1
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Su W, Yin Y, Cheng Y, Yu S, Hu R, Zhang H, Hu J, Ren R, Zhang Y, Zhao J, Wang A, Lyu Z, Mu Y, Gao J. The phenotype and related gene expressions of macrophages in adipose tissue of T2D mice following MSCs infusion. Immunobiology 2024; 229:152788. [PMID: 38309141 DOI: 10.1016/j.imbio.2024.152788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Infusion of mesenchymal stem cells (MSCs) induces polarization of M2 macrophages in adipose tissue of type 2 diabetes (T2D) mice. Studies have shown that M2 macrophages were divided into four sub-phenotypes (M2a, M2b, M2c and M2d) with different functions, and manuscripts have also confirmed that macrophages co-cultured with MSCs were not matched with known four phenotype macrophages. Therefore, our study explored the phenotype and related gene expressions of macrophages in the adipose tissue of T2D mice with/without MSCs infusion. METHODS We induced a T2D mouse model by using high-fat diets and streptozotocin (STZ) injection. The mice were divided into three groups: the control group, the T2D group, and the MSCs group. MSCs were systemically injected once a week for 6 weeks. The phenotype of macrophages in adipose tissue was detected via flow cytometric analysis. We also investigated the gene expression of macrophages in different groups via SMART-RNA-sequencing and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS The present study found that the macrophages of adipose tissue in the MSCs group were polarized to the M2 phenotype mixed with four sub-phenotypes. Besides, M2a and M2c held a dominant position, while M2b and M2d (tumor-associated macrophages, TAMs) exhibited a decreasing trend after infusion of MSCs. Moreover, the MSCs group did not appear to express higher levels of tumor-associated, inflammation-associated, or fibrosis-associated genes in comparison to the T2D group. CONCLUSION The present results unveiled that the macrophage phenotype was inclined to be present in a hybridity state of four M2 sub-phenotypes and the genes related to tumor-promoting, pro-inflammation and pro-fibrosis were not increased after MSCs injection.
Collapse
Affiliation(s)
- Wanlu Su
- School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China; Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yaqi Yin
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yu Cheng
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Songyan Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruofan Hu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Haixia Zhang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Jia Hu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Rui Ren
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yue Zhang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Jian Zhao
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Anning Wang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Zhaohui Lyu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Yiming Mu
- School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China; Department of Endocrinology, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Jieqing Gao
- Department of Endocrinology, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lu C, Liu Y, Miao L, Kong X, Li H, Chen H, Zhao X, Zhang B, Cui X. Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review). Int J Oncol 2024; 64:11. [PMID: 38063203 PMCID: PMC10734668 DOI: 10.3892/ijo.2023.5599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed mainly of tumor cells, mesenchymal cells and immune cells. Macrophages, also known as tumor‑associated macrophages (TAMs), among innate immune cells, are some of the most abundant components of the TME. They may influence tumor growth and metastasis through interactions with other cell populations in the TME and have been associated with poor prognosis in a variety of tumors. Therefore, a better understanding of the role of TAMs in the TME may provide new insight into tumor therapy. In the present review, the origin and classification of TAMs in the TME were outlined and their polarization and dual effects on tumor cells, as well as emerging strategies for cancer therapies targeting TAMs, were discussed.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 860411, P.R. China
| | - Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Xiangle Kong
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Huili Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Haoran Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Xu Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
| |
Collapse
|
5
|
Caslin HL, Cottam MA, Betjemann AM, Mashayekhi M, Silver HJ, Hasty AH. Single cell RNA-sequencing suggests a novel lipid associated mast cell population following weight cycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566786. [PMID: 38014269 PMCID: PMC10680619 DOI: 10.1101/2023.11.12.566786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes. This new mast cell cluster accounted for most of the mast cells in the weight cycled group although it was not possible to detect the different populations by new studies with flow cytometry or Toluidine blue staining in mice, possibly due to a downregulation in classical mast cell genes. Interestingly, a pilot study in humans did suggest the existence of two mast cell populations in subcutaneous adipose tissue from obese women that appear similar to the murine populations detected by sequencing; one of which was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid associated macrophages. Future studies will focus on isolation of these cells to better determine their lineage, differentiation, and functional roles.
Collapse
|
6
|
Affiliation(s)
- Anna Santoro
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
| | - Barbara B Kahn
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston
| |
Collapse
|
7
|
Vieira-Potter VJ. Effects of Sex Hormones and Exercise on Adipose Tissue. SEX HORMONES, EXERCISE AND WOMEN 2023:55-85. [DOI: 10.1007/978-3-031-21881-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Qian X, Meng X, Zhang S, Zeng W. Neuroimmune regulation of white adipose tissues. FEBS J 2022; 289:7830-7853. [PMID: 34564950 DOI: 10.1111/febs.16213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
The white adipose tissues (WAT) are located in distinct depots throughout the body. They serve as an energy reserve, providing fatty acids for other tissues via lipolysis when needed, and function as an endocrine organ to regulate systemic metabolism. Their activities are coordinated through intercellular communications among adipocytes and other cell types such as residential and infiltrating immune cells, which are collectively under neuronal control. The adipocytes and immune subtypes including macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK) cells display cellular and functional diversity in response to the energy states and contribute to metabolic homeostasis and pathological conditions. Accumulating evidence reveals that neuronal innervations control lipid deposition and mobilization via regulating lipolysis, adipocyte size, and cellularity. Vice versa, the neuronal innervations and activity are influenced by cellular factors in the WAT. Though the literature describing adipose tissue cells is too extensive to cover in detail, we strive to highlight a selected list of neuronal and immune components in this review. The cell-to-cell communications and the perspective of neuroimmune regulation are emphasized to enlighten the potential therapeutic opportunities for treating metabolic disorders.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xia Meng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
9
|
Marchi PH, Vendramini THA, Perini MP, Zafalon RVA, Amaral AR, Ochamotto VA, Da Silveira JC, Dagli MLZ, Brunetto MA. Obesity, inflammation, and cancer in dogs: Review and perspectives. Front Vet Sci 2022; 9:1004122. [PMID: 36262532 PMCID: PMC9573962 DOI: 10.3389/fvets.2022.1004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is the most common nutritional disease in dogs, and its prevalence has increased in recent decades. Several countries have demonstrated a prevalence of obesity in dogs similar to that observed in humans. Chronic low-grade inflammation is a prominent basis used to explain how obesity results in numerous negative health consequences. This is well known and understood, and recent studies have pointed to the association between obesity and predisposition to specific types of cancers and their complications. Such elucidations are important because, like obesity, the prevalence of cancer in dogs has increased in recent decades, establishing cancer as a significant cause of death for these animals. In the same way, intensive advances in technology in the field of human and veterinary medicine (which even proposes the use of animal models) have optimized existing therapeutic methods, led to the development of innovative treatments, and shortened the time to diagnosis of cancer. Despite the great challenges, this review aims to highlight the evidence obtained to date on the association between obesity, inflammation, and cancer in dogs, and the possible pathophysiological mechanisms that link obesity and carcinogenesis. The potential to control cancer in animals using existing knowledge is also presented.
Collapse
Affiliation(s)
- Pedro H. Marchi
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Thiago H. A. Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Mariana P. Perini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Rafael V. A. Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Andressa R. Amaral
- Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa A. Ochamotto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Juliano C. Da Silveira
- Laboratory of Molecular, Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maria L. Z. Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Marcio A. Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil,Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,*Correspondence: Marcio A. Brunetto
| |
Collapse
|
10
|
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are essential to normal growth, metabolism, and body composition, but in acromegaly, excesses of these hormones strikingly alter them. In recent years, the use of modern methodologies to assess body composition in patients with acromegaly has revealed novel aspects of the acromegaly phenotype. In particular, acromegaly presents a unique pattern of body composition changes in the setting of insulin resistance that we propose herein to be considered an acromegaly-specific lipodystrophy. The lipodystrophy, initiated by a distinctive GH-driven adipose tissue dysregulation, features insulin resistance in the setting of reduced visceral adipose tissue (VAT) mass and intra-hepatic lipid (IHL) but with lipid redistribution, resulting in ectopic lipid deposition in muscle. With recovery of the lipodystrophy, adipose tissue mass, especially that of VAT and IHL, rises, but insulin resistance is lessened. Abnormalities of adipose tissue adipokines may play a role in the disordered adipose tissue metabolism and insulin resistance of the lipodystrophy. The orexigenic hormone ghrelin and peptide Agouti-related peptide may also be affected by active acromegaly as well as variably by acromegaly therapies, which may contribute to the lipodystrophy. Understanding the pathophysiology of the lipodystrophy and how acromegaly therapies differentially reverse its features may be important to optimizing the long-term outcome for patients with this disease. This perspective describes evidence in support of this acromegaly lipodystrophy model and its relevance to acromegaly pathophysiology and the treatment of patients with acromegaly.
