1
|
Zhang M, Qi L, Li J, Yuan N, Zhai Y, Hao M, Zhou D, Liu W, Jin Y, Wang A. SIRT2 inhibition enhances mitochondrial apoptosis in Brucella-infected bovine placental trophoblast cells. Vet Res 2025; 56:97. [PMID: 40317067 PMCID: PMC12049057 DOI: 10.1186/s13567-025-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 05/04/2025] Open
Abstract
Brucella is a successful pathogen that employs a plethora of immune evasion mechanisms. This contributes to pathogenesis and persistence and limits the efficacy of available treatments. An increasing understanding of host‒pathogen interactions suggests that integrating host-directed strategies with existing anti-Brucella treatments could lead to more effective bacterial clearance and a reduction in drug-resistant strains. SIRT2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase found in mammals. It can deacetylate various transcription factors and regulatory proteins, playing crucial roles in host‒pathogen interactions and pathogen infection-induced apoptosis. In this study, we investigated the role of SIRT2 in Brucella-induced cell apoptosis using bovine placental trophoblast cells. Our results indicate that B. abortus A19 infection upregulates SIRT2 protein expression and significantly induces mitochondrial apoptosis in these cells. Furthermore, inhibition of SIRT2 exacerbates B. abortus A19-induced mitochondrial apoptosis and markedly inhibits intracellular bacterial survival. These results prove the role of SIRT2 in Brucella pathogenesis and the mechanism of action.
Collapse
Affiliation(s)
- Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - NingQiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang, 712100, China.
| |
Collapse
|
2
|
Prabhakar YK, Skariah S, Shanmugam G, Shome R. Molecular epidemiology, immunobiology, genomics and proteomics insights into bovine brucellosis. Vet Microbiol 2025; 305:110505. [PMID: 40233684 DOI: 10.1016/j.vetmic.2025.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Brucella species are intracellular Gram-negative bacteria that cause brucellosis, a global zoonosis that impacts cattle productivity and public health. Both cattle and buffaloes are susceptible to bovine brucellosis, which can lead to severe degenerative changes in uterine mucosa of non-pregnant animals, including ulcerative endometritis and fibrosis. Vasculitis, localized coagulative necrosis, and ulceration of the uterine mucosa have all been reported in pregnant animals. Male testicles get inflamed due to Brucella, which results in infertility. This review article covers the molecular epidemiology, pathophysiology, immunobiology, genomics, and proteomics of Brucella, with an emphasis on novel discoveries and more recent research, especially on bovine brucellosis. The integration of molecular pathology and sero-prevalence data provide the insights into epidemiology, transmission dynamics, and genetic diversity of bovine brucellosis. The immunobiological response studies of brucellosis have provided insights into the tactics employed by Brucella to infect host cells and elude immune responses. Proteomics was utilized to find biomarkers for both acute and chronic brucellosis, which resulted in the identification of proteins with differential expression linked to immune response, inflammation, and extracellular matrix modulation. The genetic diversity, virulence factors, and evolution of Brucella strains were mostly investigated using genomics. The genomic makeup and architecture of Brucella isolates were examined using whole-genome sequencing, which revealed genetic markers linked to pathogenicity and drug resistance. This review provides possible treatment targets, diagnostic biomarkers, and vaccine candidates, contributing to molecular understanding of bovine brucellosis.
Collapse
Affiliation(s)
- Y K Prabhakar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Somy Skariah
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - G Shanmugam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India.
| |
Collapse
|
3
|
Rebollada-Merino A, Giorda F, Pumarola M, Martino L, Gomez-Buendia A, Romani-Cremaschi U, Casalone C, Mattioda V, Di Nocera F, Lucifora G, Petrella A, Domínguez L, Domingo M, Grattarola C, Rodríguez-Bertos A. Neurobrucellosis ( Brucella ceti) in striped dolphins ( Stenella coeruleoalba): Immunohistochemical studies on immune response and neuroinflammation. Vet Pathol 2025; 62:226-236. [PMID: 38760940 DOI: 10.1177/03009858241250336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Neurobrucellosis is a shared condition of cetaceans and humans. However, the pathogenesis and immune response in cetacean neurobrucellosis has not been extensively studied. In this multicentric investigation, 21 striped dolphin (Stenella coeruleoalba) neurobrucellosis (Brucella ceti) cases diagnosed over a 10-year period (2012-2022) were retrospectively evaluated. For each case, morphological changes were assessed by evaluating 21 histological parameters. Furthermore, the immunohistochemical expression of Brucella antigen, glial fibrillary acid protein (GFAP), and a selection of inflammatory cell (IBA-1, CD3, and CD20) and cytokine (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin [IL]-1β, IL-2, and IL-6) markers were investigated. Inflammation of the leptomeninges, ependyma, and/or choroid plexus was lymphohistiocytic, containing macrophages/microglia (IBA-1+), T-cells (CD3+), and B-cells (CD20+) in equal proportion. B-cells occasionally formed tertiary follicles. GFAP expression showed astrocytosis in most cases. Expression of TNF-α, IFN-γ, and IL-2 indicated an intense proinflammatory response, stimulating both macrophages and T-cells. Our results showed that the inflammation and neuroinflammation in neurobrucellosis of striped dolphins mimic human neurobrucellosis and in vitro and in vivo studies in laboratory animals. Cetacean disease surveillance can be exploited to expand the knowledge of the pathogenesis and immunology of infectious diseases, particularly brucellosis, under a One Health approach.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- Department of Population Medicine and Diagnostic Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Federica Giorda
- World Organisation for Animal Health Collaborating Centre for the Health of Marine Mammals, Italian National Reference Centre for Diagnostic Activities in Stranded Marine Mammals (C.Re.Di.Ma), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Martí Pumarola
- Departament de Medicina i Cirurgía Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Martino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alberto Gomez-Buendia
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Cristina Casalone
- World Organisation for Animal Health Collaborating Centre for the Health of Marine Mammals, Italian National Reference Centre for Diagnostic Activities in Stranded Marine Mammals (C.Re.Di.Ma), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Virginia Mattioda
- World Organisation for Animal Health Collaborating Centre for the Health of Marine Mammals, Italian National Reference Centre for Diagnostic Activities in Stranded Marine Mammals (C.Re.Di.Ma), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mariano Domingo
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carla Grattarola
- World Organisation for Animal Health Collaborating Centre for the Health of Marine Mammals, Italian National Reference Centre for Diagnostic Activities in Stranded Marine Mammals (C.Re.Di.Ma), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Yin Y, Tian M, Zhang G, Ding C, Yu S. A novel Brucella T4SS effector RS15060 acts on bacterial morphology, lipopolysaccharide core synthesis and host proinflammatory responses, which is beneficial for Brucella melitensis virulence. Microbiol Res 2025; 292:128015. [PMID: 39689431 DOI: 10.1016/j.micres.2024.128015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Brucella relies on the type IV secretion system (T4SS) to establish replication niches within host cells. However, the Brucella T4SS effectors and their functions have not been fully identified. In this study, we investigated the function of Brucella RS15060, a novel T4SS effector discovered in our previous study, on the bacterial biological characteristics and pathogenesis by construction of the gene deletion and complementation strains. We found that deletion of the rs15060 gene weakened abilities of Brucella to replicate within host cells and establish chronic infection in mice but enhanced abilities to adhere/invade HeLa cells and evade lysosomal degradation in the early stage of infection. In addition, the rs15060 deletion Brucella strain showed significant changes in bacterial shape, cell wall thickness, and sensitivity to bactericidal factors. Furthermore, the rs15060 deletion strain showed an increased synthesis of bacterial lipopolysaccharide core and induced a stronger host's inflammatory response. The Brucella rs15060 complementation strain restored the altered biological characteristics. Moreover, BLASTP prediction and 3D structure simulation revealed that the Brucella RS15060 contains NAD(P)-binding and active motifs in structure, which are important for proteins to exert NAD dependent epimerase/dehydratase activity. The complementation strain with mutation on NAD(P)-binding and/or active motifs of RS15060 did not restore the altered characteristics, suggesting that the Brucella RS15060 is a potential NAD dependent epimerase/dehydratase, and the predicted NAD(P)-binding and/or active motifs play an important role on bacterial cell wall and LPS core synthesis, which is crucial for maintaining bacterial morphology and exerting virulence.
Collapse
Affiliation(s)
- Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu 225309, China.
| |
Collapse
|
5
|
Harms JS, Lasarev M, Warner T, Costa Oliveira S, Smith JA. Persistent articular infection and host reactive response contribute to Brucella -induced spondyloarthritis in SKG mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638825. [PMID: 40027658 PMCID: PMC11870484 DOI: 10.1101/2025.02.18.638825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Brucellosis, one of the most prevalent zoonotic diseases worldwide, often results in osteoarticular complications including large joint and axial arthritis mimicking spondyloarthritis. To model this chronic manifestation, we infected autoimmunity-prone SKG mice containing a mutation in the T-cell adaptor ZAP-70 with Brucella species. B. melitensis infection resulted in a fully penetrant, readily scoreable disease involving large joint wrist and foot arthritis, peri-ocular inflammation, and less frequent scaly paw rash. Infection with B. abortus resulted in delayed arthritis onset, and B. neotomae revealed sex differences, with more severe disease and a dose response in females. Heat-killed Brucella did not induce arthritis, evincing a requirement for viable infection. Across species, splenic CFU correlated well with final clinical score at 12 weeks (ρ=0.79 and p<0.001). In vivo imaging using luminescent B. neotomae revealed rapid colonization of the paws by one-week post-infection, more than a month prior to arthritis onset. Paw luminescence levels decreased after 2 weeks and then remained relatively static, even as clinical scores increased. Thus, the degree of arthritis did not strictly correlate with degree of paw infection but suggested an additional reactive component. Further, in examining a Brucella Δ tcpB mutant lacking a Type IV secretion system-dependent mediator, mice displayed an intermediate phenotype without significant differences in splenic CFU. Together these data suggest Brucella induced spondyloarthritis reflects both persistent colonization as well as excess host reactivity. Moreover, the sensitivity of the SKG model to different species and mutants will provide new opportunities for dissecting correlates of Brucella virulence and host immunity. Importance Brucellosis, a bacterial infection acquired from herd animals, remains one of the most common zoonotic diseases worldwide. Chronic infection often results in spondyloarthritis-like complications. Investigation into pathogenesis has been limited by the lack of overt disease in standard lab mice. We addressed this issue using spondyloarthritis-susceptible SKG mice. Upon infection with B. melitensis , SKG mice develop robust, fully penetrant large joint arthritis. Arthritis development required viable bacteria. Moreover, studies of colonization, gene expression and anatomic distribution using bioluminescent bacteria revealed active persistent infection in the mouse paws. However, peak paw infection occurred much earlier than arthritis onset, suggesting an added immune reactive component. Disease onset, severity and manifestations varied upon infection with different Brucella species and mutants. Together these results suggest this new model will be very useful to the scientific community for determining correlates of bacterial virulence leading to clinical disease.
