1
|
Zhang Q, Niu Y, Li Y, Xia C, Chen Z, Chen Y, Feng H. Meningeal lymphatic drainage: novel insights into central nervous system disease. Signal Transduct Target Ther 2025; 10:142. [PMID: 40320416 PMCID: PMC12050339 DOI: 10.1038/s41392-025-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, increasing evidence has suggested that meningeal lymphatic drainage plays a significant role in central nervous system (CNS) diseases. Studies have indicated that CNS diseases and conditions associated with meningeal lymphatic drainage dysfunction include neurodegenerative diseases, stroke, infections, traumatic brain injury, tumors, functional cranial disorders, and hydrocephalus. However, the understanding of the regulatory and damage mechanisms of meningeal lymphatics under physiological and pathological conditions is currently limited. Given the importance of a profound understanding of the interplay between meningeal lymphatic drainage and CNS diseases, this review covers seven key aspects: the development and structure of meningeal lymphatic vessels, methods for observing meningeal lymphatics, the function of meningeal lymphatics, the molecular mechanisms of meningeal lymphatic injury, the relationships between meningeal lymphatic vessels and CNS diseases, potential regulatory mechanisms of meningeal lymphatics, and conclusions and outstanding questions. We will explore the relationship between the development, structure, and function of meningeal lymphatics, review current methods for observing meningeal lymphatic vessels in both animal models and humans, and identify unresolved key points in meningeal lymphatic research. The aim of this review is to provide new directions for future research and therapeutic strategies targeting meningeal lymphatics by critically analyzing recent advancements in the field, identifying gaps in current knowledge, and proposing innovative approaches to address these gaps.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 961st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingpei Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenyang Xia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Brakta C, Tabet AC, Puel M, Pacault M, Stolzenberg MC, Goudet C, Merger M, Reumaux H, Lambert N, Alioua N, Malan V, Hanein S, Dupin-Deguine D, Treiner E, Lefèvre G, Farhat MM, Luca LE, Hureaux M, Li H, Chelloug N, Dehak R, Boussion S, Ouachée-Chardin M, Schleinitz N, Abou Chahla W, Barlogis V, Vély F, Oksenhendler E, Quartier P, Pasquet M, Suarez F, Bustamante J, Neven B, Picard C, Rieux-Laucat F, Lévy J, Rosain J. 2q33 Deletions Underlying Syndromic and Non-syndromic CTLA4 Deficiency. J Clin Immunol 2024; 45:46. [PMID: 39578275 DOI: 10.1007/s10875-024-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE CTLA4 deficiency is an inborn error of immunity (IEI) due to heterozygosity for germline loss-of-function variants of the CTLA4 gene located on chromosome 2q33.2. CTLA4 deficiency underlies pleiotropic immune and lymphoproliferation-mediated features with incomplete penetrance. It has been identified in hundreds of patients but copy number variants (CNVs) have been reported in only 12 kindreds, including nine which displayed large 2q33.1-2q33.2 deletions encompassing CTLA4. METHODS We conducted a nationwide study in France to identify patients with 2q33 deletions encompassing CTLA4. We investigated the clinical and immunological phenotypes and genotypes of these patients. RESULTS We identified 12 patients across six unrelated kindreds with clinical immunodeficiency. Neurological features were recorded in three patients, including one with syndromic neurodevelopmental disorder. Single-nucleotide polymorphism (SNP) or comparative genomic hybridization (CGH) array analysis, and targeted high-throughput sequencing revealed five different heterozygous 2q33 deletions of 26 kilobases to 7.12 megabases in size and encompassing one to 41 genes. We identified a contiguous gene syndrome (CGS) due to associated KLF7 deficiency in a kindred with a neurodevelopmental phenotype. CONCLUSION Deletions within the 2q33 region encompassing CTLA4 are rare and not extensively explored, and are probably underdiagnosed in cytogenetic practice. A literature review identified 14 different CGS loci including at least one gene responsible for an IEI. The deletions involved in IEIs should be systematically delimited, to facilitate screening for CGS.