Collapse
Affiliation(s)
- Pamela U. Freda
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
The beneficial effect of tart cherry on plasma levels of inflammatory mediators (not recovery after exercise): A systematic review and meta-analysis on randomized clinical trials. Complement Ther Med 2022; 68:102842. [PMID: 35653966 DOI: 10.1016/j.ctim.2022.102842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic inflammation has been classified as one of the most important threats to health. Scientists suggested that tart cherry (TC) can reduce plasma levels of inflammatory mediators. Therefore, the aim of this study was to summarize the effect of TC on circulating C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) among adult participants in non-exercise randomized clinical trials (RCTs). METHODS AND MATERIALS The eligible English-language RCTs were found by searching databases including PubMed, Web of Science, Cochrane Library, Scopus, and clinical Trials.gov up to May 2022, with no time limit. We used the mean change from baseline and its standard deviation for both intervention and comparison groups to calculate the effect size. The random-effects model proposed by DerSimonian and Laird was used to estimate the overall summary effect and the heterogeneity. We used PRISMA 2020 guidelines to report this study. RESULTS Ten RCTs were included in this study. The results demonstrated that TC had a significant decreasing effect on plasma CRP level compared with the comparison group (weighted mean differences (WMD) = -0.55 mg/L; 95% confidence interval (CI): - 1.03, - 0.06; p = 0.029), but had no significant effect on plasma IL-6 compared with comparison group (WMD = 0.08 pg/mL; 95% CI: -0.02, 0.17; p = 0.10). The effect of TC consumption on plasma TNF-α level was evaluated in only three studies that showed no significant effects (p>0.05). CONCLUSION Our results confirmed a significant decreasing effect of TC on CRP. Regarding IL-6 and TNF-α, our study did not present any significant effect of TC.
Collapse
|
13
|
Cottam MA, Caslin HL, Winn NC, Hasty AH. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat Commun 2022; 13:2950. [PMID: 35618862 PMCID: PMC9135744 DOI: 10.1038/s41467-022-30646-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Within adipose tissue (AT), immune cells and parenchymal cells closely interact creating a complex microenvironment. In obesity, immune cell derived inflammation contributes to insulin resistance and glucose intolerance. Diet-induced weight loss improves glucose tolerance; however, weight regain further exacerbates the impairment in glucose homeostasis observed with obesity. To interrogate the immunometabolic adaptations that occur in AT during murine weight loss and weight regain, we utilized cellular indexing of transcriptomes and epitopes by sequencing (CITEseq) in male mice. Obesity-induced imprinting of AT immune cells persisted through weight-loss and progressively worsened with weight regain, ultimately leading to impaired recovery of type 2 regulatory cells, activation of antigen presenting cells, T cell exhaustion, and enhanced lipid handling in macrophages in weight cycled mice. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease. For further discovery, we provide an open-access web portal of diet-induced AT immune cell imprinting: https://hastylab.shinyapps.io/MAIseq .
Collapse
Affiliation(s)
- Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
14
|
Kiran S, Rakib A, Kodidela S, Kumar S, Singh UP. High-Fat Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and Chronic Inflammation in Adipose Tissue. Cells 2022; 11:cells11081327. [PMID: 35456006 PMCID: PMC9031506 DOI: 10.3390/cells11081327] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a complex disease associated with various metabolic abnormalities, cardiovascular diseases, and low-grade chronic inflammation. Inflammation associated with T helper 1 (Th1) immune cells is dominant in adipose tissue (AT) and exerts metabolically deleterious impacts. The precise mechanism of alteration in AT immune system and its effect on metabolic homeostasis remains unclear. In this study, we investigated how a high-fat diet (HFD) alters the AT immune response and influences inflammation during obesity. HFD consumption amends the metabolic parameters, including body weight, glucose, and insulin levels. We observed increased infiltration of Th17 cells, a subset of dendritic cells (CD103+), and M1 macrophages in AT of mice fed HFD compared to those fed a normal diet (ND). In mice that were fed HFD, we also observed a reduction in regulatory T cells (Tregs) relative to the numbers of these cells in mice fed ND. Corresponding with this, mice in the HFD group exhibited higher levels of proinflammatory cytokines and chemokines than those in the ND group. We also observed alterations in signaling pathways, including increased protein expression of IRF3, TGFβ1, and mRNA expression of IL-6, KLF4, and STAT3 in the AT of the mice fed HFD as compared to those fed ND. Further, HFD-fed mice exhibited decreased protein expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) compared to mice fed ND, suggesting that PPAR-γ functions as a negative regulator of Th17 cell differentiation. These results suggest that HFD induces increased levels of inflammatory cytokines and key immune cells, including Th17, M1 macrophages, and CD103+ dendritic cells, and reduces levels of PPAR-γ and Tregs to sustain AT inflammation. This study supports the notion that dysregulation of Th17/Tregs, which polarizes macrophages towards M1 phenotypes in part through TGFβ1-IRF3-STAT3 and negatively regulates PPAR-γ mediated pathways, results in AT inflammation during obesity.
Collapse
|
15
|
Dollet L, Kuefner M, Caria E, Rizo-Roca D, Pendergrast L, Abdelmoez AM, Karlsson HK, Björnholm M, Dalbram E, Treebak JT, Harada J, Näslund E, Rydén M, Zierath JR, Pillon NJ, Krook A. Glutamine Regulates Skeletal Muscle Immunometabolism in Type 2 Diabetes. Diabetes 2022; 71:624-636. [PMID: 35040927 PMCID: PMC8965677 DOI: 10.2337/db20-0814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/23/2021] [Indexed: 11/23/2022]
Abstract
Dysregulation of skeletal muscle metabolism influences whole-body insulin sensitivity and glucose homeostasis. We hypothesized that type 2 diabetes-associated alterations in the plasma metabolome directly contribute to skeletal muscle immunometabolism and the subsequent development of insulin resistance. To this end, we analyzed the plasma and skeletal muscle metabolite profile and identified glutamine as a key amino acid that correlates inversely with BMI and insulin resistance index (HOMA-IR) in men with normal glucose tolerance or type 2 diabetes. Using an in vitro model of human myotubes and an in vivo model of diet-induced obesity and insulin resistance in male mice, we provide evidence that glutamine levels directly influence the inflammatory response of skeletal muscle and regulate the expression of the adaptor protein GRB10, an inhibitor of insulin signaling. Moreover, we demonstrate that a systemic increase in glutamine levels in a mouse model of obesity improves insulin sensitivity and restores glucose homeostasis. We conclude that glutamine supplementation may represent a potential therapeutic strategy to prevent or delay the onset of insulin resistance in obesity by reducing inflammatory markers and promoting skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Lucile Dollet
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Kuefner
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Caria
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Rizo-Roca
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Logan Pendergrast
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M. Abdelmoez
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan K.R. Karlsson
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jun Harada
- Cardiovascular-Metabolics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R. Zierath
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J. Pillon
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Corresponding author: Anna Krook,
| |
Collapse
|
16
|
Nath AS, Parsons BD, Makdissi S, Chilvers RL, Mu Y, Weaver CM, Euodia I, Fitze KA, Long J, Scur M, Mackenzie DP, Makrigiannis AP, Pichaud N, Boudreau LH, Simmonds AJ, Webber CA, Derfalvi B, Hammon Y, Rachubinski RA, Di Cara F. Modulation of the cell membrane lipid milieu by peroxisomal β-oxidation induces Rho1 signaling to trigger inflammatory responses. Cell Rep 2022; 38:110433. [PMID: 35235794 DOI: 10.1016/j.celrep.2022.110433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Phagocytosis, signal transduction, and inflammatory responses require changes in lipid metabolism. Peroxisomes have key roles in fatty acid homeostasis and in regulating immune function. We find that Drosophila macrophages lacking peroxisomes have perturbed lipid profiles, which reduce host survival after infection. Using lipidomic, transcriptomic, and genetic screens, we determine that peroxisomes contribute to the cell membrane glycerophospholipid composition necessary to induce Rho1-dependent signals, which drive cytoskeletal remodeling during macrophage activation. Loss of peroxisome function increases membrane phosphatidic acid (PA) and recruits RhoGAPp190 during infection, inhibiting Rho1-mediated responses. Peroxisome-glycerophospholipid-Rho1 signaling also controls cytoskeleton remodeling in mouse immune cells. While high levels of PA in cells without peroxisomes inhibit inflammatory phenotypes, large numbers of peroxisomes and low amounts of cell membrane PA are features of immune cells from patients with inflammatory Kawasaki disease and juvenile idiopathic arthritis. Our findings reveal potential metabolic markers and therapeutic targets for immune diseases and metabolic disorders.
