1
|
Kang Q, Wu Y, Jiang K, Yao Q, Li J, Li Y, Tang N, Zhang X, Li Z. Acyl-CoA binding protein (ACBP) in Siberian sturgeon (Acipenser baerii Brandt): Characterization, synthesis and orexigenic function. Int J Biol Macromol 2025; 305:141280. [PMID: 39978502 DOI: 10.1016/j.ijbiomac.2025.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Acyl-CoA binding protein (ACBP) exhibits the activity of autophagy and lipid metabolism regulation in mammals, but its indispensable role in appetite regulation has received great attention in recent years. However, its feeding regulation function in fish is unclear. In this study, we cloned the acbp gene of Siberian Sturgeon (Abacbp) which possesses high homology with those of other vertebrate species and extremely high expression in duodenum and hypothalamus. Interestingly, Abacbp mRNA was significantly increased by short-term fasting but decreased after long-term fasting and recovered after refeeding, suggesting its latent ability in appetite regulation and compensatory growth (CG). Moreover, intraperitoneal injection of Siberian sturgeon ACBP protein (AbACBP) promoted food intake and the expressions of anorexigenic factors were down-regulated and the orexigenic factors were up-regulated. In addition, the specific receptor of ACBP regulating feeding has yet to be identified. Still, our present study found that peripheral AbACBP caused the upregulation of cb1r and the inhibition of the PI3K-AKT-mTOR-S6k signal pathway in the hypothalamus. In conclusion, the research first explored the appetite-stimulating function and mechanism of ACBP. It is of great value to construct the expression strain to produce the appetite-promoting protein ACBP in large quantities for promoting the appetite of farmed animals.
Collapse
Affiliation(s)
- Qin Kang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China
| | - Yuru Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China
| | - Kezhen Jiang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China
| | - Qin Yao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China.
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
2
|
Gammal A, Nassar T, Soae Y, Freeman N, Badihi A, Baraghithy S, Nemirovski A, Tam J, Benita S. Synthesis and Pharmacological Characterization of Novel Peripheral Cannabinoid-1 Receptor Blockers Based on a Tricyclic Scaffold. J Med Chem 2025. [PMID: 40258217 DOI: 10.1021/acs.jmedchem.4c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The development of peripherally selective cannabinoid-1 receptor (CB1R) antagonists offers a promising strategy for obesity treatment. Here, we evaluated the efficacy of novel tricyclic CB1R antagonists, focusing on BNS808. Our findings demonstrate that BNS808 exhibits robust CB1R antagonism with notable CB2R selectivity, minimal brain penetration, and potent in vitro and in vivo efficacy. The compound's high plasma protein binding reduces free drug availability for CNS entry, enhancing safety and minimizing drug-drug interactions. In diet-induced obese mice, BNS808 effectively reduced body weight, adiposity, liver triglycerides, and liver enzymes, supporting its peripherally mediated action. These results highlight BNS808 as a promising candidate for obesity treatment. Additionally, our novel library of peripherally selective CB1R antagonists provides a strong foundation for future drug development. With further refinement, BNS808 holds significant clinical potential to address the global obesity epidemic.
Collapse
Affiliation(s)
- Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Laboratory of Nano Delivery Systems, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Taher Nassar
- Laboratory of Nano Delivery Systems, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Yael Soae
- BioNanoSim (BNS), Hadassah Ein Kerem Campus, Minrav Building (JBP), Jerusalem 9112101, Israel
| | - Noam Freeman
- BioNanoSim (BNS), Hadassah Ein Kerem Campus, Minrav Building (JBP), Jerusalem 9112101, Israel
| | - Amit Badihi
- BioNanoSim (BNS), Hadassah Ein Kerem Campus, Minrav Building (JBP), Jerusalem 9112101, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Simon Benita
- Laboratory of Nano Delivery Systems, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
3
|
Garcia-Luna GM, Bermudes-Contreras JD, Hernández-Correa S, Suarez-Ortiz JO, Diaz-Urbina D, Garfias-Ramirez SH, Vega AV, Villalobos-Molina R, Vilches-Flores A. Δ9-Tetrahydrocannabinol Treatment Modifies Insulin Secretion in Pancreatic Islets from Prediabetic Mice Under Hypercaloric Diet. Cannabis Cannabinoid Res 2024; 9:1277-1290. [PMID: 37267277 DOI: 10.1089/can.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Background: The endocannabinoid system over-activation is associated with type-2 diabetes mellitus onset, involving physiological, metabolic, and genetic alterations in pancreatic islets. The use of Δ9-Tetrahydrocannabinol (THC) as treatment is still controversial since its effects and mechanisms on insulin secretion are unclear. The aim of this study was to evaluate the effects of THC treatment in pancreatic islets from prediabetic mice. Methods: Prediabetes was induced in mice by hypercaloric diet, and then treated with THC for 3 weeks. Blood glucose and body weight were determined, after behavior tests. Histological changes were evaluated in whole pancreas; in isolated islets we analyzed the effect of THC exposure in glucose-stimulated insulin secretion (GSIS), gene expression, intracellular cyclic adenosine monophosphate (cAMP), and cytosolic calcium changes. Results: THC treatment in prediabetic mice enhanced anxiety and antidepressive behavior without changes in food ingestion, decreased oral-glucose tolerance test, plasma insulin and weight, with small alterations on pancreatic histology. In isolated islets from healthy mice THC increased GSIS, cAMP, and CB1 receptor (CB1r) expression, meanwhile calcium release was diminished. Small changes were observed in islets from prediabetic mice. Conclusions: THC treatment improves some clinical parameters in prediabetic mice, however, in isolated islets, modifies GSIS, intracellular calcium and gene expression, suggesting specific effects related to diabetes evolution.
Collapse
Affiliation(s)
- Guadalupe M Garcia-Luna
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - J David Bermudes-Contreras
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Samantha Hernández-Correa
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Josue O Suarez-Ortiz
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Daniel Diaz-Urbina
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Sergio H Garfias-Ramirez
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Ana V Vega
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rafael Villalobos-Molina
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Alonso Vilches-Flores
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
4
|
Di X, Martinez-Tellez B, Krekels EHJ, Jurado-Fasoli L, Osuna-Prieto FJ, Ortiz-Alvarez L, Hankemeier T, Rensen PCN, Ruiz JR, Kohler I. Higher Plasma Levels of Endocannabinoids and Analogues Correlate With a Worse Cardiometabolic Profile in Young Adults. J Clin Endocrinol Metab 2024; 109:1351-1360. [PMID: 37967236 PMCID: PMC11031222 DOI: 10.1210/clinem/dgad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
CONTEXT The endocannabinoid system (ECS) is a signaling system composed of endocannabinoids (eCBs), their receptors, and the enzymes involved in their synthesis and metabolism. Alterations in the ECS are linked to the development of cardiometabolic diseases. OBJECTIVE Here, we investigated the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors. METHODS The study included 133 young adults (age 22.1 ± 2.2 years, 67% women). Fasting plasma levels of eCBs and their analogues were measured using liquid chromatography-tandem mass spectrometry. Body composition, brown adipose tissue (BAT) volume, glucose uptake, and traditional cardiometabolic risk factors were measured. RESULTS Plasma levels of eCBs and several eCB analogues were positively correlated with adiposity and traditional cardiometabolic risk factors (eg, serum insulin and triacylglyceride levels, all r ≥ 0.17 and P ≤ .045). Plasma levels of 2-arachidonoyl glycerol and N-pentadecenoylethanolamine were negatively correlated with BAT volume and glucose uptake (all r ≤ -0.17 and P ≤ .047). We observed that the plasma levels of eCBs and their analogues were higher in metabolically unhealthy overweight-obese participants than in metabolically healthy overweight-obese participants. CONCLUSION Our findings show that the plasma levels of eCBs and their analogues are related to higher levels of adiposity and worse cardiometabolic profile.
Collapse
Affiliation(s)
- Xinyu Di
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Borja Martinez-Tellez
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- SPORT Research Group, CERNEP Research Center, University of Almería, 04120 Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 18100 Granada, Spain
| | - Elke H J Krekels
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Lucas Jurado-Fasoli
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Francisco J Osuna-Prieto
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Cortes-Justo E, Garfias-Ramírez SH, Vilches-Flores A. The function of the endocannabinoid system in the pancreatic islet and its implications on metabolic syndrome and diabetes. Islets 2023; 15:1-11. [PMID: 36598083 PMCID: PMC9815253 DOI: 10.1080/19382014.2022.2163826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The following review focuses on the scientific studies related to the role of endocannabinoid system (ECS) in pancreatic islet physiology and dysfunction. Different natural or synthetic agonists and antagonists have been suggested as an alternative treatment for diabetes, obesity and metabolic syndrome. Therapeutic use of Cannabis led to the discovery and characterization of the ECS, a signaling complex involved in regulation of various physiological processes, including food intake and metabolism. After the development of different agonists and antagonists, evidence have demonstrated the presence and activity of cannabinoid receptors in several organs and tissues, including pancreatic islets. Insulin and glucagon expression, stimulated secretion, and the development of diabetes and other metabolic disorders have been associated with the activity and modulation of ECS in pancreatic islets. However, according to the animal model and experimental design, either endogenous or pharmacological ligands of cannabinoid receptors have guided to contradictory and paradoxical results that suggest a complex physiological interaction. In consensus, ECS activity modulates insulin and glucagon secretions according to glucose in media; over-stimulation of cannabinoid receptors affects islets negatively, leading to glucose intolerance, meanwhile the treatment with antagonists in diabetic models and humans suggests an improvement in islets function.
