1
|
Singh AK, Thacker G, Upadhyay V, Mishra M, Sharma A, Sethi A, Chowdhury S, Siddiqui S, Verma SP, Pandey A, Bhatt MLB, Trivedi AK. Nemo-like kinase blocks myeloid differentiation by targeting tumor suppressor C/EBPα in AML. FEBS J 2024; 291:4539-4557. [PMID: 39110129 DOI: 10.1111/febs.17245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 07/25/2024] [Indexed: 10/17/2024]
Abstract
CCAAT/enhancer-binding protein α (C/EBPα), a key myeloid transcription factor, drives myeloid differentiation from blast cells by regulating the expression of granulocyte colony stimulating factor receptor and C/EBPε as required for promoting granulocyte differentiation. Here, we show that serine/threonine-protein kinase NLK, also known as Nemo-like kinase, physically associates with C/EBPα and phosphorylates it at multiple sites, including Ser21, Thr226, Thr230 and S234, leading to its ubiquitin-mediated degradation. Individual phospho-point mutants of C/EBPα could be phosphorylated by NLK, but a mutant with all phosphorylatable residues replaced by alanine resisted phosphorylation and degradation by NLK, as did the single point mutants. Furthermore, although ectopic expression of NLK enhanced phosphorylation of C/EBPα levels, it markedly inhibited total C/EBPα protein levels. Conversely, NLK depletion inhibited endogenous C/EBPα phosphorylation but enhanced its total protein levels in several acute myeloid leukemia (AML) cell lines and in peripheral blood mononuclear cells isolated from number of AML patient samples. Importantly, NLK depletion in peripheral blood mononuclear cells from primary AML patients not only restored C/EBPα protein levels, but also induced myeloid differentiation, suggesting that NLK could be therapeutically targeted to restore C/EBPα to resolve differentiation arrest in AML.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Amita Pandey
- King George's Medical University, Lucknow, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Singh AK, Upadhyay V, Sethi A, Chowdhury S, Mishra S, Verma SP, Bhatt MLB, Trivedi AK. Ring finger protein 138 inhibits transcription factor C/EBPα protein turnover leading to differentiation arrest in acute myeloid leukemia. Biochem J 2024; 481:653-666. [PMID: 38666590 DOI: 10.1042/bcj20240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
E3 ubiquitin ligase, ring finger protein 138 (RNF138) is involved in several biological processes; however, its role in myeloid differentiation or tumorigenesis remains unclear. RNAseq data from TNMplot showed that RNF138 mRNA levels are highly elevated in acute myeloid leukemia (AML) bone marrow samples as compared with bone marrow of normal volunteers. Here, we show that RNF138 serves as an E3 ligase for the tumor suppressor CCAAT/enhancer binding protein (C/EBPα) and promotes its degradation leading to myeloid differentiation arrest in AML. Wild-type RNF138 physically interacts with C/EBPα and promotes its ubiquitin-dependent proteasome degradation while a mutant RNF-138 deficient in ligase activity though interacts with C/EBPα, fails to down-regulate it. We show that RNF138 depletion enhances endogenous C/EBPα levels in peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. Our data further shows that RNF138-mediated degradation of C/EBPα negatively affects its transactivation potential on its target genes. Furthermore, RNF138 overexpression inhibits all-trans-retinoic acid-induced differentiation of HL-60 cells whereas RNF138 RNAi enhances. In line with RNF138 inhibiting C/EBPα protein turnover, we also observed that RNF138 overexpression inhibited β-estradiol (E2)-induced C/EBPα driven granulocytic differentiation in C/EBPα inducible K562-p42C/EBPα-estrogen receptor cells. Furthermore, we also recapitulated these findings in PBMCs isolated from AML patients where depletion of RNF138 increased the expression of myeloid differentiation marker CD11b. These results suggest that RNF138 inhibits myeloid differentiation by targeting C/EBPα for proteasomal degradation and may provide a plausible mechanism for loss of C/EBPα expression often observed in myeloid leukemia. Also, targeting RNF138 may resolve differentiation arrest by restoring C/EBPα expression in AML.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Shivkant Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Shailendra Prasad Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- King George's Medical University, Lucknow 226003, UP, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Wang D, Sun T, Xia Y, Zhao Z, Sheng X, Li S, Ma Y, Li M, Su X, Zhang F, Li P, Ma D, Ye J, Lu F, Ji C. Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation. Nat Commun 2023; 14:6907. [PMID: 37903757 PMCID: PMC10616288 DOI: 10.1038/s41467-023-42650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
CCAAT/enhancer binding protein α (C/EBPα) regulates myeloid differentiation, and its dysregulation contributes to acute myeloid leukaemia (AML) progress. Clarifying its functional implementation mechanism is of great significance for its further clinical application. Here, we show that C/EBPα regulates AML cell differentiation through liquid-liquid phase separation (LLPS), which can be disrupted by C/EBPα-p30. Considering that C/EBPα-p30 inhibits the functions of C/EBPα through the LZ region, a small peptide TAT-LZ that could instantaneously interfere with the homodimerization of C/EBPα-p42 was constructed, and dynamic inhibition of C/EBPα phase separation was observed, demonstrating the importance of C/EBPα-p42 homodimers for its LLPS. Mechanistically, homodimerization of C/EBPα-p42 mediated its phosphorylation at the novel phosphorylation site S16, which promoted LLPS and subsequent AML cell differentiation. Finally, decreasing the endogenous C/EBPα-p30/C/EBPα-p42 ratio rescued the phase separation of C/EBPα in AML cells, which provided a new insight for the treatment of the AML.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuhua Su
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer. Nat Commun 2022; 13:1090. [PMID: 35228570 PMCID: PMC8885825 DOI: 10.1038/s41467-022-28619-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.
Collapse
|
5
|
Kayabasi C, Yelken BO, Asik A, Okcanoglu TB, Sogutlu F, Gasimli R, Susluer SY, Saydam G, Avci CB, Gunduz C. PI3K/mTOR dual-inhibition with VS-5584 enhances anti-leukemic efficacy of ponatinib in blasts and Ph-negative LSCs of chronic myeloid leukemia. Eur J Pharmacol 2021; 910:174446. [PMID: 34461124 DOI: 10.1016/j.ejphar.2021.174446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
Ponatinib is used for advanced treatment of chronic myeloid leukemia (CML), although low doses to prevent side effects do not suppress survival pathways and eradicate leukemia stem cells (LSCs). We evaluated the potential of ponatinib and PI3K/mTOR dual-inhibitor VS-5584 combination (PoVS) therapy to increase the anti-leukemic effects of ponatinib and investigated the underlying mechanisms at the molecular level. We measured the cytotoxicities of ponatinib, VS-5584, and PoVS (CCK-8 assay), and used the median-effect equation for combination analyses. We investigated the effects of inhibitory concentrations on apoptosis, cell viability and cell-cycle regulation (flow cytometry), protein levels (ELISA, Western blot), transcriptional activities (dual-luciferase reporter assay), gene expressions (qRT-PCR). VS-5584 exerted selective cytotoxic effects against CML and LSC cell lines. VS-5584 inhibited the PI3K/Akt/mTOR pathway, resulting in reduced cell viability, slightly induced caspase-independent apoptosis, prominent G0/G1 cell-cycle blockade that is not a consequence of quiescence. Normal hematopoietic stem cell line was the least affected. Moreover, ponatinib and VS-5584 mediated synergistic anti-leukemic effects on leukemic cells. VS-5584 reduced the ponatinib dose required to target leukemic cells. PoVS treatment inhibited PI3K/Akt/mTOR pathway more consistently than either of the two agents alone through reducing p-Akt, p-mTOR, p-S6K, p-PRAS40, p-S6. The subsequent downstream effects were an increase in C/EBP transcriptional activity and decreases in activities of E2F/DP1, Myc/Max, CREB, STAT3, NFκB, AP-1, Elk-1/SRF. Transcriptional regulation resulted in alterations in the expression levels of target mRNAs. Our results highlight PoVS can be a promising treatment strategy for eliminating CML cells and LSCs selectively, with the reduced ponatinib doses.
