1
|
Yan F, Wang S, Wang Y, Sun Y, Yang J, Sun L, Zaytseva YY, Deng P, Wang L. LC-MS analysis of serum lipidomic and metabolomic signatures in pediatric patients with acute lymphoblastic leukemia. Ital J Pediatr 2025; 51:74. [PMID: 40075508 PMCID: PMC11905700 DOI: 10.1186/s13052-025-01921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy that primarily affects children. The diagnosis and treatment of pediatric ALL remain challenging. This study aimed to identify differential lipids and metabolites that may hold potential for improving ALL treatment. METHODS In this retrospective case-control study, serum samples obtained from children with ALL and healthy controls were analyzed. Serum lipidome and metabolome alterations of ALL were analyzed by comparing pediatric patients with ALL with healthy controls based on liquid chromatography high-resolution mass spectrometry analysis of serum lipidomic and metabolomic signatures. RESULTS We identified 2,298 lipid features in the serum. Among them, 72 (3.13%) differed significantly in pediatric patients with ALL compared to healthy controls. Notably, sphingolipids (ceramide and sphingomyelin) and phospholipids exhibited the most pronounced changes. Targeted analysis of ceramides revealed significantly elevated levels of Cer 18:0 and Cer 20:0 in the serum of pediatric patients with ALL. Additionally, gut microbial-related lipids (such as sulfonolipids and fatty acid esters of hydroxy fatty acids) showed significant alterations. Metabolomic analysis identified 15 differential metabolites, indicating disrupted nucleotide and amino acid metabolism. Furthermore, the dysregulated lipids and metabolites correlated with various blood indicators, with ceramide and nucleosides positively associated with white blood cell count but negatively correlated with hemoglobin and platelet. CONCLUSION These findings shed light on abnormal molecular signatures contributing to pediatric ALL and may serve as potential biomarker panel for therapy of ALL.
Collapse
Affiliation(s)
- Feiyu Yan
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Shengnan Wang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yilin Wang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Yan Sun
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Jing Yang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Lirong Sun
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Pan Deng
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lingzhen Wang
- Department of Pediatrics Hematology and Oncology, The Affiliated Hospital of Qingdao University, Shandong, 266003, Shandong, China.
| |
Collapse
|
2
|
Li C, Zhou M, Zhao K, Liu W, Zhu C, Cheng X, Xia Y. Sphingomyelin phosphodiesterase 3 as a novel host factor inhibiting hepatitis B virus transcription. Virol Sin 2025:S1995-820X(25)00018-5. [PMID: 40023445 DOI: 10.1016/j.virs.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025] Open
Affiliation(s)
- Chen Li
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Meng Zhou
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Wenbo Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoming Cheng
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, TaiKang Medical School, Wuhan University, Wuhan, 430072, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| | - Yuchen Xia
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430072, China; Hubei Jiangxia Laboratory, Wuhan, 430071, China; Pingyuan Laboratory, Henan, 453001, China.
| |
Collapse
|
3
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
4
|
Yi J, Qi B, Yin J, Li R, Chen X, Hu J, Li G, Zhang S, Zhang Y, Yang M. Molecular basis for the catalytic mechanism of human neutral sphingomyelinases 1 (hSMPD2). Nat Commun 2023; 14:7755. [PMID: 38012235 PMCID: PMC10682184 DOI: 10.1038/s41467-023-43580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.
Collapse
Affiliation(s)
- Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boya Qi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruochong Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junhan Hu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
5
|
El-Amouri S, Karakashian A, Bieberich E, Nikolova-Karakashian M. Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes. J Lipid Res 2023; 64:100435. [PMID: 37640282 PMCID: PMC10550728 DOI: 10.1016/j.jlr.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling pathways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain- and loss- of function approach, and state-of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated translocation of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acyl-biotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
Collapse
Affiliation(s)
- S El-Amouri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - E Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - M Nikolova-Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
6
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
7
|
Abdel-Tawab MS, Fouad H, Yahiya A, Tammam AAE, Fahmy AM, Shaaban S, Abdel-Salam SM, Elazeem NAA. Evaluation of CEP55, SERPINE1 and SMPD3 genes and proteins as diagnostic and prognostic biomarkers in gastric carcinoma in Egyptian patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Gastric carcinoma (GC) is a fatal disease. Detection of new biomarkers that can be utilized in the early diagnosis of GC is a pressing need. This present study assessed centrosomal protein-55 (CEP55)’ serpin family E member 1 (SERPINE1) and sphingomyelin phosphodiesterase 3 (SMPD3) genes and proteins in gastric adenocarcinoma with different tumor progression features. Thirty surgically resected gastric tissue samples from thirty patients suffered from gastric cancers were obtained. The gastric tissue samples were divided into tumorous (with different stages and grades) and adjacent non-tumorous samples. CEP55, SERPINE1 and SMPD3 genes were assessed by quantitative qRT-PCR, and their proteins were assessed by ELISA in the gastric tissue samples.
Results
As regards SERPINE1, CEP55 genes and proteins, results revealed significant elevations in the GC samples (p < 0.0001). On the contrary, SMPD3 gene and protein revealed significant decreases as compared to non-tumorous samples. The studied genes and proteins showed highly significant specificity and sensitivity in the early detection of GC. SERPINE1 gene and protein revealed highly significant increases and positive correlations, while SMPD3 gene and protein revealed highly significant decreases and negative correlations as the tumor progresses.
Conclusion
CEP55, SERPINE1 and SMPD3 genes and proteins could be used as useful biomarkers for the early detection of GC. SERPINE1 and SMPD3 genes and proteins might be used as risk and protective prognostic factors in GC, respectively.
Collapse
|
8
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis 2021; 20:150. [PMID: 34717628 PMCID: PMC8557557 DOI: 10.1186/s12944-021-01581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt. .,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
10
|
Akeus P, Szeponik L, Langenes V, Karlsson V, Sundström P, Bexe-Lindskog E, Tallon C, Slusher BS, Quiding-Järbrink M. Regulatory T cells reduce endothelial neutral sphingomyelinase 2 to prevent T-cell migration into tumors. Eur J Immunol 2021; 51:2317-2329. [PMID: 34272885 DOI: 10.1002/eji.202149208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022]
Abstract
Endothelial cells are key regulators of transendothelial migration and their secretion of chemokines and expression of adhesion molecules facilitates lymphocyte entry into tissues. Previously, we demonstrated that Tregs can reduce transendothelial migration of T cells into tumors by decreasing endothelial CXCL10 secretion, but the mechanism by which this occurs is still not known. In this study, we aimed to define how Tregs decrease transendothelial migration into tumors. mRNA sequencing of intestinal tumor endothelial cells from Treg depleted mice identified neutral sphingomyelinase 2 (nSMase2) as a gene downregulated in the presence of Tregs. nSMase2 is expressed in human umbilical vein endothelial cells (HUVECs) and was decreased after coculture with Tregs. Furthermore, blocking of nSMase2 activity in vitro decreased VCAM1, CX3CL1, and CXCL10 expression in HUVECs, mirroring the same decrease found in Treg cocultures. In the APCmin/+ mouse model of intestinal cancer, nSMase2 is lower in tumor endothelial cells than in unaffected small intestine and chronic treatment with a nSMase2 inhibitor suppressed the increased migration that is otherwise seen in the absence of Tregs. We conclude that nSMase2 is an important mediator in endothelial cells supporting transendothelial migration, which may be targeted by Tregs to reduce T-cell migration into tumors.