Collapse
Affiliation(s)
- Edgardo Cortes-Justo
- Posgrado e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico CityMexico
| | - Sergio H Garfias-Ramírez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Alonso Vilches-Flores
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Coyoacán, Mexico
- CONTACT Alonso Vilches-Flores Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala. Edif.A4 Lab 4, Los Reyes Iztacala, Tlalnepantla54090, Mexico
| |
Collapse
|
6
|
Hosseininia M, Rostami F, Delphi L, Ghasemzadeh Z, Kouhkan F, Rezayof A. Memory impairment was ameliorated by corticolimbic microinjections of arachidonylcyclopropylamide (ACPA) and miRNA-regulated lentiviral particles in a streptozotocin-induced Alzheimer's rat model. Exp Neurol 2023; 370:114560. [PMID: 37783412 DOI: 10.1016/j.expneurol.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The present study aimed to investigate the effect of corticolimbic cannabinoid CB1 receptors activity on memory impairment in the intracerebroventricular (ICV)-streptozotocin (STZ) animal model of Alzheimer's like-disease. This study also assessed whether the corticolimbic overexpression of miRNA-137 or -let-7a could increase the endocannabinoids by inhibiting the monoglyceride lipase (MAGL) to ameliorate STZ response. The results showed that ICV microinjection of STZ (3 mg/kg/10 μl) impaired passive avoidance memory retrieval. The chronic microinjection of arachidonylcyclopropylamide (ACPA; 10 ng/0.5 μl), a selective cannabinoid CB1 receptor agonist, into the hippocampal CA1 region, the central amygdala (CeA) or the medial prefrontal cortex (mPFC) ameliorated the amnesic effect of ICV-STZ. Intra-CA1 or -CeA microinjection of ACPA alone did not affect memory retrieval, while its microinjection into the mPFC impaired memory formation. Based on bioinformatics analysis and verification of the MAGL gene, miRNA-137 and -let-7a were chosen to target the expression levels of MAGL in the corticolimbic regions. The chronic corticolimbic microinjection of lentiviral particles containing miRNA-137 or -let-7a ameliorated ICV-STZ-induced memory impairment. The high transfection efficiency was determined for each virus using comparing fluorescent and conventional vision. Corticolimbic overexpression of miRNA-137 or -let-7a decreased the MAGL gene expression that encodes the MAGL enzyme to increase the endocannabinoids. Thus, among the molecular mechanisms and signaling pathways involved in the pathophysiology of Alzheimer's disease (AD), it is worth mentioning the role of endocannabinoids in the corticolimbic regions. CB1 receptor agonists, miRNA-137 or -let-7a, may be potential therapeutic targets against cognitive decline in AD.
Collapse
Affiliation(s)
- Mohammad Hosseininia
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Baenas I, Solé-Morata N, Granero R, Fernández-Aranda F, Pujadas M, Mora-Maltas B, Lucas I, Gómez-Peña M, Moragas L, del Pino-Gutiérrez A, Tapia J, de la Torre R, Potenza MN, Jiménez-Murcia S. Anandamide and 2-arachidonoylglycerol baseline plasma concentrations and their clinical correlate in gambling disorder. Eur Psychiatry 2023; 66:e97. [PMID: 37937379 PMCID: PMC10755577 DOI: 10.1192/j.eurpsy.2023.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
INTRODUCTION Different components of the endocannabinoid (eCB) system such as their most well-known endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), have been implicated in brain reward pathways. While shared neurobiological substrates have been described among addiction-related disorders, information regarding the role of this system in behavioral addictions such as gambling disorder (GD) is scarce. AIMS Fasting plasma concentrations of AEA and 2-AG were analyzed in individuals with GD at baseline, compared with healthy control subjects (HC). Through structural equation modeling, we evaluated associations between endocannabinoids and GD severity, exploring the potentially mediating role of clinical and neuropsychological variables. METHODS The sample included 166 adult outpatients with GD (95.8% male, mean age 39 years old) and 41 HC. Peripheral blood samples were collected after overnight fasting to assess AEA and 2-AG concentrations (ng/ml). Clinical (i.e., general psychopathology, emotion regulation, impulsivity, personality) and neuropsychological variables were evaluated through a semi-structured clinical interview and psychometric assessments. RESULTS Plasma AEA concentrations were higher in patients with GD compared with HC (p = .002), without differences in 2-AG. AEA and 2-AG concentrations were related to GD severity, with novelty-seeking mediating relationships. CONCLUSIONS This study points to differences in fasting plasma concentrations of endocannabinoids between individuals with GD and HC. In the clinical group, the pathway defined by the association between the concentrations of endocannabinoids and novelty-seeking predicted GD severity. Although exploratory, these results could contribute to the identification of potential endophenotypic features that help optimize personalized approaches to prevent and treat GD.
Collapse
Affiliation(s)
- Isabel Baenas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Neus Solé-Morata
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Roser Granero
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mitona Pujadas
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Bernat Mora-Maltas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Ignacio Lucas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Gómez-Peña
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Moragas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Amparo del Pino-Gutiérrez
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, Barcelona, Spain
| | - Javier Tapia
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Susana Jiménez-Murcia
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Pekkarinen L, Kantonen T, Rebelos E, Latva-Rasku A, Dadson P, Karjalainen T, Bucci M, Kalliokoski K, Laitinen K, Houttu N, Kirjavainen AK, Rajander J, Rönnemaa T, Nummenmaa L, Nuutila P. Obesity risk is associated with brain glucose uptake and insulin resistance. Eur J Endocrinol 2022; 187:917-928. [PMID: 36288097 PMCID: PMC9782452 DOI: 10.1530/eje-22-0509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/26/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate whether alterations in brain glucose uptake (BGU), insulin action in the brain-liver axis and whole-body insulin sensitivity occur in young adults in pre-obese state. METHODS Healthy males with either high risk (HR; n = 19) or low risk (LR; n = 22) for developing obesity were studied with [18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography during hyperinsulinemic-euglycemic clamp. Obesity risk was assessed according to BMI, physical activity and parental overweight/obesity and type 2 diabetes. Brain, skeletal muscle, brown adipose tissue (BAT), visceral adipose tissue (VAT) and abdominal and femoral s.c. adipose tissue (SAT) glucose uptake (GU) rates were measured. Endogenous glucose production (EGP) was calculated by subtracting the exogenous glucose infusion rate from the rate of disappearance of [18F]FDG. BGU was analyzed using statistical parametric mapping, and peripheral tissue activity was determined using Carimas Software imaging processing platform. RESULTS BGU was higher in the HR vs LR group and correlated inversely with whole-body insulin sensitivity (M value) in the HR group but not in the LR group. Insulin-suppressed EGP did not differ between the groups but correlated positively with BGU in the whole population, and the correlation was driven by the HR group. Skeletal muscle, BAT, VAT, abdominal and femoral SAT GU were lower in the HR group as compared to the LR group. Muscle GU correlated negatively with BGU in the HR group but not in the LR group. CONCLUSION Increased BGU, alterations in insulin action in the brain-liver axis and decreased whole-body insulin sensitivity occur early in pre-obese state.
Collapse
Affiliation(s)
- Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Marco Bucci
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Noora Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | | | - Johan Rajander
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Tapani Rönnemaa
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Correspondence should be addressed to P Nuutila;
| |
Collapse
|
9
|
An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. BIOSENSORS 2022; 12:bios12100791. [PMID: 36290931 PMCID: PMC9599568 DOI: 10.3390/bios12100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022]
Abstract
In this work, 2-AG was successfully detected in human plasma samples using a new sandwich-type electrochemical immune device based on poly-β-cyclodextrin P(β-CD) functionalized with AuNPs-DDT and toluidine blue. The P(β-CD) ensured the bioactivity and stability of the immobilized 2-AG antibody by providing a broad surface for the efficient immobilization of the biotinylated antibody. To complete the top section of the immunosensor (reporter), an HRP-conjugated antibody of 2-AG (secondary antibody (Ab2)) was attached to the surface of a glassy carbon electrode (GCE) modified by P(β-CD), as well as a primarily biotinylated antibody (Ab1). The biosensor fabrication process was monitored using field-emission scanning electron microscope (FE-SEM) and EDS methods. Using the differential pulse voltammetry technique, the immunosensor was utilized for detection of 2-AG in real samples. The suggested interface increased the surface area, which allowed for the immobilization of a large quantity of anti-2-AG antibody while also improving biocompatibility, stability, and electrical conductivity. Finally, the suggested immunosensor’s limit of quantitation was determined to be 0.0078 ng/L, with a linear range of 0.0078 to 1.0 ng/L. The results showed that the suggested bioassay can be utilized for diagnosis of 2-AG in clinical samples as a unique and ultrasensitive electrochemical biodevice.
Collapse
|
10
|
Kajero JA, Seedat S, Ohaeri JU, Akindele A, Aina O. Effects of cannabidiol on weight and fasting blood sugar with chronic and subchronic haloperidol administration. DISCOVER MENTAL HEALTH 2022; 2:18. [PMID: 37861864 PMCID: PMC10501030 DOI: 10.1007/s44192-022-00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 10/21/2023]
Abstract
OBJECTIVES The duration of administration (e.g., subchronic or chronic) of haloperidol may influence its adverse effects. We studied the effects of duration of administration of haloperidol on body weight and fasting blood sugar (FBS). In addition, we examined whether orally administered cannabidiol (CBD) had any putative mitigating influence on haloperidol-induced body weight changes and FBS elevation. METHODS Haloperidol (5 mg/kg/day) was administered for 21 days (subchronic administration), via the intraperitoneal (IP) route, or monthly (50 mg/kg monthly) for 3 months (chronic administration), via the intramuscular (IM) route, either alone or before CBD (5 mg/kg/day). Oral CBD (5 mg/kg/day) alone and distilled water alone were administered for 21 days. Weight and FBS were measured before administration of pharmacological agents (distilled water in the control group) and post-administration. RESULTS Group differences in average weight across time were significant. Pairwise comparisons showed that mean weight of the subchronic (IP) haloperidol alone group (Group A) and the chronic (IM) haloperidol before CBD group (Group F) increased significantly over time. Post medications, there was a significant increase in mean FBS in the subchronic (IP) haloperidol group compared to the subchronic (IP) haloperidol before CBD group. There was also a significant reduction in mean FBS from the baseline for the control group only. CONCLUSION We demonstrated that the duration of administration of haloperidol influenced weight and FBS in rats, suggesting that metabolic side effects, may be influenced by duration of administration. CBD ameliorated the increase in weight and FBS observed in the subchronic (IP) haloperidol groups.
