasis, platelets provide a myriad of inflammatory functions that are poised to aid the innate immune system. This review focuses on the evidence for regulatory roles of platelets in pulmonary inflammation, with an emphasis on two receptors, CLEC-2 and TLT-1. Studies of these receptors identify novel pathways through which platelets may regulate vascular integrity and inflammation in the lungs, thereby influencing the development of ARDS.
Collapse
Affiliation(s)
- A Valance Washington
- Department of Biology, Molecular Science Research Center, University of Puerto Rico-Rio Piedras, San Juan, PR, USA
| | | | | |
Collapse
|
37
|
Snake venom rhodocytin induces plasma extravasation via toxin-mediated interactions between platelets and mast cells. Sci Rep 2019; 9:15958. [PMID: 31685912 PMCID: PMC6828706 DOI: 10.1038/s41598-019-52449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Venomous snakebites can induce local tissue damage, including necrosis of soft tissues, haemorrhage, blistering and local swelling associated with plasma extravasation, which can lead to lethal complications such as hypovolemic shock. However, the details of the underlying mechanisms remain unknown. In this study, we showed that intradermal treatment of mice with venom rhodocytin from the Malayan viper Calloselasma rhodostoma induced plasma extravasation, dependent on C-type lectin-like receptor 2 (CLEC-2) on platelets. Rhodocytin-induced plasma extravasation also relied on mast cells and histamine. In vitro co-culture of rhodocytin-activated platelets with mast cells induced histamine release from mast cells in an ATP/P2X7-dependent manner. Consistent with this, blockade or deficiency of P2X7 in mast cells suppressed rhodocytin-induced plasma extravasation in the skin. Together, these findings indicate that rhodocytin induces plasma extravasation by triggering platelet activation via CLEC-2, followed by activation of mast cells and histamine release via the ATP/P2X7 pathway. These results reveal a previously unrecognized mechanism by which snake venom increases vascular permeability via complex venom toxin–mediated interactions between platelets and mast cells.
Collapse
|
38
|
Abstract
The ferric chloride models of arterial thrombosis are useful tools with which to investigate the cellular and molecular mechanisms that contribute to arterial thrombosis. Recent insights have, however, revealed the complex and multifaceted mechanism by which ferric chloride induces thrombus formation. Here, we discuss the strengths and weaknesses of the ferric chloride models of arterial thrombosis. Particular focus is given to the phenotypes of different knockout mice in the ferric chloride models and how these compare to other models with independent modes of initiation. Further, we discuss the relevance of the ferric chloride models to the human pathology of atherothrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| |
Collapse
|
39
|
Esiaba I, Mousselli I, M. Faison G, M. Angeles D, S. Boskovic D. Platelets in the Newborn. NEONATAL MEDICINE 2019. [DOI: 10.5772/intechopen.86715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900101. [PMID: 31508270 PMCID: PMC6724480 DOI: 10.1002/advs.201900101] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Indexed: 05/15/2023]
Abstract
Immunotherapy has emerged as an effective strategy for the prevention and treatment of a variety of diseases, including cancer, infectious diseases, inflammatory diseases, and autoimmune diseases. Immunomodulatory nanosystems can readily improve the therapeutic effects and simultaneously overcome many obstacles facing the treatment method, such as inadequate immune stimulation, off-target side effects, and bioactivity loss of immune agents during circulation. In recent years, researchers have continuously developed nanomaterials with new structures, properties, and functions. This Review provides the most recent advances of nanotechnology for immunostimulation and immunosuppression. In cancer immunotherapy, nanosystems play an essential role in immune cell activation and tumor microenvironment modulation, as well as combination with other antitumor approaches. In infectious diseases, many encouraging outcomes from using nanomaterial vaccines against viral and bacterial infections have been reported. In addition, nanoparticles also potentiate the effects of immunosuppressive immune cells for the treatment of inflammatory and autoimmune diseases. Finally, the challenges and prospects of applying nanotechnology to modulate immunotherapy are discussed.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Department of Gastrointestinal Colorectal and Anal SurgeryChina–Japan Union Hospital of Jilin UniversityChangchun130033P. R. China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
41
|
Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost 2019; 17:1430-1439. [PMID: 31220402 PMCID: PMC6760864 DOI: 10.1111/jth.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The past decade has brought unprecedented advances in our understanding of megakaryocyte (MK) biology and platelet production, processes that are strongly dependent on the cytoskeleton. Facilitated by technological innovations, such as new high-resolution imaging techniques (in vitro and in vivo) and lineage-specific gene knockout and reporter mouse strains, we are now able to visualize and characterize the molecular machinery required for MK development and proplatelet formation in live mice. Whole genome and RNA sequencing analysis of patients with rare platelet disorders, combined with targeted genetic interventions in mice, has led to the identification and characterization of numerous new genes important for MK development. Many of the genes important for proplatelet formation code for proteins that control cytoskeletal dynamics in cells, such as Rho GTPases and their downstream targets. In this review, we discuss how the final stages of MK development are controlled by the cellular cytoskeletons, and we compare changes in MK biology observed in patients and mice with mutations in cytoskeleton regulatory genes.
