1
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
2
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
4
|
CCAAT/Enhancer-Binding Protein ε 27 Antagonism of GATA-1 Transcriptional Activity in the Eosinophil Is Mediated by a Unique N-Terminal Repression Domain, Is Independent of Sumoylation and Does Not Require DNA Binding. Int J Mol Sci 2021; 22:ijms222312689. [PMID: 34884493 PMCID: PMC8657826 DOI: 10.3390/ijms222312689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
CCAAT/enhancer binding protein epsilon (C/EBPε) is required for eosinophil differentiation, lineage-specific gene transcription, and expression of C/EBPε32 and shorter 27kD and 14kD isoforms is developmentally regulated during this process. We previously defined the 27kD isoform (C/EBPε27) as an antagonist of GATA-1 transactivation of the eosinophil's major basic protein-1 (MBP1) P2-promoter, showing C/EBPε27 and GATA-1 physically interact. In the current study, we used a Tat-C/EBPε27 fusion protein for cell/nuclear transduction of an eosinophil myelocyte cell line to demonstrate that C/EBPε27 is a potent repressor of MBP1 transcription. We performed structure-function analyses of C/EBPε27 mapping its repressor domains, comparing it to C/EBPε32 and C/EBPε14, using GATA-1 co-transactivation of the MBP1-P2 promoter. Results show C/EBPε27 repression of GATA-1 is mediated by its unique 68aa N-terminus combined with previously identified RDI domain. This repressor activity does not require, but is enhanced by, DNA binding via the basic region of C/EBPε27 but independent of sumoylation of the RDI core "VKEEP" sumoylation site. These findings identify the N-terminus of C/EBPε27 as the minimum repressor domain required for antagonism of GATA-1 in the eosinophil. C/EBPε27 repression of GATA-1 occurs via a combination of both C/EBPε27-GATA-1 protein-protein interaction and C/EBPε27 binding to a C/EBP site in the MBP1 promoter. The C/EBPε27 isoform may serve to titrate and/or turn off eosinophil granule protein genes like MBP1 during eosinophil differentiation, as these genes are ultimately silenced in the mature cell. Understanding the functionality of C/EBPε27 in eosinophil development may prove promising in developing therapeutics that reduce eosinophil proliferation in allergic diseases.
Collapse
|
5
|
Abdel-Azim H, Sun W, Wu L. Strategies to generate functionally normal neutrophils to reduce infection and infection-related mortality in cancer chemotherapy. Pharmacol Ther 2019; 204:107403. [PMID: 31470030 DOI: 10.1016/j.pharmthera.2019.107403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils form an essential part of innate immunity against infection. Cancer chemotherapy-induced neutropenia (CCIN) is a condition in which the number of neutrophils in a patient's bloodstream is decreased, leading to increased susceptibility to infection. Granulocyte colony-stimulating factor (GCSF) has been the only approved treatment for CCIN over two decades. To date, CCIN-related infection and mortality remain a significant concern, as neutrophils generated in response to administered GCSF are functionally immature and cannot effectively fight infection. This review summarizes the molecular regulatory mechanisms of neutrophil granulocytic differentiation and innate immunity development, dissects the biology of GCSF in myeloid expansion, highlights the shortcomings of GCSF in CCIN treatment, updates the recent advance of a selective retinoid agonist that promotes neutrophil granulocytic differentiation, and evaluates the benefits of developing GCSF biosimilars to increase access to GCSF biologics versus seeking a new mode to fundamentally advance GCSF therapy for treatment of CCIN.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, City of Hope National Medical Center, 1500 E. Duarte road, Duarte, CA 91010, USA
| | - Lingtao Wu
- Research and Development, Therapeutic Approaches, 2712 San Gabriel Boulevard, Rosemead, CA 91770, USA.
| |
Collapse
|
6
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
7
|
Grace CS, Mikkola HKA, Dou DR, Calvanese V, Ronn RE, Purton LE. Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Exp Hematol 2018; 65:1-16. [PMID: 29981365 DOI: 10.1016/j.exphem.2018.06.287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.