Collapse
Affiliation(s)
- Cagla Kayabasi
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Besra Ozmen Yelken
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Aycan Asik
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Roya Gasimli
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sunde Yilmaz Susluer
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guray Saydam
- Division of Hematology, Internal Medicine Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
NAD Modulates DNA Methylation and Cell Differentiation. Cells 2021; 10:cells10112986. [PMID: 34831209 PMCID: PMC8616462 DOI: 10.3390/cells10112986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.
Collapse
|
7
|
Przedborski M, Sharon D, Chan S, Kohandel M. A mean-field approach for modeling the propagation of perturbations in biochemical reaction networks. Eur J Pharm Sci 2021; 165:105919. [PMID: 34175448 DOI: 10.1016/j.ejps.2021.105919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022]
Abstract
Often, the time evolution of a biochemical reaction network is crucial for determining the effects of combining multiple pharmaceuticals. Here we illustrate a mathematical framework for modeling the dominant temporal behaviour of a complicated molecular pathway or biochemical reaction network in response to an arbitrary perturbation, such as resulting from the administration of a therapeutic agent. The method enables the determination of the temporal evolution of a target protein as the perturbation propagates through its regulatory network. The mathematical approach is particularly useful when the experimental data that is available for characterizing or parameterizing the regulatory network is limited or incomplete. To illustrate the method, we consider the examples of the regulatory networks for the target proteins c-Myc and Chop, which play an important role in venetoclax resistance in acute myeloid leukemia. First we show how the networks that regulate each target protein can be reduced to a mean-field model by identifying the distinct effects that groups of proteins in the regulatory network have on the target protein. Then we show how limited protein-level data can be used to further simplify the mean-field model to pinpoint the dominant effects of the network perturbation on the target protein. This enables a further reduction in the number of parameters in the model. The result is an ordinary differential equation model that captures the temporal evolution of the expression of a target protein when one or more proteins in its regulatory network have been perturbed. Finally, we show how the dominant effects predicted by the mathematical model agree with RNA sequencing data for the regulatory proteins comprising the molecular network, despite the model not having a priori knowledge of this data. Thus, while the approach gives a simplified model for the expression of the target protein, it allows for the interpretation of the effects of the perturbation on the regulatory network itself. This method can be easily extended to sets of target proteins to model components of a larger systems biology model, and provides an approach for partially integrating RNA sequencing data and protein expression data. Moreover, it is a general approach that can be used to study drug effects on specific protein(s) in any disease or condition.
Collapse
Affiliation(s)
- Michelle Przedborski
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - David Sharon
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Steven Chan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
CDK2-instigates C/EBPα degradation through SKP2 in Acute myeloid leukemia. Med Oncol 2021; 38:69. [PMID: 34002296 DOI: 10.1007/s12032-021-01523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Transcription factor CCAAT/enhancer-binding protein-alpha (C/EBPα) regulates myelopoiesis by coupling growth arrest with differentiation of myeloid progenitors. Mutations in one or both alleles are observed in 10-14% AML cases that render C/EBPα functionally inactive. Besides, antagonistic protein-protein interactions also impair C/EBPα expression and function. In recent independent studies, we showed that CDK2 and SKP2 downregulated C/EBPα expression in an ubiquitin-dependent proteasome degradation manner leading to differentiation block in AML. Here, we demonstrate that CDK2-instigated C/EBPα downregulation is actually mediated by SKP2. Mechanistically, we show that CDK2 stabilizes SKP2 by phosphorylating it at Ser64 and thereby potentiates C/EBPα ubiquitination and subsequent degradation in AML cells. Immunoblot experiments showed that CDK2 inhibition downregulated SKP2 levels and concomitantly enhanced C/EBPα levels in myeloid cells. We further show that while CDK2 promoted C/EBPα ubiquitination and inhibited its protein levels, negatively affected its transactivation potential and DNA binding ability, simultaneous SKP2 depletion abrogated CDK2-promoted ubiquitination and restored C/EBPα expression and function. Taken together, these findings consolidate that CDK2 potentiates SKP2-mediated C/EBPα degradation in AML and targeting CDK2-SKP2 axis can be harnessed for therapeutic benefit in AML. Hypothetical model depicts that SKP2-mediated C/EBPα proteasomal degradation is reinforced by CDK2. CDK2 phopshorylates SKP2 leading to its enhanced stabilization which in turn exaggerates C/EBPα degradation leading to differentiation arrest in AML.
Collapse
|
9
|
Sadaf S, Nagarkoti S, Awasthi D, Singh AK, Srivastava RN, Kumar S, Barthwal MK, Dikshit M. nNOS induction and NOSIP interaction impact granulopoiesis and neutrophil differentiation by modulating nitric oxide generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119018. [PMID: 33771575 DOI: 10.1016/j.bbamcr.2021.119018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), a versatile free radical and a signalling molecule, plays an important role in the haematopoiesis, inflammation and infection. Impaired proliferation and differentiation of myeloid cells lead to malignancies and Hematopoietic deficiencies. This study was aimed to define the role of nNOS derived NO in neutrophil differentiation (in-vitro) and granulopoiesis (in-vivo) using multipronged approaches. The results obtained from nNOS over-expressing K562 cells revealed induction in C/EBPα derived neutrophil differentiation as evident by an increase in the expression of neutrophil specific cell surface markers, genes, transcription factors and functionality. nNOS mediated response also involved G-CSFR-STAT-3 axis during differentiation. Consistent increase in NO generation was observed during neutrophil differentiation of mice and human CD34+ HSPCs. Furthermore, granulopoiesis was abrogated in the nNOS inhibitor treated mice, depicting a decrease in the numbers of BM mature and progenitor neutrophils. Likewise, in vitro inhibition of nNOS in human CD34+ HSPCs indicated an indispensable role of nNOS in neutrophil differentiation. Expression of nNOS inhibitory protein, NOSIP was significantly and consistently decreased during the final stage of differentiation and was linked with the augmentation in NO release. Moreover, neutrophils from CML patients had more NOSIP and less NO generation as compared to the PMNs from healthy individuals. The present study thus indicates a critical role of nNOS, and its interaction with NOSIP during neutrophil differentiation. The study also highlights the importance of nNOS in the neutrophil progenitor proliferation and differentiation warranting investigations to assess its role in the haematopoiesis-related disorders.