Collapse
|
6
|
Mantziaras G, Zakosek Pipan M. "My Bitch Is Empty!" An Overview of the Reasons for Pregnancy Loss in Dogs. Vet Sci 2025; 12:127. [PMID: 40005887 PMCID: PMC11860774 DOI: 10.3390/vetsci12020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The purpose of this review is to present reasons for pregnancy loss in dogs. Termination of pregnancy can occur at any stage of gestation, sometimes even before pregnancy is diagnosed. If embryonic death occurs before day 35 of gestation, the embryo is absorbed. Fetal death in the second half of gestation leads to abortion or fetal emphysema, maceration, or mummification. Abnormal embryonic development, competition between placental sites, or genetic abnormalities of the embryo(s) can lead to termination of pregnancy. Maternal factors that alter ovarian function or the environment in the oviducts and uterus, such as cystic endometrial hyperplasia or inflammation, can lead to pregnancy loss. Abnormalities of the placenta, uterine torsion, metrocoele, environmental stress, and malnutrition can have detrimental effects on fetal development. Several drugs or medications can also have embryotoxic/teratogenic effect. Endocrinological disorders such as hypoluteodism, gestational diabetes, and hypothyroidism can be reasons for pregnancy failure. Several bacteria, protozoa, and viruses can cause pregnancy loss in dogs. Etiological diagnoses of pregnancy loss in dogs are challenging as the exact causes are not always obvious; so, a multi-faceted approach is required.
Collapse
Affiliation(s)
- George Mantziaras
- Independent Researcher, Small Animal Practitioner, Kifisias Avenue 22, 15125 Marousi, Greece;
| | - Maja Zakosek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Rudolf I, Kejíková R, Kosoy M, Hubálek Z, Mravcová K, Šikutová S, Whatmore AM, Al Dahouk S. Brucella microti and Rodent-Borne Brucellosis: A Neglected Public Health Threat. Zoonoses Public Health 2025; 72:1-8. [PMID: 39439057 PMCID: PMC11695703 DOI: 10.1111/zph.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Brucellosis is one of the most important zoonoses worldwide, primarily affecting livestock but also posing a serious threat to public health. The major Brucella species are known to cause a feverish disease in humans with various clinical signs. These classical Brucella species are (re-)emerging, but also novel strains and species, some of them transmitted from rodents, can be associated with human infections. As a result of our review on rodent-borne brucellosis, we emphasise the need for more comprehensive surveillance of Brucella and especially Brucella microti in rodent populations and call for further research targeting the ecological persistence of rodent-associated Brucella species in the environment, their epizootic role in wild rodents and their virulence and pathogenicity for wildlife.
Collapse
Affiliation(s)
- Ivo Rudolf
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Romana Kejíková
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | | | - Zdeněk Hubálek
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Kristína Mravcová
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Silvie Šikutová
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | | | - Sascha Al Dahouk
- Department 1 ‐ Infectious DiseasesRobert Koch InstituteBerlinGermany
| |
Collapse
|
8
|
Akhtardanesh B, Mohammadi E, Sadr S, Askari A, Tavakoli ZM, Ahmadi R, Nazemian S, Rashidi H, Aghamiri M, Golchin M, Imani M. Molecular and serological investigation of Brucella species in kennel and farm dogs in Iran. Acta Trop 2025; 262:107521. [PMID: 39793864 DOI: 10.1016/j.actatropica.2025.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Brucellosis is still a significant emerging threat to public health, as it can infect humans, wild, domestic animals, and livestock. Hence, the current study aims to determine the frequency of canine brucellosis (CB), its relationship with clinical findings and reproductive disorders in kennel and farm dogs, and its importance on public health. MATERIALS AND METHODS From January 2022 to December 2023, a total of 150 blood samples were taken from 100 adult dogs in breeding kennels and 50 shepherd dogs in breeding farms in Kerman, Iran. Rose Bengal test (RBT) and Wright tests were used for the primary screening of Brucella abortus (B. abortus) and Brucella melitensis (B. melitensis) species, and conventional IS711-based PCR and real-time polymerase chain reaction (RT-PCR) were performed to determine the Brucella genus and species in all samples. FINDINGS In kennel dogs, 34 % (34/100) had a history of breeding disorders, and 30 % (30/100) were RBT-positive. Moreover, B. canis and B. abortus species were detected in kennel dogs. Among farm dogs, 16 % (8/50) had a history of breeding disorders, and 28 % (14/50) were RBT positive. Additionally, B. canis, B. abortus, and B. melitensis species were detected in farm dogs. Feeding with unpasteurized milk was significantly related to a positive RBT in kennel dogs (p = 0.009), and there was a significant correlation between breeding disorders and seropositivity in kennel (p = 0.045) and farm dogs (p = 0.03). CONCLUSION The current study represents a significant advancement in understanding CB in Iran by the first molecular detection of B. canis, revealing B. melitensis and B. abortus as important pathogens in kennel and farm dogs and highlighting the public health significance of disease in Iran.
Collapse
Affiliation(s)
- Baharak Akhtardanesh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elham Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Askari
- Veterinary Administration Office, Kerman, Iran
| | - Zeinab Manzari Tavakoli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Rozhin Ahmadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shakiba Nazemian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Morteza Aghamiri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Imani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
9
|
Jones JA, Newton IG, Moczek AP. Microbiome composition and turnover in the face of complex lifecycles and bottlenecks: insights through the study of dung beetles. Appl Environ Microbiol 2025; 91:e0127824. [PMID: 39704535 PMCID: PMC11784073 DOI: 10.1128/aem.01278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Microbiome composition and function often change throughout a host's life cycle, reflecting shifts in the ecological niche of the host. The mechanisms that establish these relationships are therefore important dimensions of host ecology and evolution; yet, their nature remains poorly understood. Here, we sought to investigate the microbial communities associated with the complex life cycle of the dung beetle Onthophagus taurus and the relative contributions of host life stage, sex, and environment in determining microbiome assembly. We find that O. taurus plays host to a diverse microbiota that undergo drastic community shifts throughout host development, influenced by host life stage, environmental microbiota, and, to a lesser degree, sex. Contrary to predictions, we found that egg and pupal stages-despite the absence of a digestive tract or defined microbe-storing organs-do not constrain microbial maintenance, while host-constructed environments, such as a maternally derived fecal pellet or the pupal chamber constructed by late larvae, may still serve as complementary microbial refugia for select taxa. Lastly, we identify a small community of putative core microbiota likely to shape host development and fitness. Our results provide important insights into mechanisms employed by solitary organisms to assemble, maintain, and adjust beneficial microbiota to confront life-stage-specific needs and challenges. IMPORTANCE As the influence of symbionts on host ecology, evolution, and development has become more apparent so has the importance of understanding how hosts facilitate the reliable maintenance of their interactions with these symbionts. A growing body of work has thus begun to identify diverse behaviors and physiological mechanisms underpinning the selective colonization of beneficial symbionts across a range of host taxa. Yet, how organisms with complex life cycles, such as holometabolous insects, establish and maintain key symbionts remains poorly understood. This is particularly interesting considering the drastic transformations of both internal and external host morphology, and the ecological niche shifts in diet and environment, that are the hallmark of metamorphosis. This work investigates the dynamic changes of the microbiota associated with the complex life cycle and host-constructed environments of the bull-headed dung beetle, Onthophagus taurus, a useful model for understanding how organisms may maintain and modulate their microbiota across development.
Collapse
Affiliation(s)
- Joshua A. Jones
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Irene Garcia Newton
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
10
|
Li J, Yuan N, Zhai Y, Wang M, Hao M, Liu X, Zhou D, Liu W, Jin Y, Wang A. Protein disulfide isomerase A4 binds to Brucella BtpB and mediates intracellular NAD +/NADH metabolism in RAW264.7 cells. Int Immunopharmacol 2024; 142:113046. [PMID: 39226825 DOI: 10.1016/j.intimp.2024.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The Toll/interleukin-1 receptor (TIR) signaling domain is distributed widely in mammalian Toll-like receptors and adaptors, plant nucleotide-binding leucine-rich repeat receptors, and specific bacterial virulence proteins. Proteins that possess TIR domain exhibit NADase activity which is distinct from the canonical signaling function of these domains. However, the effects of bacterial TIR domain proteins on host metabolic switches and the underlying mechanism of NADase activity in these proteins remain unclear. Here, we utilized Brucella TIR domain-containing type IV secretion system effector protein, BtpB, to explore the mechanism of NADase activity in host cells. We showed that using ectopic expression BtpB not only generates depletion of NAD+ but also loss of NADH and ATP in RAW264.7 macrophage cells. Moreover, immunoprecipitation-mass spectrometry, co-immunoprecipitation, and confocal microscope assays revealed that BtpB interacted with host protein disulfide isomerase A4 (PDIA4). The Brucella mutant strain deleted the gene for BtpB, significantly decreased PDIA4 expression. Furthermore, our data revealed that PDIA4 played an important role in regulating intracellular NAD+/NADH levels in macrophages, and PDIA4 overexpression restored the decline of intracellular NAD+ and NADH levels induced by Brucella BtpB. The results provide new insights into the metabolic regulatory activity of TIR domain proteins in the critical human and animal pathogen Brucella.
Collapse
Affiliation(s)
- Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Ötkün S, Erdenliğ Gürbi Lek S. Whole-genome sequencing-based analysis of Brucella species isolated from ruminants in various regions of Türki̇ye. BMC Infect Dis 2024; 24:1220. [PMID: 39472798 PMCID: PMC11524016 DOI: 10.1186/s12879-024-09921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Brucellosis, a zoonotic disease in Türkiye, which has significant direct and indirect impacts on the healthcare system and livestock. This study, which aimed to investigate the differences among Brucella spp. isolates originating from different regions of Türkiye, for implications for public health and veterinary medicine. METHOD Twenty-one isolates from ruminants and two isolates from humans obtained from various regions of Türkiye were utilized in the study. The isolates were identified and biotyped using traditional microbiological procedures, and whole-genome sequencing (WGS) was performed. This was followed by single nucleotide polymorphism (SNP)--based phylogenetic analysis and WGS-based analysis of virulence and resistance genes. Additionally, phenotypic antimicrobial resistance and phage susceptibilities were determined. The obtained data were then compared for concordance, ensuring the validity and reliability of the results. RESULTS Our study, employing culture methods, polymerase chain reaction (PCR), and WGS analyses, identified 11 Brucella melitensis (bv 3 (n = 9), one each bv 1 and bv 2) and 12 B. abortus (bv 3 (n = 11), bv 9 (n = 1)) isolates All B. abortus isolates were of bovine origin, while the B. melitensis isolates were from sheep (n = 7), goat (n = 1), ram (n = 1), and humans (n = 2). In the whole-genome SNP-based phylogenetic tree, all B. melitensis strains were found to be of the IIb subtype of genotype II associated with the Eastern Mediterranean lineage. Ten different genotypes were identified in the SNP analysis of the isolates, with a maximum SNP difference of 278 and a minimum SNP difference of 4 among these genotypes. According to the WGS-SNP-based phylogenetic tree of B. abortus isolates, they were grouped in clade C1. In the SNP analysis, where ten different genotypes were identified, the SNP difference among these genotypes was a maximum of 316 and a minimum of 6. In the in silico MLST analysis performed with WGS data, B. melitensis isolates were identified as ST8 and ST102 genotypes, while B. abortus isolates were identified as ST2 and ST3 genotypes. The dominant genotypes were ST8 for B. melitensis and ST2 for B. abortus, respectively. Virulence gene analysis conducted based on WGS data of the 23 B. abortus and B. melitensis isolates revealed 43 virulence gene-associated regions in all strains, irrespective of species, host, or isolation year. Although classical resistance-related genes were not detected by WGS-based antimicrobial resistance gene analysis, phenotypic resistance analysis revealed resistance to azithromycin, rifampin, and trimethoprim/sulfamethoxazole in B. abortus and B. melitensis isolates. CONCLUSION Both B. melitensis and B. abortus were circulating species in animals and human. The dominant genotypes were ST8 for B. melitensis and ST2 for B. abortus, respectively. All B. melitensis strains were found to be of the IIb subtype of genotype II associated with the Eastern Mediterranean lineage, while B. abortus isolates, they were grouped in clade C1. Further, a comprehensive study with a sufficient number of isolates covering all regions of Türkiye would provide more accurate information about the current epidemiological situation in the country.