Collapse
Affiliation(s)
- Charlyne Brakta
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Mathilde Pacault
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Claire Goudet
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Marguerite Merger
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Héloïse Reumaux
- Pediatric Rheumatology Unit, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Najiba Alioua
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Valérie Malan
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Genomic Medicine for Rare Diseases, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, Université Paris-Cité and Structure Fédérative de Recherche Necker, INSERM UMR1163, Imagine, Paris, EU, France
| | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
- Otoneurosurgery and Pediatric ENT Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, Toulouse, EU, France
| | - Guillaume Lefèvre
- Institute for Translational Research in Inflammation (INFINITE), Inserm U1286, University of Lille, Lille, EU, France
- Laboratory of Immunology, University of Lille, Lille, EU, France
| | - Méryem-Maud Farhat
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Luminita Elena Luca
- Department of Internal Medicine, Infectious and Tropical Diseases, University Hospital Center of Poitiers, Poitiers, EU, France
| | - Marguerite Hureaux
- Department of Genetics, Georges-Pompidou European Hospital, AP-HP, Paris, EU, France
- Reference Center for Hereditary Kidney Diseases in Children and Adults (MARHEA), University of Paris Cité, Paris, EU, France
| | - Hailun Li
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
| | - Nora Chelloug
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Rabha Dehak
- Department of Pediatrics, Calais Hospital, Calais, EU, France
| | - Simon Boussion
- Clinical Genetics Department, University of Lille, Lille, EU, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology, IHOPe, Hospices Civils de Lyon, Lyon, EU, France
| | - Nicolas Schleinitz
- Department of Internal Medicine La Timone, Aix-Marseille University, Assistance Publique - AP-HM, Marseille, EU, France
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Vincent Barlogis
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, Marseille, EU, France
- Departement of Immunology, Assistance Publique Des Hôpitaux de Marseille, Hôpital de La Timone, Marseille Immunopole, Marseille, EU, France
| | - Eric Oksenhendler
- Clinical Immunology Department, Saint-Louis Hospital, Paris-Diderot University, Paris, EU, France
| | - Pierre Quartier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Immunology, Children's Hospital, University Hospital, Toulouse, EU, France
| | - Felipe Suarez
- Université Paris-Cité, Paris, EU, France
- Department of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Imagine Institute, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Jérémie Rosain
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France.
- Université Paris-Cité, Paris, EU, France.
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA.
| |
Collapse
|
3
|
Janardhan HP, Wachter BT, Trivedi CM. Lymphatic System Development and Function. Curr Cardiol Rep 2024; 26:1209-1219. [PMID: 39172295 DOI: 10.1007/s11886-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW This review delves into recent advancements in understanding generalized and organ-specific lymphatic development. It emphasizes the distinct characteristics and critical anomalies that can impair lymphatic function. By exploring developmental mechanisms, the review seeks to illuminate the profound impact of lymphatic malformations on overall health and disease progression. RECENT FINDINGS The introduction of genome sequencing, single-cell transcriptomic analysis, and advanced imaging technologies has significantly enhanced our ability to identify and characterize developmental defects within the lymphatic system. As a result, a wide range of lymphatic anomalies have been uncovered, spanning from congenital abnormalities present at birth to conditions that can become life-threatening in adulthood. Additionally, recent research highlights the heterogeneity of lymphatics, revealing organ-specific developmental pathways, unique molecular markers, and specialized physiological functions specific to each organ. A deeper understanding of the unique characteristics of lymphatic cell populations in an organ-specific context is essential for guiding future research into lymphatic disease processes. An integrated approach to translational research could revolutionize personalized medicine, where treatments are precisely tailored to individual lymphatic profiles, enhancing effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Brianna T Wachter
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Wang L, Sun H, Yue Z, Xia J, Li X. CDMPred: a tool for predicting cancer driver missense mutations with high-quality passenger mutations. PeerJ 2024; 12:e17991. [PMID: 39253604 PMCID: PMC11382650 DOI: 10.7717/peerj.17991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Most computational methods for predicting driver mutations have been trained using positive samples, while negative samples are typically derived from statistical methods or putative samples. The representativeness of these negative samples in capturing the diversity of passenger mutations remains to be determined. To tackle these issues, we curated a balanced dataset comprising driver mutations sourced from the COSMIC database and high-quality passenger mutations obtained from the Cancer Passenger Mutation database. Subsequently, we encoded the distinctive features of these mutations. Utilizing feature correlation analysis, we developed a cancer driver missense mutation predictor called CDMPred employing feature selection through the ensemble learning technique XGBoost. The proposed CDMPred method, utilizing the top 10 features and XGBoost, achieved an area under the receiver operating characteristic curve (AUC) value of 0.83 and 0.80 on the training and independent test sets, respectively. Furthermore, CDMPred demonstrated superior performance compared to existing state-of-the-art methods for cancer-specific and general diseases, as measured by AUC and area under the precision-recall curve. Including high-quality passenger mutations in the training data proves advantageous for CDMPred's prediction performance. We anticipate that CDMPred will be a valuable tool for predicting cancer driver mutations, furthering our understanding of personalized therapy.