Collapse
Affiliation(s)
- Paulina Akeus
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Veronica Langenes
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Viktoria Karlsson
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Patrik Sundström
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elinor Bexe-Lindskog
- Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Quiroz-Acosta T, Flores-Martinez YM, Becerra-Martínez E, Pérez-Hernández E, Pérez-Hernández N, Bañuelos-Hernández AE. Aberrant sphingomyelin 31P-NMR signatures in giant cell tumour of bone. Biochem Cell Biol 2021; 99:717-724. [PMID: 34096319 DOI: 10.1139/bcb-2020-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An understanding of the biochemistry of the giant cell tumour of bone (GCTB) provides an opportunity for the development of prognostic markers and identification of therapeutic targets. Based on metabolomic analysis, we proposed glycerophospholipid metabolism as the altered pathway in GCTB and the objective of this study was to identify these altered metabolites. Using phosphorus-31 nuclear magnetic resonance spectroscopy (31P-NMR), sphingomyelin was determined as the most dysregulated phospholipid in tissue samples from six patients with GCTB; subsequently, enzymes related to its biosynthesis and hydrolysis were examined using immunodetection techniques. High expression of sphingomyelin synthases 1 and 2, but low expression of neutral sphingomyelinase 2 (nSMase2), was found in GCTB tissues compared to non-neoplastic bone tissues. Sphingomyelin/ ceramide biosynthesis is dysregulated in GCTB due to alterations in the expression of SMS1, SMS2, and nSMase2.
Collapse
Affiliation(s)
- Tayde Quiroz-Acosta
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Yazmin Montserrat Flores-Martinez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, México, Ciudad de México, Mexico;
| | - Elizabeth Pérez-Hernández
- UMAE de Traumatología, Ortopedia y Rehabilitación "Dr. Victorio de la Fuente Narváez", Mexico, Ciudad de México, Mexico;
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Angel Ernesto Bañuelos-Hernández
- Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 42576, Departamento de Farmacologia, Ciudad de Mexico, Mexico City, Mexico;
| |
Collapse
|
12
|
Onset of Senescence and Steatosis in Hepatocytes as a Consequence of a Shift in the Diacylglycerol/Ceramide Balance at the Plasma Membrane. Cells 2021; 10:cells10061278. [PMID: 34064003 PMCID: PMC8224046 DOI: 10.3390/cells10061278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ceramide and diacylglycerol (DAG) are bioactive lipids and mediate many cellular signaling pathways. Sphingomyelin synthase (SMS) is the single metabolic link between the two, while SMS2 is the only SMS form located at the plasma membrane. SMS2 functions were investigated in HepG2 cell lines stably expressing SMS2. SMS2 overexpression did not alter sphingomyelin (SM), phosphatidylcholine (PC), or ceramide levels. DAG content increased by approx. 40% and led to downregulation of DAG-dependent protein kinase C (PKC). SMS2 overexpression also induced senescence, characterized by positivity for β-galactosidase activity and heterochromatin foci. HepG2-SMS2 cells exhibited protruded mitochondria and suppressed mitochondrial respiration rates. ATP production and the abundance of Complex V were substantially lower in HepG2-SMS2 cells as compared to controls. SMS2 overexpression was associated with inflammasome activation based on increases in IL-1β and nlpr3 mRNA levels. HepG2-SMS2 cells exhibited lipid droplet accumulation, constitutive activation of AMPK based on elevated 172Thr phosphorylation, increased AMPK abundance, and insensitivity to insulin suppression of AMPK. Thus, our results show that SMS2 regulates DAG homeostasis and signaling in hepatocytes and also provide proof of principle for the concept that offset in bioactive lipids’ production at the plasma membrane can drive the senescence program in association with steatosis and, seemingly, by cell-autonomous mechanisms.
Collapse
|
13
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Montfort A, Bertrand F, Rochotte J, Gilhodes J, Filleron T, Milhès J, Dufau C, Imbert C, Riond J, Tosolini M, Clarke CJ, Dufour F, Constantinescu AA, Junior NDF, Garcia V, Record M, Cordelier P, Brousset P, Rochaix P, Silvente-Poirot S, Therville N, Andrieu-Abadie N, Levade T, Hannun YA, Benoist H, Meyer N, Micheau O, Colacios C, Ségui B. Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy. Cancer Immunol Res 2021; 9:568-582. [PMID: 33727246 PMCID: PMC9631340 DOI: 10.1158/2326-6066.cir-20-0342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.
Collapse
Affiliation(s)
- Anne Montfort
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Florie Bertrand
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Julia Rochotte
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | | | - Jean Milhès
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Caroline Imbert
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Joëlle Riond
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Marie Tosolini
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Christopher J Clarke
- Stony Brook Cancer Center, and Department of Medicine, Stony Brook University, New York, New York
| | - Florent Dufour
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Andrei A Constantinescu
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Nilton De França Junior
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Virginie Garcia
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Michel Record
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III - Paul Sabatier/ERL5294 CNRS, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Pierre Brousset
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Philippe Rochaix
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Sandrine Silvente-Poirot
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III - Paul Sabatier/ERL5294 CNRS, Toulouse, France
| | - Nicole Therville
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Thierry Levade
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France.,Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Yusuf A Hannun
- Stony Brook Cancer Center, and Department of Medicine, Stony Brook University, New York, New York
| | - Hervé Benoist
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Nicolas Meyer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Olivier Micheau
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Céline Colacios
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France. .,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
15
|
Gil-Hernández A, Arroyo-Campuzano M, Simoni-Nieves A, Zazueta C, Gomez-Quiroz LE, Silva-Palacios A. Relevance of Membrane Contact Sites in Cancer Progression. Front Cell Dev Biol 2021; 8:622215. [PMID: 33511135 PMCID: PMC7835521 DOI: 10.3389/fcell.2020.622215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.
Collapse
Affiliation(s)
- Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Miguel Arroyo-Campuzano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
16
|
Zhang W, Wei Y, Zhang D, Xu EY. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data. Bioinformatics 2020; 36:3124-3130. [PMID: 32053182 DOI: 10.1093/bioinformatics/btaa098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) has enabled the simultaneous transcriptomic profiling of individual cells under different biological conditions. scRNA-seq data have two unique challenges that can affect the sensitivity and specificity of single-cell differential expression analysis: a large proportion of expressed genes with zero or low read counts ('dropout' events) and multimodal data distributions. RESULTS We have developed a zero-inflation-adjusted quantile (ZIAQ) algorithm, which is the first method to account for both dropout rates and complex scRNA-seq data distributions in the same model. ZIAQ demonstrates superior performance over several existing methods on simulated scRNA-seq datasets by finding more differentially expressed genes. When ZIAQ was applied to the comparison of neoplastic and non-neoplastic cells from a human glioblastoma dataset, the ranking of biologically relevant genes and pathways showed clear improvement over existing methods. AVAILABILITY AND IMPLEMENTATION ZIAQ is implemented in the R language and available at https://github.com/gefeizhang/ZIAQ. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wenfei Zhang
- Department of Biostatistics and Programming, Sanofi, Framingham, MA 01701, USA
| | - Ying Wei
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Donghui Zhang
- Department of Biostatistics and Programming, Sanofi, Framingham, MA 01701, USA
| | - Ethan Y Xu
- Translational Sciences, Sanofi, Framingham, MA 01701, USA
| |
Collapse
|
17
|
Ghazaly EA, Miraki-Moud F, Smith P, Gnanaranjan C, Koniali L, Oke A, Saied MH, Petty R, Matthews J, Stronge R, Joel SP, Young BD, Gribben J, Taussig DC. Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function. J Biol Chem 2020; 295:5496-5508. [PMID: 32161116 PMCID: PMC7170527 DOI: 10.1074/jbc.ra119.010467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/26/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity.