Collapse
Affiliation(s)
- Anu S Nath
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Brendon D Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Rebecca L Chilvers
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Ceileigh M Weaver
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Irene Euodia
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Katherine A Fitze
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Juyang Long
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Michal Scur
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Duncan P Mackenzie
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Andrew P Makrigiannis
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Nicolas Pichaud
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Luc H Boudreau
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Andrew J Simmonds
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Christine A Webber
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Beata Derfalvi
- Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada
| | - Yannick Hammon
- INSERM au Centre d'Immunologie de Marseille Luminy, Marseille 13288, France
| | | | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada; Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
17
|
Liang W, Meng X, Zhen Y, Zhang Y, Hu X, Zhang Q, Zhou X, Liu B. Integration of Transcriptome and Proteome in Lymph Nodes Reveal the Different Immune Responses to PRRSV Between PRRSV-Resistant Tongcheng Pigs and PRRSV-Susceptible Large White Pigs. Front Genet 2022; 13:800178. [PMID: 35154273 PMCID: PMC8829461 DOI: 10.3389/fgene.2022.800178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that seriously affects the swine industry worldwide. Understanding the interaction between the host immune response and PRRS virus (PRRSV) can provide insight into the PRRSV pathogenesis, as well as potential clues to control PRRSV infection. Here, we examined the transcriptome and proteome differences of lymph nodes between PRRSV-resistant Tongcheng (TC) pigs and PRRSV-susceptible Large White (LW) pigs in response to PRRSV infection. 2245 and 1839 differentially expressed genes (DEGs) were detected in TC and LW pigs upon PRRSV infection, respectively. Transcriptome analysis revealed genetic differences in antigen presentation and metabolism between TC pigs and LW pigs, which may lead to different immune responses to PRRSV infection. Furthermore, 678 and 1000 differentially expressed proteins (DEPs) were identified in TC and LW pigs, and DEPs were mainly enriched in the metabolism pathways. Integrated analysis of transcriptome and proteome datasets revealed antigen recognition capacity, immune activation, cell cycles, and cell metabolism are important for PRRSV clearance. In conclusion, this study provides important resources on transcriptomic and proteomic levels in lymph nodes for further revealing the interaction between the host immune response and PRRSV, which would give us new insight into molecular mechanisms related to genetic complexity against PRRSV.
Collapse
Affiliation(s)
- Wan Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueran Zhen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingde Zhang
- Laboratory Animal Center, College of Animal Science and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Riedel S, Pheiffer C, Johnson R, Louw J, Muller CJF. Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Front Endocrinol (Lausanne) 2022; 12:833544. [PMID: 35145486 PMCID: PMC8821109 DOI: 10.3389/fendo.2021.833544] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Noncommunicable diseases, such as type 2 diabetes (T2D), place a burden on healthcare systems worldwide. The rising prevalence of obesity, a major risk factor for T2D, is mainly attributed to the adoption of Westernized diets and lifestyle, which cause metabolic dysfunction and insulin resistance. Moreover, diet may also induce changes in the microbiota composition, thereby affecting intestinal immunity. The critical role of intestinal immunity and intestinal barrier function in the development of T2D is increasingly acknowledged, however, limited studies have investigated the link between intestinal function and metabolic disease. In this review, studies reporting specific roles of the intestinal immune system and intestinal epithelial cells (IECs) in metabolic disease are highlighted. Innate chemokine signaling, eosinophils, immunoglobulin A (IgA), T helper (Th) 17 cells and their cytokines were associated with obesity and/or dysregulated glucose homeostasis. Intestinal epithelial cells (IECs) emerged as critical modulators of obesity and glucose homeostasis through their effect on lipopolysaccharide (LPS) signaling and decontamination. Furthermore, IECs create a link between microbial metabolites and whole-body metabolic function. Future in depth studies of the intestinal immune system and IECs may provide new opportunities and targets to develop treatments and prevention strategies for obesity and T2D.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
- Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
19
|
Foulkes AS, Selvaggi C, Shinnick D, Lumish H, Kim E, Cao T, Thaweethai T, Qian J, Lu F, Yan J, Cheng D, He W, Clerkin KJ, Madhavan MV, Meigs JB, Triant VA, Lubitz SA, Gupta A, Bassett IV, Reilly MP. Understanding the Link Between Obesity and Severe COVID-19 Outcomes: Causal Mediation by Systemic Inflammatory Response. J Clin Endocrinol Metab 2022; 107:e698-e707. [PMID: 34473294 PMCID: PMC8499919 DOI: 10.1210/clinem/dgab629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Obesity is an established risk factor for severe COVID-19 outcomes. The mechanistic underpinnings of this association are not well-understood. OBJECTIVE To evaluate the mediating role of systemic inflammation in obesity-associated COVID-19 outcomes. METHODS This hospital-based, observational study included 3828 SARS-CoV-2-infected patients who were hospitalized February to May 2020 at Massachusetts General Hospital (MGH) or Columbia University Irving Medical Center/New York Presbyterian Hospital (CUIMC/NYP). We use mediation analysis to evaluate whether peak inflammatory biomarkers (C-reactive protein [CRP], erythrocyte sedimentation rate [ESR], D-dimer, ferritin, white blood cell count and interleukin-6) are in the causal pathway between obesity (BMI ≥ 30) and mechanical ventilation or death within 28 days of presentation to care. RESULTS In the MGH cohort (n = 1202), obesity was associated with greater likelihood of ventilation or death (OR = 1.73; 95% CI = [1.25, 2.41]; P = 0.001) and higher peak CRP (P < 0.001) compared with nonobese patients. The estimated proportion of the association between obesity and ventilation or death mediated by CRP was 0.49 (P < 0.001). Evidence of mediation was more pronounced in patients < 65 years (proportion mediated = 0.52 [P < 0.001] vs 0.44 [P = 0.180]). Findings were more moderate but consistent for peak ESR. Mediation by other inflammatory markers was not supported. Results were replicated in CUIMC/NYP cohort (n = 2626). CONCLUSION Findings support systemic inflammatory pathways in obesity-associated severe COVID-19 disease, particularly in patients < 65 years, captured by CRP and ESR. Contextualized in clinical trial findings, these results reveal therapeutic opportunity to target systemic inflammatory pathways and monitor interventions in high-risk subgroups and particularly obese patients.
Collapse
Affiliation(s)
- Andrea S Foulkes
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caitlin Selvaggi
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel Shinnick
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Heidi Lumish
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Eunyoung Kim
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Tingyi Cao
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tanayott Thaweethai
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Qian
- Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Frances Lu
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joyce Yan
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Cheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei He
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Kevin J Clerkin
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Mahesh V Madhavan
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Virginia A Triant
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A Lubitz
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aakriti Gupta
- Division of Cardiology, Columbia University, New York, NY 10027, USA
| | - Ingrid V Bassett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Muredach P Reilly
- Division of Cardiology, Columbia University, New York, NY 10027, USA
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
20
|
Gender-Specific Behaviour in Obesity Stages I-II: Imbalance of Aminothiol Status and Adipomyokine Profile in Subjects with Different Insulin Resistance Severity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9713582. [PMID: 34868459 PMCID: PMC8635872 DOI: 10.1155/2021/9713582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022]
Abstract
The hyperproduction of oxidative stress and inflammatory biomarkers, which is paralleled by decreased levels of antioxidant and anti-inflammatory mediators, is part of cellular mechanisms that contribute to the disruption of metabolic homeostasis in obesity. Whether gender-specific alterations and gender-restricted associations in these biomarkers underlie the increased cardiometabolic risk in men compared to women is unclear. We enrolled 31 women and 29 men, aged ≥50 and ≤70 years and with body mass index ≥ 30 and <40 kg/m2. We assessed the concentrations of aminothiols (cysteine, homocysteine, and glutathione), expression of oxidant/antioxidant balance, adipomyokines (leptin, adiponectin, myostatin, and interleukin-6), markers of chronic inflammation, and vitamin D, an index of nutritional state, in plasma and serum samples by using HPLC, ELISA, and chemiluminescent immunoassay methods. We measured insulin resistance (IR) by the homeostasis model assessment (HOMA) index. Despite comparable levels of visceral adiposity, IR, and a similar dietary regimen, men showed, with respect to women, higher oxidant concentrations and lower antioxidant levels, which paralleled IR severity. Myostatin levels correlated with prooxidant aminothiols among men only. Gender-specific alterations in aminothiol status and adipomyokine profile and the gender-restricted association between these biomarkers and metabolic derangement are consistent with an increased cardiometabolic risk in men compared to age-matched women with stage I-II obesity. Strict control of redox and inflammatory status, even addressing gender-specific nutritional targets, may be useful to prevent obesity-related metabolic alterations and comorbidities.