Collapse
Affiliation(s)
- Clea S Grace
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Roger E Ronn
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
8
|
Pacifici M. Retinoid roles and action in skeletal development and growth provide the rationale for an ongoing heterotopic ossification prevention trial. Bone 2018; 109:267-275. [PMID: 28826842 PMCID: PMC8011837 DOI: 10.1016/j.bone.2017.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
The majority of skeletal elements develop via endochondral ossification. This process starts with formation of mesenchymal cell condensations at prescribed sites and times in the early embryo and is followed by chondrogenesis, growth plate cartilage maturation and hypertrophy, and replacement of cartilage with bone and marrow. This complex stepwise process is reactivated and recapitulated in physiologic conditions such as fracture repair, but can occur extraskeletally in pathologies including heterotopic ossification (HO), Ossification of the Posterior Longitudinal Ligament (OPLL) and Hereditary Multiple Exostoses (HME). One form of HO is common and is triggered by trauma, invasive surgeries or burns and is thus particularly common amongst severely wounded soldiers. There is also a congenital and very severe form of HO that occurs in children with Fibrodysplasia Ossificans Progressiva (FOP) and is driven by activating mutations in ACVR1 encoding the type I bone morphogenetic protein (BMP) receptor ALK2. Current treatments for acquired HO, including NSAIDs and local irradiation, are not always effective and can have side effects, and there is no effective treatment for HO in FOP. This review article describes the research path we took several years ago to develop a new and effective treatment for both congenital and acquired forms of HO and specifically, the testing of synthetic retinoid agonists to block the initial and critical chondrogenic step leading to HO onset and progression. We summarize studies with mouse models of injury-induced and congenital HO demonstrating the effectiveness and mode of action of the retinoid agonists, including Palovarotene. Our studies have provided the rationale for, directly led to, an ongoing phase 2 FDA clinical trial to test efficacy and safety of Palovarotene in FOP. Top-line results released a few months ago by the pharmaceutical sponsor Clementia are very encouraging. Given shared developmental pathways amongst pathologies of extraskeletal tissue formation, Palovarotene may also be effective in HME as preliminary in vitro data suggest.
Collapse
Affiliation(s)
- Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
Green AC, Martin TJ, Purton LE. The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. J Steroid Biochem Mol Biol 2016; 155:135-46. [PMID: 26435449 DOI: 10.1016/j.jsbmb.2015.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
Abstract
Vitamin A and retinoid derivatives are recognized as morphogens that govern body patterning and skeletogenesis, producing profound defects when in excess. In post-natal bone, both high and low levels of vitamin A are associated with poor bone heath and elevated risk of fractures. Despite this, the precise mechanism of how retinoids induce post-natal bone changes remains elusive. Numerous studies have been performed to discover how retinoids induce these changes, revealing a complex morphogenic regulation of bone through interplay of different cell types. This review will discuss the direct and indirect effects of retinoids on mediators of bone turnover focusing on differentiation and activity of osteoblasts and osteoclasts and explains why some discrepancies in this field have arisen. Importantly, the overall effect of retinoids on the skeleton is highly site-specific, likely due to differential regulation of osteoblasts and osteoclasts at trabecular vs. cortical periosteal and endosteal bone surfaces. Further investigation is required to discover the direct gene targets of retinoic acid receptors (RARs) and molecular mechanisms through which these changes occur. A clear role for RARs in regulating bone is now accepted and the therapeutic potential of retinoids in treating bone diseases has been established.
Collapse
Affiliation(s)
- Alanna C Green
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia.
| | - T John Martin
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Louise E Purton
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| |
Collapse
|
10
|
Analysis of histone modifications at human ribosomal DNA in liver cancer cell. Sci Rep 2015; 5:18100. [PMID: 26657029 PMCID: PMC4676023 DOI: 10.1038/srep18100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/11/2015] [Indexed: 01/25/2023] Open
Abstract
Human liver cancer is the cancer commonly seen clinically. The transcription of ribosomal DNA (rDNA) is a critical step for cells, and epigenetic marks such as post-translational histone modifications have been involved in the regulation of rDNA transcription. But less is known about the pathogenesis of the liver cancers concerning the rDNA transcription regulation. Here we aligned the ChIP-seq data of histone modification markers and CTCF to the human genome assembly which contains a single rDNA repeat in human liver cancer cell and validated their distribution with ChIP-QPCR. Human liver cancer cell possesses a higher enrichment of H3K4me1 and H3K27me3 at ~28 kb within the intergenic spacer (IGS) of rDNA and a higher enrichment of H3K4me3 and H3K27ac upstream of TSS. Furtherly, we studied whether UBF could affect histone modification markers and CTCF at rDNA in human liver cancer cell. UBF depletion leads to a decrease of gene activation mark H3K4me3 across the rDNA promoter. And other histone modification marks and CTCF were not altered after UBF depletion. Taken together, our data showed a high resolution map of histone modification marks at rDNA in human liver cancer cell and provide novel evidence to decipher chromatin-mediated regulation of rDNA in liver cancer.
Collapse
|
11
|
Zambetti NA, Bindels EMJ, Van Strien PMH, Valkhof MG, Adisty MN, Hoogenboezem RM, Sanders MA, Rommens JM, Touw IP, Raaijmakers MHGP. Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes. Haematologica 2015; 100:1285-93. [PMID: 26185170 DOI: 10.3324/haematol.2015.131573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/06/2015] [Indexed: 01/10/2023] Open
Abstract
Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome.