Collapse
Affiliation(s)
- Dorsaf Ghalloussi
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ankita Dhenge
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
42
|
Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN. [CLEC-2 induced signalling in blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:387-396. [PMID: 30378555 DOI: 10.18097/pbmc20186405387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. CLEC-2 and podoplanin are involved in the processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor methastasis progression, Salmonella sepsis, deep-vein thrombosis. CLEC-2 signalling cascade includes tyrosine-kinases (Syk, SFK, Btk) as well as adapter LAT and phospholipase Cg2, which induces calcium signalling. CLEC-2, podoplanin and proteins, participating in CLEC-2 signalling cascade, are perspective targets for antithrombotic therapy.
Collapse
Affiliation(s)
- A A Martyanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - V N Kaneva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
43
|
Luo H, Wei L, Lu L, Kang L, Cao Y, Yang X, Bai X, Fan W, Zhao BQ. Transfusion of Resting Platelets Reduces Brain Hemorrhage After Intracerebral Hemorrhage and tPA-Induced Hemorrhage After Cerebral Ischemia. Front Neurosci 2019; 13:338. [PMID: 31024246 PMCID: PMC6460946 DOI: 10.3389/fnins.2019.00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/22/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Exacerbated blood-brain barrier (BBB) damage is related with tissue plasminogen activator (tPA)-induced brain hemorrhage after stroke. Platelets have long been recognized as the cellular orchestrators of primary haemostasis. Recent studies have demonstrated further that platelets are required for supporting intact mature blood vessels and play a crucial role in maintaining vascular integrity during inflammation. Therefore, we sought to investigate whether platelets could reduce tPA-induced deterioration of cerebrovascular integrity and lead to less hemorrhagic transformation. METHODS Mice were subjected to models of collagenase-induced intracerebral hemorrhage (ICH) and transient middle cerebral artery (MCA) occlusion. After 2 h of MCA occlusion, tPA (10 mg/kg) was administered as an intravenous bolus injection of 1 mg/kg followed by a 9 mg/kg infusion for 30 min. Immediately after tPA treatment, mice were transfused with platelets. Hemorrhagic volume, infarct size, neurological deficit, tight junction and basal membrane damages, endothelial cell apoptosis, and extravascular accumulation of circulating dextran and IgG, and Evans blue were quantified at 24 h. RESULTS Platelet transfusion resulted in a significant decrease in hematoma volume after ICH. In mice after ischemia, tPA administration increased brain hemorrhage transformation and this was reversed by resting but not activated platelets. Consistent with this, we observed that tPA-induced brain hemorrhage was dramatically exacerbated in thrombocytopenic mice. Transfusion of resting platelets ameliorated tPA-induced loss of cerebrovascular integrity and reduced extravascular accumulation of circulating serum proteins and Evans blue, associated with improved neurological functions after ischemia. No changes were found for infarct volume. Inhibition of platelet receptor glycoprotein VI (GPVI) blunted the ability of platelets to attenuate tPA-induced BBB disruption and hemorrhage after ischemia. CONCLUSION Our findings demonstrate the importance of platelets in safeguarding BBB integrity and suggest that transfusion of resting platelets may be useful to improve the safety of tPA thrombolysis in ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenying Fan
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat Commun 2019; 10:1580. [PMID: 30952842 PMCID: PMC6450981 DOI: 10.1038/s41467-019-09389-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-based agents (HBAs), such as anaerobic bacteria and bioreductive prodrugs, require both a permeable and hypoxic intratumoural environment to be fully effective. To solve this problem, herein, we report that perfluorocarbon nanoparticles (PNPs) can be used to create a long-lasting, penetrable and hypoxic tumour microenvironment for ensuring both the delivery and activation of subsequently administered HBAs. In addition to the increased permeability and enhanced hypoxia caused by the PNPs, the PNPs can be retained to further achieve the long-term inhibition of intratumoural O2 reperfusion while enhancing HBA accumulation for over 24 h. Therefore, perfluorocarbon materials may have great potential for reigniting clinical research on hypoxia-based drugs. Hypoxia-based agents need permeable and hypoxic intratumour environment to be effective. Here, the authors show that perfluorocarbon nanoparticles promote increased permeability and sustained hypoxia to improve accumulation of hypoxia-based agents, and inhibit intratumour oxygen reperfusion.