Collapse
Affiliation(s)
- Samreen Sadaf
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
10
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Ai Z, Udalova IA. Transcriptional regulation of neutrophil differentiation and function during inflammation. J Leukoc Biol 2020; 107:419-430. [PMID: 31951039 DOI: 10.1002/jlb.1ru1219-504rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in innate immunity where they elicit powerful effector functions to eliminate invading pathogens and modulate the adaptive as well as the innate immune response. Neutrophil function must be tightly regulated during inflammation and infection to avoid additional tissue damage. Increasing evidence suggests that transcription factors (TFs) function as key regulators to modulate transcriptional output, thereby controlling cell fate decision and the inflammatory responses. However, the molecular mechanisms underlying neutrophil differentiation and function during inflammation remain largely uncharacterized. Here, we provide a comprehensive overview of TFs known to be crucial for neutrophil maturation and in the signaling pathways that control neutrophil differentiation and activation. We also outline how emerging genomic and single-cell technologies may facilitate further discovery of neutrophil transcriptional regulators.
Collapse
Affiliation(s)
- Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Schmidt L, Heyes E, Grebien F. Gain-of-Function Effects of N-Terminal CEBPA Mutations in Acute Myeloid Leukemia. Bioessays 2019; 42:e1900178. [PMID: 31867767 PMCID: PMC7115832 DOI: 10.1002/bies.201900178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the CEBPA gene are present in 10–15% of acute myeloid leukemia (AML) patients. The most frequent type of mutations leads to the expression of an N-terminally truncated variant of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα), termed p30. While initial reports proposed that p30 represents a dominant-negative version of the wild-type C/EBPα protein, other studies show that p30 retains the capacity to actively regulate gene expression. Recent global transcriptomic and epigenomic analyses have advanced the understanding of the distinct roles of the p30 isoform in leukemogenesis. This review outlines direct and indirect effects of the C/EBPα p30 variant on oncogenic transformation of hematopoietic progenitor cells and discusses how studies of N-terminal CEBPA mutations in AML can be extrapolated to identify novel gain-of-function features in oncoproteins that arise from recurrent truncating mutations in transcription factors.
Collapse
Affiliation(s)
- Luisa Schmidt
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Elizabeth Heyes
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, 1210, Austria
| |
Collapse
|
13
|
Sadaf S, Singh AK, Awasthi D, Nagarkoti S, Agrahari AK, Srivastava RN, Jagavelu K, Kumar S, Barthwal MK, Dikshit M. Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol 2019; 106:397-412. [DOI: 10.1002/jlb.1a0918-349rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samreen Sadaf
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | - Deepika Awasthi
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | - Sheela Nagarkoti
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | | | | | - Sachin Kumar
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | - Madhu Dikshit
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
14
|
|
15
|
Kim K, Hwang SM, Kim SM, Park SW, Jung Y, Chung IY. Terminally Differentiating Eosinophils Express Neutrophil Primary Granule Proteins as well as Eosinophil-specific Granule Proteins in a Temporal Manner. Immune Netw 2017; 17:410-423. [PMID: 29302254 PMCID: PMC5746611 DOI: 10.4110/in.2017.17.6.410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils and eosinophils, 2 prominent granulocytes, are commonly derived from myelocytic progenitors through successive stages in the bone marrow. Our previous genome-wide transcriptomic data unexpectedly showed that genes encoding a multitude of neutrophil primary granule proteins (NPGPs) were markedly downregulated during the end period of eosinophilic terminal differentiation when cord blood (CB) cluster of differentiation (CD) 34+ cells were induced to differentiate toward the eosinophil lineage during a 24-day culture period. Accordingly, this study aimed to examine whether NPGP genes were expressed on the way to eosinophil terminal differentiation stage and to compare their expression kinetics with that of genes encoding eosinophil-specific granule proteins (ESGPs). Transcripts of all NPGP genes examined, including proteinase 3, myeloperoxidase, cathepsin G (CTSG), and neutrophil elastase, reached a peak at day 12 and sharply declined thereafter, while transcript of ESGP genes including major basic protein 1 (MBP1) attained maximum expression at days 18 or 24. Growth factor independent 1 (GFI1) and CCAAT/enhancer-binding protein α (C/EBPA), transactivators for the NPGP genes, were expressed immediately before the NPGP genes, whereas expression of C/EBPA, GATA1, and GATA2 kinetically paralleled that of eosinophil granule protein genes. The expression kinetics of NPGPs and ESGPs were duplicated upon differentiation of the eosinophilic leukemia cell line (EoL-1) immature eosinophilic cells. Importantly, confocal image analysis showed that CTSG was strongly coexpressed with MBP1 in differentiating CB eosinophils at days 12 and 18 and became barely detectable at day 24 and beyond. Our results suggest for the first time the presence of an immature stage where eosinophils coexpress NPGPs and ESGPs before final maturation.
Collapse
Affiliation(s)
- Karam Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sae Mi Hwang
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sung Min Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Yunjae Jung
- Department of Microbiology, Gachon University School of Medicine, Incheon 21936, Korea
| | - Il Yup Chung
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea.,Department of Molecular and Life Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
16
|
An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017; 7:14327. [PMID: 29085021 PMCID: PMC5662654 DOI: 10.1038/s41598-017-14523-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.
Collapse
|
17
|
C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 2017; 31:2279-2285. [PMID: 28720765 DOI: 10.1038/leu.2017.229] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.
Collapse
|
18
|
Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Benoukraf T, Fricke S, Hilger N, Müller AM, Bill M, Schwind S, Tenen DG, Niederwieser D, Alberich-Jorda M, Behre G. Disruption of the C/EBPα-miR-182 balance impairs granulocytic differentiation. Nat Commun 2017; 8:46. [PMID: 28663557 PMCID: PMC5491528 DOI: 10.1038/s41467-017-00032-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/30/2017] [Indexed: 02/04/2023] Open
Abstract
Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis. C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.
Collapse
Affiliation(s)
- Alexander Arthur Wurm
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Miroslava Kardosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Dennis Gerloff
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniela Bräuer-Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Christiane Katzerke
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Jens-Uwe Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Touati Benoukraf
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Anne-Marie Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Marius Bill
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Sebastian Schwind
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Dietger Niederwieser
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Meritxell Alberich-Jorda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Gerhard Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany.
| |
Collapse
|
19
|
A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood. Oncogene 2017; 36:5221-5230. [PMID: 28504718 DOI: 10.1038/onc.2017.151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) plays a critical role during embryogenesis and is thereafter required for homeostatic glucose metabolism, adipogenesis and myeloid development. Its ability to regulate the expression of lineage-specific genes and induce growth arrest contributes to the terminal differentiation of several cell types, including hepatocytes, adipocytes and granulocytes. CEBPA loss of-function mutations contribute to the development of ~10% of acute myeloid leukemia (AML), stablishing a tumor suppressor role for C/EBPα. Deregulation of C/EBPα expression has also been reported in a variety of additional human neoplasias, including liver, breast and lung cancer. However, functional CEBPA mutations have not been found in solid tumors, suggesting that abrogation of C/EBPα function in non-hematopoietic tissues is regulated by alternative mechanisms. Here we review the function of C/EBPα in solid tumors and focus on the molecular mechanisms underlying its tumor suppressive role.
Collapse
|
20
|
EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors. Cell Death Differ 2017; 24:705-716. [PMID: 28186500 DOI: 10.1038/cdd.2017.6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022] Open
Abstract
Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.