Collapse
Affiliation(s)
- Lihua Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- School of Information Engineering, Huangshan University, Huangshan, Anhui, China
| | - Haiyang Sun
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, Tianjin, China
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiaoyan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
6
|
Phng LK, Hogan BM. Endothelial cell transitions in zebrafish vascular development. Dev Growth Differ 2024; 66:357-368. [PMID: 39072708 PMCID: PMC11457512 DOI: 10.1111/dgd.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
In recent decades, developmental biologists have come to view vascular development as a series of progressive transitions. Mesoderm differentiates into endothelial cells; arteries, veins and lymphatic endothelial cells are specified from early endothelial cells; and vascular networks diversify and invade developing tissues and organs. Our understanding of this elaborate developmental process has benefitted from detailed studies using the zebrafish as a model system. Here, we review a number of key developmental transitions that occur in zebrafish during the formation of the blood and lymphatic vessel networks.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Benjamin M Hogan
- Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology and the Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
8
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Stasi E, Sciascia S, Naretto C, Baldovino S, Roccatello D. Lymphatic System and the Kidney: From Lymphangiogenesis to Renal Inflammation and Fibrosis Development. Int J Mol Sci 2024; 25:2853. [PMID: 38474100 DOI: 10.3390/ijms25052853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.
Collapse
Affiliation(s)
- Elodie Stasi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Carla Naretto
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Simone Baldovino
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| |
Collapse
|
10
|
Ren H, Hong M, Feng J, Hao Z, Chen X, Liang F, Wei W, Liang X, Wang H, Chen X. GATA2 mutant variant allele frequency may reflect prognosis in Chinese adult patients with de novo cytogenetically normal acute myeloid leukemia. BIOMOLECULES & BIOMEDICINE 2024; 24:982-989. [PMID: 38416121 PMCID: PMC11293240 DOI: 10.17305/bb.2024.10244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Exploration of variant allele frequency (VAF) of GATA2 mutations (GATA2mut) provides insights into acute myeloid leukemia (AML) prognosis. In this study, we analyzed GATA2mut and co-mutations in 166 Chinese patients with cytogenetically normal AML. This was done through targeted next-generation sequencing of 34 genes associated with myeloid leukemia. GATA2mut was identified in 17 (10%) patients being significantly correlated with co-mutations in CCAAT/enhancer-binding protein alpha (CEBPA) double mutation (P = 0.001). We observed that the N-terminal zinc finger domain (ZF1) was linked to CEBPA mutations, while the C-terminal zinc finger domain (ZF2) was associated with Wilms' tumor 1 (WT1) mutations. It was also noted that patients with GATA2mut had lower platelet counts at diagnosis (P = 0.032). In the entire cohort, GATA2mut had no significant prognostic impact on overall survival (OS) (P = 0.762) and relapse-free survival (RFS) (P = 0.369) compared to patients with GATA2wt. The OS (P = 0.737) and RFS (P = 0.894) of the ZF1 mutation were similar to those of the ZF2 mutation. Most patients with GATA2 mutations were classified in the ELN2022 favorable- and intermediate-risk groups. GATA2mut patients in the favorable-risk group were divided into GATA2High and GATA2Low groups using a median cutoff variant allele frequency (VAF) of 40.13%. GATA2High patients were associated with worse OS (P = 0.031) and RFS (P = 0.021) than GATA2Low patients. In the intermediate-risk group, the high median VAF of GATA2 (≥38.51%) had no significant effect in OS and RFS compared with the low median VAF (<38.51%). This study offers new insights on the prognosis of GATA2mut in the favorable-risk group, where VAF can be used as a guide.