Collapse
Affiliation(s)
- Essam A. Ghazaly
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Farideh Miraki-Moud
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Institute of Cancer Research, Sutton, London, United Kingdom
| | - Paul Smith
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Chathunissa Gnanaranjan
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Lola Koniali
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Adedayo Oke
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Marwa H. Saied
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Robert Petty
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Janet Matthews
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Randal Stronge
- Institute of Cancer Research, Sutton, London, United Kingdom
- Department of Haematology, Royal Marsden Hospital, Sutton, United Kingdom
| | - Simon P. Joel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Bryan D. Young
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - David C. Taussig
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Institute of Cancer Research, Sutton, London, United Kingdom
- Department of Haematology, Royal Marsden Hospital, Sutton, United Kingdom
| |
Collapse
|
18
|
Sphingomyelin phosphodiesterase 3 methylation and silencing in oral squamous cell carcinoma results in increased migration and invasion and altered stress response. Oncotarget 2020; 11:523-534. [PMID: 32082486 PMCID: PMC7007297 DOI: 10.18632/oncotarget.27458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2), the product of the sphingomyelin phosphodiesterase 3 (SMPD3) gene, catalyzes the hydrolysis of sphingomyelin to ceramide. Ceramide acts on various signaling pathways to influence cell proliferation, survival, and stress response. Altered levels of sphingolipids and ceramides have been reported in various cancer types, including oral squamous cell carcinoma (OSCC). OSCC patients exhibit a poor 5-year survival rate of 50%, a figure that has remained stagnant for decades. To overcome this requires a better understanding of the molecular events driving this disease. The molecular analysis of the oral cavity reported here has identified the SMPD3 promoter region as a site of frequent hypermethylation and downregulation in pre-malignant and malignant tissues as compared with healthy control tissues. While lentivirus-induced overexpression of SMPD3 in cell models of oral dysplasia and OSCC did not significantly alter proliferation, it did decrease migration and invasion and increased resistance to the epidermal growth factor receptor (EGFR) inhibitor erlotinib. These results suggest that SMPD3 downregulation is a common event in OSCC progression and may promote the spread of tumor cells.
Collapse
|
19
|
Abstract
Sphingosine, ceramide, sphingosine-1-phosphate, and other related sphingolipids have emerged as important bioactive molecules involved in a variety of key cellular processes such as cell growth, differentiation, apoptosis, exosome release, and inter- and intracellular cell communication, making the pathways of sphingolipid metabolism a key domain in maintaining cell homeostasis (Hannun and Obeid, Trends Biochem Sci 20:73-77, 1995; Hannun and Obeid, Nat Rev Mol Cell Biol 9:139-150, 2008; Kosaka et al., J Biol Chem 288:10849-10859, 2013). Various studies have determined that these pathways play a central role in regulating intracellular production of ceramide and the other bioactive sphingolipids and hence are an important component of signaling in various diseases such as cancer, diabetes, and neurodegenerative and cardiovascular diseases (Chaube et al., Biochim Biophys Acta 1821:313-323, 2012; Clarke et al., Adv Enzyme Regul 51:51-58, 2011b; Horres and Hannun, Neurochem Res 37:1137-1149, 2012). In this chapter, we discuss one of the major enzyme classes in producing ceramide, sphingomyelinases (SMases), from a biochemical and structural perspective with an emphasis on their applicability as therapeutic targets.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Cancer Center, Stony Brook, NY, USA.
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Börtlein C, Schumacher F, Kleuser B, Dölken L, Avota E. Role of Neutral Sphingomyelinase-2 (NSM 2) in the Control of T Cell Plasma Membrane Lipid Composition and Cholesterol Homeostasis. Front Cell Dev Biol 2019; 7:226. [PMID: 31681760 PMCID: PMC6803391 DOI: 10.3389/fcell.2019.00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The activity of neutral sphingomyelinase-2 (NSM2) to catalyze the conversion of sphingomyelin (SM) to ceramide and phosphocholine at the cytosolic leaflet of plasma membrane (PM) is important in T cell receptor (TCR) signaling. We recently identified PKCζ as a major NSM2 downstream effector which regulates microtubular polarization. It remained, however, unclear to what extent NSM2 activity affected overall composition of PM lipids and downstream effector lipids in antigen stimulated T cells. Here, we provide a detailed lipidomics analyses on PM fractions isolated from TCR stimulated wild type and NSM2 deficient (ΔNSM) Jurkat T cells. This revealed that in addition to that of sphingolipids, NSM2 depletion also affected concentrations of many other lipids. In particular, NSM2 ablation resulted in increase of lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamine (LPE) which both govern PM biophysical properties. Crucially, TCR dependent upregulation of the important T cell signaling lipid diacylglycerol (DAG), which is fundamental for activation of conventional and novel PKCs, was abolished in ΔNSM cells. Moreover, NSM2 activity was found to play an important role in PM cholesterol transport to the endoplasmic reticulum (ER) and production of cholesteryl esters (CE) there. Most importantly, CE accumulation was essential to sustain human T cell proliferation. Accordingly, inhibition of CE generating enzymes, the cholesterol acetyltransferases ACAT1/SOAT1 and ACAT2/SOAT2, impaired TCR driven expansion of both CD4+ and CD8+ T cells. In summary, our study reveals an important role of NSM2 in regulating T cell functions by its multiple effects on PM lipids and cholesterol homeostasis.
Collapse
Affiliation(s)
- Charlene Börtlein
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Systemic Metabolomic Profiling of Acute Myeloid Leukemia Patients before and During Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid, Valproic Acid, and Low-Dose Chemotherapy. Cells 2019; 8:cells8101229. [PMID: 31658693 PMCID: PMC6829623 DOI: 10.3390/cells8101229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy, and many elderly/unfit patients cannot receive intensive and potentially curative therapy. These patients receive low-toxicity disease-stabilizing treatment. The combination of all-trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid can stabilize the disease for a subset of such patients. We performed untargeted serum metabolomic profiling for 44 AML patients receiving treatment based on ATRA and valproic acid combined with low-dose cytotoxic drugs (cytarabine, hydroxyurea, 6-mercaptopurin) which identified 886 metabolites. When comparing pretreatment samples from responders and non-responders, metabolites mainly belonging to amino acid and lipid (i.e., fatty acid) pathways were altered. Furthermore, patients with rapidly progressive disease showed an extensively altered lipid metabolism. Both ATRA and valproic acid monotherapy also altered the amino acid and lipid metabolite profiles; however, these changes were only highly significant for valproic acid treatment. Twenty-three metabolites were significantly altered by seven-day valproic acid treatment (p < 0.05, q < 0.05), where the majority of altered metabolites belonged to lipid (especially fatty acid metabolism) and amino acid pathways, including several carnitines. These metabolomic effects, and especially the effects on lipid metabolism, may be important for the antileukemic and epigenetic effects of this treatment.