Collapse
|
21
|
Kowenz-Leutz E, Schuetz A, Liu Q, Knoblich M, Heinemann U, Leutz A. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:841-7. [PMID: 27131901 DOI: 10.1016/j.bbagrm.2016.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022]
Abstract
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.
Collapse
Affiliation(s)
- Elisabeth Kowenz-Leutz
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anja Schuetz
- Protein Sample Production Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qingbin Liu
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Maria Knoblich
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Udo Heinemann
- Protein Sample Production Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Chemistry and Biochemistry Institute, Freie Universität Berlin, Berlin, Germany
| | - Achim Leutz
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Acetylation of C/EBPα inhibits its granulopoietic function. Nat Commun 2016; 7:10968. [PMID: 27005833 PMCID: PMC4814574 DOI: 10.1038/ncomms10968] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. C/EBPα is an essential transcription factor for myeloid lineage commitment. Here, the authors show that acetylation of C/EBPα at K298 and K302, mediated at least in part by GCN5, impairs C/EBPα DNA binding ability and modulates C/EBPα transcriptional activity.
Collapse
|
23
|
In K, Zaini MA, Müller C, Warren AJ, von Lindern M, Calkhoven CF. Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs. Nucleic Acids Res 2016; 44:4134-46. [PMID: 26762974 PMCID: PMC4872075 DOI: 10.1093/nar/gkw005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/31/2015] [Indexed: 01/24/2023] Open
Abstract
Mutations in the Shwachman–Bodian–Diamond Syndrome (SBDS) gene cause Shwachman–Diamond Syndrome (SDS), a rare congenital disease characterized by bone marrow failure with neutropenia, exocrine pancreatic dysfunction and skeletal abnormalities. The SBDS protein is important for ribosome maturation and therefore SDS belongs to the ribosomopathies. It is unknown, however, if loss of SBDS functionality affects the translation of specific mRNAs and whether this could play a role in the development of the clinical features of SDS. Here, we report that translation of the C/EBPα and -β mRNAs, that are indispensible regulators of granulocytic differentiation, is altered by SBDS mutations or knockdown. We show that SBDS function is specifically required for efficient translation re-initiation into the protein isoforms C/EBPα-p30 and C/EBPβ-LIP, which is controlled by a single cis-regulatory upstream open reading frame (uORF) in the 5′ untranslated regions (5′ UTRs) of both mRNAs. Furthermore, we show that as a consequence of the C/EBPα and -β deregulation the expression of MYC is decreased with associated reduction in proliferation, suggesting that failure of progenitor proliferation contributes to the haematological phenotype of SDS. Therefore, our study provides the first indication that disturbance of specific translation by loss of SBDS function may contribute to the development of the SDS phenotype.
Collapse
Affiliation(s)
- Kyungmin In
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Mohamad A Zaini
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Christine Müller
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Alan J Warren
- Cambridge Institute for Medical Research, Wellcome Trust-Medical Research Council Stem Cell Institute, the Department of Haematology, University of Cambridge, CB2 0XY, Cambridge, UK
| | - Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, 1066 CX Amsterdam, The Netherlands
| | - Cornelis F Calkhoven
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD, Groningen, The Netherlands
| |
Collapse
|
24
|
Liu Q, Nguyen E, Døskeland S, Ségal-Bendirdjian É. cAMP-Dependent Protein Kinase A (PKA)-Mediated c-Myc Degradation Is Dependent on the Relative Proportion of PKA-I and PKA-II Isozymes. Mol Pharmacol 2015; 88:469-76. [PMID: 26104548 DOI: 10.1124/mol.115.097915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/23/2015] [Indexed: 02/14/2025] Open
Abstract
The transcription factor c-Myc regulates numerous target genes that are important for multiple cellular processes such as cell growth and differentiation. It is commonly deregulated in leukemia. Acute promyelocytic leukemia (APL) is characterized by a blockade of granulocytic differentiation at the promyelocyte stage. Despite the great success of all-trans retinoic acid (ATRA)-based therapy, which results in a clinical remission by inducing promyelocyte maturation, a significant number of patients relapse due to the development of ATRA resistance. A significant role has been ascribed to the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway in retinoid treatment since PKA activation is able to restore differentiation in some ATRA-resistant cells and eradicate leukemia-initiating cells in vivo. In this study, using NB4 APL cell variants resistant to ATRA-induced differentiation, we reveal distinct functional roles of the two PKA isozymes, PKA type I (PKA-I) and PKA-type II (PKA-II), on the steady-state level of c-Myc protein, providing a likely mechanism by which cAMP-elevating agents can restore differentiation in ATRA maturation-resistant APL cells. Therefore, both the inhibition of c-Myc activity and the PKA-I/PKA-II ratio should be taken into account if cAMP-based therapy is considered in the clinical management of APL.
Collapse
Affiliation(s)
- Qingyuan Liu
- Institut National de la Santé et de la Recherche Médicale UMR-S 1007, Homéostasie Cellulaire et Cancer, Université Paris-Descartes, Paris Sorbonne Cité, Paris, France (Q.L., E.N., E.S.-B.); and Department of Biomedicine, University of Bergen, Bergen, Norway (S.D.)
| | - Eric Nguyen
- Institut National de la Santé et de la Recherche Médicale UMR-S 1007, Homéostasie Cellulaire et Cancer, Université Paris-Descartes, Paris Sorbonne Cité, Paris, France (Q.L., E.N., E.S.-B.); and Department of Biomedicine, University of Bergen, Bergen, Norway (S.D.)
| | - Stein Døskeland
- Institut National de la Santé et de la Recherche Médicale UMR-S 1007, Homéostasie Cellulaire et Cancer, Université Paris-Descartes, Paris Sorbonne Cité, Paris, France (Q.L., E.N., E.S.-B.); and Department of Biomedicine, University of Bergen, Bergen, Norway (S.D.)
| | - Évelyne Ségal-Bendirdjian
- Institut National de la Santé et de la Recherche Médicale UMR-S 1007, Homéostasie Cellulaire et Cancer, Université Paris-Descartes, Paris Sorbonne Cité, Paris, France (Q.L., E.N., E.S.-B.); and Department of Biomedicine, University of Bergen, Bergen, Norway (S.D.)
| |
Collapse
|
25
|
Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber KVM, Schönegger A, Marcellus R, Bilban M, Bock C, Brown PJ, Zuber J, Bennett KL, Al-awar R, Delwel R, Nerlov C, Arrowsmith CH, Superti-Furga G. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat Chem Biol 2015; 11:571-578. [PMID: 26167872 PMCID: PMC4511833 DOI: 10.1038/nchembio.1859] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/28/2015] [Indexed: 01/12/2023]
Abstract
The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.