Collapse
Affiliation(s)
- Songül Ötkün
- Departman of Veterinary Microbiology, Fakulty of Veterinary Medicine, Siirt University, Siirt, Türkiye.
| | - Sevil Erdenliğ Gürbi Lek
- Departman of Veterinary Microbiology, Fakulty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| |
Collapse
|
12
|
Hao M, Zhao D, Liu W, Yuan N, Tang T, Wang M, Zhai Y, Shi Y, Yang Y, Liu X, Li J, Zhou D, Liu W, Jin Y, Wang A. Deletion of the alr gene in Brucella suis S2 attenuates virulence by enhancing TLR4-NF-κB-NLRP3- mediated host inflammatory responses. Int Immunopharmacol 2024; 137:112443. [PMID: 38897124 DOI: 10.1016/j.intimp.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.
Collapse
Affiliation(s)
- Mingyue Hao
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Danyu Zhao
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ting Tang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
13
|
Daugaliyeva A, Daugaliyeva S, Kydyr N, Peletto S. Molecular typing methods to characterize Brucella spp. from animals: A review. Vet World 2024; 17:1778-1788. [PMID: 39328439 PMCID: PMC11422631 DOI: 10.14202/vetworld.2024.1778-1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
Brucellosis is an infectious disease of animals that can infect humans. The disease causes significant economic losses and threatens human health. A timely and accurate disease diagnosis plays a vital role in the identification of brucellosis. In addition to traditional diagnostic methods, molecular methods allow diagnosis and typing of the causative agent of brucellosis. This review will discuss various methods, such as Bruce-ladder, Suiladder, high-resolution melt analysis, restriction fragment length polymorphism, multilocus sequence typing, multilocus variable-number tandem repeat analysis, and whole-genome sequencing single-nucleotide polymorphism, for the molecular typing of Brucella and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Aida Daugaliyeva
- LLP "Kazakh Research Institute for Livestock and Fodder Production," St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Saule Daugaliyeva
- LLP "Scientific Production Center of Microbiology and Virology," Bogenbay Batyr Str. 105, Almaty 050010, Kazakhstan
| | - Nazerke Kydyr
- LLP "Kazakh Research Institute for Livestock and Fodder Production," St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Simone Peletto
- Experimental Zooprofilactic Institute of Piedmont, Liguria and Aosta Valley, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
14
|
Silva SN, Cota G, Xavier DM, de Souza GM, Souza MRF, Gonçalves MWA, Tuon FF, Galvão EL. Efficacy and safety of therapeutic strategies for human brucellosis: A systematic review and network meta-analysis. PLoS Negl Trop Dis 2024; 18:e0012010. [PMID: 38466771 PMCID: PMC10978012 DOI: 10.1371/journal.pntd.0012010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/28/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Human brucellosis is a neglected, re-emerging, and endemic zoonosis in many countries. The debilitating and disabling potential of the disease is a warning about its morbidity, generating socioeconomic impact. This review aims to update the current evidence on the efficacy and safety of therapeutic options for human brucellosis using the network meta-analysis (NMA). METHODOLOGY A systematic search was conducted in four different databases by independent reviewers to assess overall therapy failure, adverse events, and time to defervescence associated with different therapies. Randomized clinical trials (RCTs) evaluating any therapeutic drug intervention were selected, excluding non-original studies or studies related to localized forms of the disease or with less than 10 participants. Data were analyzed by frequentist statistics through NMA by random effects model. The risk of bias and certainty of evidence was assessed, this review was registered at PROSPERO. RESULTS Thirty-one (31) RCTs involving 4167 patients were included. Three networks of evidence were identified to evaluate the outcomes of interest. Triple therapy with doxycycline + streptomycin + hydroxychloroquine for 42 days (RR: 0.08; CI 95% 0.01-0.76) had a lower failure risk than the doxycycline + streptomycin regimen. Doxycycline + rifampicin had a higher risk of failure than doxycycline + streptomycin (RR: 1.96; CI 95% 1.27-3.01). No significant difference was observed between the regimens when analyzing the incidence of adverse events and time to defervescence. In general, most studies had a high risk of bias, and the results had a very low certainty of evidence. CONCLUSIONS This review confirmed the superiority of drugs already indicated for treating human brucellosis, such as the combination of doxycycline and aminoglycosides. The association of hydroxychloroquine to the dual regimen was identified as a potential strategy to prevent overall therapy failure, which is subject to confirmation in future studies.
Collapse
Affiliation(s)
- Sarah Nascimento Silva
- Pesquisa Clínica e Políticas Públicas em Doenças Infecto-Parasitárias, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Gláucia Cota
- Pesquisa Clínica e Políticas Públicas em Doenças Infecto-Parasitárias, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Mendes Xavier
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina Minas Gerais, Brazil
| | - Glaciele Maria de Souza
- Programa de Pós-Graduação em Odontologia Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina Minas Gerais, Brazil
| | - Marina Rocha Fonseca Souza
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Endi Lanza Galvão
- Pesquisa Clínica e Políticas Públicas em Doenças Infecto-Parasitárias, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina Minas Gerais, Brazil
| |
Collapse
|
15
|
Sarlo Davila KM, Boggiatto P, Olsen S, Lippolis JD, Crooker BA, Putz EJ. Effect of selection genotype on immune response to Brucella abortus RB51 in Holstein cattle. Anim Genet 2024; 55:47-54. [PMID: 37946616 DOI: 10.1111/age.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro Brucella abortus strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate p < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.
Collapse
Affiliation(s)
- Kaitlyn M Sarlo Davila
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Paola Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - Ellie J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
16
|
Tibbs-Cortes BW, Rahic-Seggerman FM, Schmitz-Esser S, Boggiatto PM, Olsen S, Putz EJ. Fecal and vaginal microbiota of vaccinated and non-vaccinated pregnant elk challenged with Brucella abortus. Front Vet Sci 2024; 11:1334858. [PMID: 38352039 PMCID: PMC10861794 DOI: 10.3389/fvets.2024.1334858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.
Collapse
Affiliation(s)
- Bienvenido W. Tibbs-Cortes
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Faith M. Rahic-Seggerman
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
17
|
Yang X, Goodwin ZI, Bhagyaraj E, Hoffman C, Pascual DW. Parenteral Vaccination with a Live Brucella melitensis Mutant Protects against Wild-Type B. melitensis 16M Challenge. Microorganisms 2024; 12:169. [PMID: 38257995 PMCID: PMC10820470 DOI: 10.3390/microorganisms12010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Susceptibility to brucellosis remains prevalent, even in herds vaccinated with conventional vaccines. Efforts are underway to develop an improved brucellosis vaccine, and possibly a universal vaccine, given that Brucella species are highly homologous. To this end, two B. melitensis mutants were developed, znBM-lacZ (znBMZ) and znBM-mCherry (znBM-mC), and were tested for their ability to confer systemic immunity against virulent B. melitensis challenge. To assess the extent of their attenuation, bone-marrow-derived macrophages and human TF-1 myeloid cells were infected with both mutants, and the inability to replicate within these cells was noted. Mice infected with varying doses of znBM-mC cleared the brucellae within 6-10 weeks. To test for efficacy against systemic disease, groups of mice were vaccinated once by the intraperitoneal route with either znBMZ or B. abortus S19 vaccine. Relative to the PBS-dosed mice, znBMZ vaccination greatly reduced splenic brucellae colonization by ~25,000-fold compared to 700-fold for S19-vaccinated mice. Not surprisingly, both znBMZ and S19 strains induced IFN-γ+ CD4+ T cells, yet only znBMZ induced IFN-γ+ CD8+ T cells. While both strains induced CD4+ effector memory T cells (Tems), only znBMZ induced CD8+ Tems. Thus, these results show that the described znBM mutants are safe, able to elicit CD4+ and CD8+ T cell immunity without a boost, and highly effective, rendering them promising vaccine candidates for livestock.
Collapse
Affiliation(s)
| | | | | | | | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (X.Y.); (Z.I.G.); (E.B.); (C.H.)
| |
Collapse
|
18
|
Dawood AS, Elrashedy A, Nayel M, Salama A, Guo A, Zhao G, Algharib SA, Zaghawa A, Zubair M, Elsify A, Mousa W, Luo W. Brucellae as resilient intracellular pathogens: epidemiology, host-pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Front Vet Sci 2023; 10:1255239. [PMID: 37876633 PMCID: PMC10591102 DOI: 10.3389/fvets.2023.1255239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Alyaa Elrashedy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues (HZAU), Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ahmed Zaghawa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Muhammed Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ahmed Elsify
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Walid Mousa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
19
|
Moley CR, Chambers CA, Dadelahi AS, Ponzilacqua-Silva B, Abushahba MFN, Lacey CA, Franklin CL, Skyberg JA. Innate Lymphoid Cells and Interferons Limit Neurologic and Articular Complications of Brucellosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1170-1184. [PMID: 37263343 PMCID: PMC10477959 DOI: 10.1016/j.ajpath.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Brucellosis is a globally significant zoonotic disease. Human patients with brucellosis develop recurrent fever and focal complications, including arthritis and neurobrucellosis. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. After footpad infection, natural killer cells and ILC1 cells both limited joint colonization by Brucella. Mice lacking natural killer cells, and in particular mice lacking all ILCs, also developed marked arthritis after footpad infection. Following pulmonary infection, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Adaptive immune cells and ILCs both limited colonization of the brain by Brucella following pulmonary infection. Transcriptional analysis of Brucella-infected brains revealed marked up-regulation of genes associated with inflammation and interferon responses, as well as down-regulation of genes associated with neurologic function. Type II interferon deficiency resulted in colonization of the brain by Brucella, but mice lacking both type I and type II interferon signaling more rapidly developed clinical signs of neurobrucellosis, exhibited hippocampal neuronal loss, and had higher levels of Brucella in their brains than mice lacking type II interferon signaling alone. Collectively, these findings indicate ILCs and interferons play an important role in prevention of focal complications during Brucella infection, and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis.