Collapse
|
22
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Albi E, Cataldi S, Ceccarini MR, Conte C, Ferri I, Fettucciari K, Patria FF, Beccari T, Codini M. Gentamicin Targets Acid Sphingomyelinase in Cancer: The Case of the Human Gastric Cancer NCI-N87 Cells. Int J Mol Sci 2019; 20:ijms20184375. [PMID: 31489901 PMCID: PMC6770866 DOI: 10.3390/ijms20184375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging literature implicates acid sphingomyelinase in tumor sensitivity/resistance to anticancer treatments. Gentamicin is a drug commonly used as an antimicrobial but its serendipity effects have been shown. Even though many evidences on the role of gentamicin in cancer have been reported, its mechanism of action is poorly understood. Here, we explored acid sphingomyelinase as a possible new target of gentamicin in cancer. Since gastric cancer is one of the most common cancers and represents the second cause of death in the world, we performed the study in NCI-N87 gastric cancer cell line. The effect of the drug resulted in the inhibition of cell proliferation, including a reduction of cell number and viability, in the decrease of MIB-1 proliferative index as well as in the upregulation of cyclin-dependent kinase inhibitor 1A and 1B (CDKN1A and CDKN1B), and growth arrest and DNA-damage 45A (GADD45A) genes. The cytotoxicity was apoptotic as shown by FACS analysis. Additionally, gentamicin reduced HER2 protein, indicating a minor tumor aggressiveness. To further define the involvement of sphingomyelin metabolism in the response to the drug, gene and protein expression of acid and neutral sphingomeylinase was analyzed in comparison with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and vitamin D receptor (VDR), molecules involved in cancer. Gentamicin induced a downregulation of PTEN, VDR, and neutral sphingomyelinase and a strong upregulation of acid sphingomyelinase. Of note, we identified the same upregulation of acid sphingomyelinase upon gentamicin treatment in other cancer cells and not in normal cells. These findings provide new insights into acid sphingomyelinase as therapeutic target, reinforcing studies on the potential role of gentamicin in anticancer therapy.
Collapse
Affiliation(s)
- Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Ivana Ferri
- Institute of Pathologic Anatomy and Histology, University of Perugia, 06126 Perugia, Italy.
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, 06100 Perugia, Italy.
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
24
|
Kiamehr M, Heiskanen L, Laufer T, Düsterloh A, Kahraman M, Käkelä R, Laaksonen R, Aalto-Setälä K. Dedifferentiation of Primary Hepatocytes is Accompanied with Reorganization of Lipid Metabolism Indicated by Altered Molecular Lipid and miRNA Profiles. Int J Mol Sci 2019; 20:ijms20122910. [PMID: 31207892 PMCID: PMC6627955 DOI: 10.3390/ijms20122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: Primary human hepatocytes (PHHs) undergo dedifferentiation upon the two-dimensional (2D) culture, which particularly hinders their utility in long-term in vitro studies. Lipids, as a major class of biomolecules, play crucial roles in cellular energy storage, structure, and signaling. Here, for the first time, we mapped the alterations in the lipid profile of the dedifferentiating PHHs and studied the possible role of lipids in the loss of the phenotype of PHHs. Simultaneously, differentially expressed miRNAs associated with changes in the lipids and fatty acids (FAs) of the dedifferentiating PHHs were investigated. Methods: PHHs were cultured in monolayer and their phenotype was monitored morphologically, genetically, and biochemically for five days. The lipid and miRNA profile of the PHHs were analyzed by mass spectrometry and Agilent microarray, respectively. In addition, 24 key genes involved in the metabolism of lipids and FAs were investigated by qPCR. Results: The typical morphology of PHHs was lost from day 3 onward. Additionally, ALB and CYP genes were downregulated in the cultured PHHs. Lipidomics revealed a clear increase in the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) containing lipids, but a decrease in the polyunsaturated fatty acids (PUFA) containing lipids during the dedifferentiation of PHHs. In line with this, FASN, SCD, ELOVL1, ELOVL3, and ELOVL7 were upregulated but ELOVL2 was downregulated in the dedifferentiated PHHs. Furthermore, differentially expressed miRNAs were identified, and the constantly upregulated miR-27a and miR-21, and downregulated miR-30 may have regulated the synthesis, accumulation and secretion of PHH lipids during the dedifferentiation. Conclusion: Our results showed major alterations in the molecular lipid species profiles, lipid-metabolizing enzyme expression as wells as miRNA profiles of the PHHs during their prolonged culture, which in concert could play important roles in the PHHs’ loss of phenotype. These findings promote the understanding from the dedifferentiation process and could help in developing optimal culture conditions, which better meet the needs of the PHHs and support their original phenotype.
Collapse
Affiliation(s)
- Mostafa Kiamehr
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland.
| | | | - Thomas Laufer
- Hummingbird Diagnostics GmbH, 69120 Heidelberg, Germany.
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany.
| | | | - Mustafa Kahraman
- Hummingbird Diagnostics GmbH, 69120 Heidelberg, Germany.
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Reijo Laaksonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland.
- Zora Biosciences, 02150 Espoo, Finland.
| | - Katriina Aalto-Setälä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland.
- Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
25
|
Shanbhogue P, Hoffmann RM, Airola MV, Maini R, Hamelin DJ, Garcia-Diaz M, Burke JE, Hannun YA. The juxtamembrane linker in neutral sphingomyelinase-2 functions as an intramolecular allosteric switch that activates the enzyme. J Biol Chem 2019; 294:7488-7502. [PMID: 30890560 DOI: 10.1074/jbc.ra118.007288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- From the Departments of Biochemistry and Cell Biology.,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and
| | - Reece M Hoffmann
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | | | - Rohan Maini
- From the Departments of Biochemistry and Cell Biology
| | - David J Hamelin
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - John E Burke
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Yusuf A Hannun
- From the Departments of Biochemistry and Cell Biology, .,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and.,Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794.,Medicine, and
| |
Collapse
|
26
|
Transposon mutagenesis screen in mice identifies TM9SF2 as a novel colorectal cancer oncogene. Sci Rep 2018; 8:15327. [PMID: 30333512 PMCID: PMC6193042 DOI: 10.1038/s41598-018-33527-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023] Open
Abstract
New therapeutic targets for advanced colorectal cancer (CRC) are critically needed. Our laboratory recently performed an insertional mutagenesis screen in mice to identify novel CRC driver genes and, thus, potential drug targets. Here, we define Transmembrane 9 Superfamily 2 (TM9SF2) as a novel CRC oncogene. TM9SF2 is an understudied protein, belonging to a well conserved protein family characterized by their nine putative transmembrane domains. Based on our transposon screen we found that TM9SF2 is a candidate progression driver in digestive tract tumors. Analysis of The Cancer Genome Atlas (TCGA) data revealed that approximately 35% of CRC patients have elevated levels of TM9SF2 mRNA, data we validated using an independent set of CRC samples. RNAi silencing of TM9SF2 reduced CRC cell growth in an anchorage-independent manner, a hallmark of cancer. Furthermore, CRISPR/Cas9 knockout of TM9SF2 substantially diminished CRC tumor fitness in vitro and in vivo. Transcriptome analysis of TM9SF2 knockout cells revealed a potential role for TM9SF2 in cell cycle progression, oxidative phosphorylation, and ceramide signaling. Lastly, we report that increased TM9SF2 expression correlates with disease stage and low TM9SF2 expression correlate with a more favorable relapse-free survival. Taken together, this study provides evidence that TM9SF2 is a novel CRC oncogene.