Collapse
|
21
|
Moon JS, da Cunha FF, Huh JY, Andreyev AY, Lee J, Mahata SK, Reis FC, Nasamran CA, Lee YS. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 2021; 6:147033. [PMID: 34676827 PMCID: PMC8564915 DOI: 10.1172/jci.insight.147033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophage proinflammatory activation is an important etiologic component of the development of insulin resistance and metabolic dysfunction in obesity. However, the underlying mechanisms are not clearly understood. Here, we demonstrate that a mitochondrial inner membrane protein, adenine nucleotide translocase 2 (ANT2), mediates proinflammatory activation of adipose tissue macrophages (ATMs) in obesity. Ant2 expression was increased in ATMs of obese mice compared with lean mice. Myeloid-specific ANT2-knockout (ANT2-MKO) mice showed decreased adipose tissue inflammation and improved insulin sensitivity and glucose tolerance in HFD/obesity. At the molecular level, we found that ANT2 mediates free fatty acid–induced mitochondrial permeability transition, leading to increased mitochondrial reactive oxygen species production and damage. In turn, this increased HIF-1α expression and NF-κB activation, leading to proinflammatory macrophage activation. Our results provide a previously unknown mechanism for how obesity induces proinflammatory activation of macrophages with propagation of low-grade chronic inflammation (metaflammation).
Collapse
Affiliation(s)
- Jae-Su Moon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Flavia Franco da Cunha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Jin Young Huh
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Alexander Yu Andreyev
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Jihyung Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA.,VA San Diego Healthcare System, San Diego, California, USA
| | - Felipe Cg Reis
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Abstract
The hypothalamic–pituitary–adrenal axis is a tightly regulated system that represents one of the body’s mechanisms for responding to acute and chronic stress. Prolonged stress and/or inadequate regulation of the stress system can lead to a condition of chronic hypercortisolism or, in some cases, a blunted cortisol response to stress, contributing to insulin resistance, increased adiposity and type 2 diabetes mellitus. Moreover, acute and chronic stress can exacerbate or worsen metabolic conditions by supporting an inflammatory state and a tight relationship between stress, inflammation and adipose tissue has been reported and has been a growing subject of interest in recent years. We reviewed and summarized the evidence supporting hypothalamic–pituitary–adrenal axis dysregulation as an important biological link between stress, obesity, inflammation and type 2 diabetes mellitus. Furthermore, we emphasized the possible role of infectious-related stress such as SarsCov2 infection in adrenal axis dysregulation, insulin resistance and diabetes in a bidirectional link. Understanding and better defining the links between stress and obesity or diabetes could contribute to further definition of the pathogenesis and the management of stress-related complications, in which the HPA axis dysregulation has a primary role.
Collapse
|
23
|
Kiran S, Kumar V, Murphy EA, Enos RT, Singh UP. High Fat Diet-Induced CD8 + T Cells in Adipose Tissue Mediate Macrophages to Sustain Low-Grade Chronic Inflammation. Front Immunol 2021; 12:680944. [PMID: 34248964 PMCID: PMC8261297 DOI: 10.3389/fimmu.2021.680944] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity in the United States and worldwide reached epidemic proportions within the last 20 years. Obesity is a very powerful health determinant or indicator that facilitates the development and progression of several metabolic diseases, insulin resistance, and low-grade chronic inflammation. Low-grade chronic inflammation in adipose tissue (AT) is marked by the accumulation of T cells, macrophages, and other immune cells and increased production of proinflammatory cytokines. During the onset of obesity but before the influx of macrophages, the AT is infiltrated by T cells that are strongly implicated in the initiation of obesity-associated inflammation. In comparing mice fed a high-fat diet (HFD) with those fed a normal diet (ND), we observed in HFD epididymal AT induction and infiltration of activated T cells, an accumulation and polarization of macrophages, and an increase in populations of activated CD4+ T cells and CD8+ T cells that express CXCR3 or killer cell lectin-like receptor subfamily G member 1 (KLRG1). Levels of inflammatory cytokines and leptin and the results of in vitro co-culture experiments revealed interactions among HFD- and ND-induced CD8+ T cells, macrophages, and adipocytes. Our findings suggest that obese tissues activate and induce both CD4+ and CD8+ CD69+ T cells and augment the expression of CXCR3 receptors, which promotes the recruitment and numbers of pro-inflammatory M1 macrophages to maintain low-grade chronic inflammation. The results support the hypothesis that CXCR3-expressing CD8+T cells play an essential role in the initiation and maintenance of adipose tissue inflammation.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - E Angela Murphy
- Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Reilly T Enos
- Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
24
|
Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Eur J Clin Nutr 2021; 75:1319-1327. [PMID: 34163018 PMCID: PMC8220356 DOI: 10.1038/s41430-021-00943-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg- and Trp-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Trp-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.
Collapse
|
25
|
Tomé D. Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Nutr Diabetes 2021; 11:20. [PMID: 34168115 PMCID: PMC8223530 DOI: 10.1038/s41387-021-00164-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Arg-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.
Collapse
Affiliation(s)
- Daniel Tomé
- grid.417885.70000 0001 2185 8223UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| |
Collapse
|
26
|
Sun W, Modica S, Dong H, Wolfrum C. Plasticity and heterogeneity of thermogenic adipose tissue. Nat Metab 2021; 3:751-761. [PMID: 34158657 DOI: 10.1038/s42255-021-00417-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
The perception of adipose tissue, both in the scientific community and in the general population, has changed dramatically in the past 20 years. While adipose tissue was thought for a long time to be a rather simple lipid storage entity, it is now recognized as a highly heterogeneous organ and a critical regulator of systemic metabolism, composed of many different subtypes of cells, with important endocrine functions. Additionally, adipose tissue is nowadays recognized to contribute to energy turnover, due to the presence of specialized thermogenic adipocytes, which can be found in many adipose depots. This review discusses the unprecedented insights that we have gained into the heterogeneity of thermogenic adipocytes and their respective precursors due to the technical developments in single-cell and nucleus technologies. These methodological advances have increased our understanding of how adipose tissue catabolic function is influenced by developmental and intercellular communication events.
Collapse
Affiliation(s)
- Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
27
|
Dong G, Li Y, Zhao Q, Pang B, Qi X, Wei J, Hou W. Effects of diabetes on the development of radiation pneumonitis. Respir Res 2021; 22:160. [PMID: 34030688 PMCID: PMC8147083 DOI: 10.1186/s12931-021-01754-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonia (RP) is a common adverse reaction to radiation therapy in patients with chest tumors. Recent studies have shown that diabetes mellitus (DM), which can cause systemic multisystem damage, specifically targets lungs, and the incidence of RP in patients with a history of diabetes is higher than that in other patients with tumors who have undergone radiotherapy. DM is an important risk factor for RP in tumor patients undergoing RT, and patients with DM should be treated with caution. This article reviews research on the clinical aspects, as well as the mechanism, of the effects of diabetes on RP and suggests future research needed to reduce RP.
Collapse
Affiliation(s)
- Guangtong Dong
- Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 6 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiao Li
- Department of Oncology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 7 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
| | - Qiyao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 6 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
| | - Xin Qi
- Department of Oncology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 7 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 6 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China.
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 7 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China.
| |
Collapse
|
28
|
De Amicis R, Cancello R, Capodaglio P, Gobbi M, Brunani A, Gilardini L, Castenuovo G, Molinari E, Barbieri V, Mambrini SP, Battezzati A, Bertoli S. Patients with Severe Obesity during the COVID-19 Pandemic: How to Maintain an Adequate Multidisciplinary Nutritional Rehabilitation Program? Obes Facts 2021; 14:205-213. [PMID: 33744894 PMCID: PMC8089441 DOI: 10.1159/000513283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is spreading all over the world, particularly in developed countries where obesity is also widespread. There is a high frequency of increased BMI in patients admitted to intensive care for SARS-CoV-2 infection with a major severity in patients with an excess of visceral adiposity. Patients at risk of severe SARS-CoV-2 acute respiratory syndrome are characterised by the high prevalence of pre-existing diseases (high blood pressure and cardiovascular disease, diabetes, chronic respiratory disease, or cancer), most of them typically present in severely obese patients. Indeed, the biological role of adipose tissue in sustaining SARS-CoV-2 infection is not completely elucidated. SUMMARY The forced isolation due to pandemic containment measures abruptly interrupted the rehabilitation programs to which many patients with severe obesity were enrolled. People affected by obesity, and especially those with severe obesity, should continue clinical rehabilitation programs, taking extra measures to avoid COVID-19 infection and reinforcing the adoption of preventive procedures. In this review, the available data on obesity and COVID-19 are discussed along with evidence-based strategies for maintaining the necessary continuous rehabilitation programs. Key Messages: Greater attention is needed for obese and severely obese patients in the face of the current COVID-19 pandemic, which represents a huge challenge for both patients and healthcare professionals. The adoption of new strategies to guarantee adequate and continuous multidisciplinary nutritional rehabilitation programs will be crucial to control the severity of SARS-CoV-2 infection in high-risk populations as well as the worsening of obesity-linked complications. Health authorities should be urged to equip hospitals with tools for the diffusion of telemedicine to maintain physician-patient communication, which is fundamental in chronic and complicated obese patients.