Collapse
Affiliation(s)
- Florian Grebien
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna 1090, Austria
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthäus Getlik
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Amit Grover
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | - Roberto Avellino
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Anna Skucha
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Sarah Vittori
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ekaterina Kuznetsova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Gennadiy Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Andreas Schönegger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Core Facilities, Medical University Vienna, Vienna 1090, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna 1030, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Rima Al-awar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Claus Nerlov
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
26
|
Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 2014; 11:777-87. [PMID: 24824789 DOI: 10.4161/rna.28828] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | | | - Peter E Newburger
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA; Department of Cancer Biology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
27
|
CEBPA-dependent HK3 and KLF5 expression in primary AML and during AML differentiation. Sci Rep 2014; 4:4261. [PMID: 24584857 PMCID: PMC3939455 DOI: 10.1038/srep04261] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 02/14/2014] [Indexed: 12/20/2022] Open
Abstract
The basic leucine zipper transcription factor CCAAT/enhancer binding protein alpha (CEBPA) codes for a critical regulator during neutrophil differentiation. Aberrant expression or function of this protein contributes to the development of acute myeloid leukemia (AML). In this study, we identified two novel unrelated CEBPA target genes, the glycolytic enzyme hexokinase 3 (HK3) and the krüppel-like factor 5 (KLF5) transcription factor, by comparing gene profiles in two cohorts of CEBPA wild-type and mutant AML patients. In addition, we found CEBPA-dependent activation of HK3 and KLF5 transcription during all-trans retinoic acid (ATRA) mediated neutrophil differentiation of acute promyelocytic leukemia (APL) cells. Moreover, we observed direct regulation of HK3 by CEBPA, whereas our data suggest an indirect regulation of KLF5 by this transcription factor. Altogether, our data provide an explanation for low HK3 and KLF5 expression in particular AML subtype and establish these genes as novel CEBPA targets during neutrophil differentiation.
Collapse
|
28
|
Hegde VL, Tomar S, Jackson A, Rao R, Yang X, Singh UP, Singh NP, Nagarkatti PS, Nagarkatti M. Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Δ9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein α by microRNA-690. J Biol Chem 2013; 288:36810-26. [PMID: 24202177 DOI: 10.1074/jbc.m113.503037] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Δ(9)-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b(+)Gr-1(+) MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b(+)Ly6G(+)Ly6C(+) and CD11b(+)Ly6G(-)Ly6C(+) purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression.
Collapse
Affiliation(s)
- Venkatesh L Hegde
- From the Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liss A, Ooi CH, Zjablovskaja P, Benoukraf T, Radomska HS, Ju C, Wu M, Balastik M, Delwel R, Brdicka T, Tan P, Tenen DG, Alberich-Jorda M. The gene signature in CCAAT-enhancer-binding protein α dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors. Haematologica 2013; 99:697-705. [PMID: 24162792 DOI: 10.3324/haematol.2013.093278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
C/EPBα proteins, encoded by the CCAAT-enhancer-binding protein α gene, play a crucial role in granulocytic development, and defects in this transcription factor have been reported in acute myeloid leukemia. Here, we defined the C/EBPα signature characterized by a set of genes up-regulated upon C/EBPα activation. We analyzed expression of the C/EBPα signature in a cohort of 525 patients with acute myeloid leukemia and identified a subset characterized by low expression of this signature. We referred to this group of patients as the C/EBPα dysfunctional subset. Remarkably, a large percentage of samples harboring C/EBPα biallelic mutations clustered within this subset. We hypothesize that re-activation of the C/EBPα signature in the C/EBPα dysfunctional subset could have therapeutic potential. In search for small molecules able to reverse the low expression of the C/EBPα signature we applied the connectivity map. This analysis predicted positive connectivity between the C/EBPα activation signature and histone deacetylase inhibitors. We showed that these inhibitors reactivate expression of the C/EBPα signature and promote granulocytic differentiation of primary samples from the C/EBPα dysfunctional subset harboring biallelic C/EBPα mutations. Altogether, our study identifies histone deacetylase inhibitors as potential candidates for the treatment of certain leukemias characterized by down-regulation of the C/EBPα signature.
Collapse
|
30
|
Shimokawa T, Nunomura S, Fujisawa D, Ra C. Identification of the C/EBPα C-terminal tail residues involved in the protein interaction with GABP and their potency in myeloid differentiation of K562 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1207-17. [PMID: 24076158 DOI: 10.1016/j.bbagrm.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022]
Abstract
The CCAAT/enhancer-binding protein α (C/EBPα) is the member of a family of related basic leucine zipper (bZIP) transcription factors and is critical for granulopoiesis. We previously demonstrated that C/EBPα interacts with the ETS domain of widely expressed GABPα, which leads to cooperative transcriptional activation of the myeloid-specific promoter for human FCAR encoding the Fc receptor for IgA (FcαR, CD89) in part by facilitating recruitment of C/EBPα to the promoter. The C/EBPα molecule contains transactivation domains (TADs) at its N-terminus and a DNA-binding and dimerization bZIP structure at its C-terminus. We demonstrate here that GABPα interacts with the last 18 residues of the C/EBPα C-terminus beyond the bZIP DNA-binding and dimerizing region. Deletion of this C-terminus resulted in loss of GABPα interaction but not affecting its DNA binding ability, indicating that it is not required for homodimer formation. Moreover, the C-terminus confers the ability to functionally synergize with GABP on a heterologous TAD when fused to the C-terminus of the VP16 TAD. We identified a three-amino acid stretch (amino acids 341-343) that is important for both functional and protein interactions with GABP. Ectopic expression in K562 cells of C/EBPα mutant incapable of interacting with GABPα does not induce expression of granulocytic differentiation markers including CD15, CD11b, GCSF-R and C/EBPε, and does not inhibit proliferation, whereas wild type does. These results demonstrate the functional importance of the C/EBPα C-terminus beyond the bZIP DNA-binding and dimerization region, which may mediate cooperative activation by C/EBPα and GABP of myeloid-specific genes involved in C/EBPα-dependent granulopoiesis.
Collapse
Affiliation(s)
- Toshibumi Shimokawa
- Division of Molecular Cell Immunology and Allergology, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | | | |
Collapse
|
31
|
Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013; 122:2433-42. [PMID: 23974200 DOI: 10.1182/blood-2012-12-472183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor CCAAT enhancer binding protein α (C/EBPα) is a master regulator in granulopoiesis and is frequently disrupted in acute myeloid leukemia (AML). We have previously shown that C/EBPα exerts its effects by regulating microRNAs (miRs) such as miR-223 and miR-34a. Here, we confirm miR-30c as a novel important target of C/EBPα during granulopoiesis. Thus, wild-type C/EBPα-p42 directly upregulates miR-30c expression, whereas C/EBPα-p30, found in AML, does not. miR-30c is downregulated in AML, especially in normal karyotype AML patients with CEBPA mutations. An induced C/EBPα knockout in mice leads to a significant downregulation of miR-30c expression in bone marrow cells. We identified NOTCH1 as a direct target of miR-30c. Finally, a block of miR-30c prevents C/EBPα-induced downregulation of Notch1 protein and leads to a reduced CD11b expression in myeloid differentiation. Our study presents the first evidence that C/EBPα, miR-30c, and Notch1 together play a critical role in granulocytic differentiation and AML, and particularly in AML with CEBPA mutations. These data reveal the importance of deregulated miRNA expression in leukemia and may provide novel biomarkers and therapeutic targets in AML.