Collapse
Affiliation(s)
- Noemi A Zambetti
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Paulina M H Van Strien
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Marijke G Valkhof
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands Current address: Laboratory for Cell Therapy, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maria N Adisty
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Johanna M Rommens
- Program in Genetics & Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Ivo P Touw
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Marc H G P Raaijmakers
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
12
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
13
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
14
|
|
15
|
Saunthararajah Y, Triozzi P, Rini B, Singh A, Radivoyevitch T, Sekeres M, Advani A, Tiu R, Reu F, Kalaycio M, Copelan E, Hsi E, Lichtin A, Bolwell B. p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies. Semin Oncol 2012; 39:97-108. [PMID: 22289496 PMCID: PMC3655437 DOI: 10.1053/j.seminoncol.2011.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytotoxic chemotherapy for acute myeloid leukemia (AML) usually produces only temporary remissions, at the cost of significant toxicity and risk for death. One fundamental reason for treatment failure is that it is designed to activate apoptosis genes (eg, TP53) that may be unavailable because of mutation or deletion. Unlike deletion of apoptosis genes, genes that mediate cell cycle exit by differentiation are present in myelodysplastic syndrome (MDS) and AML cells but are epigenetically repressed: MDS/AML cells express high levels of key lineage-specifying transcription factors. Mutations in these transcription factors (eg, CEBPA) or their cofactors (eg., RUNX1) affect transactivation function and produce epigenetic repression of late-differentiation genes that antagonize MYC. Importantly, this aberrant epigenetic repression can be redressed clinically by depleting DNA methyltransferase 1 (DNMT1, a central component of the epigenetic network that mediates transcription repression) using the deoxycytidine analogue decitabine at non-cytotoxic concentrations. The DNMT1 depletion is sufficient to trigger upregulation of late-differentiation genes and irreversible cell cycle exit by p53-independent differentiation mechanisms. Fortuitously, the same treatment maintains or increases self-renewal of normal hematopoietic stem cells, which do not express high levels of lineage-specifying transcription factors. The biological rationale for this approach to therapy appears to apply to cancers other than MDS/AML also. Decitabine or 5-azacytidine dose and schedule can be rationalized to emphasize this mechanism of action, as an alternative or complement to conventional apoptosis-based oncotherapy.
Collapse
Affiliation(s)
- Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, Hung S, Astle MV, Bywater M, Wall M, Poortinga G, Jastrzebski K, Sheppard KE, Hemmings BA, Hall MN, Johnstone RW, McArthur GA, Hannan RD, Pearson RB. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011; 4:ra56. [PMID: 21878679 DOI: 10.1126/scisignal.2001754] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Precise regulation of ribosome biogenesis is fundamental to maintain normal cell growth and proliferation, and accelerated ribosome biogenesis is associated with malignant transformation. Here, we show that the kinase AKT regulates ribosome biogenesis at multiple levels to promote ribosomal RNA (rRNA) synthesis. Transcription elongation by RNA polymerase I, which synthesizes rRNA, required continuous AKT-dependent signaling, an effect independent of AKT's role in activating the translation-promoting complex mTORC1 (mammalian target of rapamycin complex 1). Sustained inhibition of AKT and mTORC1 cooperated to reduce rRNA synthesis and ribosome biogenesis by additionally limiting RNA polymerase I loading and pre-rRNA processing. In the absence of growth factors, constitutively active AKT increased synthesis of rRNA, ribosome biogenesis, and cell growth. Furthermore, AKT cooperated with the transcription factor c-MYC to synergistically activate rRNA synthesis and ribosome biogenesis, defining a network involving AKT, mTORC1, and c-MYC as a master controller of cell growth. Maximal activation of c-MYC-dependent rRNA synthesis in lymphoma cells required AKT activity. Moreover, inhibition of AKT-dependent rRNA transcription was associated with increased lymphoma cell death by apoptosis. These data indicate that decreased ribosome biogenesis is likely to be a fundamental component of the therapeutic response to AKT inhibitors in cancer.
Collapse
Affiliation(s)
- Joanna C Chan
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 8006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
E. Purton L. Roles of retinoids and retinoic Acid receptors in the regulation of hematopoietic stem cell self-renewal and differentiation. PPAR Res 2011; 2007:87934. [PMID: 17846663 PMCID: PMC1950592 DOI: 10.1155/2007/87934] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/22/2007] [Indexed: 01/07/2023] Open
Abstract
Multipotent hematopoietic stem cells (HSCs) sustain blood cell production throughout an individual's lifespan through complex processes ultimately leading to fates of self-renewal, differentiation or cell death decisions. A fine balance between these decisions in vivo allows for the size of the HSC pool to be maintained. While many key factors involved in regulating HSC/progenitor cell differentiation and cell death are known, the critical regulators of HSC self-renewal are largely unknown. In recent years, however, a number of studies describing methods of increasing or decreasing the numbers of HSCs in a given population have emerged. Of major interest here are the emerging roles of retinoids in the regulation of HSCs.