Collapse
Affiliation(s)
- Ramona De Amicis
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Raffaella Cancello
- Obesity Unit - Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, IRCCS Istituto Auxologico Italiano, Piancavallo, Italy
| | - Michele Gobbi
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, IRCCS Istituto Auxologico Italiano, Piancavallo, Italy
| | - Amelia Brunani
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, IRCCS Istituto Auxologico Italiano, Piancavallo, Italy
| | - Luisa Gilardini
- Obesity Unit - Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Gianluca Castenuovo
- Clinical Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Enrico Molinari
- Clinical Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Valerio Barbieri
- Division of Nutritional Rehabilitation, IRCCS Istituto Auxologico Italiano, Piancavallo, Italy
| | - Sara Paola Mambrini
- Division of Nutritional Rehabilitation, IRCCS Istituto Auxologico Italiano, Piancavallo, Italy
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy,
- Obesity Unit - Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy,
| |
Collapse
|
29
|
Abstract
Adipose tissue depots in distinct anatomical locations mediate key aspects of metabolism, including energy storage, nutrient release, and thermogenesis. Although adipocytes make up more than 90% of adipose tissue volume, they represent less than 50% of its cellular content. Here, I review recent advances in genetic lineage tracing and transcriptomics that reveal the identities of the heterogeneous cell populations constituting mouse and human adipose tissues. In addition to mature adipocytes and their progenitors, these include endothelial and various immune cell types that together orchestrate adipose tissue development and functions. One salient finding is the identification of progenitor subtypes that can modulate adipogenic capacity through paracrine mechanisms. Another is the description of fate trajectories of monocyte/macrophages, which can respond maladaptively to nutritional and thermogenic stimuli, leading to metabolic disease. These studies have generated an extraordinary source of publicly available data that can be leveraged to explore commonalities and differences among experimental models, providing new insights into adipose tissues and their role in metabolic disease.
Collapse
Affiliation(s)
- Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
30
|
Petito G, Cioffi F, Silvestri E, De Matteis R, Lattanzi D, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R. 3,5-Diiodo-L-Thyronine (T2) Administration Affects Visceral Adipose Tissue Inflammatory State in Rats Receiving Long-Lasting High-Fat Diet. Front Endocrinol (Lausanne) 2021; 12:703170. [PMID: 34322094 PMCID: PMC8312549 DOI: 10.3389/fendo.2021.703170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
3,5-diiodo-thyronine (T2), an endogenous metabolite of thyroid hormones, exerts beneficial metabolic effects. When administered to overweight rats receiving a high fat diet (HFD), it significantly reduces body fat accumulation, which is a risk factor for the development of an inflammatory state and of related metabolic diseases. In the present study, we focused our attention on T2 actions aimed at improving the adverse effects of long-lasting HFD such as the adipocyte inflammatory response. For this purpose, three groups of rats were used throughout: i) receiving a standard diet for 14 weeks; ii) receiving a HFD for 14 weeks, and iii) receiving a HFD for 14 weeks with a simultaneous daily injection of T2 for the last 4 weeks. The results showed that T2 administration ameliorated the expression profiles of pro- and anti-inflammatory cytokines, reduced macrophage infiltration in white adipose tissue, influenced their polarization and reduced lymphocytes recruitment. Moreover, T2 improved the expression of hypoxia markers, all altered in HFD rats, and reduced angiogenesis by decreasing the pro-angiogenic miR126 expression. Additionally, T2 reduced the oxidative damage of DNA, known to be associated to the inflammatory status. This study demonstrates that T2 is able to counteract some adverse effects caused by a long-lasting HFD and to produce beneficial effects on inflammation. Irisin and SIRT1 pathway may represent a mechanism underlying the above described effects.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Rosalba Senese, ; Federica Cioffi,
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
- *Correspondence: Rosalba Senese, ; Federica Cioffi,
| |
Collapse
|
31
|
Yao N, Yan S, Guo Y, Wang H, Li X, Wang L, Hu W, Li B, Cui W. The association between carotenoids and subjects with overweight or obesity: a systematic review and meta-analysis. Food Funct 2021; 12:4768-4782. [PMID: 33977977 DOI: 10.1039/d1fo00004g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Excess body weight, including overweight and obesity, is one of the major factors influencing human health, and plays an important role in the global burden of disease. Carotenoids serve as precursors of vitamin A-related retinoids, and are considered to have potential effects on many diseases. However, the influence of carotenoids on people with excess body weight is unclear. METHODS This meta-analysis was conducted to assess the effects of carotenoids on overweight or obese subjects utilizing the available evidence. We searched PubMed, Medline, Cochrane Library, Web of Science and EMBASE databases up to September 2020. Random effects models were used to calculate the standard mean differences (SMDs) and odds ratios (ORs) with their 95% confidence intervals (95% CIs). RESULTS A total of seven randomized controlled trials and eight observational studies met the inclusion criteria and contained 28 944 subjects and data on multiple carotenoid subgroups, including lycopene, astaxanthin, cryptoxanthin, α-carotene, and β-carotene. In all included Randomized Controlled Trial (RCT), the intervention duration was 20 days at the shortest and 16 weeks at the longest, and the range of intervention doses was 1.2-60 mg d-1. Our study found that the insufficiency of serum carotenoids was a risk factor for overweight and obesity (OR = 1.73, 95% CI [1.57, 1.91], p < 0.001). Moreover, carotenoid supplementation was significantly associated with body weight reductions (SMD = -2.34 kg, 95% CI [-3.80, -0.87] kg, p < 0.001), body mass index decrease (BMI, SMD = -0.95 kg cm-2, 95% CI [-1.88, -0.01] kg cm-2, p < 0.001) and waist circumference losses (WC, SMD = -1.84 cm, 95% CI [-3.14, -0.54]cm, p < 0.001). CONCLUSION In summary, the carotenoids show promising effects in overweight or obese subjects. Additional data from large clinical trials are needed.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Yinpei Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Han Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Ling Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Wenyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, P. R. China.
| |
Collapse
|
32
|
Sbierski-Kind J, Goldeck D, Buchmann N, Spranger J, Volk HD, Steinhagen-Thiessen E, Pawelec G, Demuth I, Spira D. T cell phenotypes associated with insulin resistance: results from the Berlin Aging Study II. IMMUNITY & AGEING 2020; 17:40. [PMID: 33349270 PMCID: PMC7751110 DOI: 10.1186/s12979-020-00211-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Background Obesity is associated with chronic low-grade inflammation leading to metabolic and cardiovascular diseases, but a subset of obese individuals is considered insulin sensitive (IS). The underlying pathophysiologic mechanisms remain elusive and clinical studies on the relationship between inflammatory markers and metabolically healthy obesity (MHO) are scarce. Methods In this cross-sectional analysis, we included a sample of 437 older participants (60–84 years) from the Berlin Aging Study II (BASE-II). Peripheral blood mononuclear cells were isolated, immune cell subsets were analyzed with multiparameter flow cytometry and systemic cytokine levels were measured. Immune cell parameters were correlated with metabolic measures and multiple linear regression analysis was conducted and adjusted for various demographic and clinical factors. Results We found that frequencies of naïve and memory CD4+ and CD8+ T cells inversely correlated with measures for insulin sensitivity in the older population. Moreover, the percentages of naïve CD4+ and CD8+ T cells were significantly higher, whereas activated T cells and IL-6 levels were lower in IS compared to insulin resistant (IR) obese individuals. The percentages of naïve CD4+ and CD8+ T cells were predictive for impaired insulin sensitivity (ß = 0.16, p = 0.01 and ß = 0.11, p = 0.04), and the association of naïve CD4+ T cells with insulin sensitivity persisted after multivariate adjustment (ß = 0.14, p = 0.02). Conclusions These findings support the hypothesis that parameters of systemic inflammation can differentiate IS from IR obese individuals that are at higher risk for cardiometabolic diseases and may have clinical implications with regard to obesity treatment stratification. Trial registration DRKS00009277. Registered 31 August 2015 - Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-020-00211-y.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany. .,Present Address: Dept. of Laboratory Medicine, University of California, San Francisco, HSW1201U, Box 0451, 513 Parnassus Ave, San Francisco, CA, 94143-0451, USA.
| | | | - Nikolaus Buchmann
- Clinic for Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany.,Center for Cardiovascular Research (CCR), Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Ilja Demuth
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Spira
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany
| |
Collapse
|
33
|
Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through Toll-like receptors 2 and 4. Proc Natl Acad Sci U S A 2020; 117:31309-31318. [PMID: 33214151 DOI: 10.1073/pnas.2013877117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1β (IL1β) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1β is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1β. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1β levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.