Collapse
Affiliation(s)
- Jaiyeola Abiola Kajero
- Federal Neuropsychiatric Hospital Yaba, 8, Harvey Road Yaba, P.M.B 2008, Lagos, Nigeria
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive Tygerberg, Cape Town, 7505 South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive Tygerberg, Cape Town, 7505 South Africa
| | - Jude U. Ohaeri
- Department of Psychological Medicine, University of Nigeria Teaching Hospital, Enugu, Enugu State Nigeria
| | - Abidemi Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Private Mail Bag 12003, Lagos, Nigeria
| | - Oluwagbemiga Aina
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), 6, Edmund crescent off Murtala Mohammed way, Yaba, P.M.B. 2013, Lagos, 100001 Nigeria
| |
Collapse
|
11
|
Meah F, Lundholm M, Emanuele N, Amjed H, Poku C, Agrawal L, Emanuele MA. The effects of cannabis and cannabinoids on the endocrine system. Rev Endocr Metab Disord 2022; 23:401-420. [PMID: 34460075 DOI: 10.1007/s11154-021-09682-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 01/24/2023]
Abstract
With the increase in cannabis use due to policy changes and areas of decriminalization, it is important to recognize the potential impact of these substances on endocrine processes. Cannabinoids have many effects by activating the endocannabinoid system. This system plays a role in the normal functioning of nearly every organ and consists of the body's natural endocannabinoids, the cannabinoid receptors, and the enzymes and processes that regulate endocannabinoids. Exogenous cannabinoids such as Δ9-tetrahydrocannabinol (THC) are known to act through cannabinoid type 1 and 2 receptors, and have been shown to mimic endocannabinoid signaling and affect receptor expression. This review summarizes the known impacts of cannabis on thyroid, adrenal, and gonadal function in addition to glucose control, lipids, and bone metabolism, including: reduced female fertility, increased risk of adverse pregnancy outcomes, reduced sperm counts and function, lower thyroid hormone levels with acute use, blunting of stress response with chronic use, increased risk of prediabetes but lower risk of diabetes, suggested improvement of high density lipoproteins and triglycerides, and modest increase in fracture risk. The known properties of endocannabinoids, animal data, population data, and the possible benefits and concerns of cannabinoid use on hormonal function are discussed. The interconnectivity of the endocrine and endocannabinoid systems suggests opportunities for future therapeutic modalities which are an area of active investigation.
Collapse
Affiliation(s)
- Farah Meah
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Michelle Lundholm
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Nicholas Emanuele
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Hafsa Amjed
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Caroline Poku
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Lily Agrawal
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Mary Ann Emanuele
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA.
| |
Collapse
|
12
|
The Endocannabinoid System and Physical Activity—A Robust Duo in the Novel Therapeutic Approach against Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063083. [PMID: 35328503 PMCID: PMC8948925 DOI: 10.3390/ijms23063083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Rapidly increasing worldwide prevalence of obesity and related pathologies encompassing coronary heart disease, hypertension, metabolic syndrome, or type 2 diabetes constitute serious threats to global health and are associated with a significantly elevated risk of premature death. Considering the enormous burden of these pathologies, novel therapeutic and preventive patterns are indispensable. Dysregulation of one of the most complex biological systems in the human body namely, the endocannabinoid system (ECS) may result in metabolic imbalance and development of insulin resistance, type 2 diabetes, or non-alcoholic fatty liver disease. Furthermore, many studies showed that physical exercises, depending on their type, intensity, and frequency, exert various alterations within the ECS. Emerging evidence suggests that targeting the ECS via physical activity may produce robust beneficial effects on the course of metabolic pathologies. However, the data showing a direct correlation between the ECS and physical activity in the aspect of metabolic health are very scarce. Therefore, the aim of this review was to provide the most up-to-date state of knowledge about the interplay between the ECS activity and physical exercises in the novel therapeutic and preventive approach toward metabolic pathologies. We believe that this paper, at least in part, will fulfill the existing gap in knowledge and encourage researchers to further explore this very complex yet interesting link between the ECS, its action in physical activity, and subsequent positive outcomes for metabolic health.
Collapse
|
13
|
Obesity risk is associated with altered cerebral glucose metabolism and decreased μ-opioid and CB 1 receptor availability. Int J Obes (Lond) 2021; 46:400-407. [PMID: 34728775 PMCID: PMC8794779 DOI: 10.1038/s41366-021-00996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is a pressing public health concern worldwide. Novel pharmacological means are urgently needed to combat the increase of obesity and accompanying type 2 diabetes (T2D). Although fully established obesity is associated with neuromolecular alterations and insulin resistance in the brain, potential obesity-promoting mechanisms in the central nervous system have remained elusive. In this triple-tracer positron emission tomography study, we investigated whether brain insulin signaling, μ-opioid receptors (MORs) and cannabinoid CB1 receptors (CB1Rs) are associated with risk for developing obesity. METHODS Subjects were 41 young non-obese males with variable obesity risk profiles. Obesity risk was assessed by subjects' physical exercise habits, body mass index and familial risk factors, including parental obesity and T2D. Brain glucose uptake was quantified with [18F]FDG during hyperinsulinemic euglycemic clamp, MORs were quantified with [11C]carfentanil and CB1Rs with [18F]FMPEP-d2. RESULTS Subjects with higher obesity risk had globally increased insulin-stimulated brain glucose uptake (19 high-risk subjects versus 19 low-risk subjects), and familial obesity risk factors were associated with increased brain glucose uptake (38 subjects) but decreased availability of MORs (41 subjects) and CB1Rs (36 subjects). CONCLUSIONS These results suggest that the hereditary mechanisms promoting obesity may be partly mediated via insulin, opioid and endocannabinoid messaging systems in the brain.
Collapse
|
14
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W, Nedamat K. The Current and Potential Application of Medicinal Cannabis Products in Dentistry. Dent J (Basel) 2021; 9:106. [PMID: 34562980 PMCID: PMC8466648 DOI: 10.3390/dj9090106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kaveh Nedamat
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
- Auraleaf Innovations, Toronto, ON M9B 4H6, Canada
| |
Collapse
|
15
|
Kantonen T, Karjalainen T, Pekkarinen L, Isojärvi J, Kalliokoski K, Kaasinen V, Hirvonen J, Nuutila P, Nummenmaa L. Cerebral μ-opioid and CB 1 receptor systems have distinct roles in human feeding behavior. Transl Psychiatry 2021; 11:442. [PMID: 34453034 PMCID: PMC8397789 DOI: 10.1038/s41398-021-01559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Eating behavior varies greatly between individuals, but the neurobiological basis of these trait-like differences in feeding remains poorly understood. Central μ-opioid receptors (MOR) and cannabinoid CB1 receptors (CB1R) regulate energy balance via multiple neural pathways, promoting food intake and reward. Because obesity and eating disorders have been associated with alterations in the brain's opioid and endocannabinoid signaling, the variation in MOR and CB1R system function could potentially underlie distinct eating behavior phenotypes. In this retrospective positron emission tomography (PET) study, we analyzed [11C]carfentanil PET scans of MORs from 92 healthy subjects (70 males and 22 females), and [18F]FMPEP-d2 scans of CB1Rs from 35 subjects (all males, all also included in the [11C]carfentanil sample). Eating styles were measured with the Dutch Eating Behavior Questionnaire (DEBQ). We found that lower cerebral MOR availability was associated with increased external eating-individuals with low MORs reported being more likely to eat in response to environment's palatable food cues. CB1R availability was associated with multiple eating behavior traits. We conclude that although MORs and CB1Rs overlap anatomically in brain regions regulating food reward, they have distinct roles in mediating individual feeding patterns. Central MOR system might provide a pharmacological target for reducing individual's excessive cue-reactive eating behavior.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland. .,Clinical Neurosciences, University of Turku, Turku, Finland.
| | - Tomi Karjalainen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Janne Isojärvi
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Kari Kalliokoski
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Cocozza G, Garofalo S, Morotti M, Chece G, Grimaldi A, Lecce M, Scavizzi F, Menghini R, Casagrande V, Federici M, Raspa M, Wulff H, Limatola C. The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca 2+ -activated K Ca 3.1 channels. Br J Pharmacol 2021; 178:4891-4906. [PMID: 34411281 PMCID: PMC9293222 DOI: 10.1111/bph.15665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) patients exhibit dysfunctional energy metabolism and weight loss, which is negatively correlated with survival, together with neuroinflammation. However, the possible contribution of neuroinflammation to deregulations of feeding behaviour in ALS has not been studied in detail. We here investigated if microglial KCa 3.1 is linked to hypothalamic neuroinflammation and affects feeding behaviours in ALS mouse models. EXPERIMENTAL APPROACH hSOD1G93A and TDP43A315T mice were treated daily with 120 mg·kg-1 of TRAM-34 or vehicle by intraperitoneal injection from the presymptomatic until the disease onset phase. Body weight and food intake were measured weekly. The later by weighing food provided minus that left in the cage. RT-PCR and immunofluorescence analysis were used to characterize microglia phenotype and the main populations of melanocortin neurons in the hypothalamus of hSOD1G93A and age-matched non-tg mice. The cannabinoid-opioid interactions in feeding behaviour of hSOD1G93A mice were studied using an inverse agonist and an antagonist of the cannabinoid receptor CB1 (rimonabant) and μ-opioid receptors (naloxone), respectively. KEY RESULTS We found that treatment of hSOD1G93A mice with the KCa 3.1 inhibitor TRAM-34 (i), attenuates the pro-inflammatory phenotype of hypothalamic microglia, (ii) increases food intake and promotes weight gain, (iii) increases the number of healthy pro-opiomelanocortin (POMC) neurons and (iv), changes the expression of cannabinoid receptors involved in energy homeostasis. CONCLUSION AND IMPLICATIONS Using ALS mouse models, we describe defects in the hypothalamic melanocortin system that affect appetite control. These results reveal a new regulatory role for KCa 3.1 to counteract weight loss in ALS.