Collapse
Affiliation(s)
- Huanying Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Minglin Hong
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingyi Feng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xian Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengting Liang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wei
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuelan Liang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Peters IJA, de Pater E, Zhang W. The role of GATA2 in adult hematopoiesis and cell fate determination. Front Cell Dev Biol 2023; 11:1250827. [PMID: 38033856 PMCID: PMC10682726 DOI: 10.3389/fcell.2023.1250827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The correct maintenance and differentiation of hematopoietic stem cells (HSC) in bone marrow is vital for the maintenance and operation of the human blood system. GATA2 plays a critical role in the maintenance of HSCs and the specification of HSCs into the different hematopoietic lineages, highlighted by the various defects observed in patients with heterozygous mutations in GATA2, resulting in cytopenias, bone marrow failure and increased chance of myeloid malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms underlying GATA2 deficiency syndrome remain to be elucidated. The detailed description of how GATA2 regulates HSC maintenance and blood lineage determination is crucial to unravel the pathogenesis of GATA2 deficiency syndrome. In this review, we summarize current advances in elucidating the role of GATA2 in hematopoietic cell fate determination and discuss the challenges of modeling GATA2 deficiency syndrome.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- *Correspondence: Wei Zhang, ; Emma de Pater,
| |
Collapse
|
12
|
Zoller J, Trajanova D, Feurstein S. Germline and somatic drivers in inherited hematologic malignancies. Front Oncol 2023; 13:1205855. [PMID: 37904876 PMCID: PMC10613526 DOI: 10.3389/fonc.2023.1205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Inherited hematologic malignancies are linked to a heterogenous group of genes, knowledge of which is rapidly expanding using panel-based next-generation sequencing (NGS) or whole-exome/whole-genome sequencing. Importantly, the penetrance for these syndromes is incomplete, and disease development, progression or transformation has critical clinical implications. With the earlier detection of healthy carriers and sequential monitoring of these patients, clonal hematopoiesis and somatic driver variants become significant factors in determining disease transformation/progression and timing of (preemptive) hematopoietic stem cell transplant in these patients. In this review, we shed light on the detection of probable germline predisposition alleles based on diagnostic/prognostic 'somatic' NGS panels. A multi-tier approach including variant allele frequency, bi-allelic inactivation, persistence of a variant upon clinical remission and mutational burden can indicate variants with high pre-test probability. We also discuss the shared underlying biology and frequency of germline and somatic variants affecting the same gene, specifically focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in these genes are associated with a (specific) pattern or over-/underrepresentation of somatic molecular or cytogenetic alterations that may help identify the underlying germline syndrome and predict the course of disease in these individuals. This review is based on the current knowledge about somatic drivers in these four syndromes by integrating data from all published patients, thereby providing clinicians with valuable and concise information.
Collapse
Affiliation(s)
| | | | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
14
|
Angeli V, Lim HY. Biomechanical control of lymphatic vessel physiology and functions. Cell Mol Immunol 2023; 20:1051-1062. [PMID: 37264249 PMCID: PMC10469203 DOI: 10.1038/s41423-023-01042-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023] Open
Abstract
The ever-growing research on lymphatic biology has clearly identified lymphatic vessels as key players that maintain human health through their functional roles in tissue fluid homeostasis, immunosurveillance, lipid metabolism and inflammation. It is therefore not surprising that the list of human diseases associated with lymphatic malfunctions has grown larger, including issues beyond lymphedema, a pathology traditionally associated with lymphatic drainage insufficiency. Thus, the discovery of factors and pathways that can promote optimal lymphatic functions may offer new therapeutic options. Accumulating evidence indicates that aside from biochemical factors, biomechanical signals also regulate lymphatic vessel expansion and functions postnatally. Here, we review how mechanical forces induced by fluid shear stress affect the behavior and functions of lymphatic vessels and the mechanisms lymphatic vessels employ to sense and transduce these mechanical cues into biological signals.