Collapse
|
32
|
Alberich-Jordà M, Wouters B, Balastik M, Shapiro-Koss C, Zhang H, Di Ruscio A, DiRuscio A, Radomska HS, Ebralidze AK, Amabile G, Ye M, Zhang J, Lowers I, Avellino R, Melnick A, Figueroa ME, Valk PJM, Delwel R, Tenen DG. C/EBPγ deregulation results in differentiation arrest in acute myeloid leukemia. J Clin Invest 2012; 122:4490-504. [PMID: 23160200 DOI: 10.1172/jci65102] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/20/2012] [Indexed: 11/17/2022] Open
Abstract
C/EBPs are a family of transcription factors that regulate growth control and differentiation of various tissues. We found that C/EBPγ is highly upregulated in a subset of acute myeloid leukemia (AML) samples characterized by C/EBPα hypermethylation/silencing. Similarly, C/EBPγ was upregulated in murine hematopoietic stem/progenitor cells lacking C/EBPα, as C/EBPα mediates C/EBPγ suppression. Studies in myeloid cells demonstrated that CEBPG overexpression blocked neutrophilic differentiation. Further, downregulation of Cebpg in murine Cebpa-deficient stem/progenitor cells or in human CEBPA-silenced AML samples restored granulocytic differentiation. In addition, treatment of these leukemias with demethylating agents restored the C/EBPα-C/EBPγ balance and upregulated the expression of myeloid differentiation markers. Our results indicate that C/EBPγ mediates the myeloid differentiation arrest induced by C/EBPα deficiency and that targeting the C/EBPα-C/EBPγ axis rescues neutrophilic differentiation in this unique subset of AMLs.
Collapse
|
33
|
Zhang C, Chi YL, Wang PY, Wang YQ, Zhang YX, Deng J, Lv CJ, Xie SY. miR-511 and miR-1297 inhibit human lung adenocarcinoma cell proliferation by targeting oncogene TRIB2. PLoS One 2012; 7:e46090. [PMID: 23071539 PMCID: PMC3465292 DOI: 10.1371/journal.pone.0046090] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/27/2012] [Indexed: 01/05/2023] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate genes and contribute to many kinds of human diseases, including cancer. Two miRNAs, miR-511 and miR-1297, were investigated for a possible role in adenocarcinoma based on predicted binding sites for the TRIB2 oncogene by microRNA analysis software, and the pcDNA-GFP-TRIB2-3'UTR vector was constructed to investigate the interaction between TRIB2 and miR-511/1297 in the adenocarcinoma cell line A549. Green fluorescent protein (GFP) expression was estimated by fluorescence microscopy and flow cytometry after A549 cells were co-transfected with miR-511 (or miR-1297) and pcDNA-GFP-TRIB2-3'UTR vector. The expression of GFP in the miR-511- and miR-1297-treated cells was significantly downregulated in contrast with the negative-control (NC) miRNA-treated cells. The decreased expression of TRIB2 was further detected after miR-511 (or miR-1297) treatment by western blotting. The MTT test showed inhibition of A549 cell proliferation and Annexin V-FITC/PI dual staining showed increased apoptosis in the miR-511- and miR-1297-treated cells compared to the NC cultures. A transcription factor downstream of TRIB2, the CCAAT/enhancer-binding protein alpha (C/EBPα), was expression at higher levels after miR-511 (or miR-1297) decreasing TRIB2 expression. Our results illustrate that miR-511 and miR-1297 act as tumor suppressor genes, which could suppress A549 cell proliferation in vitro and in vivo by suppressing TRIB2 and further increasing C/EBPα expression.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P.R.China
| | - Yong Liang Chi
- Shandong China Traditional Medical Affiliated Hospital, Ji Nan, P.R.China
| | - Ping Yu Wang
- Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P.R.China
| | - Ya Qi Wang
- Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P.R.China
| | - Yan Xia Zhang
- Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P.R.China
| | - Jingti Deng
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Ji'nan, P.R.China
| | - Chang Jun Lv
- The Affiliated Hospital to Binzhou Medical University, BinZhou, P.R.China
- * E-mail: (CL); (SX)
| | - Shu Yang Xie
- Key Laboratory of Tumour Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, P.R.China
- The Affiliated Hospital to Binzhou Medical University, BinZhou, P.R.China
- * E-mail: (CL); (SX)
| |
Collapse
|
34
|
Fragliasso V, Chiodo Y, Ferrari-Amorotti G, Soliera AR, Manzotti G, Cattelani S, Candini O, Grisendi G, Vergalli J, Mariani SA, Guerzoni C, Calabretta B. Phosphorylation of serine 21 modulates the proliferation inhibitory more than the differentiation inducing effects of C/EBPα in K562 cells. J Cell Biochem 2012; 113:1704-13. [PMID: 22212957 DOI: 10.1002/jcb.24040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The CCAAT/enhancer binding protein α (C/EBPα) is a transcription factor required for differentiation of myeloid progenitors. In acute myeloid leukemia (AML) cells expressing the constitutively active FLT3-ITD receptor tyrosine kinase, MAP kinase-dependent phosphorylation of serine 21 (S21) inhibits the ability of C/EBPα to induce granulocytic differentiation. To assess whether this post-translational modification also modulates the activity of C/EBPα in BCR/ABL-expressing cells, we tested the biological effects of wild-type and mutant C/EBPα mimicking phosphorylated or non-phosphorylatable serine 21 (S21D and S21A, respectively) in K562 cells ectopically expressing tamoxifen-regulated C/EBPα-ER chimeric proteins. We show here that S21D C/EBPα-ER induced terminal granulocytic differentiation of K562 cells almost as well as wild-type C/EBPα-ER, while S21A C/EBPα-ER was less efficient. Furthermore, wild-type C/EBPα suppressed the proliferation and colony formation of K562 cells vigorously, while S21D and S21A C/EBPα mutants had more modest anti-proliferative effects. Both mutants were less effective than wild-type C/EBPα in suppressing endogenous E2F-dependent transactivation and bound less E2F-2 and/or E2F-3 proteins in anti-C/EBPα immunoprecipitates. Together, these findings suggest that mutation of S21 more than its phosphorylation inhibits the anti-proliferative effects of C/EBPα due to reduced interaction with or impaired regulation of the activity of E2F proteins. By contrast, phosphorylation of serine 21 appears to have a modest role in modulating the differentiation-inducing effects of C/EBPα in K562 cells.
Collapse
Affiliation(s)
- Valentina Fragliasso
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Koleva RI, Ficarro SB, Radomska HS, Carrasco-Alfonso MJ, Alberta JA, Webber JT, Luckey CJ, Marcucci G, Tenen DG, Marto JA. C/EBPα and DEK coordinately regulate myeloid differentiation. Blood 2012; 119:4878-88. [PMID: 22474248 PMCID: PMC3367892 DOI: 10.1182/blood-2011-10-383083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/10/2012] [Indexed: 11/20/2022] Open
Abstract
The transcription factor C/EBPα is a critical mediator of myeloid differentiation and is often functionally impaired in acute myeloid leukemia. Recent studies have suggested that oncogenic FLT3 activity disrupts wild-type C/EBPα function via phosphorylation on serine 21 (S21). Despite the apparent role of pS21 as a negative regulator of C/EBPα transcription activity, the mechanism by which phosphorylation tips the balance between transcriptionally competent and inhibited forms remains unresolved. In the present study, we used immuno-affinity purification combined with quantitative mass spectrometry to delineate the proteins associated with C/EBPα on chromatin. We identified DEK, a protein with genetic links to leukemia, as a member of the C/EBPα complexes, and demonstrate that this association is disrupted by S21 phosphorylation. We confirmed that DEK is recruited specifically to chromatin with C/EBPα to enhance GCSFR3 promoter activation. In addition, we demonstrated that genetic depletion of DEK reduces the ability of C/EBPα to drive the expression of granulocytic target genes in vitro and disrupts G-CSF-mediated granulocytic differentiation of fresh human BM-derived CD34(+) cells. Our data suggest that C/EBPα and DEK coordinately activate myeloid gene expression and that S21 phosphorylation on wild-type C/EBPα mediates protein interactions that regulate the differentiation capacity of hematopoietic progenitors.