Collapse
Affiliation(s)
- Charles R Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Catherine A Chambers
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Mostafa F N Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri; Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Craig L Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri; Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri.
| |
Collapse
|
20
|
Moez NM, Hosseini SM, Kalhori F, Shokoohizadeh L, Arabestani MR. Co-delivery of streptomycin and hydroxychloroquine by labeled solid lipid nanoparticles to treat brucellosis: an animal study. Sci Rep 2023; 13:14012. [PMID: 37640734 PMCID: PMC10462690 DOI: 10.1038/s41598-023-41150-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Can brucellosis-related biochemical and immunological parameters be used as diagnostic and treatment indicators? The goal of this project was to look at biochemical parameters, trace elements, and inflammatory factors in the acute and chronic stages of brucellosis after treatment with streptomycin and hydroxychloroquine-loaded solid lipid nanoparticles (STR-HCQ-SLN). The double emulsion method was used for the synthesis of nanoparticles. Serum levels of trace elements, vitamin D, CRP, and biochemical parameters were measured in rats involved in brucellosis. The therapeutic effect of STR-HCQ-SLN was compared with that of free drugs. In both healthy and infected rats, serum concentrations of copper, zinc, iron, magnesium, potassium, and biochemical parameters of the liver were significantly different. By altering the serum levels of the aforementioned factors, treatment with STR-HCQ-SLN had a positive therapeutic effect on chronic brucellosis. Vitamin D levels declined (46.4%) and CRP levels rose (from 7.5 mg to less than 1 mg) throughout the acute and chronic stages of brucellosis. This study showed that by comparing the biochemical parameters and the levels of trace elements in the serum of healthy and diseased mice in the acute and chronic stages of brucellosis, it is possible to get help from other routine methods for diagnosis.
Collapse
Affiliation(s)
- Narjes Morovati Moez
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, Faculty of Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, Faculty of Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshte Kalhori
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Microbiology, Faculty of Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Reza Arabestani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Microbiology, Faculty of Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Sun D, Liu Y, Peng X, Dong H, Jiang H, Fan X, Feng Y, Sun J, Han K, Gao Q, Niu J, Ding J. ClpP protease modulates bacterial growth, stress response, and bacterial virulence in Brucella abortus. Vet Res 2023; 54:68. [PMID: 37612737 PMCID: PMC10464072 DOI: 10.1186/s13567-023-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/25/2023] Open
Abstract
The process of intracellular proteolysis through ATP-dependent proteases is a biologically conserved phenomenon. The stress responses and bacterial virulence of various pathogenic bacteria are associated with the ATP-dependent Clp protease. In this study, a Brucella abortus 2308 strain, ΔclpP, was constructed to characterize the function of ClpP peptidase. The growth of the ΔclpP mutant strain was significantly impaired in the TSB medium. The results showed that the ΔclpP mutant was sensitive to acidic pH stress, oxidative stress, high temperature, detergents, high osmotic environment, and iron deficient environment. Additionally, the deletion of clpP significantly affected Brucella virulence in macrophage and mouse infection models. Integrated transcriptomic and proteomic analyses of the ΔclpP strain showed that 1965 genes were significantly affected at the mRNA and/or protein levels. The RNA-seq analysis indicated that the ΔclpP strain exhibited distinct gene expression patterns related to energy production and conversion, cell wall/membrane/envelope biogenesis, carbohydrate transport, and metabolism. The iTRAQ analysis revealed that the differentially expressed proteins primarily participated in amino acid transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis, transport and catabolism. This study provided insights into the preliminary molecular mechanism between Clp protease to bacterial growth, stress response, and bacterial virulence in Brucella strains.
Collapse
Affiliation(s)
- Dongjie Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufu Liu
- Zhaoqing Institute Biotechnology Co., Ltd., Zhaoqing, China
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaowei Peng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Hui Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuezheng Fan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Feng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiali Sun
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Kun Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Gao
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | | | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
22
|
Grattarola C, Petrella A, Lucifora G, Di Francesco G, Di Nocera F, Pintore A, Cocumelli C, Terracciano G, Battisti A, Di Renzo L, Farina D, Di Francesco CE, Crescio MI, Zoppi S, Dondo A, Iulini B, Varello K, Mignone W, Goria M, Mattioda V, Giorda F, Di Guardo G, Janowicz A, Tittarelli M, De Massis F, Casalone C, Garofolo G. Brucella ceti Infection in Striped Dolphins from Italian Seas: Associated Lesions and Epidemiological Data. Pathogens 2023; 12:1034. [PMID: 37623994 PMCID: PMC10459742 DOI: 10.3390/pathogens12081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Brucella ceti infections have been increasingly reported in cetaceans. In this study, we analyzed all cases of B. ceti infection detected in striped dolphins stranded along the Italian coastline between 2012 and 2021 (N = 24). We focused on the pathogenic role of B. ceti through detailed pathological studies, and ad hoc microbiological, biomolecular, and serological investigations, coupled with a comparative genomic analysis of the strains. Neurobrucellosis was observed in 20 animals. The primary histopathologic features included non-suppurative meningoencephalitis (N = 9), meningitis (N = 6), and meningoencephalomyelitis (N = 5), which was also associated with typical lesions in other tissues (N = 8). Co-infections were detected in more than half of the cases, mostly involving Cetacean Morbillivirus (CeMV). The 24 B. ceti isolates were assigned primarily to sequence type 26 (ST26) (N = 21) and, in a few cases, ST49 (N = 3). The multilocus sequence typing (cgMLST) based on whole genome sequencing (WGS) data showed that strains from Italy clustered into four genetically distinct clades. Plotting these clades onto a geographic map suggests a link between their phylogeny and the topographical distribution. These results support the role of B. ceti as a primary neurotropic pathogen for striped dolphins and highlight the utility of WGS data in understanding the evolution of this emerging pathogen.
Collapse
Affiliation(s)
- Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (A.P.); (D.F.)
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 89852 Vibo Valentia, Italy;
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.D.F.); (L.D.R.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | - Cristiano Cocumelli
- Istituto Zooprofilattico del Lazio e della Toscana, 00178 Roma, Italy; (C.C.); (A.B.)
| | | | - Antonio Battisti
- Istituto Zooprofilattico del Lazio e della Toscana, 00178 Roma, Italy; (C.C.); (A.B.)
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.D.F.); (L.D.R.)
| | - Donatella Farina
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (A.P.); (D.F.)
| | | | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Walter Mignone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (C.E.D.F.); (G.D.G.)
| | - Anna Janowicz
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| | - Fabrizio De Massis
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (M.I.C.); (S.Z.); (A.D.); (B.I.); (K.V.); (W.M.); (M.G.); (V.M.); (F.G.); (C.C.)
| | - Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (A.J.); (M.T.); (F.D.M.)
| |
Collapse
|
23
|
Sebzda MK, Kauffman LK. Update on Brucella canis: Understanding the Past and Preparing for the Future. Vet Clin North Am Small Anim Pract 2023:S0195-5616(23)00075-X. [PMID: 37385876 DOI: 10.1016/j.cvsm.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The genus Brucella is known by veterinarians as a primary cause of reproductive diseases. It is widely known to cause financial devastation in livestock species, and is lesser known as a problem for dog breeders and fanciers with similar reproductive diseases seen in dogs. Now there are concerns about the dispersal of Brucella canis into countries that have enjoyed a fairly low incidence, through the importation of dogs from endemic countries. B canis, much like Brucella abortus, suis or mellitensis, is zoonotic and handling or working with infected dogs can lead to human disease. Only within the last few decades has the risk of brucellosis in dogs, and the people who own and work with them, been more fully acknowledged. This review will focus on new information that has been obtained since our last B canis article in 2018. Readers are encouraged to look to that article for information not presented within this update. Current B canis epidemiology along with a complete review of diagnostic testing options will be covered. Regulations for the international movement of dogs will be discussed in addition to concerns for increased zoonosis potential. Future goals would include better management of this disease including proposed screening of all imported dogs. Canine brucellosis prevention, owner and shelter/rescue education along with proposed therapies for the future will also be explored.
Collapse
Affiliation(s)
- Mary K Sebzda
- Newport Harbor Animal Hospital, 125 Mesa Drive, Costa Mesa, CA 92627, USA; Western University of Health Sciences, Pomona, CA 91766, USA
| | - Lin K Kauffman
- Prairie View Animal Hospital, 1830 Southeast Princeton Drive Suite A, Grimes, IA 50111, USA.
| |
Collapse
|
24
|
Rebollada-Merino A, García-Seco T, Chinchilla B, Pérez-Sancho M, Domínguez L, Rodríguez-Bertos A. Immunopathology of early and advanced epididymis lesions caused by Brucella ovis in rams. Vet Immunol Immunopathol 2023; 261:110621. [PMID: 37348444 DOI: 10.1016/j.vetimm.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Ovine brucellosis is an infectious disease that causes alterations in the reproductive tract in ram and abortion in ewes. Their negative economic impact in ovine production warrants a thorough understanding the interactions between B. ovis and the host. Here, epididymis lesions of rams infected by B. ovis were histopathologically staged into early and advanced. Expression by immunohistochemistry of Brucella antigens, inflammatory cell markers (CD3, CD79αcy) and cytokines (IFN-γ, TNF-α, TGF-β1) was assessed in both stages. Early lesions were characterized by epithelial changes, interstitial inflammation, and mild fibrosis; whereas advanced lesions displayed caseous granulomas containing numerous macrophages, multinucleated giant cells, lymphocytes, and plasma cells. Expression of Brucella antigens were observed in both stages. The cellular response in B. ovis lesions were predominantly of T-cells (CD3+) whereas low numbers of B-cells and plasma cells (CD79αcy+) were present in both early and advanced lesions. IFN-γ was expressed by lymphocytes in early lesions suggesting that the adaptive immune response against B. ovis is initiated by Th1 cells, this response was also preserved in advanced stages. Expression of TNF-α was observed in neutrophils of epithelial microabscesses and intraepithelial T-cells of early lesions suggesting a promotion of neutrophil phagocytosis triggered by TNF-α. On the other hand, advanced lesions showed a reduction of TNF-α expression which may permit B. ovis persistence in granulomas. Lastly, TGF-β1 expression (fibroblast, macrophages and less in lymphocytes) were increased with time, suggesting that B. ovis promotes TGF-β1 secretion promoting chronicity of the lesions.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Blanca Chinchilla
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Hans R, Thavaselvam D. Immunoassay-based evaluation of rOmp28 protein as a candidate for the identification of Brucella species. J Med Microbiol 2023; 72. [PMID: 37367949 DOI: 10.1099/jmm.0.001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Introduction. Brucellosis is an important bacterial zoonosis, re-emerging as a serious public health concern in developing countries. Two major species, Brucella melitensis and Brucella abortus, cause recurrent facile infection in human. Therefore, rapid and accurate diagnosis for early disease control and prevention is needed in areas with low disease burden.Hypothesis. This study evaluated the sandwich enzyme-linked immunosorbent assay (ELISA) (S-ELISA) immunoassay for potential use of whole-cell (WC) and recombinant outer-membrane protein (rOmp28)-derived IgG polyclonals in sensitive detection of Brucella.Aim. Immunoassay-based WC detection of Brucella species in important sub-clinical matrices at lower limits of detection.Methodology. We purified recombinant rOmp28 with Ni-NTA gel affinity chromatography and produced IgG polyclonal antibodies (pAbs) using BALB/c mice and New Zealand white female rabbits against different antigens (Ags) of Brucella. Checkerboard sandwich ELISA and P/N ratio (optical density of 'P' positive test sample to 'N' negative control) were used for evaluation and optimization of the study. The pAbs were characterized using Western blot analysis and different matrices were spiked with WC Ag of Brucella.Results. Double-antibody S-ELISA was developed using WC Ag-derived rabbit IgG (capture antibody at 10 µg ml-1) and rOmp28-derived mice IgG (detection antibody at 100 µg ml-1) with a detection range of 102 to 108 cells ml-1 and a limit of detection at 102 cells ml-1. A P/N ratio of 1.1 was obtained with WC pAbs as compared to 0.6 and 0.9 ratios with rOmp28-derived pAbs for detecting B. melitensis 16M and B. abortus S99, respectively. An increased P/N ratio of 4.4 was obtained with WC Ag-derived rabbit IgG as compared to 4.2>4.1>2.4 ratios obtained with rabbit IgGs derived against cell envelope (CE), rOmp28 and sonicated antigen (SA) of Brucella with high affinity for rOmp28 Ag analysed on immunoblots. The rOmp28-derived mice IgG revealed two Brucella species at P/N ratios of 11.8 and 6.3, respectively. Upon validation, S-ELISA detected Brucella WCs in human whole blood and sera samples with no cross-reactivity to other related bacteria.Conclusion. The developed S-ELISA is specific and sensitive in early detection of Brucella from different matrices of clinical and non-clinical disease presentation.