Collapse
Affiliation(s)
- Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alfonso Grimaldi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Mario Lecce
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Menghini
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Cognitive impairments in patients with overweight and obesity. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. In modern society, the growth of the overweight and obese population increase every year. This confirms the status assigned to the problem under consideration as a non-infectious epidemic of the 21st century. At the same time, the amount of scientific information about the influence of excess weight on various aspects of human life is actively increasing. This undoubtedly requires a systematic generalization of the available data.Aims. The presented literature review is devoted to the analysis of modern scientific research on the specificity of cognitive impairment in overweight and obese people.Materials and methods. Information search was carried out using Internet resources (PubMed, Web of Science, eLibrary.ru, frontiersin.org, sciencedirect. com, ncbi.nlm.nih.gov), literature sources were analyzed for the period from 2001 to 2020 for the following keywords: obesity, overweight, cognitive functions, cognitions, cognitive impairments.Results. As a result of the literature review, the main directions of research on the relationship between cognitive impairment and overweight, as well as the relationship between cognitive dysfunction and obesity, were identified. The specificity of diametrically opposed opinions within the framework of each consecrated trend is presented. According to the results of the analysis of the identified areas, in the scientific community the most common point of view is the presence of a connection between obesity and cognitive impairment. In this connection, the authors identified the main cognitive impairments associated with excess weight and their mediating mechanisms. And also the age specificity of the problem under study is indicated.Conclusions. Despite the fact that the problem of the relationship between obesity, overweight and cognitive functions is comprehensively studied, there is a shortage of data on the state of thinking, attention, praxis, gnosis, and speech in overweight people.
Collapse
|
18
|
Tovar R, Vargas A, Aranda J, Sánchez-Salido L, González-González L, Chowen JA, Rodríguez de Fonseca F, Suárez J, Rivera P. Analysis of Both Lipid Metabolism and Endocannabinoid Signaling Reveals a New Role for Hypothalamic Astrocytes in Maternal Caloric Restriction-Induced Perinatal Programming. Int J Mol Sci 2021; 22:ijms22126292. [PMID: 34208173 PMCID: PMC8230792 DOI: 10.3390/ijms22126292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal malnutrition in critical periods of development increases the risk of developing short- and long-term diseases in the offspring. The alterations induced by this nutritional programming in the hypothalamus of the offspring are of special relevance due to its role in energy homeostasis, especially in the endocannabinoid system (ECS), which is involved in metabolic functions. Since astrocytes are essential for neuronal energy efficiency and are implicated in brain endocannabinoid signaling, here we have used a rat model to investigate whether a moderate caloric restriction (R) spanning from two weeks prior to the start of gestation to its end induced changes in offspring hypothalamic (a) ECS, (b) lipid metabolism (LM) and/or (c) hypothalamic astrocytes. Monitorization was performed by analyzing both the gene and protein expression of proteins involved in LM and ECS signaling. Offspring born from caloric-restricted mothers presented hypothalamic alterations in both the main enzymes involved in LM and endocannabinoids synthesis/degradation. Furthermore, most of these changes were similar to those observed in hypothalamic offspring astrocytes in culture. In conclusion, a maternal low caloric intake altered LM and ECS in both the hypothalamus and its astrocytes, pointing to these glial cells as responsible for a large part of the alterations seen in the total hypothalamus and suggesting a high degree of involvement of astrocytes in nutritional programming.
Collapse
Affiliation(s)
- Rubén Tovar
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Andalucia Tech, Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Jesús Aranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- Andalucia Tech, Facultad de Medicina, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Laura González-González
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
| | - Julie A. Chowen
- Department of Endocrinology, Instituto de Investigación Biomédica la Princesa, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain;
- CIBEROBN (Centro de Investigación Biomédica en Red Sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, 28009 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, 28009 Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence: (J.S.); (P.R.); Tel.: +34-952614012 (J.S.); +34-952614012 (P.R.)
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; (R.T.); (A.V.); (J.A.); (L.S.-S.); (L.G.-G.); (F.R.d.F.)
- UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (P.R.); Tel.: +34-952614012 (J.S.); +34-952614012 (P.R.)
| |
Collapse
|
19
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
20
|
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol 2021; 33:e12965. [PMID: 33856071 DOI: 10.1111/jne.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Easy access to palatable food and an abundance of food-related cues exacerbate non-homeostatic feeding. The metabolic and economical sequelae of non-homeostatic feeding outweigh those of homeostatic feeding and contribute significantly to the global obesity pandemic. The mesolimbic dopamine system is the primary central circuit that governs the motivation to consume food. Insulin and endocannabinoids (eCBs) are two major, presumably opposing, players in regulating homeostatic and non-homeostatic feeding centrally and peripherally. Insulin is generally regarded as a postprandial satiety signal, whereas eCBs mainly function as pre-prandial orexinergic signals. In this review, we discuss the effects of insulin and eCB-mediated actions within the mesolimbic pathways. We propose that insulin and eCBs have regional- and time course-dependent roles. We discuss their mechanisms of actions in the ventral tegmental area and nucleus accumbens, as well as how their mechanisms converge to finely tune dopaminergic activity and food intake.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Lacerda DC, Urquiza-Martínez MV, Manhaes-de-Castro R, Visco DB, Derosier C, Mercado-Camargo R, Torner L, Toscano AE, Guzmán-Quevedo O. Metabolic and neurological consequences of the treatment with polyphenols: a systematic review in rodent models of noncommunicable diseases. Nutr Neurosci 2021; 25:1680-1696. [PMID: 33650943 DOI: 10.1080/1028415x.2021.1891614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Noncommunicable diseases (NCDs) lead to drastic metabolic alterations with associated energy balance and body weight changes, two related physiological processes regulated by the brain. Polyphenol-based treatments for NCDs have emerged as a promising therapy, which seems to involve the energy balance modulation. However, it remains unclear what the most effective polyphenols-based treatment is to attenuate adverse effects in the energy balance of NCDs. OBJECTIVES This systematic review aimed to evaluate the literature on the metabolic and neurological effects of polyphenols-based treatment in rodent models of NCDs. METHODS Literature search was carried out in the following databases: CINAHL, Medline/PubMed, SCOPUS, and Web of Science. For title and abstract screening, original papers with polyphenols exposure in rodents were selected. For full-text screening, studies with models of NCDs that reported metabolic and neurological outcomes when treated with polyphenols were selected for inclusion in this review. RESULTS 23 articles, using individual compound (11 articles) or polyphenols extracts (12 articles), were included in this review: 5 articles using tea polyphenols, 12 articles using grape-derived polyphenols, 3 articles using the polyphenol quercetin, and 3 articles using other polyphenol sources. Most results agree on the beneficial effect of polyphenols in attenuating alterations in energy balance and body weight. Such effects were associated with neuroprotective responses in different brain areas including hippocampus and hypothalamus. CONCLUSION In conclusion, this review shows that the treatment with polyphenols, especially resveratrol or quercetin, attenuates the adverse effects of NCDs on energy balance and are associated with neuroprotective effects.
Collapse
Affiliation(s)
- D C Lacerda
- Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - M V Urquiza-Martínez
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.,Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - R Manhaes-de-Castro
- Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - D B Visco
- Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - C Derosier
- Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil
| | - R Mercado-Camargo
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - L Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - A E Toscano
- Unidade de Estudos em Nutrição e Plasticidade Fenotípica do Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil.,Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departmento de Enfermagem, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - O Guzmán-Quevedo
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico.,Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Mexico
| |
Collapse
|
22
|
Late effects of early weaning on food preference and the dopaminergic and endocannabinoid systems in male and female rats. J Dev Orig Health Dis 2021; 13:90-100. [PMID: 33650480 DOI: 10.1017/s2040174421000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early weaning (EW) is associated with obesity later in life. Here, using an EW model in rats, we investigated changes in feeding behavior and the dopaminergic and endocannabinoid systems (ECS) in the adult offspring. Lactating Wistar rats were divided into two groups: EW, dams were wrapped with a bandage to interrupt suckling during the last 3 days of breastfeeding; CONT; dams fed the pups throughout the period without hindrances. EW animals were compared with CONT animals of the same sex. At PN175, male and female offspring of both groups could freely self-select between high-fat and high-sugar diets (food challenge test). EW males preferred the high-fat diet at 30 min and more of the high-sugar diet after 12 h compared to CONT males. EW females did not show differences in their preference for the palatable diets compared to CONT females. Total intake of standard diet from PN30-PN180 was higher in both male and female EW animals, indicating hyperphagia. At PN180, EW males showed lower type 2 dopamine receptor (D2r) in the nucleus accumbens (NAc) and dorsal striatum, while EW females had lower tyrosine hydroxylase in the ventral tegmental area and NAc, D1r in the NAc, and D2r in the prefrontal cortex. In the lateral hypothalamus, EW males had lower fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, whereas EW females showed lower N-arachidonoyl-phosphatidylethanolamine phospholipase-D and increased FAAH. Early weaning altered both the dopaminergic and ECS parameters at adulthood, contributing to the eating behavior changes of the progeny in a sex-dependent manner.