Collapse
Affiliation(s)
- Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, Rovira II, Galis ZS, Muratoglu SC. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest 2023; 133:e171582. [PMID: 37655664 PMCID: PMC10471172 DOI: 10.1172/jci171582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.
Collapse
Affiliation(s)
- Babak J. Mehrara
- Department of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna T. Wachter
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Patricia Greenwel
- Division of Digestive Diseases & Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, and
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Rajput RV, Arnold DE. GATA2 Deficiency: Predisposition to Myeloid Malignancy and Hematopoietic Cell Transplantation. Curr Hematol Malig Rep 2023:10.1007/s11899-023-00695-7. [PMID: 37247092 DOI: 10.1007/s11899-023-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE OF REVIEW GATA2 deficiency is a haploinsufficiency syndrome associated with a wide spectrum of disease, including severe monocytopenia and B and NK lymphopenia, predisposition to myeloid malignancies, human papillomavirus infections, and infections with opportunistic organisms, particularly nontuberculous mycobacteria, herpes virus, and certain fungi. GATA2 mutations have variable penetrance and expressivity with imperfect genotype-phenotype correlations. However, approximately 75% of patients will develop a myeloid neoplasm at some point. Allogeneic hematopoietic cell transplantation (HCT) is the only currently available curative therapy. Here, we review the clinical manifestations of GATA2 deficiency, characterization of the hematologic abnormalities and progression to myeloid malignancy, and current HCT practices and outcomes. RECENT FINDINGS Cytogenetic abnormalities are common with high rates of trisomy 8, monosomy 7, and unbalanced translocation der(1;7) and may suggest an underlying GATA2 deficiency in patients presenting with myelodysplastic syndrome (MDS). Mutations in ASXL1 and STAG2 are the most frequently encountered somatic mutations and are associated with lower survival probability. A recent report of 59 patients with GATA2 deficiency who underwent allogenic HCT with myeloablative, busulfan-based conditioning and post-transplant cyclophosphamide reported excellent overall and event-free survival of 85% and 82% with reversal of disease phenotype and low rates of graft versus host disease. Allogeneic HCT with myeloablative conditioning results in disease correction and should be considered for patients with a history of recurrent, disfiguring and/or severe infections, organ dysfunction, MDS with cytogenetic abnormalities, high-risk somatic mutations or transfusion dependence, or myeloid progression. Improved genotype/phenotype correlations are needed to allow for greater predictive capabilities.
Collapse
Affiliation(s)
- Roma V Rajput
- Hematology Branch, National Hematology, Lung, and Blood Institute, National Institute of Health, Bethesda, USA
| | - Danielle E Arnold
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Building 10-CRC, Room 1-5130, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Tran VL, Liu P, Katsumura KR, Kim E, Schoff BM, Johnson KD, Bresnick EH. Restricting genomic actions of innate immune mediators on fetal hematopoietic progenitor cells. iScience 2023; 26:106297. [PMID: 36950124 PMCID: PMC10025987 DOI: 10.1016/j.isci.2023.106297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.