Collapse
|
27
|
Wegner MS, Schömel N, Gruber L, Örtel SB, Kjellberg MA, Mattjus P, Kurz J, Trautmann S, Peng B, Wegner M, Kaulich M, Ahrends R, Geisslinger G, Grösch S. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cell Mol Life Sci 2018; 75:3393-3410. [PMID: 29549423 PMCID: PMC11105721 DOI: 10.1007/s00018-018-2799-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Lisa Gruber
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Beatrice Örtel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matti Aleksi Kjellberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Jennifer Kurz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Kinoshita M, Suzuki KG, Murata M, Matsumori N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 2018; 215:84-95. [DOI: 10.1016/j.chemphyslip.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
|
29
|
Makoukji J, Saadeh F, Mansour KA, El-Sitt S, Al Ali J, Kinarivala N, Trippier PC, Boustany RM. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann Clin Transl Neurol 2018; 5:1089-1103. [PMID: 30250865 PMCID: PMC6144451 DOI: 10.1002/acn3.625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022] Open
Abstract
Objective Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease‐modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro. Methods Aromatic carbamate derivatives were tested by establishing growth curves under pro‐apoptotic conditions and activity evaluated by trypan blue and JC‐1 staining, as well as a drop in pro‐apoptotic ceramide in neuronal precursor PC12 cells following siRNA knockdown of the CLN3 gene, and CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts. Ceramide levels were determined in CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts before and after treatment. Expression of BCL‐2, ceramide synthesis enzymes (CERS2/CERS6/SMPD1/DEGS2) and Caspases 3/8/9 levels were compared in treated versus untreated CLN3‐deficient PC12 cells by qRT‐PCR. Results Retigabine, the benzyl‐derivatized carbamate and an allyl carbamate derivative were neuroprotective in CLN3‐defective PC12 cells and rescued CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts from diminished growth and accelerated apoptosis. All drugs decreased ceramide in CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts. Increased BCL‐2 and decreased ceramide synthesis enzyme expression were established in CLN3‐derived PC12 cells treated with the benzyl and allyl carbamate derivatives. They down‐regulated Caspase 3/Caspase 8 expression. Caspase 9 expression was reduced by the benzyl‐derivatized carbamate. Interpretation These findings establish that compounds analogous to flupirtine demonstrate anti‐apoptotic activity with potential for treatment of NCL disease and use of ceramide as a marker for these diseases.
Collapse
Affiliation(s)
- Joelle Makoukji
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Fadi Saadeh
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Karl Albert Mansour
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Jamal Al Ali
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Nihar Kinarivala
- Department of Pharmaceutical Sciences School of Pharmacy Texas Tech University Health Sciences Center Amarillo Texas
| | - Paul C Trippier
- Department of Pharmaceutical Sciences School of Pharmacy Texas Tech University Health Sciences Center Amarillo Texas
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon.,Neurogenetics Program AUBMC Special Kids Clinic Division of Pediatric Neurology Department of Pediatrics and Adolescent Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
30
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Abstract
For many years, neutral sphingomyelinases (N-SMases) were long thought to be anticancer enzymes owing to their roles as key producers of ceramide linked to apoptosis, growth arrest, and the chemotherapeutic response. However, in recent years, with the cloning of multiple isoforms and with new information on their cellular roles, particularly for nSMase2, a more complex picture is emerging suggesting that N-SMases have both pro- and anticancer roles. In this chapter, we will summarize current knowledge on N-SMase expression in cancer and the roles of N-SMase activity and specific isoforms in cancer-relevant biologies. We will also discuss what we see as the major challenges ahead for research into N-SMases in cancer.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
32
|
Zhong L, Kong JN, Dinkins MB, Leanhart S, Zhu Z, Spassieva SD, Qin H, Lin HP, Elsherbini A, Wang R, Jiang X, Nikolova-Karakashian M, Wang G, Bieberich E. Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. J Lipid Res 2018; 59:795-804. [PMID: 29567647 DOI: 10.1194/jlr.m080879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, but not adjacent tissue, exhibited substantial accumulation of lipid droplets, suggesting that nSMase2 deficiency is associated with tumor growth and increased neutral lipid generation in the tumor. Tumor tissue expressed significantly increased levels of CD133 and EpCAM mRNA, two markers of liver cancer stem-like cells (CSCs) and higher levels of phosphorylated signal transducer and activator of transcription 3, an essential regulator of stemness. CD133(+) cells showed strong labeling for SM and ceramide. In conclusion, these results suggest that SMase-2 deficiency plays a role in the survival or proliferation of CSCs, leading to spontaneous tumors, which is associated with tumor-specific effects on lipid homeostasis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ji Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Haiyan Qin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Hsuan-Pei Lin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | | | - Xue Jiang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | | | - Guanghu Wang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
33
|
Epigenetic reprogramming in liver fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:124-132. [PMID: 29079534 PMCID: PMC5716427 DOI: 10.1016/j.addr.2017.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
Abstract
Novel insights into the epigenetic control of chronic liver diseases are now emerging. Recent advances in our understanding of the critical roles of DNA methylation, histone modifications and ncRNA may now be exploited to improve management of fibrosis/cirrhosis and cancer. Furthermore, improved technologies for the detection of epigenetic markers from patients' blood and tissues will vastly improve diagnosis, treatment options and prognostic tracking. The aim of this review is to present recent findings from the field of liver epigenetics and to explore their potential for translation into therapeutics to prevent disease promoting epigenome reprogramming and reverse epigenetic changes.
Collapse
|
34
|
Tang YC, Yuwen H, Wang K, Bruno PM, Bullock K, Deik A, Santaguida S, Trakala M, Pfau SJ, Zhong N, Huang T, Wang L, Clish CB, Hemann MT, Amon A. Aneuploid Cell Survival Relies upon Sphingolipid Homeostasis. Cancer Res 2017; 77:5272-5286. [PMID: 28775166 DOI: 10.1158/0008-5472.can-17-0049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
Aneuploidy, a hallmark of cancer cells, poses an appealing opportunity for cancer treatment and prevention strategies. Using a cell-based screen to identify small molecules that could selectively kill aneuploid cells, we identified the compound N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide monohydrochloride (DL-PDMP), an antagonist of UDP-glucose ceramide glucosyltransferase. DL-PDMP selectively inhibited proliferation of aneuploid primary mouse embryonic fibroblasts and aneuploid colorectal cancer cells. Its selective cytotoxic effects were based on further accentuating the elevated levels of ceramide, which characterize aneuploid cells, leading to increased apoptosis. We observed that DL-PDMP could also enhance the cytotoxic effects of paclitaxel, a standard-of-care chemotherapeutic agent that causes aneuploidy, in human colon cancer and mouse lymphoma cells. Our results offer pharmacologic evidence that the aneuploid state in cancer cells can be targeted selectively for therapeutic purposes, or for reducing the toxicity of taxane-based drug regimens. Cancer Res; 77(19); 5272-86. ©2017 AACR.
Collapse
Affiliation(s)
- Yun-Chi Tang
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Yuwen
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter M Bruno
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin Bullock
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amy Deik
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stefano Santaguida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah J Pfau
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Na Zhong
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
35
|
Kiamehr M, Viiri LE, Vihervaara T, Koistinen KM, Hilvo M, Ekroos K, Käkelä R, Aalto-Setälä K. Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells. Dis Model Mech 2017; 10:1141-1153. [PMID: 28733363 PMCID: PMC5611970 DOI: 10.1242/dmm.030841] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem cells (iPSCs) offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE) stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA) composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis.