Collapse
Affiliation(s)
- Louise E. Purton
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
- *Louise E. Purton:
| |
Collapse
|
18
|
Muramoto GG, Russell JL, Safi R, Salter AB, Himburg HA, Daher P, Meadows SK, Doan P, Storms RW, Chao NJ, McDonnell DP, Chute JP. Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells 2010; 28:523-34. [PMID: 20054864 DOI: 10.1002/stem.299] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem cells (HSCs) are enriched for aldehyde dehydrogenase (ALDH) activity and ALDH is a selectable marker for human HSCs. However, the function of ALDH in HSC biology is not well understood. We sought to determine the function of ALDH in regulating HSC fate. Pharmacologic inhibition of ALDH with diethylaminobenzaldehyde (DEAB) impeded the differentiation of murine CD34(-)c-kit(+)Sca-1(+)lineage(-) (34(-)KSL) HSCs in culture and facilitated a ninefold expansion of cells capable of radioprotecting lethally irradiated mice compared to input 34(-)KSL cells. Treatment of bone marrow (BM) 34(-)KSL cells with DEAB caused a fourfold increase in 4-week competitive repopulating units, verifying the amplification of short-term HSCs (ST-HSCs) in response to ALDH inhibition. Targeted siRNA of ALDH1a1 in BM HSCs caused a comparable expansion of radioprotective progenitor cells in culture compared to DEAB treatment, confirming that ALDH1a1 was the target of DEAB inhibition. The addition of all trans retinoic acid blocked DEAB-mediated expansion of ST-HSCs in culture, suggesting that ALDH1a1 regulates HSC differentiation via augmentation of retinoid signaling. Pharmacologic inhibition of ALDH has therapeutic potential as a means to amplify ST-HSCs for transplantation purposes.
Collapse
Affiliation(s)
- Garrett G Muramoto
- Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Takeda K, Takahashi NH, Yoshizawa M, Shibahara S. Lipocalin-type prostaglandin D synthase as a regulator of the retinoic acid signalling in melanocytes. J Biochem 2010; 148:139-48. [PMID: 20403807 DOI: 10.1093/jb/mvq040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) catalyses the formation of prostaglandin D(2) (PGD(2)) and also functions as a transporter for lipophilic ligands, including all-trans retinoic acid (RA). Here, we show that human epidermal melanocytes produce and secrete L-PGDS and PGD(2) in culture medium, whereas L-PGDS is not expressed in human melanoma cell lines, HMV-II, SK-MEL-28, 624 mel and G361. Treatment with RA (1 or 10 microM) for 4 days decreased the proliferation of melanocytes (30% decrease), but not melanoma cells. We therefore isolated L-PGDS-expressing cell lines from 624 mel cells. Treatment with RA decreased the proliferation of L-PGDS-expressing cells by 20%, but not mock-transfected cell lines lacking L-PGDS expression. RA induced expression of a cyclin-dependent kinase inhibitor p21(Cip1) in L-PGDS-expressing cells, but not mock-transfected cells. Moreover, RA increased the transient expression of a reporter gene carrying the RA-responsive elements in L-PGDS-expressing cell lines (at least 5-fold activation), compared to the 2-fold activation in mock-transfected cell lines, suggesting that L-PGDS may increase the sensitivity to RA. Lastly, the knockdown of L-PGDS expression by RNA interference was associated with the restoration of the RA-mediated decrease in proliferation of human and mouse melanocytes. In conclusion, L-PGDS may fine-tune the RA signalling in melanocytes.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | | | | | | |
Collapse
|
20
|
Shimono K, Morrison TN, Tung WE, Chandraratna RA, Williams JA, Iwamoto M, Pacifici M. Inhibition of ectopic bone formation by a selective retinoic acid receptor alpha-agonist: a new therapy for heterotopic ossification? J Orthop Res 2010; 28:271-7. [PMID: 19725108 DOI: 10.1002/jor.20985] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) consists of formation of ectopic cartilage followed by endochondral bone and is triggered by major surgeries, large wounds, and other conditions. Current therapies, including low-dose irradiation, are not always effective and do not target the skeletogenic process directly. Because chondrogenesis requires a decrease of nuclear retinoic acid receptor alpha (RARalpha) action, we reasoned that pharmacologic activation of this receptor pathway should inhibit HO. Thus, we selected the synthetic retinoid NRX195183, a potent and highly selective RARalpha-agonist, and found that it did inhibit chondrogenesis in mouse limb micromass cultures. We established a mouse HO model consisting of subcutaneous implantation of Matrigel mixed with rhBMP-2. Control mice receiving daily oral doses of vehicle (peanut oil) or retinol (a natural nonactive retinoid precursor) developed large HO-like masses by days 9-12 that displayed abundant cartilage, endochondral bone, vessels, and marrow. In contrast, formation of HO-like masses was markedly reduced in companion mice receiving daily oral doses of alpha-agonist. These ectopic masses contained sharply reduced amounts of cartilage and bone, blood vessels, and TRAP-positive osteoclasts, and expressed markedly lower levels of master chondrogenic genes including Sox9, cartilage genes such as collagen XI and X, and osteogenic genes including Runx2. The data provide proof-of-principle evidence that a pharmacological strategy involving a selective RARalpha-agonist can indeed counteract an ectopic skeletal-formation process effectively and efficiently, and could thus represent a novel preventive treatment for HO.