Collapse
Affiliation(s)
- Vu L. Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bjorn M. Schoff
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
18
|
Sandoval C, Calle Y, Godoy K, Farías J. An Updated Overview of the Role of CYP450 during Xenobiotic Metabolization in Regulating the Acute Myeloid Leukemia Microenvironment. Int J Mol Sci 2023; 24:6031. [PMID: 37047003 PMCID: PMC10094375 DOI: 10.3390/ijms24076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Oxidative stress is associated with several acute and chronic disorders, including hematological malignancies such as acute myeloid leukemia, the most prevalent acute leukemia in adults. Xenobiotics are usually harmless compounds that may be detrimental, such as pharmaceuticals, environmental pollutants, cosmetics, and even food additives. The storage of xenobiotics can serve as a defense mechanism or a means of bioaccumulation, leading to adverse effects. During the absorption, metabolism, and cellular excretion of xenobiotics, three steps may be distinguished: (i) inflow by transporter enzymes, (ii) phases I and II, and (iii) phase III. Phase I enzymes, such as those in the cytochrome P450 superfamily, catalyze the conversion of xenobiotics into more polar compounds, contributing to an elevated acute myeloid leukemia risk. Furthermore, genetic polymorphism influences the variability and susceptibility of related myeloid neoplasms, infant leukemias associated with mixed-lineage leukemia (MLL) gene rearrangements, and a subset of de novo acute myeloid leukemia. Recent research has shown a sustained interest in determining the regulators of cytochrome P450, family 2, subfamily E, member 1 (CYP2E1) expression and activity as an emerging field that requires further investigation in acute myeloid leukemia evolution. Therefore, this review suggests that CYP2E1 and its mutations can be a therapeutic or diagnostic target in acute myeloid leukemia.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
19
|
Santiago M, Liquori A, Such E, Zúñiga Á, Cervera J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers (Basel) 2023; 15:cancers15051590. [PMID: 36900380 PMCID: PMC10000430 DOI: 10.3390/cancers15051590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary myeloid malignancy syndromes (HMMSs) are rare but are becoming increasingly significant in clinical practice. One of the most well-known syndromes within this group is GATA2 deficiency. The GATA2 gene encodes a zinc finger transcription factor essential for normal hematopoiesis. Insufficient expression and function of this gene as a result of germinal mutations underlie distinct clinical presentations, including childhood myelodysplastic syndrome and acute myeloid leukemia, in which the acquisition of additional molecular somatic abnormalities can lead to variable outcomes. The only curative treatment for this syndrome is allogeneic hematopoietic stem cell transplantation, which should be performed before irreversible organ damage happens. In this review, we will examine the structural characteristics of the GATA2 gene, its physiological and pathological functions, how GATA2 genetic mutations contribute to myeloid neoplasms, and other potential clinical manifestations. Finally, we will provide an overview of current therapeutic options, including recent transplantation strategies.
Collapse
Affiliation(s)
- Marta Santiago
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| | - Esperanza Such
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| | - José Cervera
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| |
Collapse
|
20
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
21
|
A Prox1 enhancer represses haematopoiesis in the lymphatic vasculature. Nature 2023; 614:343-348. [PMID: 36697821 DOI: 10.1038/s41586-022-05650-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/13/2022] [Indexed: 01/26/2023]
Abstract
Transcriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development1-3. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1. Genome editing of the enhancer to remove five nucleotides encompassing the GATA2-binding site resulted in perinatal death of homozygous mutant mice due to profound lymphatic vascular defects. Lymphatic endothelial cells in enhancer mutant mice exhibited reduced expression of genes characteristic of lymphatic endothelial cell identity and increased expression of genes characteristic of haemogenic endothelium, and acquired the capacity to generate haematopoietic cells. These data not only reveal a transcriptional enhancer element important for regulating Prox1 expression and lymphatic endothelial cell identity but also demonstrate that the lymphatic endothelium has haemogenic capacity, ordinarily repressed by Prox1.