Collapse
Affiliation(s)
- Mostafa Kiamehr
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland
| | - Leena E Viiri
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland
| | | | | | | | | | - Reijo Käkelä
- Department of Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland.,Heart Hospital, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
36
|
Airola MV, Shanbhogue P, Shamseddine AA, Guja KE, Senkal CE, Maini R, Bartke N, Wu BX, Obeid LM, Garcia-Diaz M, Hannun YA. Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proc Natl Acad Sci U S A 2017; 114:E5549-E5558. [PMID: 28652336 PMCID: PMC5514751 DOI: 10.1073/pnas.1705134114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2, product of the SMPD3 gene) is a key enzyme for ceramide generation that is involved in regulating cellular stress responses and exosome-mediated intercellular communication. nSMase2 is activated by diverse stimuli, including the anionic phospholipid phosphatidylserine. Phosphatidylserine binds to an integral-membrane N-terminal domain (NTD); however, how the NTD activates the C-terminal catalytic domain is unclear. Here, we identify the complete catalytic domain of nSMase2, which was misannotated because of a large insertion. We find the soluble catalytic domain interacts directly with the membrane-associated NTD, which serves as both a membrane anchor and an allosteric activator. The juxtamembrane region, which links the NTD and the catalytic domain, is necessary and sufficient for activation. Furthermore, we provide a mechanistic basis for this phenomenon using the crystal structure of the human nSMase2 catalytic domain determined at 1.85-Å resolution. The structure reveals a DNase-I-type fold with a hydrophobic track leading to the active site that is blocked by an evolutionarily conserved motif which we term the "DK switch." Structural analysis of nSMase2 and the extended N-SMase family shows that the DK switch can adopt different conformations to reposition a universally conserved Asp (D) residue involved in catalysis. Mutation of this Asp residue in nSMase2 disrupts catalysis, allosteric activation, stimulation by phosphatidylserine, and pharmacological inhibition by the lipid-competitive inhibitor GW4869. Taken together, these results demonstrate that the DK switch regulates ceramide generation by nSMase2 and is governed by an allosteric interdomain interaction at the membrane interface.
Collapse
Affiliation(s)
- Michael V Airola
- Stony Brook University Cancer Center, Stony Brook, NY 11794
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Prajna Shanbhogue
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | | | - Kip E Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Can E Senkal
- Stony Brook University Cancer Center, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Rohan Maini
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Nana Bartke
- Danone Nutricia Research, Singapore 138671
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Lina M Obeid
- Stony Brook University Cancer Center, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY 11768
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A Hannun
- Stony Brook University Cancer Center, Stony Brook, NY 11794;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
37
|
Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci Rep 2016; 6:36754. [PMID: 27824156 PMCID: PMC5099876 DOI: 10.1038/srep36754] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
We systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH). Fifteen ATP-binding cassette transporters and numerous new genes were overexpressed in CEM/ADR5000 cells. The basic karyotype in CCRF-CEM cells consisted of 47, XX, der(5)t(5;14) (q35.33;q32.3), del(9) (p14.1), +20. CEM/ADR5000 cells acquired additional aberrations, including X-chromosome loss, 4q and 14q deletion, chromosome 7 inversion, balanced and unbalanced two and three way translocations: t(3;10), der(3)t(3;13), der(5)t(18;5;14), t(10;16), der(18)t(7;18), der(18)t(21;18;5), der(21;21;18;5) and der(22)t(9;22). CCRF-CEM consisted of two and CEM/ADR5000 of five major sub-clones, indicating genetic tumor heterogeneity. Loss of 3q27.1 in CEM/ADR5000 caused down-regulation of ABCC5 and ABCF3 expression, Xq28 loss down-regulated ABCD1 expression. ABCB1, the most well-known MDR gene, was 448-fold up-regulated due to 7q21.12 amplification. In addition to well-known drug resistance genes, numerous novel genes and genomic aberrations were identified. Transcriptomics and genetics in CEM/AD5000 cells unravelled a range of MDR mechanisms, which is much more complex than estimated thus far. This may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
38
|
Takehara M, Takagishi T, Seike S, Oishi K, Fujihara Y, Miyamoto K, Kobayashi K, Nagahama M. Clostridium perfringens α-Toxin Impairs Lipid Raft Integrity in Neutrophils. Biol Pharm Bull 2016; 39:1694-1700. [DOI: 10.1248/bpb.b16-00444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kyohei Oishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yoshino Fujihara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
39
|
Qin J, Kilkus J, Dawson G. The hyaluronic acid inhibitor 4-methylumbelliferone is an NSMase2 activator-role of Ceramide in MU anti-tumor activity. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:78-90. [PMID: 26548718 DOI: 10.1016/j.bbalip.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Abstract
Increased synthesis of hyaluronic acid (HA) is often associated with increased metastatic potential and invasivity of tumor cells. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis, and has been studied as a potential anti-tumor drug to inhibit the growth of primary tumors and distant metastasis of tumor cells. Although several studies reported that the anticancer effects of MU are mediated by inhibition of HA signaling, the mechanism still needs to be clarified. In a previous study we demonstrated the regulation of HA synthesis by ceramide, and now show how MU activated neutral sphingomyelinase2 (NSMase2) generates ceramides and mediates MU induced inhibition of HA synthesis, cell migration and invasion, and apoptosis of tumor cells. Using a HA enriched mouse oligodendroglioma cell line G26-24 we found that MU elevated the activity of NSMase2 and increased ceramide levels, which in turn increased phosphatase PP2A activity. Further, the activated PP2A reduced phosphorylation of Akt, decreased activities of HA synthase2 (HAS2) and calpains, and inhibited both the synthesis of HA, and the migration and invasion of G26-24 tumor cells. In addition, MU mediated ceramide stimulated activation of p53 and caspase-3, reduced SIRT1 expression and decreased G26-24 viability. The mechanism of the MU anticancer therefore initially involves NSMase2/ceramide/PP2A/AKT/HAS2/caspase-3/p53/SIRT1 and the calpain signaling pathway, suggesting that ceramides play a key role in the ability of a tumor to become aggressively metastatic and grow.
Collapse
Affiliation(s)
- Jingdong Qin
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| | - John Kilkus
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Glyn Dawson
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
40
|
Makoukji J, Raad M, Genadry K, El-Sitt S, Makhoul NJ, Saad Aldin E, Nohra E, Jabbour M, Sangaralingam A, Chelala C, Habib RH, Boulos F, Tfayli A, Boustany RM. Association between CLN3 (Neuronal Ceroid Lipofuscinosis, CLN3 Type) Gene Expression and Clinical Characteristics of Breast Cancer Patients. Front Oncol 2015; 5:215. [PMID: 26528430 PMCID: PMC4601263 DOI: 10.3389/fonc.2015.00215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. CLN3 protein (CLN3p), deficient in neurodegenerative CLN3 disease is anti-apoptotic, and defects in the CLN3 gene cause accelerated apoptosis of neurons in CLN3 disease and up-regulation of ceramide. Dysregulated apoptotic pathways are often implicated in the development of the oncogenic phenotype. Predictably, CLN3 mRNA expression and CLN3 protein were up-regulated in a number of human and murine breast cancer-cell lines. Here, we determine CLN3 expression in non-tumor vs. tumor samples from fresh and formalin-fixed/paraffin-embedded (FFPE) breast tissue and analyze the association between CLN3 overexpression and different clinicopathological characteristics of breast cancer patients. Additionally, gene expression of 28 enzymes involved in sphingolipid metabolism was determined. CLN3 mRNA is overexpressed in tumor vs. non-tumor breast tissue from FFPE and fresh samples, as well as in mouse MCF7 breast cancer compared to MCF10A normal cells. Of the clinicopathological characteristics of tumor grade, age, menopause status, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), only absence of HER2 expression correlated with CLN3 overexpression. Sphingolipid genes for ceramide synthases 2 and 6 (CerS2; CerS6), delta(4)-desaturase sphingolipid 2 (DEGS2), and acidic sphingomyelinase (SMPD1) displayed higher expression levels in breast cancer vs. control tissue, whereas ceramide galactosyltransferase (UGT8) was underexpressed in breast cancer samples. CLN3 may be a novel molecular target for cancer drug discovery with the goal of modulation of ceramide pathways.