Collapse
|
23
|
Peng H, Shahidi F. Cannabis and Cannabis Edibles: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1751-1774. [PMID: 33555188 DOI: 10.1021/acs.jafc.0c07472] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cannabis is an excellent natural source of fiber and various bioactive cannabinoids. So far, at least 120 cannabinoids have been identified, and more novel cannabinoids are gradually being unveiled by detailed cannabis studies. However, cannabinoids in both natural and isolated forms are especially vulnerable to oxygen, heat, and light. Therefore, a diversity of cannabinoids is associated with their chemical instability to a large extent. The research status of structural conversion of cannabinoids is introduced. On the other hand, the use of drug-type cannabis and the phytocannabinoids thereof has been rapidly popularized and plays an indispensable role in both medical therapy and daily recreation. The recent legalization of edible cannabis further extends its application into the food industry. The varieties of legal edible cannabis products in the current commercial market are relatively monotonous due to rigorous restrictions under the framework of Cannabis Regulations and infancy of novel developments. Meanwhile, patents/studies related to the safety and quality assurance systems of cannabis edibles are still rare and need to be developed. Furthermore, along with cannabinoids, many phytochemicals such as flavonoids, lignans, terpenoids, and polysaccharides exist in the cannabis matrix, and these may exhibit prebiotic/probiotic properties and improve the composition of the gut microbiome. During metabolism and excretion, the bioactive phytochemicals of cannabis, mostly the cannabinoids, may be structurally modified during enterohepatic detoxification and gut fermentation. However, the potential adverse effects of both acute and chronic exposure to cannabinoids and their vulnerable groups have been clearly recognized. Therefore, a comprehensive understanding of the chemistry, metabolism, toxicity, commercialization, and regulations regarding cannabinoid edibles is reviewed and updated in this contribution.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| | - Fereidoon Shahidi
- Department of Biochemistry Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| |
Collapse
|
24
|
Mobed A, Kohansal F, Ahmadalipour A, Hasanzadeh M, Zargari F. Bioconjugation of 2-arachidonoyl glycerol (2-AG) biotinylated antibody with gold nano-flowers toward immunosensing of 2-AG in human plasma samples: A novel immuno-platform for the screening of immunomodulation and neuroprotection using biosensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:311-321. [PMID: 33367337 DOI: 10.1039/d0ay02135k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human 2-arachidonoylglycerol (2-AG) is an agonist of endocannabinoid system and acts as an important modulator of many physiological processes such as emotional state and pain sensation. Identification and quantification of 2-AG is vital for medical and pathological processes. There are no reports on the measurement of 2-AG in human biofluids using modern methods such as biosensors. This study reports an ultra-sensitive and selective immunosensor to determine endocannabinoids 2-AG in human plasma samples. In this study, gold nano-flowers (AuNFs) were synthesized and conjugated with a specific biotinylated antibody of 2-AG. Bioconjugated composite (bioreceptor with AuNFs) was immobilized on the surface of a gold electrode and used for the monitoring of the antigen (target molecules) based on the immunoreaction process. Moreover, a constructed interface was characterized by field-emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential methods. Using the proposed immuno-platform, 2-AG was determined in two dynamic ranges of 0.00024-0.0078 ng L-1 and 2-16 ng L-1 with a lower limit of quantitation (LLOQ) of 0.00024 ng L-1. These results suggest that our immunosensor might be appropriate for an early diagnosis of 2-AG towards the screening of immunomodulatory activity and neuroprotection.
Collapse
Affiliation(s)
- Ahmad Mobed
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 51664, Iran.
| | | | | | | | | |
Collapse
|
25
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
26
|
Jorgačević B, Vučević D, Samardžić J, Mladenović D, Vesković M, Vukićević D, Ješić R, Radosavljević T. The Effect of CB1 Antagonism on Hepatic Oxidative/Nitrosative Stress and Inflammation in Nonalcoholic Fatty Liver Disease. Curr Med Chem 2021; 28:169-180. [PMID: 32124686 DOI: 10.2174/0929867327666200303122734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 01/25/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the endocannabinoid system (ES) has been identified in nonalcoholic fatty liver disease (NAFLD) and associated metabolic disorders. Cannabinoid receptor type 1 (CB1) expression is largely dependent on nutritional status. Thus, individuals suffering from NAFLD and metabolic syndrome (MS) have a significant increase in ES activity. Furthermore, oxidative/ nitrosative stress and inflammatory process modulation in the liver are highly influenced by the ES. Numerous experimental studies indicate that oxidative and nitrosative stress in the liver is associated with steatosis and portal inflammation during NAFLD. On the other hand, inflammation itself may also contribute to reactive oxygen species (ROS) production due to Kupffer cell activation and increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The pathways by which endocannabinoids and their lipid-related mediators modulate oxidative stress and lipid peroxidation represent a significant area of research that could yield novel pharmaceutical strategies for the treatment of NAFLD. Cumulative evidence suggested that the ES, particularly CB1 receptors, may also play a role in inflammation and disease progression toward steatohepatitis. Pharmacological inactivation of CB1 receptors in NAFLD exerts multiple beneficial effects, particularly due to the attenuation of hepatic oxidative/nitrosative stress parameters and significant reduction of proinflammatory cytokine production. However, further investigations regarding precise mechanisms by which CB1 blockade influences the reduction of hepatic oxidative/nitrosative stress and inflammation are required before moving toward the clinical phase of the investigation.
Collapse
Affiliation(s)
- Bojan Jorgačević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Vukićević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Ješić
- Institute of Digestive Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
27
|
Nava-Molina L, Uchida-Fuentes T, Ramos-Tovar H, Fregoso-Padilla M, Rodríguez-Monroy MA, Vega AV, Navarrete-Vázquez G, Andrade-Jorge E, Villalobos-Molina R, Ortiz-Ortega R, Vilches-Flores A. Novel CB1 receptor antagonist BAR-1 modifies pancreatic islet function and clinical parameters in prediabetic and diabetic mice. Nutr Diabetes 2020; 10:7. [PMID: 32132523 PMCID: PMC7055595 DOI: 10.1038/s41387-020-0110-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUDS Cannabinoid receptor antagonists have been suggested as a novel treatment for obesity and diabetes. We have developed a synthetic cannabinoid receptor antagonist denominated BAR-1. As the function and integrity of a β-cell cellular structure are important keys for diabetes onset, we evaluated the effects of pharmacological administration of BAR-1 on prediabetic and diabetic rodents. METHODS CD-1 mice fed a hypercaloric diet or treated with streptozotocin were treated with 10 mg/kg BAR-1 for 2, 4 or 8 weeks. Body weight, oral glucose tolerance test, HbA1c, triglycerides and insulin in serum were measured. In isolated islets, we evaluated stimulated secretion and mRNA expression, and relative area of islets in fixed pancreases. Docking analysis of BAR-1 was complemented. RESULTS BAR-1 treatment slowed down weight gain in prediabetic mice. Fasting glucose-insulin relation also decreased in BAR-1-treated mice and glucose-stimulated insulin secretion was increased in isolated islets, without effects in oral test. Diabetic mice treated with BAR-1 showed a reduced glucose and a partial recovery of islet integrity. Gene expression of insulin and glucagon showed biphasic behaviour, increasing after 4 weeks of BAR-1 administration; however, after 8 weeks, mRNA abundance decreased significantly. Administration of BAR-1 also prevents changes in endocannabinoid element expression observed in prediabetic mice. No changes were detected in other parameters studied, including the histological structure. A preliminary in-silico study suggests a close interaction with CB1 receptor. CONCLUSIONS BAR-1 induces improvement of islet function, isolated from both prediabetic and diabetic mice. Effects of BAR-1 suggest a possible interaction with other cannabinoid receptors.
Collapse
Affiliation(s)
- Lesly Nava-Molina
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Toyokazu Uchida-Fuentes
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Héctor Ramos-Tovar
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Martha Fregoso-Padilla
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Marco Aurelio Rodríguez-Monroy
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Ana V Vega
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Chamilpa, C.P., 62209, Cuernavaca, Morelos, Mexico
| | - Erik Andrade-Jorge
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Ricardo Ortiz-Ortega
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Alonso Vilches-Flores
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico.