Collapse
Affiliation(s)
- Rositsa I Koleva
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
C/EBPα (CEBPA) is mutated in approximately 8 % of AML in both familial and sporadic AML and, with FLT3 and NPM1, has received most attention as a predictive marker of outcome in patients with normal karyotype disease. Mutations clustering to either the N- or C-terminal (N-and C-ter) portions of the protein have different consequences on the protein function. In familial cases the N-ter form is inherited with patients exhibiting long latency period before the onset of overt disease, typically with the acquisition of a C-ter mutation. Despite the essential insights murine models provide the functional consequences of wild-type C/EBPα in human hematopoiesis and how different mutations are involved in AML development have received less attention. Our data underline the critical role of C/EBPα in human hematopoiesis and demonstrate that C/EBPα mutations (alone or in combination) are insufficient to convert normal human hematopoietic stem/progenitors (HSC/HPCs) into leukemic initiating cells, although individually each altered normal hematopoiesis. It provides the first insight into the effects of N- and C-terminal mutations acting alone and to the combined effects of N/C double mutants. Our results mimicked closely what happens in CEBPA mutated patients.
Collapse
|
37
|
Bowman TV, Trompouki E, Zon LI. Linking hematopoietic regeneration to developmental signaling pathways: a story of BMP and Wnt. Cell Cycle 2012; 11:424-5. [PMID: 22262185 DOI: 10.4161/cc.11.3.19161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Soliera AR, Mariani SA, Audia A, Lidonnici MR, Addya S, Ferrari-Amorotti G, Cattelani S, Manzotti G, Fragliasso V, Peterson L, Perini G, Holyoake TL, Calabretta B. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia 2012; 26:1555-63. [PMID: 22285998 DOI: 10.1038/leu.2012.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of the transcription repressor Gfi-1 is required for the maintenance of murine hematopoietic stem cells. In human cells, ectopic expression of Gfi-1 inhibits and RNA interference-mediated Gfi-1 downregulation enhances proliferation and colony formation of p210BCR/ABL expressing cells. To investigate the molecular mechanisms that may explain the effects of perturbing Gfi-1 expression in human cells, Gfi-1-regulated genes were identified by microarray analysis in K562 cells expressing the tamoxifen-regulated Gfi-1-ER protein. STAT 5B and Mcl-1, two genes important for the proliferation and survival of hematopoietic stem cells, were identified as direct and functionally relevant Gfi-1 targets in p210BCR/ABL-transformed cells because: (i) their expression and promoter activity was repressed by Gfi-1 and (ii) when constitutively expressed blocked the proliferation and colony formation inhibitory effects of Gfi-1. Consistent with these findings, genetic or pharmacological inhibition of STAT 5 and/or Mcl-1 markedly suppressed proliferation and colony formation of K562 and CD34+ chronic myelogenous leukemia (CML) cells. Together, these studies suggest that the Gfi-1STAT 5B/Mcl-1 regulatory pathway identified here can be modulated to suppress the proliferation and survival of p210BCR/ABL-transformed cells including CD34+ CML cells.
Collapse
Affiliation(s)
- A R Soliera
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 2011; 147:577-89. [PMID: 22036566 DOI: 10.1016/j.cell.2011.09.044] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/01/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
Abstract
BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent to hematopoietic genes. In addition, both SMAD1 and TCF7L2 follow the binding of the predominant lineage regulator during differentiation from multipotent hematopoietic progenitor cells to erythroid cells. Furthermore, induction of the myeloid lineage regulator C/EBPα in erythroid cells shifts binding of SMAD1 to sites newly occupied by C/EBPα, whereas expression of the erythroid regulator GATA1 directs SMAD1 loss on nonerythroid targets. We conclude that the regenerative response mediated by BMP and Wnt signaling pathways is coupled with the lineage master regulators to control the gene programs defining cellular identity.
Collapse
|
40
|
Mora-Jensen H, Jendholm J, Fossum A, Porse B, Borregaard N, Theilgaard-Mönch K. Technical Advance: Immunophenotypical characterization of human neutrophil differentiation. J Leukoc Biol 2011; 90:629-34. [DOI: 10.1189/jlb.0311123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
41
|
Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood 2011; 117:221-33. [DOI: 10.1182/blood-2010-02-270181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Two types of mutations of a transcription factor CCAAT-enhancer binding protein α (C/EBPα) are found in leukemic cells of 5%-14% of acute myeloid leukemia (AML) patients: N-terminal mutations expressing dominant negative p30 and C-terminal mutations in the basic leucine zipper domain. Our results showed that a mutation of C/EBPα in one allele was observed in AML after myelodysplastic syndrome, while the 2 alleles are mutated in de novo AML. Unlike an N-terminal frame-shift mutant (C/EBPα-Nm)–transduced cells, a C-terminal mutant (C/EBPα-Cm)–transduced cells alone induced AML with leukopenia in mice 4-12 months after bone marrow transplantation. Coexpression of both mutants induced AML with marked leukocytosis with shorter latencies. Interestingly, C/EBPα-Cm collaborated with an Flt3-activating mutant Flt3-ITD in inducing AML. Moreover, C/EBPα-Cm strongly blocked myeloid differentiation of 32Dcl3 cells, suggesting its class II mutation-like role in leukemogenesis. Although C/EBPα-Cm failed to inhibit transcriptional activity of wild-type C/EBPα, it suppressed the synergistic effect between C/EBPα and PU.1. On the other hand, C/EBPα-Nm inhibited C/EBPα activation in the absence of PU.1, despite low expression levels of p30 protein generated by C/EBPα-Nm. Thus, 2 types of C/EBPα mutations are implicated in leukemo-genesis, involving different and cooperating molecular mechanisms.
Collapse
|
42
|
Abstract
Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms.