Collapse
Affiliation(s)
- Joelle Makoukji
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | - Mohamad Raad
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | - Katia Genadry
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | - Nadine J Makhoul
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon
| | - Ehab Saad Aldin
- Department of Radiology, University of Iowa Hospitals and Clinics , Iowa City, IA , USA
| | - Eden Nohra
- Department of Internal Medicine, American University of Beirut Medical Center , Beirut , Lebanon
| | - Mark Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center , Beirut , Lebanon
| | - Ajanthah Sangaralingam
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London , London , UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London , London , UK
| | - Robert H Habib
- Outcomes Research Unit, American University of Beirut Medical Center , Beirut , Lebanon
| | - Fouad Boulos
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center , Beirut , Lebanon
| | - Arafat Tfayli
- Department of Internal Medicine, American University of Beirut Medical Center , Beirut , Lebanon
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut , Lebanon ; Neurogenetics Program, Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center , Beirut , Lebanon
| |
Collapse
|
41
|
Hernández-Corbacho MJ, Canals D, Adada MM, Liu M, Senkal CE, Yi JK, Mao C, Luberto C, Hannun YA, Obeid LM. Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death. J Biol Chem 2015; 290:25356-73. [PMID: 26318452 DOI: 10.1074/jbc.m115.658658] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.
Collapse
Affiliation(s)
| | - Daniel Canals
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Mohamad M Adada
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Mengling Liu
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Can E Senkal
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Jae Kyo Yi
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Cungui Mao
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Chiara Luberto
- From the Stony Brook Cancer Center, the Department of Physiology and Biophysics, Stony Brook University, Health Sciences Center, Stony Brook, New York 11794 and
| | - Yusuf A Hannun
- From the Stony Brook Cancer Center, the Department of Medicine, and
| | - Lina M Obeid
- From the Stony Brook Cancer Center, the Department of Medicine, and the Northport Veterans Affairs Medical Center, Northport, New York 11768
| |
Collapse
|
42
|
Abdel Shakor AB, Atia M, Ismail IA, Alshehri A, El-Refaey H, Kwiatkowska K, Sobota A. Curcumin induces apoptosis of multidrug-resistant human leukemia HL60 cells by complex pathways leading to ceramide accumulation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1672-82. [DOI: 10.1016/j.bbalip.2014.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
|
43
|
Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul 2014; 58:38-52. [PMID: 25434743 DOI: 10.1016/j.jbior.2014.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate.
Collapse
Affiliation(s)
- Brittany Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jane Catalina Donaldson
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina Obeid
- Northport VA Medical Center, Northport, NY 11768, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
44
|
Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul 2014; 57:24-41. [PMID: 25465297 DOI: 10.1016/j.jbior.2014.10.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Abstract
Our understanding of the functions of ceramide signaling has advanced tremendously over the past decade. In this review, we focus on the roles and regulation of neutral sphingomyelinase 2 (nSMase2), an enzyme that generates the bioactive lipid ceramide through the hydrolysis of the membrane lipid sphingomyelin. A large body of work has now implicated nSMase2 in a diverse set of cellular functions, physiological processes, and disease pathologies. We discuss different aspects of this enzyme's regulation from transcriptional, post-translational, and biochemical. Furthermore, we highlight nSMase2 involvement in cellular processes including inflammatory signaling, exosome generation, cell growth, and apoptosis, which in turn play important roles in pathologies such as cancer metastasis, Alzheimer's disease, and other organ systems disorders. Lastly, we examine avenues where targeted nSMase2-inhibition may be clinically beneficial in disease scenarios.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA.
| |
Collapse
|
45
|
Chen L, Luo LF, Lu J, Li L, Liu YF, Wang J, Liu H, Song H, Jiang H, Chen SJ, Luo C, Li KK. FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One 2014; 9:e103033. [PMID: 25050888 PMCID: PMC4106898 DOI: 10.1371/journal.pone.0103033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/25/2014] [Indexed: 12/17/2022] Open
Abstract
The M2 subtype Acute Myeloid Leukemia (AML-M2) with t(8;21) represents an unmet challenge because of poor clinical outcomes in a sizable portion of patients. In this study,we report that FTY720 (Fingolimod), a sphingosine analogue and an FDA approved drug for treating of multiple sclerosis, shows antitumorigenic activity against the Kasumi-1 cell line, xenograft mouse models and leukemic blasts isolated from AML-M2 patients with t(8;21) translocation. Primary investigation indicated that FTY720 caused cell apoptosis through caspases and protein phosphatase 2A (PP2A) activation. Transcriptomic profiling further revealed that FTY720 treatment could upregulate AML1 target genes and interfere with genes involved in ceramide synthesis. Treatment with FTY720 led to the elimination of AML1-ETO oncoprotein and caused cell cycle arrest. More importantly, FTY720 treatment resulted in rapid and significant increase of pro-apoptotic ceramide levels, determined by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry based lipidomic approaches. Structural simulation model had also indicated that the direct binding of ceramide to inhibitor 2 of PP2A (I2PP2A) could reactivate PP2A and cause cell death. This study demonstrates, for the first time, that accumulation of ceramide plays a central role in FTY720 induced cell death of AML-M2 with t(8;21). Targeting sphingolipid metabolism by using FTY720 may provide novel insight for the drug development of treatment for AML-M2 leukemia.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Line
- Ceramides/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Fingolimod Hydrochloride
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Models, Molecular
- Oncogene Proteins, Fusion/genetics
- Propylene Glycols/therapeutic use
- Protein Phosphatase 2/metabolism
- RUNX1 Translocation Partner 1 Protein
- Sphingolipids/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/therapeutic use
Collapse
Affiliation(s)
- Limin Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liu-Fei Luo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lianchun Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuan-Fang Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Heng Song
- Department of Chemistry, East China University of Science and Technology, Shanghai, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CL); (KKL)
| | - Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (CL); (KKL)
| |
Collapse
|
46
|
Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, Carey V, Nystad W, Håberg SE, Ober C, Nicolae D, Barnes KC, Martinez F, Liu A, Lemanske R, Strunk R, Weiss S, London S, Gilliland F, Raby B. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One 2014; 9:e99716. [PMID: 24964093 PMCID: PMC4070909 DOI: 10.1371/journal.pone.0099716] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/18/2014] [Indexed: 11/19/2022] Open
Abstract
Background Smoking while pregnant is associated with a myriad of negative health outcomes in the child. Some of the detrimental effects may be due to epigenetic modifications, although few studies have investigated this hypothesis in detail. Objectives To characterize site-specific epigenetic modifications conferred by prenatal smoking exposure within asthmatic children. Methods Using Illumina HumanMethylation27 microarrays, we estimated the degree of methylation at 27,578 distinct DNA sequences located primarily in gene promoters using whole blood DNA samples from the Childhood Asthma Management Program (CAMP) subset of Asthma BRIDGE childhood asthmatics (n = 527) ages 5–12 with prenatal smoking exposure data available. Using beta-regression, we screened loci for differential methylation related to prenatal smoke exposure, adjusting for gender, age and clinical site, and accounting for multiple comparisons by FDR. Results Of 27,578 loci evaluated, 22,131 (80%) passed quality control assessment and were analyzed. Sixty-five children (12%) had a history of prenatal smoke exposure. At an FDR of 0.05, we identified 19 CpG loci significantly associated with prenatal smoke, of which two replicated in two independent populations. Exposure was associated with a 2% increase in mean CpG methylation in FRMD4A (p = 0.01) and Cllorf52 (p = 0.001) compared to no exposure. Four additional genes, XPNPEP1, PPEF2, SMPD3 and CRYGN, were nominally associated in at least one replication group. Conclusions These data suggest that prenatal exposure to tobacco smoke is associated with reproducible epigenetic changes that persist well into childhood. However, the biological significance of these altered loci remains unknown.