Collapse
Affiliation(s)
- Kengo Shimono
- Department of Orthopaedic Surgery, Thomas Jefferson University College of Medicine, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Evolution of Transcription Factor Binding Sites in Mammalian Gene Regulatory Regions: Handling Counterintuitive Results. J Mol Evol 2009; 68:654-64. [DOI: 10.1007/s00239-009-9238-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 03/30/2009] [Accepted: 04/15/2009] [Indexed: 01/26/2023]
|
22
|
Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD. UBF levels determine the number of active ribosomal RNA genes in mammals. ACTA ACUST UNITED AC 2008; 183:1259-74. [PMID: 19103806 PMCID: PMC2606969 DOI: 10.1083/jcb.200805146] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In mammals, the mechanisms regulating the number of active copies of the approximately 200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1-induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.
Collapse
Affiliation(s)
- Elaine Sanij
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
C/EBPalpha and C/EBPvarepsilon induce the monocytic differentiation of myelomonocytic cells with the MLL-chimeric fusion gene. Oncogene 2008; 27:6749-60. [PMID: 18776924 DOI: 10.1038/onc.2008.285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CCAAT/enhancer binding proteins (C/EBPs) have an important function in granulocytic differentiation, and are also involved in the leukemogenesis of acute myeloid leukemia (AML). Their involvement in myelomonocytic leukemia, however, is still unclear. Therefore, the expression and function of C/EBPs in myelomonocytic cells with MLL-fusion genes were investigated. Retinoic acid (RA) induced monocytic differentiation in the myelomonocytic cell lines with MLL-fusion genes, THP-1, MOLM-14 and HF-6 cells, accompanied by monocytic differentiation with the upregulation of C/EBPalpha and C/EBPepsilon. Monocytic differentiation by RA treatment was confirmed in primary AML cells using a clonogenic assay. When the activity of C/EBPalpha or C/EBPepsilon was introduced into HF-6 cells, their cellular growth was arrested through differentiation into monocytes with the concomitant marked downregulation of Myc. Cebpe mRNA was upregulated by the induction of C/EBPalpha-ER, but not vice versa, thus suggesting that C/EBPepsilon may have an important function in the differentiation process. Introduction of Myc isoforms into HF-6 cells partially antagonized the C/EBPs effects. These findings suggest that the ectopic expression of C/EBPepsilon, as well as C/EBPalpha, can induce the monocytic differentiation of myelomonocytic leukemic cells with MLL-fusion gene through the downregulation of Myc, thus providing insight into the development of novel therapeutic approaches.
Collapse
|
24
|
Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2007; 315:331-54. [PMID: 18241852 DOI: 10.1016/j.ydbio.2007.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/08/2023]
Abstract
CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.