Collapse
|
22
|
Coiteux V, Fenwarth L, Duployez N, Ainaoui M, Borel C, Polomeni A, Yakoub-Agha I, Chalandon Y. [Management of genetic predisposition to hematologic malignancies in patients undergoing allogeneic hematopoietic cell transplantation (HCT): Guidelines from the SFGM-TC]. Bull Cancer 2023; 110:S13-S29. [PMID: 36307324 DOI: 10.1016/j.bulcan.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The advent of new technologies has made it possible to identify genetic predispositions to myelodysplastic syndromes (MDS) and acute leukemias (AL) more frequently. The most frequent and best characterized at present are mutations in CEBPA, RUNX1, GATA2, ETV6 and DDX41 and, either in the presence of one of these mutations with a high allelic frequency, or in the case of a personal or family history suggestive of blood abnormalities such as non-immune thrombocytopenia, it is recommended to look for the possibility of a hereditary hematological malignancy (HHM). Indeed, early recognition of these HHMs allows better adaptation of the management of patients and their relatives, as allogeneic hematopoietic stem cell transplantation (HSCT) is very often proposed for these pathologies. According to current data, with the exception of the GATA2 mutation, the constitutional or somatic nature of the mutations does not seem to influence the prognosis of hematological diseases. Therefore, the indication for an allograft will be determined according to the usual criteria. However, when searching for a family donor, it is important to ensure that there is no hereditary disease in the donor. In order to guarantee the possibility of performing the HSC allograft within a short period of time, it may be necessary to initiate a parallel procedure to find an unrelated donor. Given the limited information on the modalities of HSC transplantation in this setting, it is important to assess the benefit/risk of the disease and the procedure to decide on the type of conditioning (myeloablative or reduced intensity). In view of the limited experience with the risk of secondary cancers in the medium and long-term, it may be appropriate to recommend reduced intensity conditioning, as in the case of better characterized syndromic hematological diseases such as Fanconi anemia or telomere diseases. In summary, it seems important to evoke HHM more frequently, particularly in the presence of a family history, certain mutations or persistent blood abnormalities, in order to discuss the specific modalities of HSC allografting, particularly with regard to the search for a donor and the evaluation of certain modalities of the procedure, such as conditioning. It should be noted that the discovery of HHM, especially if the indication of an allogeneic HSC transplant is retained, will raise ethical and psychological considerations not only for the patient, but also for his family. A multidisciplinary approach involving molecular biologists, geneticists, hematologists and psychologists is essential.
Collapse
Affiliation(s)
- Valérie Coiteux
- Hôpital Huriez, CHU de Lille, service de maladies du sang, 1, place de Verdun, 59037 Lille cedex, France.
| | - Laurène Fenwarth
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Nicolas Duployez
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Malika Ainaoui
- Hôpital Huriez, hôpital Fontan, CHU de Lille, service de maladies du sang, service de psychiatrie de liaison, 1, place de Verdun, 59037 Lille cedex, France
| | - Cécile Borel
- CHU de Toulouse, institut universitaire du cancer de Toulouse Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Alice Polomeni
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | | | - Yves Chalandon
- Université de Genève, hôpitaux universitaires de Genève, faculté de médecine, service d'hématologie, 4, rue Gabrielle-Perret-Gentil, 1211 Genève, Suisse.
| |
Collapse
|
23
|
Ogunsina O, Banerjee R, Knauer LA, Yang Y. Pharmacological inhibition of FOXO1 promotes lymphatic valve growth in a congenital lymphedema mouse model. Front Cell Dev Biol 2023; 10:1024628. [PMID: 36742198 PMCID: PMC9890395 DOI: 10.3389/fcell.2022.1024628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Mutations in many genes that regulate lymphatic valve development are associated with congenital lymphedema. Oscillatory shear stress (OSS) from lymph provides constant signals for the growth and maintenance of valve cells throughout life. The expression of valve-forming genes in lymphatic endothelial cells (LECs) is upregulated by OSS. The transcription factor FOXO1 represses lymphatic valve formation by inhibiting the expression of these genes, which makes FOXO1 a potential target for treating lymphedema. Here, we tested the ability of a FOXO1 inhibitor, AS1842856, to induce the formation of new lymphatic valves. Our quantitative RT-PCR and Western blot data showed that treatment of cultured human LECs with AS1842856 for 48 h significantly increased the expression levels of valve-forming genes. To investigate the function of AS1842856 in vivo, Foxc2 +/- mice, the mouse model for lymphedema-distichiasis, were injected with AS1842856 for 2 weeks. The valve number in AS-treated Foxc2+/- mice was significantly higher than that of the vehicle-treated Foxc2+/- mice. Furthermore, since β-catenin upregulates the expression of Foxc2 and Prox1 during lymphatic valve formation, and AS1842856 treatment increased the level of active β-catenin in both cultured human LECs and in mouse mesenteric LECs in vivo, we used the mouse model with constitutive active β-catenin to rescue loss of lymphatic valves in Foxc2 +/- mice. Foxc2 +/- mice have 50% fewer lymphatic valves than control, and rescue experiments showed that the valve number was completely restored to the control level upon nuclear β-catenin activation. These findings indicate that pharmacological inhibition of FOXO1 can be explored as a viable strategy to resolve valve defects in congenital lymphedema.