Collapse
Affiliation(s)
- Richa Hans
- Division of Biodetector Development Test and Evaluation, Defence Research and Development Establishment, Defence Research and Development Organisation, Jhansi Road, Gwalior - 474002, India
| | - Duraipandian Thavaselvam
- Director (PM) O/o Director General Life Sciences (DGLS), Defence Research and Development Organization (DRDO) Headquarters, Ministry of Defence, SSPL Campus, Timarpur, New Delhi - 110011, India
| |
Collapse
|
26
|
Shome R, Natesan K, Kalleshamurthy T, Yadav C, Sahay S, Skariah S, Mohandoss N, Kumar ORV, Shome BR, Rahman H. Management of bovine brucellosis in organized dairy herds through the identification of risk factors: A cross-sectional study from Karnataka, India. Vet World 2023; 16:1122-1130. [PMID: 37576779 PMCID: PMC10420698 DOI: 10.14202/vetworld.2023.1122-1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Brucellosis is an infectious disease caused by Brucella species. This study aimed to identify the risk factors associated with bovine brucellosis seropositivity in organized dairy farms to control the disease in unvaccinated adult bovine herds in Karnataka, India. Materials and Methods In total, 3610 samples (3221 cattle and 389 buffaloes) were subjected to parallel testing using the Rose Bengal plate test and protein G-based enzyme-linked immunosorbent assay, followed by analyses of animal- and farm-level epidemiological datasets to identify the risk factors. Results The apparent brucellosis prevalence at the animal level was higher in buffaloes (8.2%, 95% confidence interval [CI] = 5.9-11.4) than in cattle (6.1%, 95% CI = 5.3-7.0). In a multivariable logistic model, animals calved 3-5 times (odds ratio [OR] = 2.22, 95% CI = 1.50-3.1, reference [ref]: animals calved <2 times); animals with a history of abortion (OR = 54.73, 95% CI = 33.66-89.02), repeat breeding (OR = 19.46, 95% CI = 11.72-32.25), and placental retention (OR = 13.94, 95% CI = 4.92-39.42, ref: no clinical signs); and dogs on farms (OR = 2.55, 95% CI = 1.48-4.40, ref: absence of dogs); disposal of aborted fetus in open fields (OR = 4.97, 95% CI = 1.93-12.84) and water bodies (OR = 2.22, 95% CI = 1.50-3.1, ref: buried); purchase of animals from other farms (OR = 6.46, 95% CI = 1.01-41.67, ref: government farms); hand milking (OR = 1.98, 95% CI = 1.02-10.0, ref: machine milking); and use of monthly veterinary services (OR = 3.45, 95% CI = 1.28-9.29, ref: weekly services) were considered significant risk factors for brucellosis in organized bovine herds (p < 0.01). Conclusion The study identified that the animals calved 3-5 times or with a history of abortion/repeat breeding/placental retention, and disposal of aborted fetus in open fields/water bodies as the potential risk factors for bovine brucellosis. These risk factors should be controlled through the implementation of best practices to reduce the brucellosis burden in bovine farms.
Collapse
Affiliation(s)
| | | | - Triveni Kalleshamurthy
- ICAR-NIVEDI, Bengaluru, Karnataka, India
- School of Basic and Applied Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| | | | | | | | | | | | | | - Habibur Rahman
- International Livestock Research Institute, NASC Complex, CG Center, DPS Marg, Pusa, New Delhi, India
| |
Collapse
|
27
|
Rebollada-Merino A, García-Seco T, Pérez-Sancho M, Domínguez L, Rodríguez-Bertos A. Histopathologic and immunohistochemical findings in the placentas and fetuses of domestic swine naturally infected with Brucella suis biovar 2. J Vet Diagn Invest 2023; 35:258-265. [PMID: 36988301 PMCID: PMC10186003 DOI: 10.1177/10406387231163867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Porcine brucellosis, which is caused by Brucella suis biovar (bv) 2, is a re-emerging disease that causes reproductive problems in pigs in Europe. The pathogenesis and lesions of B. suis intrauterine infection are poorly characterized; characterization could facilitate the diagnosis and investigation of porcine brucellosis. We collected samples of placentas and fetuses for histologic and microbiologic studies during an outbreak of abortions on a pig-breeding farm in Spain. Brucella was cultured from the vaginal swabs obtained from sows that had aborted, some placentas, and fetal tissues (spleen, liver, lung, gastric content); molecular testing confirmed B. suis bv 2 infection. Histologically, there was necrotizing and hemorrhagic placentitis; suppurative hepatitis; lymphoid depletion and sinusoidal histiocytosis in the spleen, lymph nodes, and thymus; and bronchointerstitial pneumonia. Hemorrhages were observed in the umbilical cord, heart, kidneys, and brain. We detected Brucella by immunohistochemistry (IHC) in all of the placentas and fetal organs studied, specifically in the trophoblasts of the chorionic epithelium, in the cytoplasm of macrophages in the chorionic stroma, and extracellularly in necrotic debris. Furthermore, we assessed the lymphocyte population in the placentas through the use of IHC (anti-CD3, anti-Pax5 antibodies), revealing that the lymphocytic response was composed of T cells but not B cells.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- Departments of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- Departments of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
28
|
Dosa D, Mohammed N, Mathewos M. Study on small ruminant brucellosis and owners awareness in two selected districts of southern region, Ethiopia. Vet Med Sci 2023; 9:907-916. [PMID: 36367706 PMCID: PMC10029884 DOI: 10.1002/vms3.992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Brucellosis is one of the infectious diseases that has the greatest impact on the productivity of sheep and goats. A cross-sectional study followed by a simple random sampling technique was used to investigate the seroprevalence of brucellosis (Rose Bengal plate test; RBPT and complement fixation test; CFT) in small ruminants and its related risk variables from November 2019 to June 2020 in Kolme and Abala Abaya districts. A questionnaire was also given to owners to assess their existing knowledge of the disease. RESULT Using the RBPT and CFT, 28 (4.1%) and 23 (3.33%) of the 690 animals were found to be seropositive for brucellosis, respectively. In this study, the seroprevalence of brucellosis detected in the Kolme district (5.3%) was greater when compared to Abala Abaya (1.0%). The odds of Brucella infection were greater for goats (odds ratio [OR] 6.0, 95% confidence interval [CI] 16 0.8-44.9) than for sheep. The odds of adult animals (OR 0.05, 95% CI 0.03-0.07) being positive for brucellosis was higher than young animals. A statistically significant difference in the seropositivity of brucellosis was detected in univariate logistic regression among districts, different age groups, herd size, parity number, and reproductive health problems except for species and sex, but in multivariate logistic regression, only reproductive health problems were revealed a statistically significant difference. Out of 138 families, 100% of respondents were unaware of brucellosis, 94.5% drink raw milk, and 74% handle animals with retained fetal membranes with their bare hands. CONCLUSION This study showed that brucellosis was a widely spread disease in the study areas and poses a substantial public health danger. To reduce the spread of the disease in small ruminants, public health risks, and economic losses, stringent vaccination application and awareness of personal hygiene are critical.
Collapse
Affiliation(s)
- Desalegn Dosa
- Sodo Regional Veterinary Laboratory, Wolaita Sodo, Ethiopia
| | - Nejib Mohammed
- College of Agriculture, Arbaminch University, Arbaminch, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| |
Collapse
|
29
|
Occurrence and Risk Factors of Brucellosis in Commercial Cattle Farms from Selected Districts of the Eastern Coast Zone, Tanzania. Vet Med Int 2023; 2023:4904931. [PMID: 36814809 PMCID: PMC9940978 DOI: 10.1155/2023/4904931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Brucellosis is a disease of major socio-economic importance worldwide, particularly in low-income countries. This retrospective study aimed to estimate seroprevalence and risk factors associated with brucellosis in commercial cattle farms in the eastern coast zone of Tanzania (ECZT). A total of 1,052 serum samples collected from 20 commercial farms were subjected to rose bengal plate test (RBPT) and indirect enzyme-linked immunosorbent assay (i-ELISA). Descriptive analysis was employed to determine frequencies and proportions. To establish risk factors, a multivariate logistic regression analysis was carried out using a backward elimination procedure, following a univariate analysis, with 0.1 set as a cut-off point for the selection of putative risk factors. Agreement between RBPT and i-ELISA was determined using a Kappa coefficient (κ). The overall animal-level seroprevalence was 25.9% based on i-ELISA. Logistic regression analysis revealed that odds of infection were significantly higher in females (OR = 1.8, 95% CI: 1.2-2.5, p = 0.002) and in young animals than in adults (OR = 3.6, CI: 2.1-6.2, p < 0.001). In addition, odds of infection were higher during the wet season (OR = 3.4, CI: 3.2-5.2, p < 0.001), in cattle reared in rural farms (OR = 4.8, CI: 2.0-11.5, p < 0.001), in cattle reared in areas, not in contact with wildlife (OR = 2.9, CI: 1.4-2.3, p = 0.004), and in medium-sized farms (OR = 12.5, CI: 6.9-22.9, p < 0.001). These findings confirm that bovine brucellosis was prevalent among commercial cattle farms in the ECZT, posing a serious public health concern to the community living in these settings. The one health approach should be adopted for effective control of brucellosis.