Collapse
Affiliation(s)
- Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Bonnie R. Joubert
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Xinhui Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Weiliang Qui
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vincent Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | - Carole Ober
- University of Chicago, Chicago, Illinois, United States of America
| | - Dan Nicolae
- University of Chicago, Chicago, Illinois, United States of America
| | | | - Fernando Martinez
- Arizona Respiratory Center, University of Arizona, Arizona, United States of America
| | - Andy Liu
- National Jewish Health, Denver, Colorado, United States of America
| | - Robert Lemanske
- University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert Strunk
- Washington University School of Medicine, St. Louis, Montana, United States of America
| | - Scott Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephanie London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Frank Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Benjamin Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
47
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
48
|
Cole C, Krampis K, Karagiannis K, Almeida JS, Faison WJ, Motwani M, Wan Q, Golikov A, Pan Y, Simonyan V, Mazumder R. Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. BMC Bioinformatics 2014; 15:28. [PMID: 24467687 PMCID: PMC3916084 DOI: 10.1186/1471-2105-15-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technologies have resulted in petabytes of scattered data, decentralized in archives, databases and sometimes in isolated hard-disks which are inaccessible for browsing and analysis. It is expected that curated secondary databases will help organize some of this Big Data thereby allowing users better navigate, search and compute on it. RESULTS To address the above challenge, we have implemented a NGS biocuration workflow and are analyzing short read sequences and associated metadata from cancer patients to better understand the human variome. Curation of variation and other related information from control (normal tissue) and case (tumor) samples will provide comprehensive background information that can be used in genomic medicine research and application studies. Our approach includes a CloudBioLinux Virtual Machine which is used upstream of an integrated High-performance Integrated Virtual Environment (HIVE) that encapsulates Curated Short Read archive (CSR) and a proteome-wide variation effect analysis tool (SNVDis). As a proof-of-concept, we have curated and analyzed control and case breast cancer datasets from the NCI cancer genomics program - The Cancer Genome Atlas (TCGA). Our efforts include reviewing and recording in CSR available clinical information on patients, mapping of the reads to the reference followed by identification of non-synonymous Single Nucleotide Variations (nsSNVs) and integrating the data with tools that allow analysis of effect nsSNVs on the human proteome. Furthermore, we have also developed a novel phylogenetic analysis algorithm that uses SNV positions and can be used to classify the patient population. The workflow described here lays the foundation for analysis of short read sequence data to identify rare and novel SNVs that are not present in dbSNP and therefore provides a more comprehensive understanding of the human variome. Variation results for single genes as well as the entire study are available from the CSR website (http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr). CONCLUSIONS Availability of thousands of sequenced samples from patients provides a rich repository of sequence information that can be utilized to identify individual level SNVs and their effect on the human proteome beyond what the dbSNP database provides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC 20037, USA.
| |
Collapse
|
49
|
Truman JP, García-Barros M, Obeid LM, Hannun YA. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1174-88. [PMID: 24384461 DOI: 10.1016/j.bbalip.2013.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022]
Abstract
Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Mónica García-Barros
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Lina M Obeid
- Northport Veterans Affairs Medical Center, Northport, NY 11768, USA; Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| |
Collapse
|
50
|
REVILL KATE, WANG TIM, LACHENMAYER ANJA, KOJIMA KENSUKE, HARRINGTON ANDREW, LI JINYU, HOSHIDA YUJIN, LLOVET JOSEPM, POWERS SCOTT. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology 2013; 145:1424-35.e1-25. [PMID: 24012984 PMCID: PMC3892430 DOI: 10.1053/j.gastro.2013.08.055] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Epigenetic silencing of tumor suppressor genes contributes to the pathogenesis of hepatocellular carcinoma (HCC). To identify clinically relevant tumor suppressor genes silenced by DNA methylation in HCC, we integrated DNA methylation data from human primary HCC samples with data on up-regulation of gene expression after epigenetic unmasking. METHODS We performed genome-wide methylation analysis of 71 human HCC samples using the Illumina HumanBeadchip27K array; data were combined with those from microarray analysis of gene re-expression in 4 liver cancer cell lines after their exposure to reagents that reverse DNA methylation (epigenetic unmasking). RESULTS Based on DNA methylation in primary HCC and gene re-expression in cell lines after epigenetic unmasking, we identified 13 candidate tumor suppressor genes. Subsequent validation led us to focus on functionally characterizing 2 candidates, sphingomyelin phosphodiesterase 3 (SMPD3) and neurofilament, heavy polypeptide (NEFH), which we found to behave as tumor suppressor genes in HCC. Overexpression of SMPD3 and NEFH by stable transfection of inducible constructs into an HCC cell line reduced cell proliferation by 50% and 20%, respectively (SMPD3, P = .003 and NEFH, P = .003). Conversely, knocking down expression of these genes with small hairpin RNA promoted cell invasion and migration in vitro (SMPD3, P = .0001 and NEFH, P = .022), and increased their ability to form tumors after subcutaneous injection or orthotopic transplantation into mice, confirming their role as tumor suppressor genes in HCC. Low levels of SMPD3 were associated with early recurrence of HCC after curative surgery in an independent patient cohort (P = .001; hazard ratio = 3.22; 95% confidence interval: 1.6-6.5 in multivariate analysis). CONCLUSIONS Integrative genomic analysis identified SMPD3 and NEFH as tumor suppressor genes in HCC. We provide evidence that SMPD3 is a potent tumor suppressor gene that could affect tumor aggressiveness; a reduced level of SMPD3 is an independent prognostic factor for early recurrence of HCC.
Collapse
Affiliation(s)
- KATE REVILL
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York,Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - TIM WANG
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York,Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - ANJA LACHENMAYER
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York,Department of General, Visceral, and Pediatric Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - KENSUKE KOJIMA
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - ANDREW HARRINGTON
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - JINYU LI
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York
| | - YUJIN HOSHIDA
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - JOSEP M. LLOVET
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York,HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERehd, Liver Unit, Hospital Clinic, University of Barcelona, Catalonia, Spain,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Catalonia, Spain
| | - SCOTT POWERS
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York
| |
Collapse
|