Collapse
|
45
|
Ward LSC, Sheriff L, Marshall JL, Manning JE, Brill A, Nash GB, McGettrick HM. Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. J Cell Sci 2019; 132:jcs.222067. [PMID: 30745334 PMCID: PMC6432720 DOI: 10.1242/jcs.222067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) upregulate podoplanin at sites of infection, chronic inflammation and cancer. Here, we investigated the functional consequences of podoplanin expression on the migratory potential of MSCs and their interactions with circulating platelets. Expression of podoplanin significantly enhanced the migration of MSCs compared to MSCs lacking podoplanin. Rac-1 inhibition altered the membrane localisation of podoplanin and in turn significantly reduced MSC migration. Blocking Rac-1 activity had no effect on the migration of MSCs lacking podoplanin, indicating that it was responsible for regulation of migration through podoplanin. When podoplanin-expressing MSCs were seeded on the basal surface of a porous filter, they were able to capture platelets perfused over the uncoated apical surface and induce platelet aggregation. Similar microthrombi were observed when endothelial cells (ECs) were co-cultured on the apical surface. Confocal imaging shows podoplanin-expressing MSCs extending processes into the EC layer, and these processes could interact with circulating platelets. In both models, platelet aggregation induced by podoplanin-expressing MSCs was inhibited by treatment with recombinant soluble C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b). Thus, podoplanin may enhance the migratory capacity of tissue-resident MSCs and enable novel interactions with cells expressing CLEC-2. Summary: Podoplanin enhances the migration of mesenchymal stromal cells in a Rac-1-dependent manner, enabling direct interactions of subendothelial stroma with circulating platelets.
Collapse
Affiliation(s)
- Lewis S C Ward
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Lozan Sheriff
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre of Membrane and Protein and Receptors (COMPARE), Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Gerard B Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Platelets inhibit apoptotic lung epithelial cell death and protect mice against infection-induced lung injury. Blood Adv 2019; 3:432-445. [PMID: 30733303 PMCID: PMC6373758 DOI: 10.1182/bloodadvances.2018026286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombocytopenia is associated with worse outcomes in patients with acute respiratory distress syndrome, which is most commonly caused by infection and marked by alveolar-capillary barrier disruption. However, the mechanisms by which platelets protect the lung alveolar-capillary barrier during infectious injury remain unclear. We found that natively thrombocytopenic Mpl -/- mice deficient in the thrombopoietin receptor sustain severe lung injury marked by alveolar barrier disruption and hemorrhagic pneumonia with early mortality following acute intrapulmonary Pseudomonas aeruginosa (PA) infection; barrier disruption was attenuated by platelet reconstitution. Although PA infection was associated with a brisk neutrophil influx, depletion of airspace neutrophils failed to substantially mitigate PA-triggered alveolar barrier disruption in Mpl -/- mice. Rather, PA cell-free supernatant was sufficient to induce lung epithelial cell apoptosis in vitro and in vivo and alveolar barrier disruption in both platelet-depleted mice and Mpl -/- mice in vivo. Cell-free supernatant from PA with genetic deletion of the type 2 secretion system, but not the type 3 secretion system, mitigated lung epithelial cell death in vitro and lung injury in Mpl -/- mice. Moreover, platelet releasates reduced poly (ADP ribose) polymerase cleavage and lung injury in Mpl -/- mice, and boiling of platelet releasates, but not apyrase treatment, abrogated PA supernatant-induced lung epithelial cell cytotoxicity in vitro. These findings indicate that while neutrophil airspace influx does not potentiate infectious lung injury in the thrombocytopenic host, platelets and their factors protect against severe pulmonary complications from pathogen-secreted virulence factors that promote host cell death even in the absence of overt infection.