Collapse
|
30
|
Wu Q, Yuan L, Guo X, Sun M, Yao M, Yin D. Study on antigenic protein Omp2b in combination with Omp31 and BP26 for serological detection of human brucellosis. J Microbiol Methods 2023; 205:106663. [PMID: 36592896 DOI: 10.1016/j.mimet.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brucellosis is a very common zoonosis in certain localized areas worldwide, with a high prevalence in most developing countries. The detection of brucellosis still faces many challenges such as the need for more sensitive and specific diagnostic antigens. METHODS To evaluate the efficacy of Brucella outer membrane proteins (Omps) Omp2b in combination with omp31 and BP26 as diagnostic antigens for the serological detection of human brucellosis, these proteins were prepared by a prokaryotic expression system. Human brucellosis-positive and-negative sera were collected, and the detection effects of the diagnostic antigens were evaluated using an established indirect ELISA (iELISA) method. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC), true positives, true negatives, false positives, false negatives, accuracy, positive predictive value, negative predictive value, analytical specificity, and sensitivity were obtained to evaluate the effectiveness of Omp2b and antigen combinations. RESULTS The iELISA results showed that the AUC of the antigenic proteins was 0.9100, 0.9387, 0.9343, and 0.9448, respectively, and that the combination of Omp31 and BP26 improved the accuracy and was superior to that of Omp2b alone. Analysis at the determined cut-off values showed that the analytical sensitivity of the assay was 0.8739 (95% CI:0.7974-0.9293) and the analytical specificity was 0.8539 (95% CI:0.7632-0.9199) when using Omp2b alone and 0.8649 when using the combination of Omp2b + BP26 (95% CI:0.7869-0.9223) with an analytical specificity of 0.9213 (95% CI:0.8446-0.9678) and 0.8468 (95% CI:0.7662-0.9082) and an analytical sensitivity of 0.9101 (95% CI:0.8305-0.9604). When Omp2b + Omp31 + BP26 was combined, the analytical sensitivity and specificity were 0.8559 (95% CI:0.7765-0.9153) and 0.9326 (95% CI:0.8590-0.9749), respectively. Protein antigens, including antigen combinations, did not cross-react with Yersinia enterocolitica O9 and E. coli O157: H7, indicating that their specificity was better than that of lipopolysaccharide (LPS). CONCLUSIONS Compared with individual Omp2b, antigen combinations improved the effectiveness in detecting brucellosis, but were still not as effective as LPS antigen. Omp2b, combined with Omp31 and BP26 as diagnostic antigens, can be used to detect human brucellosis.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaohan Guo
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingjun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Meixue Yao
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Dehui Yin
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
31
|
Shevtsov A, Cloeckaert A, Berdimuratova K, Shevtsova E, Shustov AV, Amirgazin A, Karibayev T, Kamalova D, Zygmunt MS, Ramanculov Y, Vergnaud G. Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity. Front Microbiol 2023; 14:1106994. [PMID: 37032899 PMCID: PMC10073595 DOI: 10.3389/fmicb.2023.1106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana, Kazakhstan
- *Correspondence: Alexandr Shevtsov,
| | | | | | | | | | | | | | | | | | - Yerlan Ramanculov
- National Center for Biotechnology, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Gilles Vergnaud,
| |
Collapse
|
32
|
Crawford L, Falkenberg S, Putz EJ, Olsen S, Boggiatto PM. Effects of concurrent administration of modified live viral vaccines with RB51 on immune responses to RB51. Front Vet Sci 2023; 10:1105485. [PMID: 36876019 PMCID: PMC9978739 DOI: 10.3389/fvets.2023.1105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Brucella abortus is a gram negative, zoonotic pathogen that can cause abortions and stillbirths in the cattle industry and has contributed to significant economic losses to cow-calf producers. Cell mediated immunity (CMI) is an important component of the immune response associated with protection against Brucella abortus and other intracellular pathogens. Brucellosis and viral modified live vaccines (vMLV) are licensed individually but may be used concurrently under field conditions. Peripheral blood mononuclear cells (PBMC) from non-vaccinated cattle and cattle vaccinated with either Brucella abortus strain RB51, a vMLV or both RB51 and a vMLV vaccine were isolated. The frequency of CD4+, CD8+ and γδ+ T cell populations within PBMC, and the frequency of interferon gamma (IFN-γ) production within these cell types was characterized via flow-cytometry. The goal of this study was to characterize immune responses to RB51 vaccination and determine the effect of concurrent vaccine administration. Although immune responses were greatest in PBMC from cattle vaccinated with only RB51, cattle vaccinated with both RB51 and vMLV demonstrated measurable T cell responses associated with protective immunity. Data suggests a lack of significant biological differences between the groups in protective immune responses. Collectively, our data demonstrated a lack of vaccine interference following concurrent administration of vMLV and RB51. Although concurrent administration of individually licensed vaccines may influence immune responses and contribute to vaccine interference, potential vaccine combinations should be evaluated for biological effects.
Collapse
Affiliation(s)
- Lauren Crawford
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States.,ORISE, Oak Ridge, TN, United States.,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Shollie Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ellie Jordan Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
33
|
Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, Shuai X, Guo J, Huang Q, Zhou B, Chu Y, Jiao H. The mechanism of chronic intracellular infection with Brucella spp. Front Cell Infect Microbiol 2023; 13:1129172. [PMID: 37143745 PMCID: PMC10151771 DOI: 10.3389/fcimb.2023.1129172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Globally, brucellosis is a widespread zoonotic disease. It is prevalent in more than 170 countries and regions. It mostly damages an animal's reproductive system and causes extreme economic losses to the animal husbandry industry. Once inside cells, Brucella resides in a vacuole, designated the BCV, which interacts with components of the endocytic and secretory pathways to ensure bacterial survival. Numerous studies conducted recently have revealed that Brucella's ability to cause a chronic infection depends on how it interacts with the host. This paper describes the immune system, apoptosis, and metabolic control of host cells as part of the mechanism of Brucella survival in host cells. Brucella contributes to both the body's non-specific and specific immunity during chronic infection, and it can aid in its survival by causing the body's immune system to become suppressed. In addition, Brucella regulates apoptosis to avoid being detected by the host immune system. The BvrR/BvrS, VjbR, BlxR, and BPE123 proteins enable Brucella to fine-tune its metabolism while also ensuring its survival and replication and improving its ability to adapt to the intracellular environment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| |
Collapse
|
34
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
35
|
King KA, Caudill MT, Caswell CC. A comprehensive review of small regulatory RNAs in Brucella spp. Front Vet Sci 2022; 9:1026220. [PMID: 36532353 PMCID: PMC9751625 DOI: 10.3389/fvets.2022.1026220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Brucella spp. are Gram-negative bacteria that naturally infect a variety of domesticated and wild animals, often resulting in abortions and sterility. Humans exposed to these animals or animal products can also develop debilitating, flu-like disease. The brucellae are intracellular pathogens that reside predominantly within immune cells, typically macrophages, where they replicate in a specialized compartment. This capacity of Brucella to survive and replicate within macrophages is essential to their ability to cause disease. In recent years, several groups have identified and characterized small regulatory RNAs (sRNAs) as critical factors in the control of Brucella physiology within macrophages and overall disease virulence. sRNAs are generally < 300 nucleotides in length, and these independent sRNA transcripts are encoded either next to (i.e., cis-encoded) or at a distant location to (i.e., trans-encoded) the genes that they regulate. Trans-encoded sRNAs interact with the mRNA transcripts through short stretches of imperfect base pairing that often require the RNA chaperone Hfq to facilitate sRNA-mRNA interaction. In many instances, these sRNA-mRNA interactions inhibit gene expression, usually by occluding the ribosome-binding site (RBS) and/or by decreasing the stability of the mRNA, leading to degradation of the transcript. A number of sRNAs have been predicted and authenticated in Brucella strains, and a variety of approaches, techniques, and means of validation have been employed in these efforts. Nonetheless, some important issues and considerations regarding the study of sRNA regulation in Brucella need to be addressed. For example, the lack of uniform sRNA nomenclature in Brucella has led to difficulty in comparisons of sRNAs across the different Brucella species, and there exist multiple names in the literature for what are functionally the same sRNA. Moreover, even though bona fide sRNAs have been discovered in Brucella, scant functional information is known about the regulatory activities of these sRNAs, or the extent to which these sRNAs are required for the intracellular life and/or host colonization by the brucellae. Therefore, this review summarizes the historical context of Hfq and sRNAs in Brucella; our current understanding of Brucella sRNAs; and some future perspectives and considerations for the field of sRNA biology in the brucellae.
Collapse
Affiliation(s)
| | | | - Clayton C. Caswell
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
36
|
Charypkhan D, Rüegg SR. One Health evaluation of brucellosis control in Kazakhstan. PLoS One 2022; 17:e0277118. [PMID: 36322602 PMCID: PMC9629608 DOI: 10.1371/journal.pone.0277118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Brucellosis is one of the main livestock disease risks in Kazakhstan. It's been endemic there since 1930, accounting for over 1300 human cases per annum. The economic loss was 45 million USD in 2015 alone. Since 1952, Kazakhstan has implemented various control strategies with little success. One Health approaches have been suggested to tackle brucellosis, however, there is a lack of evidence for best practices to operationalise One Health in the literature, and methods for implementation are not established. The intention of this study was to introduce the One Health approach during the evaluation phase of the policy cycle. A two-day workshop was organized by the authors to familiarize participants with the evaluation methodology. Twenty-one specialists representing veterinary and public health sector, together with researchers, took part in this study. For two weeks following the workshop, first author conducted individual interviews with workshop participants to obtain individual scorings to assess knowledge integration capacity (One Health-ness). The evaluation results show that there is a lack of knowledge about the perceived damage caused by brucellosis to animal owners and other stakeholders. There is insufficient data available about farmers' practices, interests and motivations, and also data is missing for important transmission processes such as the amount of unsafe dairy consumption. The absence of such data illustrates the extent of the uncertainty to which decision-makers are exposed despite well-elaborated transmission models and supports the importance of co-producing solutions with participatory methods. The results suggest the need for broader involvement of stakeholders. Outputs of this study could help navigate the initial stages of One Health operationalization.
Collapse
Affiliation(s)
- Duriya Charypkhan
- Vetsuisse Faculty, Section of Epidemiology, University of Zurich, Zurich, Switzerland
- Laboratory of Brucellosis, Kazakh Scientific Research Veterinary Institute, Almaty, Kazakhstan
- * E-mail:
| | - Simon R. Rüegg
- Vetsuisse Faculty, Section of Epidemiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Goodwin ZI, Yang X, Hoffman C, Pascual DW. Live mucosal vaccination stimulates potent protection via varied CD4+ and CD8+ T cell subsets against wild-type Brucella melitensis 16M challenge. Front Immunol 2022; 13:995327. [PMID: 36263034 PMCID: PMC9574439 DOI: 10.3389/fimmu.2022.995327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Re-emerging zoonotic pathogen Brucella spp. continues to impact developing countries and persists in expanding populations of wildlife species in the US, constantly threatening infection of our domestic herds. The development of improved animal and human vaccines remains a priority. In this study, immunity to a novel live attenuated B. melitensis strain, termed znBM-mC, was characterized. An oral prime, intranasal (IN) boost strategy conferred exquisite protection against pulmonary challenge, with wild-type (wt) B. melitensis providing nearly complete protection in the lungs and spleens from brucellae colonization. Vaccination with znBM-mC showed an IFN-γ+ CD8+ T-cell bias in the lungs as opposed to Rev 1-vaccinated mice showing IFN-γ+ CD4+ T-cell inclination. Lung CD4+ and CD8+ effector memory T cells (TEMs) increased over 200-fold; and lung CD4+ and CD8+ resident memory T cells (TRMs) increased more than 250- and 150-fold, respectively. These T cells served as the primary producers of IFN-γ in the lungs, which was essential for vaccine clearance and the predominant cytokine generated pre-and post-challenge with wt B. melitensis 16M; znBM-mC growth could not be arrested in IFN-γ−/− mice. Increases in lung TNF-α and IL-17 were also induced, with IL-17 being mostly derived from CD4+ T cells. Vaccination of CD4−/−, CD8−/−, and B6 mice with znBM-mC conferred full protection in the lungs and spleens post-pulmonary challenge with virulent B. melitensis; vaccination of IL-17−/− mice resulted in the protection of the lungs, but not the spleen. These data demonstrate the efficacy of mucosal vaccine administration for the generation of protective memory T cells against wt B. melitensis.