| |
Collapse
|
28
|
Farokhnia M, McDiarmid GR, Newmeyer MN, Munjal V, Abulseoud OA, Huestis MA, Leggio L. Effects of oral, smoked, and vaporized cannabis on endocrine pathways related to appetite and metabolism: a randomized, double-blind, placebo-controlled, human laboratory study. Transl Psychiatry 2020; 10:71. [PMID: 32075958 PMCID: PMC7031261 DOI: 10.1038/s41398-020-0756-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
As perspectives on cannabis continue to shift, understanding the physiological and behavioral effects of cannabis use is of paramount importance. Previous data suggest that cannabis use influences food intake, appetite, and metabolism, yet human research in this regard remains scant. The present study investigated the effects of cannabis administration, via different routes, on peripheral concentrations of appetitive and metabolic hormones in a sample of cannabis users. This was a randomized, crossover, double-blind, placebo-controlled study. Twenty participants underwent four experimental sessions during which oral cannabis, smoked cannabis, vaporized cannabis, or placebo was administered. Active compounds contained 6.9 ± 0.95% (~50.6 mg) ∆9-tetrahydrocannabinol (THC). Repeated blood samples were obtained, and the following endocrine markers were measured: total ghrelin, acyl-ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and insulin. Results showed a significant drug main effect (p = 0.001), as well as a significant drug × time-point interaction effect (p = 0.01) on insulin. The spike in blood insulin concentrations observed under the placebo condition (probably due to the intake of brownie) was blunted by cannabis administration. A significant drug main effect (p = 0.001), as well as a trend-level drug × time-point interaction effect (p = 0.08) was also detected for GLP-1, suggesting that GLP-1 concentrations were lower under cannabis, compared to the placebo condition. Finally, a significant drug main effect (p = 0.01) was found for total ghrelin, suggesting that total ghrelin concentrations during the oral cannabis session were higher than the smoked and vaporized cannabis sessions. In conclusion, cannabis administration in this study modulated blood concentrations of some appetitive and metabolic hormones, chiefly insulin, in cannabis users. Understanding the mechanisms underpinning these effects may provide additional information on the cross-talk between cannabinoids and physiological pathways related to appetite and metabolism.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Gray R. McDiarmid
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Matthew N. Newmeyer
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA ,grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Vikas Munjal
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Osama A. Abulseoud
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Marilyn A. Huestis
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA ,grid.265008.90000 0001 2166 5843Lambert Center for the Study of Medicinal Cannabis and Hemp, Thomas Jefferson University, Philadelphia, PA USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA. .,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
29
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
30
|
Udi S, Hinden L, Ahmad M, Drori A, Iyer MR, Cinar R, Herman-Edelstein M, Tam J. Dual inhibition of cannabinoid CB 1 receptor and inducible NOS attenuates obesity-induced chronic kidney disease. Br J Pharmacol 2019; 177:110-127. [PMID: 31454063 PMCID: PMC6976880 DOI: 10.1111/bph.14849] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose Obesity, an important risk factor for developing chronic kidney disease (CKD), affects the kidneys by two main molecular signalling pathways: the endocannabinoid/CB1 receptor system, whose activation in obesity promotes renal inflammation, fibrosis, and injury, and the inducible NOS (iNOS), which generates ROS resulting in oxidative stress. Hence, a compound that inhibits both peripheral CB1 receptors and iNOS may serve as an effective therapeutic agent against obesity‐induced CKD. Experimental Approach Here, we describe the effect of a novel peripherally restricted, orally bioavailable dual CB1 receptor/iNOS antagonist, MRI‐1867 (3 mg·kg−1), in ameliorating obesity‐induced CKD, and compared its metabolic and renal efficacies to a stand‐alone peripheral CB1 receptor antagonist (JD5037; 3 mg·kg−1), iNOS antagonist (1400W; 10 mg·kg−1), and pair feeding. Mice with high‐fat diet‐induced obesity were treated orally with these compounds or vehicle (Veh) for 28 days. Standard diet‐fed mice treated with Veh served as controls. Key Results Enhanced expression of CB1 receptors and iNOS in renal tubules was found in human kidney patients with obesity and other CKDs. The hybrid inhibitor ameliorated obesity‐induced kidney morphological and functional changes via decreasing kidney inflammation, fibrosis, oxidative stress, and renal injury. Some of these features were independent of the improved metabolic profile mediated via inhibition of CB1 receptors. An additional interesting finding is that these beneficial effects on the kidney were partially associated with modulating renal adiponectin signalling. Conclusions and Implications Collectively, our results highlight the therapeutic relevance of blocking CB1 receptors and iNOS in ameliorating obesity‐induced CKD.
Collapse
Affiliation(s)
- Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michal Herman-Edelstein
- Department of Nephrology & Hypertension, Rabin Medical Center, Petah Tikva, Israel.,Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
31
|
Soares PN, Miranda RA, Peixoto TC, Caramez FAH, Guarda DS, Manhães AC, de Oliveira E, de Moura EG, Lisboa PC. Cigarette smoke during lactation in rat female progeny: Late effects on endocannabinoid and dopaminergic systems. Life Sci 2019; 232:116575. [PMID: 31211999 DOI: 10.1016/j.lfs.2019.116575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
Abstract
AIMS Maternal smoking is considered a risk factor for childhood obesity. In a rat model of tobacco exposure during breastfeeding, we previously reported hyperphagia, overweight, increased visceral fat and hyperleptinemia in adult female offspring. Obesity and eating disorders are associated with impairment in the endocannabinoid (EC) and dopaminergic (DA) systems. Considering that women are prone to eating disorders, we hypothesize that adult female Wistar rats that were exposed to cigarette smoke (CS) during the suckling period would develop EC and DA systems deregulation, possibly explaining the eating disorder in this model. MATERIAL AND METHODS To mimic maternal smoking, from postnatal day 3 to 21, dams and offspring were exposed to a smoking machine, 4×/day/1 h (CS group). Control animals were exposed to ambient air. Offspring were evaluated at 26 weeks of age. KEY FINDINGS Concerning the EC system, the CS group had increased expression of diacylglycerol lipase (DAGL) in the lateral hypothalamus (LH) and decreased in the liver. In the visceral adipose tissue, the EC receptor (CB1r) was decreased. Regarding the DA system, the CS group showed higher dopamine transporter (DAT) protein expression in the prefrontal cortex (PFC) and lower DA receptor (D2r) in the arcuate nucleus (ARC). We also assessed the hypothalamic leptin signaling, which was shown to be unchanged. CS offspring showed decreased plasma 17β-estradiol. SIGNIFICANCE Neonatal CS exposure induces changes in some biomarkers of the EC and DA systems, which can partially explain the hyperphagia observed in female rats.
Collapse
Affiliation(s)
- P N Soares
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - R A Miranda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - T C Peixoto
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - F A H Caramez
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - D S Guarda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - A C Manhães
- Neurophysiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - E de Oliveira
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - E G de Moura
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - P C Lisboa
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
The influence of the fatty acid amide hydrolase 385C>A single nucleotide polymorphisms on obesity susceptibility. Mol Biol Rep 2019; 46:5049-5055. [PMID: 31286394 DOI: 10.1007/s11033-019-04956-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
The chronic over-activation of the endogenously produced cannabinoids in obesity has been demonstrated in several studies. A common 385C>A single nucleotide polymorphism of the fatty acid amide hydrolase, one the most important inactivating enzymes of endogenous cannabinoids, has been shown to be associated with obese phenotype. This study was designed to investigate the FAAH gene polymorphisms and to compare the obesity indices between different genotypes in Iranian overweight/obese women. A total of 180 healthy overweight/obese subjects (BMI = 25 to 40 kg/m2) and 86 normal weight individuals (BMI = 18.5 to 24.9 kg/m2) were genotyped for 385 C/A polymorphism of FAAH using amplification refractory mutation system (ARMS)-PCR. Anthropometric indices including BMI, waist circumference, neck circumference, waist to height ratio, fat mass were evaluated. A written informed consent form was given by the participants. The genotype and allele frequencies were significantly different between the overweight/obese and control groups (P = 0.04). Significant differences were observed between the CC genotype and the AA+CA genotype regarding the anthropometric indices (P < 0.05). Compared to CC group, a higher BMI, WC, WHtR, NC and fat mass was identified in allele A carriers group. After adjusting for age, marital and physical activity status, it was revealed that having the CA/AA genotype increased the probability of obesity risk almost two times (P < 0.05, 95% CI 1.19-3.67). Our findings showed that the frequency of A allele was greater in overweight/obese individuals. Also, a mutation in FAAH gene was associated with higher anthropometric indices and the CA/AA genotype increased significantly the possibility of being obese in Iranian women.
Collapse
|
33
|
Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019; 10:genes10050350. [PMID: 31072002 PMCID: PMC6562925 DOI: 10.3390/genes10050350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic β-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Jose M Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Alejandro Martín-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Irene Diaz Contreras
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Abdelkrim Hmadcha
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Bernat Soria
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Francisco Martin Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jose C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
34
|
Palma-Chavez A, Konar-Nié M, Órdenes P, Maurelia F, Elizondo-Vega R, Oyarce K, López S, Rojas J, Steinberg X, García-Robles MA, Sepúlveda FJ. Glucose Increase DAGLα Levels in Tanycytes and Its Inhibition Alters Orexigenic and Anorexigenic Neuropeptides Expression in Response to Glucose. Front Endocrinol (Lausanne) 2019; 10:647. [PMID: 31620093 PMCID: PMC6763563 DOI: 10.3389/fendo.2019.00647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of a group of Gi-coupled protein receptors and enzymes, producing and degrading the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA). Endocannabinoid-mediated signaling modulates brain functions, such as pain, mood, memory, and feeding behavior. The activation of the ECS is associated with overeating and obesity; however, the expression of components of this system has been only partially studied in the hypothalamus, a critical region implicated in feeding behavior. Within this brain region, anorexigenic, and orexigenic neurons of the arcuate nucleus (ARC) are in close contact with tanycytes, glial radial-like cells that line the lateral walls and floor of the third ventricle (3V). The specific function of tanycytes and the effects of metabolic signals generated by them on adjacent neurons is starting to be elucidated. We have proposed that the ECS within tanycytes modulates ARC neurons, thus modifying food intake. Here, we evaluated the expression and the loss of function of the 2-AG-producing enzyme, diacylglycerol lipase-alpha (DAGLα). Using Western blot and immunohistochemistry analyses in basal hypothalamus sections of adult rats under several glycemic conditions, we confirm that DAGLα is strongly expressed at the basal hypothalamus in glial and neuronal cells, increasing further in response to greater extracellular glucose levels. Using a DAGLα-inhibiting adenovirus (shRNA), suppression of DAGLα expression in tanycytes altered the usual response to intracerebroventricular glucose in terms of neuropeptides produced by neurons of the ARC. Thus, these results strongly suggest that the tanycytes could generate 2-AG, which modulates the function of anorexigenic and orexigenic neurons.