Collapse
|
34
|
Bapat SP, Liang Y, Zheng Y. Characterization of Immune Cells from Adipose Tissue. ACTA ACUST UNITED AC 2020; 126:e86. [PMID: 31483101 DOI: 10.1002/cpim.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue (AT) serves a crucial role in maintaining organismal metabolic homeostasis. Studies have demonstrated that AT is populated with a diverse array of immune cells that coordinate and regulate AT function. This adipo-immune system is highly dynamic, reflecting the physiologic state of the organism (e.g., obese, lean, aged, or young) as well as the constant physiologic remodeling of AT associated with the daily rhythms of fasting and feeding. Many of the adaptive and maladaptive functional changes of AT are regulated by changes in the quantity and quality of distinct sets of AT-resident immune cells. Here we present protocols to assess the dynamic state of the immune system within AT by constructing censuses of adipose-resident immune cells (macrophages, dendritic cells, neutrophils, eosinophils, NK cells, innate lymphocytes, T cells, and B cells, etc.) based on flow cytometry, which we term adipo-immune profiles (AIPs). Constructing AIPs can be an integral part of assessment for AT health and function. This article describes the protocols to generate such AIPs. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sagar P Bapat
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Yuqiong Liang
- Nomis Foundation Laboratories of Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California
| | - Ye Zheng
- Nomis Foundation Laboratories of Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
35
|
Sbierski-Kind J, Mai K, Kath J, Jurisch A, Streitz M, Kuchenbecker L, Babel N, Nienen M, Jürchott K, Spranger L, Jumpertz von Schwartzenberg R, Decker AM, Krüger U, Volk HD, Spranger J. Association between Subcutaneous Adipose Tissue Inflammation, Insulin Resistance, and Calorie Restriction in Obese Females. THE JOURNAL OF IMMUNOLOGY 2020; 205:45-55. [PMID: 32482712 DOI: 10.4049/jimmunol.2000108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 01/30/2023]
Abstract
The worldwide epidemic of overweight and obesity has led to an increase in associated metabolic comorbidities. Obesity induces chronic low-grade inflammation in white adipose tissue (WAT). However, the function and regulation of both innate and adaptive immune cells in human WAT under conditions of obesity and calorie restriction (CR) is not fully understood yet. Using a randomized interventional design, we investigated postmenopausal overweight or obese female subjects who either underwent CR for 3 mo followed by a 4-wk phase of weight maintenance or had to maintain a stable weight over the whole study period. A comprehensive immune phenotyping protocol was conducted using validated multiparameter flow cytometry analysis in blood and s.c. WAT (SAT). The TCR repertoire was analyzed by next-generation sequencing and cytokine levels were determined in SAT. Metabolic parameters were determined by hyperinsulinemic-euglycemic clamp. We found that insulin resistance correlates significantly with a shift toward the memory T cell compartment in SAT. TCR analysis revealed a diverse repertoire in SAT of overweight or obese individuals. Additionally, whereas weight loss improved systemic insulin sensitivity in the intervention group, SAT displayed no significant improvement of inflammatory parameters (cytokine levels and leukocyte subpopulations) compared with the control group. Our data demonstrate the accumulation of effector memory T cells in obese SAT and an association between systemic glucose homeostasis and inflammatory parameters in obese females. The long-standing effect of obesity-induced changes in SAT was demonstrated by preserved immune cell composition after short-term CR-induced weight loss.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany; .,Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Knut Mai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Jonas Kath
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Anke Jurisch
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Mathias Streitz
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leon Kuchenbecker
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Mikalai Nienen
- Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Karsten Jürchott
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leonard Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Reiner Jumpertz von Schwartzenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| | - Anne-Marie Decker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Ulrike Krüger
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| |
Collapse
|
36
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
37
|
Hasan A, Kochumon S, Al-Ozairi E, Tuomilehto J, Al-Mulla F, Ahmad R. Correlation Profile of Suppression of Tumorigenicity 2 and/or Interleukin-33 with Biomarkers in the Adipose Tissue of Individuals with Different Metabolic States. Diabetes Metab Syndr Obes 2020; 13:3839-3859. [PMID: 33116731 PMCID: PMC7586022 DOI: 10.2147/dmso.s251978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The suppression of tumorigenicity 2 (ST2) has two main splice variants including a membrane bound (ST2) form, which activates the myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, and a secreted soluble form (sST2), which acts as a decoy receptor for ST2 ligand, interleukin (IL)-33. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D). In humans, adipose tissue IL-33 displays distinct correlation profiles with glycated hemoglobin, ST2, and other immunometabolic mediators, depending on the glycemic health of the individuals. We determined whether adipose tissue ST2 displays distinct correlation profiles with immunometabolic mediators and whether ST2 and/or IL-33 are correlated with intracellular signaling molecules. PATIENTS AND METHODS A total of 91 adults with normal glycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissues were isolated and mRNA expression of biomarkers was measured. RESULTS In individuals with normal glycemia, adipose tissue ST2 was directly correlated with chemokine (C-C motif) ligand (CCL)-2, CCL5, IL-12, fibrinogen-like protein 2 (FGL2) and interferon regulatory factor (IRF)-4, but inversely correlated with cytochrome C oxidase subunit 7A1. IL-33 and ST2 were directly correlated with tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, and nuclear factor of activated T-cells 5 (NFAT5). In individuals with prediabetes, ST2 was inversely correlated with IL-5, whereas IL-33 but not ST2 was directly correlated with MyD88 and NF-κB. In individuals with T2D, ST2 was directly correlated with CCL2, IL-1β, and IRF5. IL-33 and ST2 were directly correlated with MyD88, TRAF6, and NF-κB. CONCLUSION Adipose tissue ST2 and IL-33 show different correlation profiles with various immunometabolic biomarkers depending on the metabolic state of the individuals. Therefore, targeting the IL-33/ST2 axis might form the basis for novel therapies to combat metabolic disorders.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Correspondence: Amal Hasan Email
| | - Shihab Kochumon
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- National School of Public Health, Madrid, Spain
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
38
|
Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metab 2019; 30:1024-1039.e6. [PMID: 31735593 PMCID: PMC6944439 DOI: 10.1016/j.cmet.2019.10.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
During aging, visceral adiposity is often associated with alterations in adipose tissue (AT) leukocytes, inflammation, and metabolic dysfunction. However, the contribution of AT B cells in immunometabolism during aging is unexplored. Here, we show that aging is associated with an expansion of a unique population of resident non-senescent aged adipose B cells (AABs) found in fat-associated lymphoid clusters (FALCs). AABs are transcriptionally distinct from splenic age-associated B cells (ABCs) and show greater expansion in female mice. Functionally, whole-body B cell depletion restores proper lipolysis and core body temperature maintenance during cold stress. Mechanistically, the age-induced FALC formation, AAB, and splenic ABC expansion is dependent on the Nlrp3 inflammasome. Furthermore, AABs express IL-1R, and inhibition of IL-1 signaling reduces their proliferation and increases lipolysis in aging. These data reveal that inhibiting Nlrp3-dependent B cell accumulation can be targeted to reverse metabolic impairment in aging AT.
Collapse
|
39
|
Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Cell Metab 2019; 30:447-461.e5. [PMID: 31378464 PMCID: PMC8506657 DOI: 10.1016/j.cmet.2019.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/16/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022]
Abstract
Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D.
Collapse
|
40
|
Tart Cherry Concentrate Does Not Alter the Gut Microbiome, Glycaemic Control or Systemic Inflammation in a Middle-Aged Population. Nutrients 2019; 11:nu11051063. [PMID: 31085979 PMCID: PMC6567170 DOI: 10.3390/nu11051063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Limited evidence suggests that the consumption of polyphenols may improve glycaemic control and insulin sensitivity. The gut microbiome produces phenolic metabolites and increases their bioavailability. A handful of studies have suggested that polyphenol consumption alters gut microbiome composition. There are no data available investigating such effects in polyphenol-rich Montmorency cherry (MC) supplementation. A total of 28 participants (aged 40-60 years) were randomized to receive daily MC or glucose and energy-matched placebo supplementation for 4 wk. Faecal and blood samples were obtained at baseline and at 4 wk. There was no clear effect of supplementation on glucose handling (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Gutt indices), although the Matsuda index decreased significantly in the MC group post-supplementation, reflecting an increase in serum insulin concentration. Contrastingly, placebo, but not MC supplementation induced a 6% increase in the Oral Glucose Insulin Sensitivity (OGIS) estimate of glucose clearance. Serum IL-6 and C reactive protein were unaltered by either supplement. The faecal bacterial microbiome was sequenced; species richness and diversity were unchanged by MC or placebo and no significant correlation existed between changes in Bacteroides and Faecalibacterium abundance and any index of insulin sensitivity. Therefore, 4 weeks of MC supplementation did not alter the gut microbiome, glycaemic control or systemic concentrations of IL-6 and CRP in a middle-aged population.