Collapse
|
38
|
Faddane K, Moumni H, Cherkaoui I, Lakranbi M, Hamdi S, Ezzikouri S, Saile R, El Azhari M. Seroprevalence of human brucellosis in Morocco and associated risk factors. Vet World 2022; 15:2224-2233. [PMID: 36341077 PMCID: PMC9631368 DOI: 10.14202/vetworld.2022.2224-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Brucellosis is a prevalent infectious zoonotic disease that affects humans, livestock, and wildlife in many parts of the world. A cross-sectional study was conducted to estimate the seroprevalence and risk factors of brucellosis among farmers and patients attending six health centers in Sidi Kacem province (northwestern Morocco). Materials and Methods: Blood samples (3-5 mL) were collected. Among 1283 participants, 351 were males and 932 were females and tested for Brucella antibodies using rose Bengal plate test and immunoglobulin (Ig)M/IgG enzyme-linked immunosorbent assay (ELISA) for confirmation. Results: The seroprevalence of brucellosis was 33.20% (426/1283) with a higher risk among males and rural residents. The univariable analysis revealed that contacting cattle, handling abortion products and manure, and consuming undercooked beef and goat meat were all risk factors for brucellosis. Furthermore, raw milk and milk derivatives were risk factors strongly linked to brucellosis. Conclusion: Our findings indicate a high prevalence of brucellosis associated with the consumption of raw meat, raw dairy products, milk, and close contact with infected animals. However, there are some limitations to this study, such as we did not use the ELISA test on all sera collected and individuals under the age of 18 were not included in the study. Moreover, building a database on the occurrence of brucellosis and associated epidemiological factors is critical for providing informed advice to policymakers to improve control strategies against this disease in Morocco.
Collapse
Affiliation(s)
- Kaoutar Faddane
- Laboratory of Bacteriology, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratory of Biology and Health URAC34-Metabolic and Immunologic Pathology Research Team, Faculty of Science, Ben M'sik, Hassan II University, Casablanca, Morocco
| | - Houda Moumni
- Directorate of Epidemiology and Disease Control, Ministry of Health, Rabat, Morocco
| | - Imad Cherkaoui
- Directorate of Epidemiology and Disease Control, Ministry of Health, Rabat, Morocco
| | - Mohammed Lakranbi
- Directorate of Epidemiology and Disease Control, Ministry of Health, Rabat, Morocco
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Laboratory of Virology, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Rachid Saile
- Laboratory of Biology and Health URAC34-Metabolic and Immunologic Pathology Research Team, Faculty of Science, Ben M'sik, Hassan II University, Casablanca, Morocco
| | - Mohamed El Azhari
- Laboratory of Bacteriology, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
39
|
Zhang Z, Zhang X, Chen X, Cui X, Cai M, Yang L, Zhang Y. Clinical Features of Human Brucellosis and Risk Factors for Focal Complications: A Retrospective Analysis in a Tertiary-Care Hospital in Beijing, China. Int J Gen Med 2022; 15:7373-7382. [PMID: 36157291 PMCID: PMC9507445 DOI: 10.2147/ijgm.s380328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023] Open
Abstract
Purpose Brucellosis is an ongoing zoonotic disease in China, but there are few data in Beijing. This study was designed to illustrate clinical characteristics of patients with brucellosis in Beijing, China and explore the risk factors for focal brucellosis. Patients and Methods Data of patients with brucellosis were retrospectively collected from the patients’ electronic medical records in Beijing Youan Hospital during 2010 to 2021, including epidemiological, demographic and clinical features. Risk factors for focal brucellosis were identified by multivariable logistic regression models. Results A total of 197 patients were included in the study, with 165 (83.8%) cases in acute phase and 32 (16.2%) cases in chronic phase. Patients in acute phase were more likely to have splenomegaly (24.2% vs 3.1%, p=0.007) than those in chronic phase, but had less arthralgia (62.4% vs 81.3%, p=0.040). The median level of alanine aminotransferase (36.9 vs 20.7, p=0.001) was higher in patients at acute stage than those at chronic stage. Of all the patients, 76 (38.6%) were reported with focal complications, including 16 (8.1%) peripheral arthritis, 36 (18.3%) spondylitis, 17 (8.6%) epididymoorchitis, 8 (4.1%) meningitis and 3 (1.3%) endocarditis. Additionally, male (OR 2.76, 95% CI 1.15–6.64, p = 0.023), arthralgia (OR 6.23, 95% CI 2.36–16.43, p < 0.001) and higher level of platelets (OR 1.01, 95% CI 1.00–1.01, p < 0.001) were the independent risk factors for focal brucellosis. Conclusion The control of human brucellosis still cannot be ignored due to the re-emerging cases in Beijing, which are more likely to present splenomegaly and abnormal liver function in acute phase. Moreover, male, arthralgia and high level of platelets were the independent risk factors for focal brucellosis.
Collapse
Affiliation(s)
- Zhili Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao Cui
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yulin Zhang, Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China, Tel +86 10-83997143, Fax +86 10-63293371, Email
| |
Collapse
|
40
|
Hassanzadeh P, Atyabi F, Dinarvand R. Nanobionics: From plant empowering to the infectious disease treatment. J Control Release 2022; 349:890-901. [PMID: 35901860 DOI: 10.1016/j.jconrel.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Infectious diseases (ID) are serious threats against the global health and socio-economic conditions. Vaccination usually plays a key role in disease prevention, however, insufficient efficiency or immunogenicity may be quite challenging. Using the advanced vectors for delivery of vaccines with suitable efficiency, safety, and immune-modulatory activity, and tunable characteristics could be helpful, but there are no systematic reviews confirming the capabilities of the vaccine delivery systems for covering various types of pathogens. Furthermore, high rates of the infections, transmission, and fatal ratio and diversity of the pathogens and infection mechanisms may negatively influence vaccine effectiveness. The absence of highly-effective antibiotics against the resistant strains of bacteria and longevity of antibiotic testing have provoked increasing needs towards the application of more accurate and specific theranostic strategies including the nanotechnology-based ones. Nanobionics which is based on the charge storage and transport in the molecular structures, could be of key value in the molecular diagnostic tests and highly-specific electro-analytical methods or devices. Such devices based on the early disease diagnostics might be of critical significance against various types of diseases. This article highlights the significance of nanobionics against ID.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
41
|
Tazerart F, Aliouane K, Grine G. Evolution of animal and human brucellosis in Algeria: a mini narrative review. New Microbes New Infect 2022; 48:101014. [DOI: 10.1016/j.nmni.2022.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Core Genome Multilocus Sequence Typing Scheme for Improved Characterization and Epidemiological Surveillance of Pathogenic Brucella. J Clin Microbiol 2022; 60:e0031122. [PMID: 35852343 PMCID: PMC9387271 DOI: 10.1128/jcm.00311-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brucellosis poses a significant burden to human and animal health worldwide. Robust and harmonized molecular epidemiological approaches and population studies that include routine disease screening are needed to efficiently track the origin and spread of Brucella strains. Core genome multilocus sequence typing (cgMLST) is a powerful genotyping system commonly used to delineate pathogen transmission routes for disease surveillance and control. Except for Brucella melitensis, cgMLST schemes for Brucella species are currently not established. Here, we describe a novel cgMLST scheme that covers multiple Brucella species. We first determined the phylogenetic breadth of the genus using 612 Brucella genomes. We selected 1,764 genes that were particularly well conserved and typeable in at least 98% of these genomes. We tested the new scheme on 600 genomes and found high agreement with the whole-genome-based single nucleotide polymorphism (SNP) analysis. Next, we applied the scheme to reanalyze the genome of Brucella strains from epidemiologically linked outbreaks. We demonstrated the applicability of the new scheme for high-resolution typing required in outbreak investigations as previously reported with whole-genome SNP methods. We also used the novel scheme to define the global population structure of the genus using 1,322 Brucella genomes. Finally, we demonstrated the possibility of tracing distribution of Brucella strains by performing cluster analysis of cgMLST profiles and found nearly identical cgMLST profiles in different countries. Our results show that sequencing depth of more than 40-fold is optimal for allele calling with this scheme. In summary, this study describes a novel Brucella-wide cgMLST scheme that is applicable in Brucella molecular epidemiology and helps in accurately tracking and thus controlling the sources of infection. The scheme is publicly accessible and should represent a valuable resource for laboratories with limited computational resources and bioinformatics expertise.
Collapse
|
43
|
Hussain R, Khan I, Jamal A, Mohamed BB, Khan A. Evaluation of Hematological, Oxidative Stress, and Antioxidant Profile in Cattle Infected with Brucellosis in Southern Punjab, Pakistan. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7140909. [PMID: 35898677 PMCID: PMC9314157 DOI: 10.1155/2022/7140909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 01/09/2023]
Abstract
Brucellosis is a well-known and harmful zoonotic disease that poses a severe threat to public health and wild and dairy animals. Due to a lack of monitoring and awareness, disease incidence has increased. Therefore, this study was conducted for the first time to ascertain the status of seroprevalence of brucellosis, hematological, oxidative stress, and antioxidant enzymes in different breeds of cattle reared under tropical-desert conditions in Pakistan. This study comprised 570 cattle of different breeds. We recorded some epidemiological traits, including age and gender. The blood samples were obtained from all the cattle, screened with RBPT, and then confirmed by ELISA and PCR. The results recorded an overall 11.75%, 10.7%, and 9.64% prevalence of brucellosis based on RBPT, ELISA, and PCR. We obtained nonsignificant results in different age and sex groups of cattle. The results showed significantly (P ≤ 0.05) lower values of erythrocyte counts, hemoglobin quantity, hematocrit, lymphocytes, and monocytes in infected cases. The results showed that the total leukocyte and neutrophil cells significantly (P ≤ 0.05) increased. The lipid peroxidation parameters (MDA- and NO-scavenging activity of erythrocyte) increased significantly (P ≤ 0.05) in infected cattle, whereas significantly reduced antioxidant enzymes like SOD, RGSH, and CAT were. Similarly, significantly lower serum albumin levels and total serum proteins were recorded in infected cattle.
Collapse
Affiliation(s)
- Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore Sub-Campus Jhang 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University-715, Makkah, Saudi Arabia
| | | | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
44
|
Olsen SC, Boggiatto PM. Characterization of the duration of immunity of Brucella abortus strain RB51 vaccination in cattle after experimental challenge. Prev Vet Med 2022; 206:105705. [PMID: 35850072 DOI: 10.1016/j.prevetmed.2022.105705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
Fifty-two, Hereford heifers were obtained from brucellosis-free herds and randomly assigned to Brucella abortus strain RB51 (RB51) vaccination (n = 32) or control (n = 20) treatments. Vaccinates received 1010 colony-forming units (CFU) of a commercial lyophilized RB51 vaccine. Immunologic responses after inoculation demonstrated significantly greater (P < 0.05) antibody, interferon-γ responses, and proliferative responses to RB51 antigens in cattle vaccinated with RB51 as compared to controls. A subgroup of control and vaccinated cattle were experimentally challenged at approximately 4, 5, and 6 years after inoculation with 107 CFU of B. abortus strain 2308 at 170-180 days gestation. After experimental challenge, 6 of 14 (43 %) control animals aborted at a higher rate (P < 0.05) when compared to RB51 vaccinates in years 4 and 5, but not year 6 (0 %, 10 %, and 50 %, respectively). When comparing recovery of Brucella from all tissues except head lymph nodes draining the site of challenge, RB51 vaccinates had reduced infection rates (P < 0.05) after experimental challenge at 4 years (14 %), but not at 5 or 6 years (78 % and 67 %, respectively) when compared to non-vaccinated cattle (93 %). Our data suggests that calfhood vaccination with RB51 does not induce lifelong immunity and suggests implementation of booster vaccination by 4-5 years of age should be utilized in endemic areas to maintain high levels of protection.