Collapse
Affiliation(s)
- Alejandra Palma-Chavez
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Macarena Konar-Nié
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Patricio Órdenes
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Felipe Maurelia
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Sergio López
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Joaquin Rojas
- Centro de Estudios Avanzados para la Vida (CREAV), Universidad de Concepción, Concepción, Chile
| | - Ximena Steinberg
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - María A. García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
- Centro de Estudios Avanzados para la Vida (CREAV), Universidad de Concepción, Concepción, Chile
- *Correspondence: María A. García-Robles
| | - Fernando J. Sepúlveda
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
- Fernando J. Sepúlveda
| |
Collapse
|
35
|
Brkić D, Jorgačević B. The role of cannabinoid receptor 1 in the development of oxidative/nitrosative stress in mice with non-alcoholic fatty liver disease. MEDICINSKI PODMLADAK 2019. [DOI: 10.5937/mp70-17890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
36
|
Jiang H, Wu Y, Valverde P, Murray D, Tang J, Yao Q, Han Q, Zhang J, Zhang L, Sui L, Tang Y, Tu Q, Chen J. Central adiponectin induces trabecular bone mass partly through epigenetic downregulation of cannabinoid receptor CB1. J Cell Physiol 2018; 234:7062-7069. [PMID: 30479003 DOI: 10.1002/jcp.27460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Central adiponectin (APN) in either the globular (gAPN) or full-length forms decreases sympathetic tone and increases trabecular bone mass in mice through the hypothalamus. It is known that cannabinoid type-1 (CB1) receptors are expressed in the hypothalamic ventromedial nucleus and participate in energy metabolism by controlling sympathetic activity. However, whether central APN could influence endocannabinoid signaling through CB1 receptor to regulate bone metabolism has not been characterized. Here we demonstrate that gAPN downregulated CB1 expression in embryonic mouse hypothalamus N1 cells in vitro. gAPN intracerebroventricular (icv) infusions also decreased hypothalamic CB1 expression and bone formation parameters in APN-knockout (APN-KO) and wild-type mice. Most importantly, mice pretreated with icv infusions with the CB1 receptor agonist arachidonyl-2'-chloroethylamine or antagonist rimonabant attenuated or enhanced respectively central APN induction of bone formation. We then investigated whether epigenetic signaling mechanisms were involved in the downregulation of hypothalamic CB1 expression by gAPN. We found gAPN enhanced expression levels of various histone deacetylases (HDACs), especially HDAC5. Furthermore, chromatin immunoprecipitation assays revealed HDAC5 bound to the transcriptional start site transcription start site 2 region of the CB1 promoter. In summary, our study identified a possible novel central APN-HDAC5-CB1 signaling mechanism that promotes peripheral bone formation through epigenetic regulation of hypothalamic CB1 expression.
Collapse
Affiliation(s)
- Hua Jiang
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts.,Department of Stomatology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, China
| | - Yuwei Wu
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts.,2nd Dental Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Paloma Valverde
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Dana Murray
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jin Tang
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Qi Yao
- Department of Orthopaedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Han
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jin Zhang
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Lan Zhang
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Lei Sui
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Yin Tang
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Qisheng Tu
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jake Chen
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts.,Department of Anatomy and Cell Biology, Tufts University School of Medicine and Sackler School of Biomedical Sciences, Boston, Massachusetts
| |
Collapse
|
37
|
Exploring the Ligand Efficacy of Cannabinoid Receptor 1 (CB1) using Molecular Dynamics Simulations. Sci Rep 2018; 8:13787. [PMID: 30213978 PMCID: PMC6137198 DOI: 10.1038/s41598-018-31749-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/23/2018] [Indexed: 11/08/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a promising therapeutic target for a variety of disorders. Distinct efficacy profiles showed different therapeutic effects on CB1 dependent on three classes of ligands: agonists, antagonists, and inverse agonists. To discriminate the distinct efficacy profiles of the ligands, we carried out molecular dynamics (MD) simulations to identify the dynamic behaviors of inactive and active conformations of CB1 structures with the ligands. In addition, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was applied to analyze the binding free energy decompositions of the CB1-ligand complexes. With these two methods, we found the possibility that the three classes of ligands can be discriminated. Our findings shed light on the understanding of different efficacy profiles of ligands by analyzing the structural behaviors of intact CB1 structures and the binding energies of ligands, thereby yielding insights that are useful for the design of new potent CB1 drugs.
Collapse
|
38
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
39
|
Maia J, Almada M, Silva A, Correia-da-Silva G, Teixeira N, Sá SI, Fonseca BM. The endocannabinoid system expression in the female reproductive tract is modulated by estrogen. J Steroid Biochem Mol Biol 2017; 174:40-47. [PMID: 28743542 DOI: 10.1016/j.jsbmb.2017.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen. Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry. Moreover, the plasmatic and uterine levels of AEA and of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α), the major cyclooxygenase-2 (COX-2) products, were determined by UPLC-MS/MS. The immunohistochemistry showed that cannabinoid receptors, as well as AEA-metabolic enzymes are mainly located in the epithelial cells of both lumen and glands and, to a lesser extent, in the muscle cells. Moreover, EB administration to OVX rats significantly increased CB1, CB2, NAPE-PLD, FAAH and COX-2 expression and transcription. These effects were absent in TAM and TAM+EB treatments showing that this response is estrogen receptor dependent. Additionally, although uterine levels of AEA remained unchanged in EB or TAM treated animals, they showed a rise with EB treatment in plasma. The latter also produced a decrease in uterine PGE2 levels. In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues.
Collapse
Affiliation(s)
- J Maia
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Almada
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A Silva
- CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - N Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - S I Sá
- CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, Portugal
| | - B M Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
40
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
41
|
Ablation of β,β-carotene-9',10'-oxygenase 2 remodels the hypothalamic metabolome leading to metabolic disorders in mice. J Nutr Biochem 2017; 46:74-82. [PMID: 28482236 DOI: 10.1016/j.jnutbio.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023]
Abstract
β,β-Carotene-9',10'-oxygenase 2 (BCO2) is a protein localized to the inner membrane of mitochondria. It was initially discovered as an enzyme that catalyzes the asymmetric cleavage of carotenoids. Systemic depletion of BCO2 causes increased food intake and impaired hepatic lipid metabolism in mice. The aim of this current study was to determine the extent to which BCO2 exerts its role in hypothalamic nutrient metabolism and feeding behavior through remodeling the hypothalamic metabolome in mice. Male BCO2 knockout (KO) and the isogenic wild-type 129S6 (WT) mice at 6 weeks of age were used for metabolic and cytokine and hypothalamic metabolomics and biochemical analysis. Compared to the WT, BCO2 KO mice exhibited widespread disruptions in metabolism and metabolite homeostasis, an increase in fasting blood glucose, a decrease in circulating glucagon and leptin, an elevation of plasma interleukin 1 beta and tumor necrosis factor alpha, and impaired AMP-activated protein kinase signaling. The global hypothalamic metabolomic results revealed that depletion of BCO2 resulted in striking metabolic changes, including suppression of long-chain fatty acids transport into mitochondria, inhibition of the metabolism of dipeptides and sulfur-containing amino acids, and stimulation of local oxidative stress and inflammation in the hypothalamus of BCO2 KO mice. These findings suggest that BCO2 regulates hypothalamic mitochondrial function, nutrient metabolism, and local oxidative stress and inflammation. Complex interplay between the hormone signaling and impaired lipid and glucose metabolism could account for initiation of oxidative stress, inflammation and eventual metabolic disorders in BCO2 KO mice.
Collapse
|
42
|
Miederer I, Uebbing K, Röhrich J, Maus S, Bausbacher N, Krauter K, Weyer-Elberich V, Lutz B, Schreckenberger M, Urban R. Effects of tetrahydrocannabinol on glucose uptake in the rat brain. Neuropharmacology 2017; 117:273-281. [PMID: 28219717 DOI: 10.1016/j.neuropharm.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/24/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022]
Abstract
Δ9-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [18F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.
Collapse
Affiliation(s)
- I Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - K Uebbing
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| | - J Röhrich
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| | - S Maus
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - N Bausbacher
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - K Krauter
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| | - V Weyer-Elberich
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 69, 55131 Mainz, Germany
| | - B Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - M Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - R Urban
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| |
Collapse
|
43
|
Morozov YM, Koch M, Rakic P, Horvath TL. Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus. Mol Metab 2017; 6:374-381. [PMID: 28377876 PMCID: PMC5369208 DOI: 10.1016/j.molmet.2017.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 11/30/2022] Open
Abstract
Objectives Phytocannabinoids, such as THC and endocannabinoids, are well known to promote feeding behavior and to control energy metabolism through cannabinoid type 1 receptors (CB1R). However, the underlying mechanisms are not fully understood. Generally, cannabinoid-conducted retrograde dis-inhibition of hunger-promoting neurons has been suggested to promote food intake, but so far it has not been demonstrated due to technical limitations. Methods We applied immunohistochemical labeling of CB1R for light microscopy and electron microscopy combined with three-dimensional reconstruction from serial sections in CB1R-expressing and CB1R-null mice, which served as a negative control. Hunger-promoting neurons expressing Agouti-related protein and neuropeptide Y (AgRP/NPY) in the hypothalamic arcuate nucleus were identified in NPY-GFP and NPY-hrGFP mice. Results Using three-dimensional reconstruction from serial sections we demonstrated numerous discontinuous segments of anti-CB1R labeling in the synaptic boutons and axonal shafts in the arcuate nucleus. We observed CB1R in the symmetric, presumed GABAergic, synaptic boutons innervating AgRP/NPY neurons. We also detected CB1R-containing axons producing symmetric and asymmetric synapses onto AgRP/NPY-negative neurons. Furthermore, we identified CB1R in close apposition to the endocannabinoid (2-arachidonoylglycerol)-synthesizing enzyme diacylglycerol lipase-alpha at AgRP/NPY neurons. Conclusions Our immunohistochemical and ultrastructural study demonstrates the morphological substrate for cannabinoid-conducted feeding behavior via retrograde dis-inhibition of hunger-promoting AgRP/NPY neurons. 3D electron microscopy displays CB1R-immunopositive axons in the hypothalamus. CB1R-expressing inhibitory synapses innervate hunger-promoting AgRP/NPY neurons. Pre-synaptic CB1R and post-synaptic DAGL are co-localized at AgRP/NPY neurons.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, 06520 New Haven, CT, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, 06520 New Haven, CT, USA.
| | - Marco Koch
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, 06520 New Haven, CT, USA; Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, 06520 New Haven, CT, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, 06520 New Haven, CT, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, 06520 New Haven, CT, USA.
| |
Collapse
|
44
|
Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res 2016. [DOI: 10.1089/can.2016.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Isabelle Matias
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Ilaria Belluomo
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Daniela Cota
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
45
|
Abstract
Marijuana is used by millions of people, with use likely to increase in the USA because of the trend towards increased decriminalization and legalization. Obesity and diabetes mellitus (DM) rates have increased dramatically in the USA over the past 30 years, with a recent estimate of 29 million individuals with DM. Because there is a plausible link between marijuana use and diabetes due to the known effects of cannabinoids on adipose tissue and glucose/insulin metabolism, it is important to study and understand how marijuana use is related to obesity and diabetes. This paper provides background on the human endocannabinoid system and studies of the association of marijuana use with body mass index/obesity, metabolic syndrome, prediabetes, and diabetes. The studies to date have shown that marijuana use is associated with either lower odds or no difference in the odds of diabetes than non-use.