Collapse
Affiliation(s)
- Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital (Rigshospitalet), University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
43
|
Lidonnici MR, Audia A, Soliera AR, Prisco M, Ferrari-Amorotti G, Waldron T, Donato N, Zhang Y, Martinez RV, Holyoake TL, Calabretta B. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBP{alpha} and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res 2010; 70:7949-59. [PMID: 20924107 DOI: 10.1158/0008-5472.can-10-1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ectopic expression of CAAT/enhancer binding protein α (C/EBPα) in p210BCR/ABL-expressing cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To dissect the molecular mechanisms underlying these biological effects, C/EBPα-regulated genes were identified by microarray analysis in 32D-p210BCR/ABL cells. One of the genes whose expression was activated by C/EBPα in a DNA binding-dependent manner in BCR/ABL-expressing cells is the transcriptional repressor Gfi-1. We show here that C/EBPα interacts with a functional C/EBP binding site in the Gfi-1 5'-flanking region and enhances the promoter activity of Gfi-1. Moreover, in K562 cells, RNA interference-mediated downregulation of Gfi-1 expression partially rescued the proliferation-inhibitory but not the differentiation-inducing effect of C/EBPα. Ectopic expression of wild-type Gfi-1, but not of a transcriptional repressor mutant (Gfi-1P2A), inhibited proliferation and markedly suppressed colony formation but did not induce granulocytic differentiation of BCR/ABL-expressing cells. By contrast, Gfi-1 short hairpin RNA-tranduced CD34(+) chronic myeloid leukemia cells were markedly more clonogenic than the scramble-transduced counterpart. Together, these studies indicate that Gfi-1 is a direct target of C/EBPα required for its proliferation and survival-inhibitory effects in BCR/ABL-expressing cells.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Conserved upstream open reading frames (uORFs) are found within many eukaryotic transcripts and are known to regulate protein translation. Evidence from genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of human diseases. A genetic mouse model has recently provided proof-of-principle support for the physiological relevance of uORF-mediated translational control in mammals. The targeted disruption of the uORF initiation codon within the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) gene resulted in deregulated C/EBPβ protein isoform expression, associated with defective liver regeneration and impaired osteoclast differentiation. The high prevalence of uORFs in the human transcriptome suggests that intensified search for mutations within 5' RNA leader regions may reveal a multitude of alterations affecting uORFs, causing pathogenic deregulation of protein expression.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
- Charité, University Medicine BerlinGermany
| | - Jeske J Smink
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| | - Achim Leutz
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| |
Collapse
|
45
|
C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 2010; 116:5638-49. [PMID: 20889924 DOI: 10.1182/blood-2010-04-281600] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcription factor, CCAAT enhancer binding protein alpha (C/EBPα), is crucial for granulopoiesis and is deregulated by various mechanisms in acute myeloid leukemia (AML). Mutations in the CEBPA gene are reported in 10% of human patients with AML. Even though the C/EBPα mutants are known to display distinct biologic function during leukemogenesis, the molecular basis for this subtype of AML remains elusive. We have recently showed the significance of deregulation of C/EBPα-regulated microRNA (miR) in AML. In this study, we report that miR-34a is a novel target of C/EBPα in granulopoiesis. During granulopoiesis, miR-34a targets E2F3 and blocks myeloid cell proliferation. Analysis of AML samples with CEBPA mutations revealed a lower expression of miR-34a and elevated levels of E2F3 as well as E2F1, a transcriptional target of E2F3. Manipulation of miR-34a reprograms granulocytic differentiation of AML blast cells with CEBPA mutations. These results define miR-34a as a novel therapeutic target in AML with CEBPA mutations.
Collapse
|
46
|
Ferrari-Amorotti G, Mariani SA, Novi C, Cattelani S, Pecorari L, Corradini F, Soliera AR, Manzotti G, Fragliasso V, Zhang Y, Martinez RV, Lam EWF, Guerzoni C, Calabretta B. The biological effects of C/EBPalpha in K562 cells depend on the potency of the N-terminal regulatory region, not on specificity of the DNA binding domain. J Biol Chem 2010; 285:30837-50. [PMID: 20659895 DOI: 10.1074/jbc.m110.128272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor C/EBPα is more potent than C/EBPβ in inducing granulocitic differentiation and inhibiting BCR/ABL-expressing cells. We took a "domain swapping" approach to assess biological effects, modulation of gene expression, and binding to C/EBPα-regulated promoters by wild-type and chimeric C/EBPα/C/EBPβ proteins. Wild-type and N-C/EBPα+ C/EBPβ-DBD induced transcription of the granulocyte-colony stimulating factor receptor (G-CSFR) gene, promoted differentiation, and suppressed proliferation of K562 cells vigorously; instead, wild-type C/EBPβ and N-C/EBPβ+C/EBPα-DBD had modest effects, although they bound the G-CSFR promoter like wild-type C/EBPα and N-C/EBPα+C/EBPβ-DBD. Chimeric proteins consisting of the TAD of VP16 and the DBD of C/EBPα or C/EBPβ inhibited proliferation and induced differentiation of K562 cells as effectively as wild-type C/EBPα. Gene expression profiles induced by C/EBPα resembled those modulated by N-C/EBPα+C/EBPβ-DBD, whereas C/EBPβ induced a pattern similar to that of N-C/EBPβ+C/EBPα-DBD. C/EBPα activation induced changes in the expression of more cell cycle- and apoptosis-related genes than the other proteins and enhanced Imatinib-induced apoptosis of K562 cells. Expression of FOXO3a, a novel C/EBPα-regulated gene, was required for apoptosis but not for differentiation induction or proliferation inhibition of K562 cells.
Collapse
|
47
|
Nerlov C. Transcriptional and translational control of C/EBPs: The case for “deep” genetics to understand physiological function. Bioessays 2010; 32:680-6. [DOI: 10.1002/bies.201000004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Elevated PIN1 expression by C/EBPalpha-p30 blocks C/EBPalpha-induced granulocytic differentiation through c-Jun in AML. Leukemia 2010; 24:914-23. [PMID: 20376080 DOI: 10.1038/leu.2010.37] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transcription factor CCAAT enhancer-binding protein alpha (C/EBPalpha) has an important role in granulopoiesis. The tumor suppressor function of C/EBPalpha is shown by the findings that loss of expression or function of C/EBPalpha in leukemic blasts contributes to a block in myeloid cell differentiation and to leukemia. C/EBPalpha mutations are found in around 9% of acute myeloid leukemia (AML) patients. The mechanism by which the mutant form of C/EBPalpha (C/EBPalpha-p30) exerts a differentiation block is not well understood. By using a proteomic screen, we have recently reported PIN1 as a target of C/EBPalpha-p30 in AML. In the present study, we show that C/EBPalpha-p30 induces PIN1 expression. We observed elevated PIN1 expression in leukemic patient samples. Induction of C/EBPalpha-p30 results in recruitment of E2F1 in the PIN1 promoter. We show that the inhibition of PIN1 leads to myeloid differentiation in primary AML blasts with C/EBPalpha mutations. Overexpression of PIN1 in myeloid cells leads to block of granulocyte differentiation. We also show that PIN1 increases the stability of the c-Jun protein by inhibiting c-Jun ubiquitination, and c-Jun blocks granulocyte differentiation mediated by C/EBPalpha. Our data suggest that the inhibition of PIN1 could be a potential strategy of treating AML patients with C/EBPalpha mutation.
Collapse
|
49
|
Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes. Mol Cell Biol 2010; 30:2293-304. [PMID: 20176812 DOI: 10.1128/mcb.01619-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.
Collapse
|
50
|
Phosphorylation status of transcription factor C/EBPalpha determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis. Blood 2010; 115:2491-9. [PMID: 20101026 DOI: 10.1182/blood-2009-07-231993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units, called poly-LacNAc chains, characterize the histo-blood group i and I antigens, respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus, which expresses 3 IGnT transcripts, IGnTA, IGnTB, and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). In the present investigation, the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPalpha Ser-21 residue, with dephosphorylated C/EBPalpha Ser-21 stimulating the transcription of the IGnTC gene, consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model, with lentiviral expression of C/EBPalpha in CD34(+) hematopoietic cells demonstrating that the dephosphorylated form of C/EBPalpha Ser-21 induced the expression of I antigen, granulocytic CD15, and also erythroid CD71 antigens. Taken together, these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism, with dephosphorylation of the Ser-21 residue on C/EBPalpha playing the critical role.
Collapse
|