Collapse
Affiliation(s)
- Simne Langton
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, Rm. E-409, New York, NY 10021, USA
| | | |
Collapse
|
25
|
Huston A, Lyman GH. Agents under investigation for the treatment and prevention of neutropenia. Expert Opin Investig Drugs 2007; 16:1831-40. [DOI: 10.1517/13543784.16.11.1831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
|
27
|
Luo P, Wang A, Payne KJ, Peng H, Wang JG, Parrish YK, Rogerio JW, Triche TJ, He Q, Wu L. Intrinsic Retinoic Acid Receptor α-Cyclin-Dependent Kinase-Activating Kinase Signaling Involves Coordination of the Restricted Proliferation and Granulocytic Differentiation of Human Hematopoietic Stem Cells. Stem Cells 2007; 25:2628-37. [PMID: 17628022 DOI: 10.1634/stemcells.2007-0264] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Little is known about the mechanisms by which retinoic acid receptor alpha (RAR alpha) mediates the effects of retinoic acid (RA) to coordinate granulocytic proliferation/differentiation (P/D) transition. Cyclin-dependent kinase-activating kinase (CAK) complex, whose activity in phosphorylation of RAR alpha is determined by its targeting subunit ménage à trois 1 (MAT1), regulates G(1) exit, a cell cycle stage when cells commonly commit to proliferation or to differentiation. We previously found that in myeloid leukemia cells, the lack of RA-induced RAR alpha-CAK dissociation and MAT1 degradation suppresses cell differentiation by inhibiting CAK-dependent G(1) exit and sustaining CAK hyperphosphorylation of RAR alpha. This contrasts with our recent findings about the P/D transition in normal primitive hematopoietic cells, where MAT1 degradation proceeds intrinsically together with granulocytic development, in accord with dynamic expression of aldehyde dehydrogenases (ALDHs) 1A1 and 1B1, which catalyze RA synthesis. Blocking ALDH activity inhibits MAT1 degradation and granulocytic differentiation, whereas loss of RAR alpha phosphorylation by CAK induces RA-target gene expression and granulocytic differentiation. These studies suggest that the subversion of RAR alpha-CAK signaling during normal granulopoiesis is crucial to myeloid leukemogenesis and challenges the current paradigm that RA induces cell differentiation solely by transactivating target genes. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Peihua Luo
- Department of Pathology, Childrens Hospital Los Angeles Saban Research Institute, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Herbert KE, Walkley CR, Winkler IG, Hendy J, Olsen GH, Yuan YD, Chandraratna RAS, Prince HM, Lévesque JP, Purton LE. Granulocyte colony-stimulating factor and an RARalpha specific agonist, VTP195183, synergize to enhance the mobilization of hematopoietic progenitor cells. Transplantation 2007; 83:375-84. [PMID: 17318068 DOI: 10.1097/01.tp.0000251376.75347.b4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Failure to mobilize adequate numbers of hematopoietic stem and progenitor cells (HSPC) is an important clinical problem. Since bone marrow (BM) neutrophils play a central role in HSPC mobilization, we hypothesized that granulocyte colony-stimulating factor (G-CSF)-mediated mobilization would be enhanced by further expanding the size of the BM granulocyte pool. METHODS We tested the potential of the retinoic acid receptor alpha (RARalpha) specific agonist VTP195183, and the pan-RAR agonist all-trans retinoic acid (ATRA), to enhance G-CSF-mediated mobilization of HSPC, in two mouse strains. RESULTS Pretreatment of mice with VTP195183 significantly increased the number of leukocytes, colony-forming cells, and early engrafting hematopoietic stem cells (HSC) mobilized in the blood in response to G-CSF. In contrast, ATRA had only a marginal effect on G-CSF-induced mobilization. HSPC mobilization synergy between VTP195183 and G-CSF occurred only when mice were preconditioned with VTP195183 prior to G-CSF. This preconditioning was shown to increase the numbers of granulocyte/macrophage progenitors in the BM. Treatment with VTP195183 and G-CSF was accompanied by enhanced levels of active neutrophil proteases in the BM extracellular fluid compared to G-CSF treatment alone. CONCLUSIONS VTP195183 treatment increases the numbers of immature granulocyte progenitors in BM and subsequently synergizes to enhance G-CSF-mediated mobilization of HSPC. These data demonstrate a novel approach to improve G-CSF-induced mobilization by accelerating granulocyte maturation in the BM. These findings are currently being tested in a clinical trial of VTP195183 plus G-CSF for mobilization of HSPC in human patients.
Collapse
|
29
|
Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ, Chambon P. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 2006; 203:1283-93. [PMID: 16682494 PMCID: PMC2121209 DOI: 10.1084/jem.20052105] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 03/28/2006] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when inactivated [corrected] promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)gamma is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARgamma knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARalpha is widely expressed in hematopoietic cells, but RARalpha knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARalpha differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARgamma exhibit a much more undifferentiated phenotype. Furthermore, loss of RARgamma abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARgamma ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARgamma is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Louise E Purton
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Akiyama M, Yamada O, Yanagisawa T, Fujisawa K, Eto Y, Yamada H. Analysis of telomerase activity and RNA expression in a patient with acute promyelocytic leukemia treated with all-trans retinoic acid. Pediatr Blood Cancer 2006; 46:506-11. [PMID: 15770638 DOI: 10.1002/pbc.20392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we show that all-trans retinoic acid (ATRA) treatment leads to a rapid decrease in telomerase activity, which was associated with the reduction in myeloblasts and occurs before the appearance of myelocytes, in a patient with acute promyelocytic leukemia (APL). Microarray analysis by ATRA treatment for 48 hr in peripheral blood mononuclear cells (in vivo) and in cultured bone marrow mononuclear cells (in vitro) from a patient with APL revealed upregulation of CD11b, CD11c, CCAAT enhancer binding protein epsilon, Rb1, Mad, and tumor necrosis factor-related genes; and downregulation of hTERT, c-Myc, WT1, bcl-2, and eukaryotic translation elongation factor 1alpha2. The results might offer the potential to define the molecular mechanism underlying ATRA-induced granulocytic differentiation in patients with APL, and provide clues to identify novel molecular therapeutic targets.