Collapse
|
41
|
Abstract
Much evidence has accumulated in the literature over the last fifteen years that indicates vitamin A has a role in metabolic disease prevention and causation. This literature proposes that vitamin A can affect obesity development and the development of obesity-related diseases including insulin resistance, type 2 diabetes, hepatic steatosis and steatohepatitis, and cardiovascular disease. Retinoic acid, the transcriptionally active form of vitamin A, accounts for many of the reported associations. However, a number of proteins involved in vitamin A metabolism, including retinol-binding protein 4 (RBP4) and aldehyde dehydrogenase 1A1 (ALDH1A1, alternatively known as retinaldehyde dehydrogenase 1 or RALDH1), have also been identified as being associated with metabolic disease. Some of the reported effects of these vitamin A-related proteins are proposed to be independent of their roles in assuring normal retinoic acid homeostasis. This review will consider both human observational data as well as published data from molecular studies undertaken in rodent models and in cells in culture. The primary focus of the review will be on the effects that vitamin A per se and proteins involved in vitamin A metabolism have on adipocytes, adipose tissue biology, and adipose-related disease, as well as on early stage liver disease, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
| |
Collapse
|
42
|
Acute effects of active breaks during prolonged sitting on subcutaneous adipose tissue gene expression: an ancillary analysis of a randomised controlled trial. Sci Rep 2019; 9:3847. [PMID: 30846834 PMCID: PMC6405989 DOI: 10.1038/s41598-019-40490-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/07/2019] [Indexed: 12/28/2022] Open
Abstract
Active breaks in prolonged sitting has beneficial impacts on cardiometabolic risk biomarkers. The molecular mechanisms include regulation of skeletal muscle gene and protein expression controlling metabolic, inflammatory and cell development pathways. An active communication network exists between adipose and muscle tissue, but the effect of active breaks in prolonged sitting on adipose tissue have not been investigated. This study characterized the acute transcriptional events induced in adipose tissue by regular active breaks during prolonged sitting. We studied 8 overweight/obese adults participating in an acute randomized three-intervention crossover trial. Interventions were performed in the postprandial state and included: (i) prolonged uninterrupted sitting; or prolonged sitting interrupted with 2-minute bouts of (ii) light- or (iii) moderate-intensity treadmill walking every 20 minutes. Subcutaneous adipose tissue biopsies were obtained after each condition. Microarrays identified 36 differentially expressed genes between the three conditions (fold change ≥0.5 in either direction; p < 0.05). Pathway analysis indicated that breaking up of prolonged sitting led to differential regulation of adipose tissue metabolic networks and inflammatory pathways, increased insulin signaling, modulation of adipocyte cell cycle, and facilitated cross-talk between adipose tissue and other organs. This study provides preliminary insight into the adipose tissue regulatory systems that may contribute to the physiological effects of interrupting prolonged sitting.
Collapse
|
43
|
|
44
|
Hamada A, Torre C, Drancourt M, Ghigo E. Trained Immunity Carried by Non-immune Cells. Front Microbiol 2019; 9:3225. [PMID: 30692968 PMCID: PMC6340064 DOI: 10.3389/fmicb.2018.03225] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
“Trained immunity” is a term proposed by Netea to describe the ability of an organism to develop an exacerbated immunological response to protect against a second infection independent of the adaptative immunity. This immunological memory can last from 1 week to several months and is only described in innate immune cells such as monocytes, macrophages, and natural killer cells. Paradoxically, the lifespan of these cells in the blood is shorter than the duration of trained immunity. This observation suggested that trained immunity could be carried by long lifespan cells such as stem cells and non-immune cells like fibroblasts. It is now evident that in addition to performing their putative function in the development and maintenance of tissue homeostasis, non-immune cells also play an important role in the response to pathogens by producing anti-microbial factors, with long-term inflammation suggesting that non-immune cells can be trained to confer long-lasting immunological memory. This review provides a summary of the current relevant knowledge about the cells which possess immunological memory and discusses the possibility that non-immune cells may carry immunological memory and mechanisms that might be involved.
Collapse
Affiliation(s)
- Attoumani Hamada
- IRD, MEPHI, Institut Hospitalier Universitaire Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Cédric Torre
- IRD, MEPHI, Institut Hospitalier Universitaire Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Michel Drancourt
- IRD, MEPHI, Institut Hospitalier Universitaire Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Eric Ghigo
- IRD, MEPHI, Institut Hospitalier Universitaire Méditerranée Infection, Aix-Marseille University, Marseille, France
| |
Collapse
|
45
|
Amor S, González-Hedström D, Martín-Carro B, Inarejos-García AM, Almodóvar P, Prodanov M, García-Villalón AL, Granado M. Beneficial Effects of an Aged Black Garlic Extract in the Metabolic and Vascular Alterations Induced by a High Fat/Sucrose Diet in Male Rats. Nutrients 2019; 11:nu11010153. [PMID: 30642033 PMCID: PMC6356877 DOI: 10.3390/nu11010153] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
Abstract
Aged black garlic (ABG) is a functional food with antioxidant and anti-inflammatory properties. Recent studies also report its beneficial metabolic effects in a context of obesity or diabetes, although the mechanisms involved are poorly understood. The aim of this work was to analyze the effects of an ABG extract in the vascular and metabolic alterations induced by a high-fat/sucrose diet in rats. For this purpose, male Sprague–Dawley rats were fed either a standard chow (controls; n = 12) or a high-fat/sucrose diet (HFD; n = 24) for 16 weeks. From week 8 on, half of the HFD rats were treated with a commercial ABG extract concentrated in S-allyl cysteine and melanoidins (ABG10+®; 250 mg/kg daily by gavage; 5 mL/kg). ABG10+®-treated rats showed lower mean caloric intake, body weight, triglycerides, low density lipoprotein cholesterol (LDL-c), insulin and leptin serum concentrations and higher high density lipoprotein cholesterol (HDL-c) and adiponectin serum concentrations than non-treated rats. In the hypothalamus, ABG10+® treatment induced an increase in the gene expression of proopiomelanocortin (POMC) and a decrease in leptin receptor (ObR) mRNA levels. No significant changes were found in visceral adipose tissue except for an overexpression of β3-adrenergic receptor (β3-ADR) in ABG-treated rats. In subcutaneous adipose tissue, ABG10+® treatment decreased adipose weight and downregulated the gene expression of PPAR-γ, LPL, ObR and HSL. In brown adipose tissue, an overexpression of InsR, GLUT-4, UCP-1 and β3-ADR in ABG10+®-treated rats was found, whereas PPAR-γ mRNA levels were significantly decreased. Regarding vascular function, ABG10+® treatment attenuated the obesity-induced vasoconstriction in response to potassium chloride both in presence/absence of perivascular adipose tissue (PVAT). On the contrary, aorta segments from ABG-treated rats showed and improved relaxation in response to acetylcholine only when PVAT was present, with this fact possible being related to the decreased gene expression of proinflammatory cytokines in this tissue. In conclusion, ABG10+® administration partially improves the metabolic and vascular alterations induced by a high-fat/high-sucrose diet in rats through modifications in the gene expression of proteins and neuropeptides involved in inflammation, fat metabolism and food intake regulation. Further studies are required to assess the bioavailability of ABG between rats and humans.
Collapse
Affiliation(s)
- Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid. C/Arzobispo Morcillo n°2 28029 Madrid, Spain.
| | - Daniel González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid. C/Arzobispo Morcillo n°2 28029 Madrid, Spain.