Collapse
Affiliation(s)
- Stephen Sidney
- Kaiser Permanente Northern California Division of Research, 2000 Broadway, Oakland, CA, 94612, USA.
| |
Collapse
|
46
|
Ceccarini J, Weltens N, Ly HG, Tack J, Van Oudenhove L, Van Laere K. Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [(18)F]MK-9470 PET study. Transl Psychiatry 2016; 6:e853. [PMID: 27404285 PMCID: PMC5545708 DOI: 10.1038/tp.2016.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Although of great public health relevance, the mechanisms underlying disordered eating behavior and body weight regulation remain insufficiently understood. Compelling preclinical evidence corroborates a critical role of the endocannabinoid system (ECS) in the central regulation of appetite and food intake. However, in vivo human evidence on ECS functioning in brain circuits involved in food intake regulation as well as its relationship with body weight is lacking, both in health and disease. Here, we measured cannabinoid 1 receptor (CB1R) availability using positron emission tomography (PET) with [(18)F]MK-9470 in 54 patients with food intake disorders (FID) covering a wide body mass index (BMI) range (anorexia nervosa, bulimia nervosa, functional dyspepsia with weight loss and obesity; BMI range=12.5-40.6 kg/m(2)) and 26 age-, gender- and average BMI-matched healthy subjects (BMI range=18.5-26.6 kg/m(2)). The association between regional CB1R availability and BMI was assessed within predefined homeostatic and reward-related regions of interest using voxel-based linear regression analyses. CB1R availability was inversely associated with BMI in homeostatic brain regions such as the hypothalamus and brainstem areas in both patients with FID and healthy subjects. However, in FID patients, CB1R availability was also negatively correlated with BMI throughout the mesolimbic reward system (midbrain, striatum, insula, amygdala and orbitofrontal cortex), which constitutes the key circuit implicated in processing appetitive motivation and hedonic value of perceived food rewards. Our results indicate that the cerebral homeostatic CB1R system is inextricably linked to BMI, with additional involvement of reward areas under conditions of disordered body weight.
Collapse
Affiliation(s)
- J Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - N Weltens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - H G Ly
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - J Tack
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
- Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - L Van Oudenhove
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
- Liaison Psychiatry, University Psychiatric Center Campus Gasthuisberg, University Hospitals Leuven, Leuven, Belgium
| | - K Van Laere
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Leuven Institute for Neurobiology and Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
48
|
Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol. Sleep 2016; 39:653-64. [PMID: 26612385 DOI: 10.5665/sleep.5546] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake. METHODS In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions. RESULTS A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks. CONCLUSIONS Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep. COMMENTARY A commentary on this article appears in this issue on page 495.
Collapse
Affiliation(s)
- Erin C Hanlon
- University of Chicago Sleep, Health and Metabolism Center (SMAHC), Department of Medicine, Chicago, IL
| | - Esra Tasali
- University of Chicago Sleep, Health and Metabolism Center (SMAHC), Department of Medicine, Chicago, IL
| | - Rachel Leproult
- Université Libre de Bruxelles, Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Center for Research in Cognition and Neurosciences (CRCN) and the ULB Neuroscience Institute (UNI) Campus du Solbosch, Brussels, Belgium
| | - Kara L Stuhr
- Medical College of Wisconsin, Neuroscience Research Center, Department of Pharmacology and Toxicology, Milwaukee, WI
| | - Elizabeth Doncheck
- Medical College of Wisconsin, Neuroscience Research Center, Department of Pharmacology and Toxicology, Milwaukee, WI
| | - Harriet de Wit
- University of Chicago, Department of Psychiatry and Behavioral Neuroscience, Chicago, IL
| | - Cecilia J Hillard
- Medical College of Wisconsin, Neuroscience Research Center, Department of Pharmacology and Toxicology, Milwaukee, WI
| | - Eve Van Cauter
- University of Chicago Sleep, Health and Metabolism Center (SMAHC), Department of Medicine, Chicago, IL
| |
Collapse
|
49
|
Pastor A, Fernández-Aranda F, Fitó M, Jiménez-Murcia S, Botella C, Fernández-Real JM, Frühbeck G, Tinahones FJ, Fagundo AB, Rodriguez J, Agüera Z, Langohr K, Casanueva FF, de la Torre R. A Lower Olfactory Capacity Is Related to Higher Circulating Concentrations of Endocannabinoid 2-Arachidonoylglycerol and Higher Body Mass Index in Women. PLoS One 2016; 11:e0148734. [PMID: 26849214 PMCID: PMC4746072 DOI: 10.1371/journal.pone.0148734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid (eCB) system can promote food intake by increasing odor detection in mice. The eCB system is over-active in human obesity. Our aim is to measure circulating eCB concentrations and olfactory capacity in a human sample that includes people with obesity and explore the possible interaction between olfaction, obesity and the eCB system. The study sample was made up of 161 females with five groups of body mass index sub-categories ranging from under-weight to morbidly obese. We assessed olfactory capacity with the "Sniffin´Sticks" test, which measures olfactory threshold-discrimination-identification (TDI) capacity. We measured plasma concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine or anandamide (AEA), and several eCB-related compounds, 2-acylglycerols and N-acylethanolamines. 2-AG and other 2-acylglycerols fasting plasma circulating plasma concentrations were higher in obese and morbidly obese subjects. AEA and other N-acylethanolamine circulating concentrations were lower in under-weight subjects. Olfactory TDI scores were lower in obese and morbidly obese subjects. Lower TDI scores were independently associated with higher 2-AG fasting plasma circulating concentrations, higher %body fat, and higher body mass index, after controlling for age, smoking, menstruation, and use of contraceptives. Our results show that obese subjects have a lower olfactory capacity than non-obese ones and that elevated fasting plasma circulating 2-AG concentrations in obesity are linked to a lower olfactory capacity. In agreement with previous studies we show that eCBs AEA and 2-AG, and their respective congeners have a distinct profile in relation to body mass index. The present report is the first study in humans in which olfactory capacity and circulating eCB concentrations have been measured in the same subjects.
Collapse
Affiliation(s)
- Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Inflammatory and Cardiovascular Disorders Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Cristina Botella
- Department of Basic Psychology, Clinic and Psychobiology, University Jaume I, Castelló, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Jose M. Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi), Hospital Dr Josep Trueta, Girona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Francisco J. Tinahones
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Ana B. Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Joan Rodriguez
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
| | - Zaida Agüera
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Felipe F. Casanueva
- Endocrine Division, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
50
|
Vechiato FMV, Rivas PMS, Ruginsk SG, Borges BC, Elias LLK, Antunes-Rodrigues J. The type-1 cannabinoid receptor modulates the hydroelectrolytic balance independently of the energy homeostasis during salt load. Horm Behav 2016; 78:43-51. [PMID: 26497248 DOI: 10.1016/j.yhbeh.2015.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/18/2015] [Accepted: 10/20/2015] [Indexed: 01/20/2023]
Abstract
Hydroelectrolytic imbalances, such as saline load (SL), trigger behavioral and neuroendocrine responses, such as thirst, hypophagia, vasopressin (AVP) and oxytocin (OT) release and hypothalamus–pituitary–adrenal (HPA) axis activation. To investigate the participation of the type-1 cannabinoid receptor (CB1R) in these homeostatic mechanisms,male adult Wistar rats were subjected to SL (0.3MNaCl) for four days. SL induced not only increases in the water intake and plasma levels of AVP, OT and corticosterone, as previously described, but also increases in CB1R expression in the lamina terminalis, which integrates sensory afferents, aswell as in the hypothalamus, the main integrative and effector area controlling hydroelectrolytic homeostasis. A more detailed analysis revealed that CB1R-positive terminals are in close apposition with not only axons but also dendrites and secretory granules of magnocellular neurons, particularly vasopressinergic cells. In satiated and euhydrated animals, the intracerebroventricular administration of the CB1R selective agonist ACEA (0.1 μg/5 μL) promoted hyperphagia, but this treatment did not reverse the hyperosmolality-induced hypophagia in the SL group. Furthermore, ACEA pretreatment potentiated water intake in the SL animals during rehydration as well as enhanced the corticosterone release and prevented the increase in AVP and OT secretion induced by SL. The same parameters were not changed by ACEA in the animals whose daily food intake was matched to that of the SL group (Pair-Fed). These data indicate that CB1Rs modulate the hydroelectrolytic balance independently of the food intake during sustained hyperosmolality and hypovolemia.
Collapse
Affiliation(s)
- F M V Vechiato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - P M S Rivas
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - S G Ruginsk
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais 37130-000, Brazil
| | - B C Borges
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|