Collapse
MESH Headings
- Antigens, Differentiation/drug effects
- Antigens, Differentiation/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Child
- Disseminated Intravascular Coagulation/drug therapy
- Enzyme Activation/drug effects
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Granulocytes/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Oligonucleotide Array Sequence Analysis
- RNA/genetics
- Remission Induction
- Reverse Transcriptase Polymerase Chain Reaction
- Telomerase/drug effects
- Telomerase/metabolism
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Masaharu Akiyama
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The discovery that retinoic acid efficiently stimulates the terminal differentiation of granulocytic leukemia cells had a major impact on clinical hematology, but has also inspired research into the normal function of the retinoid signaling pathway during hematopoiesis. New animal models and loss-of-function approaches have successfully revealed requirements for the pathway at defined embryonic stages that are relevant for distinct hematopoietic cell populations. For example, novel insight has been gained regarding the function of retinoids in yolk sac hematovascular development, fetal erythropoiesis, T-cell homing, and hematopoietic stem and progenitor cell biology. The lessons learned so far indicate that future development of sophisticated animal models will be needed to fully understand the intricacy and specificity of this complex signaling pathway, but that this effort will be productive and continue to inform both basic and clinical research on many fronts.
Collapse
Affiliation(s)
- Todd Evans
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
32
|
Gombart AF, Krug U, O'Kelly J, An E, Vegesna V, Koeffler HP. Aberrant expression of neutrophil and macrophage-related genes in a murine model for human neutrophil-specific granule deficiency. J Leukoc Biol 2005; 78:1153-65. [PMID: 16204633 DOI: 10.1189/jlb.0504286] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil-specific granule deficiency involves inheritance of germline mutations in the CCAAT/enhancer-binding protein epsilon (C/EBPE) gene. Humans and mice lacking active C/EBPepsilon suffer frequent bacterial infections as a result of functionally defective neutrophils and macrophages. We hypothesized that these defects reflected dysregulation of important immune response genes. To test this, gene expression differences of peritoneally derived neutrophils and macrophages from C/EBPepsilon-/- and wild-type mice were determined with DNA microarrays. Of 283 genes, 146 known genes and 21 expressed sequence tags (ESTs) were down-regulated, and 85 known genes and 31 ESTs were up-regulated in the C/EBP-/- mice. These included genes involved in cell adhesion/chemotaxis, cytoskeletal organization, signal transduction, and immune/inflammatory responses. The cytokines CC chemokine ligand 4, CXC chemokine ligand 2, and interleukin (IL)-6, as well as cytokine receptors IL-8RB and granulocyte-colony stimulating factor, were down-regulated. Chromatin immunoprecipitation analysis identified binding of C/EBPepsilon to their promoter regions. Increased expression for lipid metabolism genes apolipoprotein E (APOE), scavenger receptor class B-1, sorting protein-related receptor containing low-density lipoprotein receptor class A repeat 1, and APOC2 in the C/EBPepsilon-/- mice correlated with reduced total cholesterol levels in these mice before and after maintenance on a high-fat diet. Also, C/EBPepsilon-deficient macrophages showed a reduced capacity to accumulate lipids. In summary, dysregulation of numerous, novel C/EBPepsilon target genes impairs innate immune response and possibly other important biological processes mediated by neutrophils and macrophages.
Collapse
Affiliation(s)
- Adrian F Gombart
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, Burns & Allen Research Institute and David Geffen School of Medicine at University of California Los Angeles, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, Kitamura T, Hayashi Y, Nosaka T. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115:919-29. [PMID: 15761502 PMCID: PMC1062890 DOI: 10.1172/jci22725] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 01/18/2005] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which mixed-lineage leukemia (MLL) fusion products resulting from in utero translocations in 11q23 contribute to leukemogenesis and infant acute leukemia remain elusive. It is still controversial whether the MLL fusion protein is sufficient to induce acute leukemia without additional genetic alterations, although carcinogenesis in general is known to result from more than 1 genetic disorder accumulating during a lifetime. Here we demonstrate that the fusion partner-mediated homo-oligomerization of MLL-SEPT6 is essential to immortalize hematopoietic progenitors in vitro. MLL-SEPT6 induced myeloproliferative disease with long latency in mice, but not acute leukemia, implying that secondary genotoxic events are required to develop leukemia. We developed in vitro and in vivo model systems of leukemogenesis by MLL fusion proteins, where activated FMS-like receptor tyrosine kinase 3 (FLT3) together with MLL-SEPT6 not only transformed hematopoietic progenitors in vitro but also induced acute biphenotypic or myeloid leukemia with short latency in vivo. In these systems, MLL-ENL, another type of the fusion product that seems to act as a monomer, also induced the transformation in vitro and leukemogenesis in vivo in concert with activated FLT3. These findings show direct evidence for a multistep leukemogenesis mediated by MLL fusion proteins and may be applicable to development of direct MLL fusion-targeted therapy.