- Pharmactive Biotech Products SL, Parque Científico de Madrid, 28049 Madrid, Spain.
| | - Beatriz Martín-Carro
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid. C/Arzobispo Morcillo n°2 28029 Madrid, Spain.
| | | | - Paula Almodóvar
- Pharmactive Biotech Products SL, Parque Científico de Madrid, 28049 Madrid, Spain.
| | - Marin Prodanov
- Departamento de Química Física Aplicada, Facultad de Ciencias, CIAL (CEI, CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Angel Luis García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid. C/Arzobispo Morcillo n°2 28029 Madrid, Spain.
| | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid. C/Arzobispo Morcillo n°2 28029 Madrid, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
46
|
Zurita-Cruz JN, Medina-Bravo P, Manuel-Apolinar L, Damasio-Santana L, Wakida-Kusunoki G, Padilla-Rojas M, Maldonado-Rivera C, Gutierrez-Gonzalez A, Nishimura-Meguro E, Garrido-Magaña E, Rivera-Hernández ADJ, Villasís-Keever MA. Resistin levels are not associated with obesity in central precocious puberty. Peptides 2018; 109:9-13. [PMID: 30273692 DOI: 10.1016/j.peptides.2018.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To compare serum resistin concentrations between prepubertal girls with a BMI > 85th percentile and girls with precocious puberty (CPP) who have and have not undergone GnRH analog treatment. PATIENTS AND METHODS This is a cross-sectional study in girls with a BMI > 85th percentile and a median age of 8 years. We included 31 girls with CPP who did not receive treatment (CPPoT), 23 girls with CPP who were treated with leuprolide (CPPT), 22 prepubertal girls and 24 pubertal girls. Anthropometric data and the fasting plasma concentrations of lipids, glucose, insulin, and resistin were measured. RESULTS The z-BMI scores were similar among the groups (p = 0.344), and body fat percentage (BF%) was similar among CPPT, CPPoT and prepubertal girls (p = 0.151). Resistin and insulin levels were lower in girls with CPP (CPPT and CPPoT) than in prepubertal and pubertal girls (median resistin level: CPPT 11.8 pg/ml vs CPPoT 11 pg/ml vs prepubertal 16 pg/ml vs pubertal 16 pg/ml, p = 0.001; median insulin level: CPPT 10.7 μUI/mL vs CPPoT 10.2 μUI/mL vs prepubertal 14.4 μUI/mL vs pubertal 32 μUI/mL p = 0.02). ANCOVA analysis, after adjustments for pubertal stage, BF% and z-BMI, showed that CPP modifies resistin levels (F = 31.4; p = 0.0001) independently of these parameters (p < 0.05). CONCLUSIONS In the group of girls with overweight or obesity, the resistin level was lower in girls with CPP than in prepubertal and pubertal girls. More studies are needed to understand the role of resistin in CPP patients.
Collapse
Affiliation(s)
- Jessie N Zurita-Cruz
- Unit of Nutrition, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Patricia Medina-Bravo
- Department of Pediatric Endocrinology. Hospital Infantil de México Federico Gómez, Ministry of Health (SSA), Mexico City, Mexico
| | - Leticia Manuel-Apolinar
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leticia Damasio-Santana
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Guillermo Wakida-Kusunoki
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Mexico City, Mexico
| | - Michel Padilla-Rojas
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Mexico City, Mexico
| | - Cesar Maldonado-Rivera
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Mexico City, Mexico
| | | | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eulalia Garrido-Magaña
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aleida de J Rivera-Hernández
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A Villasís-Keever
- Unit of Medical Research in Clinical Epidemiology, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
47
|
Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest 2018; 48:e12997. [PMID: 29995306 DOI: 10.1111/eci.12997] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including type 2 diabetes, cardiovascular diseases, nonalcoholic fatty liver disease and cancer. Adipose tissue is considered one of the largest endocrine organs in the body as well as an active tissue for cellular reactions and metabolic homeostasis rather than an inert tissue for energy storage. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a large number of hormones, cytokines, extracellular matrix proteins and growth and vasoactive factors, collectively termed adipokines that influence a variety of physiological and pathophysiological processes. In the obese state, excessive visceral fat accumulation causes adipose tissue dysfunctionality that strongly contributes to the onset of obesity-related comorbidities. The mechanisms underlying adipose tissue dysfunction include adipocyte hypertrophy and hyperplasia, increased inflammation, impaired extracellular matrix remodelling and fibrosis together with an altered secretion of adipokines. This review describes how adipose tissue becomes inflamed in obesity and summarizes key players and molecular mechanisms involved in adipose inflammation.
Collapse
Affiliation(s)
- Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
48
|
Dong L, Zhang Y, Yang L, Liu G, Ye J, Wang H. Effects of a High-Fat Diet on Adipose Tissue CD8+ T Cells in Young vs. Adult Mice. Inflammation 2018; 40:1944-1958. [PMID: 28866802 DOI: 10.1007/s10753-017-0635-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cells are involved in chronic inflammation of adipose tissue in obese conditions. However, the impact of age on the adipose T cells remains unknown. In this study, we investigated T cells in the white adipose tissue of young and adult mice. Obesity was induced in the mice using a high-fat diet (HFD) for 14 weeks. The young mice were fed an HFD at 3 weeks old, and adult mice were fed the HFD at 12 weeks old. Relative to adult mice, the young mice gained less fat and exhibited better glucose tolerance. Their adipose tissue contained more CD8+ T cells and higher levels of pro-inflammatory cytokines. Young mice showed a larger increase in CD4+ T cells. The young and adult mice showed similar insulin tolerance. HFD reduced the colon muscle layer, which was more obvious in the young mice. These data suggested that young and adult mice exhibit different responses to an HFD in terms of adipose tissue, glucose tolerance, and the colon muscle layer. The increase in CD8+ T cells and CD4+ T cells, together with higher levels of pro-inflammatory cytokines, suggested elevated inflammation in the presence of less fat gain in the young mice, which was unexpected. The significance of this inflammation remains unknown. We propose that inflammation might inhibit energy storage in the adipose tissue to provide more energy to the lean body mass in favor of growth in the young mice. The present study provides another example of the beneficial effect of inflammation in physiological conditions.
Collapse
Affiliation(s)
- Lijun Dong
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yao Zhang
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Li Yang
- Department of Laboratory Medicine, Qindao Women and Children's Hospital, Qindao, Shandong Province, 266034, China
| | - Guoyan Liu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Hui Wang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China. .,Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| |
Collapse
|
49
|
Sbierski-Kind J, Kath J, Brachs S, Streitz M, von Herrath MG, Kühl AA, Schmidt-Bleek K, Mai K, Spranger J, Volk HD. Distinct Housing Conditions Reveal a Major Impact of Adaptive Immunity on the Course of Obesity-Induced Type 2 Diabetes. Front Immunol 2018; 9:1069. [PMID: 29892281 PMCID: PMC5985496 DOI: 10.3389/fimmu.2018.01069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Obesity is associated with adipose tissue inflammation, insulin resistance, and the development of type 2 diabetes (T2D). However, our knowledge is mostly based on conventional murine models and promising preclinical studies rarely translated into successful therapies. There is a growing awareness of the limitations of studies in laboratory mice, housed in abnormally hygienic specific pathogen-free (SPF) conditions, as relevant aspects of the human immune system remain unappreciated. Here, we assessed the impact of housing conditions on adaptive immunity and metabolic disease processes during high-fat diet (HFD). We therefore compared diet-induced obesity in SPF mice with those housed in non-SPF, so-called "antigen exposed" (AE) conditions. Surprisingly, AE mice fed a HFD maintained increased insulin levels to compensate for insulin resistance, which was reflected in islet hyperplasia and improved glucose tolerance compared to SPF mice. By contrast, we observed higher proportions of effector/memory T cell subsets in blood and liver of HFD AE mice accompanied by the development of non-alcoholic steatohepatitis-like liver pathology. Thus, our data demonstrate the impact of housing conditions on metabolic alterations. Studies in AE mice, in which physiological microbial exposure was restored, could provide a tool for revealing therapeutic targets for immune-based interventions for T2D patients.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jonas Kath
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Mathias Streitz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias G von Herrath
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Anja A Kühl
- Berlin Institute of Health (BIH), Berlin, Germany.,iPATH Berlin - Core Unit Immunopathology for Experimental Models, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Julius Wolff Institute (JWI), Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci U S A 2018; 115:E5096-E5105. [PMID: 29760084 DOI: 10.1073/pnas.1802611115] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Obesity is characterized by an accumulation of macrophages in adipose, some of which form distinct crown-like structures (CLS) around fat cells. While multiple discrete adipose tissue macrophage (ATM) subsets are thought to exist, their respective effects on adipose tissue, and the transcriptional mechanisms that underlie the functional differences between ATM subsets, are not well understood. We report that obese fat tissue of mice and humans contain multiple distinct populations of ATMs with unique tissue distributions, transcriptomes, chromatin landscapes, and functions. Mouse Ly6c ATMs reside outside of CLS and are adipogenic, while CD9 ATMs reside within CLS, are lipid-laden, and are proinflammatory. Adoptive transfer of Ly6c ATMs into lean mice activates gene programs typical of normal adipocyte physiology. By contrast, adoptive transfer of CD9 ATMs drives gene expression that is characteristic of obesity. Importantly, human adipose tissue contains similar ATM populations, including lipid-laden CD9 ATMs that increase with body mass. These results provide a higher resolution of the cellular and functional heterogeneity within ATMs and provide a framework within which to develop new immune-directed therapies for the treatment of obesity and related sequela.
Collapse
|