Collapse
Affiliation(s)
- S C Olsen
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| | - P M Boggiatto
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
45
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
46
|
El-Husseini DM, Sayour AE, Melzer F, Mohamed MF, Neubauer H, Tammam RH. Generation and Selection of Specific Aptamers Targeting Brucella Species through an Enhanced Cell-SELEX Methodology. Int J Mol Sci 2022; 23:ijms23116131. [PMID: 35682807 PMCID: PMC9180945 DOI: 10.3390/ijms23116131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Brucellae are Gram-negative, aerobic, non-motile coccobacilli causing brucellosis in man and animals. The disease is one of the most significant yet neglected global zoonoses. Especially in developing countries, brucellosis is causing public health problems and economic losses to private animal owners and national revenues. Composed of oligonucleotides, aptamers are chemical analogues of antibodies that are promising components for developing aptamer-based rapid, sensitive, and specific tests to identify the Brucella group of bacteria. For this purpose, aptamers were generated and selected by an enhanced protocol of cell systematic evolution of ligands by exponential enrichment (cell-SELEX). This enhanced cell-SELEX procedure involved the combination of both conventional and toggle cell-SELEX to boost the specificity and binding affinity to whole Brucella cells. This procedure, combined with high-throughput sequencing of the resulting aptamer pools, comprehensive bioinformatics analysis, and wet lab validation assays, led to the selection of a highly sensitive and specific aptamer for those Brucella species known to circulate in Egypt. The isolated candidate aptamer showed dissociation constant (KD) values of 43.5 ± 11, 61.5 ± 8, and 56 ± 10.8 nM for B. melitensis, B. abortus, and B. suis, respectively. This is the first development of a Brucella-specific aptamer using an enhanced combination of conventional and toggle cell-SELEX to the authors’ best knowledge.
Collapse
Affiliation(s)
- Dalia M. El-Husseini
- Biotechnology Department, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (D.M.E.-H.); (F.M.)
| | - Ashraf E. Sayour
- Molecular Biomimetics Research Group, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt;
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (D.M.E.-H.); (F.M.)
| | - Magda F. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.F.M.); (R.H.T.)
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| | - Reham H. Tammam
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.F.M.); (R.H.T.)
| |
Collapse
|
47
|
Charaa N, Ghrab R, Ben Othman A, Makhlouf M, Ltaief H, Ben Alaya N, Chahed M. Investigation of a human brucellosis outbreak in Douz, Tunisia, 2018. Epidemiol Health 2022; 44:e2022048. [PMID: 35609880 PMCID: PMC9684011 DOI: 10.4178/epih.e2022048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/18/2022] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES In 2017, the incidence of human brucellosis in Tunisia was 9.8 per 100,000 population. In the Douz district, 2 cases were reported in March 2018. Prior to that date, the last indigenous cases to be reported in Douz had been in 2015. This study aimed to identify the source of this new contamination and recommend control interventions. METHODS This case-control study included residents of Douz who presented with clinical symptoms of brucellosis and had a subsequent Wright test antibody titer ≥ 1/160. The controls were neighbors of the infected cases who had a negative Rose Bengal test. Univariate and multivariate analyses were performed to estimate the odds ratios of risk factors. Goats belonging to the cases and controls were actively screened. RESULTS Twenty-five infected cases and 52 uninfected controls were enrolled. All infected cases had consumed goat milk and 92% had purchased it from the same breeder. Consumption of goat milk from this breeder (adjusted odds ratio [aOR], 30.78; 95% confidence interval [CI], 6.47 to 235.91) and overall consumption of raw goat milk (aOR, 14.84; 95% CI, 2.04 to 310.44) were independent risk factors for brucellosis. The breeder had 18 goats, 5 of which were smuggled from a neighboring country. Three of those goats were diagnosed with brucellosis. CONCLUSIONS Consumption of raw milk from smuggled sick goats was the main risk factor in this outbreak. The sick goats were slaughtered and an education campaign was conducted. Vaccination, control of cross-border animal movements, and control of goat milk sales must be strengthened to prevent the spread of brucellosis in southwestern Tunisia.
Collapse
Affiliation(s)
- Nejib Charaa
- Preventive Health Division, Regional Directorate of Health, Kebili, Tunisia
| | | | | | - Mohamed Makhlouf
- Preventive Health Division, Regional Directorate of Health, Sfax, Tunisia
| | - Hejer Ltaief
- National Observatory of New and Emerging Diseases, Ministry of Health, Tunis, Tunisia
| | - Nissaf Ben Alaya
- National Observatory of New and Emerging Diseases, Ministry of Health, Tunis, Tunisia
- Departement of Preventive Medicine and Epidemiology, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Mohamed Chahed
- Departement of Preventive Medicine and Epidemiology, Faculty of Medicine of Tunis, Tunis, Tunisia
| |
Collapse
|
48
|
He CY, Yang JH, Ye YB, Zhao HL, Liu MZ, Yang QL, Liu BS, He S, Chen ZL. Proteomic and Antibody Profiles Reveal Antigenic Composition and Signatures of Bacterial Ghost Vaccine of Brucella abortus A19. Front Immunol 2022; 13:874871. [PMID: 35529865 PMCID: PMC9074784 DOI: 10.3389/fimmu.2022.874871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Brucellosis is an important zoonotic disease that causes great economic losses. Vaccine immunisation is the main strategy for the prevention and control of brucellosis. Although live attenuated vaccines play important roles in the prevention of this disease, they also have several limitations, such as residual virulence and difficulty in the differentiation of immunisation and infection. We developed and evaluated a new bacterial ghost vaccine of Brucella abortus A19 by a new double inactivation method. The results showed that the bacterial ghost vaccine of Brucella represents a more safe and efficient vaccine for brucellosis. We further characterised the antigenic components and signatures of the vaccine candidate A19BG. Here, we utilised a mass spectrometry-based label-free relative quantitative proteomics approach to investigate the global proteomics changes in A19BGs compared to its parental A19. The proteomic analysis identified 2014 proteins, 1116 of which were differentially expressed compared with those in A19. The common immunological proteins of OMPs (Bcsp31, Omp25, Omp10, Omp19, Omp28, and Omp2a), HSPs (DnaK, GroS, and GroL), and SodC were enriched in the proteome of A19BG. By protein micro array-based antibody profiling, significant differences were observed between A19BG and A19 immune response, and a number of signature immunogenic proteins were identified. Two of these proteins, the BMEII0032 and BMEI0892 proteins were significantly different (P < 0.01) in distinguishing between A19 and A19BG immune sera and were identified as differential diagnostic antigens for the A19BG vaccine candidate. In conclusion, using comparative proteomics and antibody profiling, protein components and signature antigens were identified for the ghost vaccine candidate A19BG, which are valuable for further developing the vaccine and its monitoring assays.
Collapse
Affiliation(s)
- Chuan-Yu He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Jiang-Hua Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yin-Bo Ye
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Hai-Long Zhao
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Meng-Zhi Liu
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Qi-Lin Yang
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Sun He
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Technology Center, Tecon Biological Co., Ltd., Urumqi, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Key Laboratory of Tropical Diseases Control, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Tazerart F, Aliouane K, Grine G. Animal and human brucellosis in Algeria: a review. New Microbes New Infect 2022; 46:100975. [PMID: 35496669 PMCID: PMC9052166 DOI: 10.1016/j.nmni.2022.100975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Tawla n Malṭa d aṭṭan ittenṭaḍen ɣer umdan i d-xeddment tbaktiriyin n tewsit Brucella spp. D aṭṭan amaḍlan u tella deg tmura n wagrakal am Lezzayer anda mazal txeddem axessar deg lmal. Ad d-nawi dagi tasɣunt tamatut ɣef tawla n Malṭa di Lezzayer, anda i tt-id-ufan yakan ɣer umdan seg 1895 u deg wass-nni mazal-itt d ugur ameqqran i yimeẓla n tdawsa. Tella tezqaft deg tejṛutin n yimdanen deg temnaḍt ɣer tayeḍ, tamnaḍt yennul ugar d tamnaḍt uzawaɣ i yesɛan weḥd-s aktamur alemmas (tajṛut/100 000 imezdaɣ) n 65.87 teḍfer-itt-id s 9.89 deg temnaḍt Agafa-Asamar ɣef wakken i d-iwekked uɣlif n tdawsa. Aktamur n tejṛutin n tawla n Malṭa n yizgaren iɛedda s uḍfar deg 5% ar 0,76% deg tlemmast n yiseggasen n 90 d 2014 s usileɣ imfeccec anda seld ṣa yiseggasen n wahil n takza d usnefren akked ucraḍ s tgezzayt REV-1 i d-ihegga uɣlif n tdawsa mazal yegguma ad isenger aṭṭan-agi. Ilaq daɣen ad negzu dakken anerni n umḍan n tejṛutin timaynutin n yimdanen i ittujerden kifkif-it akked tejṛutin ɣer tɣeṭṭen i yellan d aɛwin n temsalmit meqqren i umdan di Lezzayer.
Collapse
Affiliation(s)
- F. Tazerart
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida, Algeria
- Institut Hospitalo, Universitaire Méditerranée Infection, Marseille, France
- Corresponding author: F. Tazerart, Rue Didouche Mourad, Aamriw, 06000 Bgayet, Algeria.
| | - K. Aliouane
- Département de Langue Russe, Université de Taurida National V.I. Vernadsky, Kiev, Ukraine
| | - G. Grine
- Institut Hospitalo, Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Université, UFR Odontologie, Marseille, France
| |
Collapse
|
50
|
Shome R, Kalleshamurthy T, Nagaraj C, Rathore Y, Ramanjinappa KD, Skariah S, Mohandoss N, Shome BR, Chanda MM, Hemadri D. Countrywide cross-sectional study of swine brucellosis sero-prevalence in Indian subcontinent during 2018-2019. Trop Anim Health Prod 2022; 54:114. [PMID: 35217897 DOI: 10.1007/s11250-022-03107-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
Brucellosis in swine is a contagious disease with greater zoonotic potential caused by Brucella suis. The study describes PAN India swine brucellosis sero-prevalence in 5431 stratified random serum samples collected during 2018-2019 from 26 out of 29 states and two out of seven union territories. The serum samples were tested for anti-Brucella antibodies by indirect ELISA and overall, 4.33% apparent prevalence (AP) was recorded. The AP is ≥ 10% in five states among 26 states, P ≥ 50% in four districts out of 117 districts screened and cent percent prevalence in two epi units out of 264 sampled. Significantly high seropositivity (p < 0.05) in male (6.08%) than female pigs (3.46%) and in ≥ 24-month-old pigs indicated older and male pigs as potential carriers of the disease. The study recorded endemicity of the swine brucellosis in few regions of India requiring periodical surveillance for control of the disease. Brucella testing of boars before breeding and awareness among farmers and veterinarians will aid in reduction of disease burden in the absence of vaccination policy.
Collapse
Affiliation(s)
- Rajeswari Shome
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India.
| | - Triveni Kalleshamurthy
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Chaitra Nagaraj
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Yashaswini Rathore
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Kavana Doddajala Ramanjinappa
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Somy Skariah
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Nagalingam Mohandoss
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Bibek Ranjan Shome
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Mohammed Mudassar Chanda
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| | - Divakar Hemadri
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Yelahanka, Bengaluru, 560064, India
| |
Collapse
|