Collapse
Affiliation(s)
- Ryoichi Ono
- Division of Hematopoietic Factors, The Institute of Medical Science, Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, Kitamura T, Hayashi Y, Nosaka T. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005. [DOI: 10.1172/jci200522725] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Walkley CR, Fero ML, Chien WM, Purton LE, McArthur GA. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2005; 7:172-8. [PMID: 15654333 DOI: 10.1038/ncb1214] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 12/03/2004] [Indexed: 01/23/2023]
Abstract
Haematopoietic stem cells (HSCs) are capable of shifting from a state of relative quiescence under homeostatic conditions to rapid proliferation under conditions of stress. The mechanisms that regulate the relative quiescence of stem cells and its association with self-renewal are unclear, as is the contribution of molecular regulators of the cell cycle to these decisions. Understanding the mechanisms that govern these transitions will provide important insights into cell-cycle regulation of HSCs and possible therapeutic approaches to expand HSCs. We have investigated the role of two negative regulators of the cell cycle, p27(Kip1) and MAD1, in controlling this transition. Here we show that Mad1(-/-)p27(Kip1-/-) bone marrow has a 5.7-fold increase in the frequency of stem cells, and surprisingly, an expanded pool of quiescent HSCs. However, Mad1(-/-)p27(Kip1-/-) stem cells exhibit an enhanced proliferative response under conditions of stress, such as cytokine stimulation in vitro and regeneration of the haematopoietic system after ablation in vivo. Together these data demonstrate that the MYC-antagonist MAD1 and cyclin-dependent kinase inhibitor p27(Kip1) cooperate to regulate the self-renewal and differentiation of HSCs in a context-dependent manner.
Collapse
Affiliation(s)
- Carl R Walkley
- Research Division, Peter MacCallum Cancer Centre, Victoria 3002, Australia
| | | | | | | | | |
Collapse
|
36
|
Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K, Wall M, Brandenburger Y, Palatsides M, Pearson RB, McArthur GA, Hannan RD. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J 2004; 23:3325-35. [PMID: 15282543 PMCID: PMC514509 DOI: 10.1038/sj.emboj.7600335] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 06/28/2004] [Indexed: 01/10/2023] Open
Abstract
The regulation of cell mass (cell growth) is often tightly coupled to the cell division cycle (cell proliferation). Ribosome biogenesis and the control of rDNA transcription through RNA polymerase I are known to be critical determinants of cell growth. Here we show that granulocytic cells deficient in the c-MYC antagonist MAD1 display increased cell volume, rDNA transcription and protein synthesis. MAD1 repressed and c-MYC activated rDNA transcription in nuclear run-on assays. Repression of rDNA transcription by MAD1 was associated with its ability to interact directly with the promoter of upstream binding factor (UBF), an rDNA regulatory factor. Conversely, c-MYC activated transcription from the UBF promoter. Using siRNA, UBF was shown to be required for c-MYC-induced rDNA transcription. These data demonstrate that MAD1 and c-MYC reciprocally regulate rDNA transcription, providing a mechanism for coordination of ribosome biogenesis and cell growth under conditions of sustained growth inhibition such as granulocyte differentiation.
Collapse
Affiliation(s)
- Gretchen Poortinga
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Katherine M Hannan
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Hayley Snelling
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Carl R Walkley
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Anna Jenkins
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Kerith Sharkey
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Meaghan Wall
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | | - Manuela Palatsides
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Richard B Pearson
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Grant A McArthur
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
- Division of Haematology/Medical Oncology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
- These two authors contributed equally to this work
- Molecular Oncology Laboratory, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Victoria, Australia. Tel.: +61 3 9656 1195; Fax: +61 3 9656 1411; E-mail:
| | - Ross D Hannan
- Division of Research, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- These two authors contributed equally to this work
- Growth Control Laboratory, Trescowthick Research Laboratories, Peter Mac Callum Cancer Centre, St Andrew's Place, east Melbourne 3002, Victoria, Australia. Tel.: +61 3 9656 1747; Fax: +61 3 9656 1411; E-mail:
| |
Collapse
|