Collapse
|
47
|
Interrelationships between structure and function during the hemostatic response to injury. Proc Natl Acad Sci U S A 2019; 116:2243-2252. [PMID: 30674670 DOI: 10.1073/pnas.1813642116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extensive studies have detailed the molecular regulation of individual components of the hemostatic system, including platelets, coagulation factors, and regulatory proteins. Questions remain, however, about how these elements are integrated at the systems level within a rapidly changing physical environment. To answer some of these questions, we developed a puncture injury model in mouse jugular veins that combines high-resolution, multimodal imaging with functional readouts in vivo. The results reveal striking spatial regulation of platelet activation and fibrin formation that could not be inferred from studies performed ex vivo. As in the microcirculation, where previous studies have been performed, gradients of platelet activation are readily apparent, as is an asymmetrical distribution of fibrin deposition and thrombin activity. Both are oriented from the outer to the inner surface of the damaged vessel wall, with a greater extent of platelet activation and fibrin accumulation on the outside than the inside. Further, we show that the importance of P2Y12 signaling in establishing a competent hemostatic plug is related to the size of the injury, thus limiting its contribution to hemostasis to specific physiologic contexts. Taken together, these studies offer insights into the organization of hemostatic plugs, provide a detailed understanding of the adverse bleeding associated with a widely prescribed class of antiplatelet agents, and highlight differences between hemostasis and thrombosis that may suggest alternative therapeutic approaches.
Collapse
|
48
|
Soluble GPVI is elevated in injured patients: shedding is mediated by fibrin activation of GPVI. Blood Adv 2019; 2:240-251. [PMID: 29437639 DOI: 10.1182/bloodadvances.2017011171] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Soluble glycoprotein VI (sGPVI) is shed from the platelet surface and is a marker of platelet activation in thrombotic conditions. We assessed sGPVI levels together with patient and clinical parameters in acute and chronic inflammatory conditions, including patients with thermal injury and inflammatory bowel disease and patients admitted to the intensive care unit (ICU) for elective cardiac surgery, trauma, acute brain injury, or prolonged ventilation. Plasma sGPVI was measured by enzyme-linked immunosorbent assay and was elevated on day 14 after thermal injury, and was higher in patients who developed sepsis. sGPVI levels were associated with sepsis, and the value for predicting sepsis was increased in combination with platelet count and Abbreviated Burn Severity Index. sGPVI levels positively correlated with levels of D-dimer (a fibrin degradation product) in ICU patients and patients with thermal injury. sGPVI levels in ICU patients at admission were significantly associated with 28- and 90-day mortality independent of platelet count. sGPVI levels in patients with thermal injury were associated with 28-day mortality at days 1, 14, and 21 when adjusting for platelet count. In both cohorts, sGPVI associations with mortality were stronger than D-dimer levels. Mechanistically, release of GPVI was triggered by exposure of platelets to polymerized fibrin, but not by engagement of G protein-coupled receptors by thrombin, adenosine 5'-diphosphate, or thromboxane mimetics. Enhanced fibrin production in these patients may therefore contribute to the observed elevated sGPVI levels. sGPVI is an important platelet-specific marker for platelet activation that predicts sepsis progression and mortality in injured patients.
Collapse
|
49
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Claushuis TAM, de Vos AF, Roelofs JJTH, de Boer OJ, van 't Veer C, van der Poll T. Platelet-Dense Granules Worsen Pre-Infection Thrombocytopenia during Gram-Negative Pneumonia-Derived Sepsis. J Innate Immun 2018; 11:168-180. [PMID: 30557883 DOI: 10.1159/000494147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Platelet-dense (δ) granules are important for platelet function. Platelets contribute to host defense and vascular integrity during pneumonia and sepsis, and δ granule products, including adenosine diphosphate (ADP), can influence inflammatory responses. We therefore aimed to study the role of platelet δ granules in the host response during sepsis. Hermansky-Pudlak syndrome (Hps)3coa mice (with reduced δ granule content), mice treated with the platelet ADP receptor inhibitor clopidogrel, and appropriate control mice were infected with the human sepsis pathogen Klebsiella pneumoniae via the airways to induce pneumonia and sepsis. In order to override potential redundancy in platelet functions, we also studied Hps3coa and control mice with moderate antibody-induced thrombocytopenia (10%) prior to infection. We found that sepsis-induced thrombocytopenia tended to be less severe in Hps3coa mice, and was significantly ameliorated in Hps3coa mice with low pre-infection platelet counts. Bacterial growth was similar in Hps3coa and control mice in the presence of normal platelet counts prior to infection, but lower in the lungs of Hps3coa mice with low pre-infection platelet counts. Hps3coa mice had unaltered lung pathology and distant organ injury during pneumosepsis, irrespective of pre-infection platelet counts; lung bleeding did not differ between Hps3coa and control mice. Clopidogrel did not influence any host response parameter. These data suggest that platelet δ granules can play a detrimental role in pneumosepsis by aggravating thrombocytopenia and impairing local antibacterial defense, but that these unfavorable effects only become apparent in the presence of low platelet counts.
Collapse
Affiliation(s)
- Theodora A M Claushuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|