Collapse
Affiliation(s)
| | | | | | - Ying Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
24
|
Kim BM, Song HS, Kim JY, Kwon EY, Ha SY, Kim M, Choi JH. Functional characterization of ABCA4 genetic variants related to Stargardt disease. Sci Rep 2022; 12:22282. [PMID: 36566289 PMCID: PMC9790013 DOI: 10.1038/s41598-022-26912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The ATP-binding cassette subfamily 4 (ABCA4), a transporter, is localized within the photoreceptors of the retina, and its genetic variants cause retinal dystrophy. Despite the clinical importance of the ABCA4 transporter, a few studies have investigated the function of each variant. In this study, we functionally characterized ABCA4 variants found in Korean patients with Stargardt disease or variants of the ABCA4 promoter region. We observed that four missense variants-p.Arg290Gln, p.Thr1117Ala, p.Cys1140Trp, and p.Asn1588Tyr-significantly decreased ABCA4 expression on the plasma membrane, which could be due to intracellular degradation. There are four major haplotypes in the ABCA4 proximal promoter. We observed that the H1 haplotype (c.-761C>A) indicated significantly increased luciferase activity compared to that of the wild-type, whereas the H3 haplotype (c.-1086A>C) indicated significantly decreased luciferase activity (P < 0.01 and 0.001, respectively). In addition, c.-900A>T in the H2 haplotype exhibited significantly increased luciferase activity compared with that of the wild-type. Two transcription factors, GATA-2 and HLF, were found to function as enhancers of ABCA4 transcription. Our findings suggest that ABCA4 variants in patients with Stargardt disease affect ABCA4 expression. Furthermore, common variants of the ABCA4 proximal promoter alter the ABCA4 transcriptional activity, which is regulated by GATA-2 and HLF transcription factors.
Collapse
Affiliation(s)
- Bo Min Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Hyo Sook Song
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Jin-Young Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Eun Young Kwon
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Seung Yeon Ha
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Minsuk Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| | - Ji Ha Choi
- grid.255649.90000 0001 2171 7754Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804 Korea
| |
Collapse
|
25
|
Kotmayer L, Romero‐Moya D, Marin‐Bejar O, Kozyra E, Català A, Bigas A, Wlodarski MW, Bödör C, Giorgetti A. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol 2022; 199:482-495. [PMID: 35753998 PMCID: PMC9796058 DOI: 10.1111/bjh.18330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.
Collapse
Affiliation(s)
- Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Damia Romero‐Moya
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Oskar Marin‐Bejar
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Emilia Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Albert Català
- Department of Hematology and OncologyInstitut de Recerca Sant Joan de DéuHospital Sant Joan de DeuBarcelonaSpain,Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
| | - Anna Bigas
- Cancer Research ProgramInstitut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del MarBarcelonaSpain,Josep Carreras Research Institute (IJC), BadalonaBarcelonaSpain
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain,Fondazione Pisana Per la Scienza ONLUS (FPS)San Giuliano TermeItaly,Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health SciencesBarcelona UniversityBarcelonaSpain
| |
Collapse
|
26
|
Fabozzi F, Mastronuzzi A, Ceglie G, Masetti R, Leardini D. GATA 2 Deficiency: Focus on Immune System Impairment. Front Immunol 2022; 13:865773. [PMID: 35769478 PMCID: PMC9234111 DOI: 10.3389/fimmu.2022.865773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
GATA2 deficiency is a disease with a broad spectrum of clinical presentation, ranging from lymphedema, deafness, pulmonary dysfunction to miscarriage and urogenital anomalies, but it is mainly recognized as an immune system and bone marrow disorder. It is caused by various heterozygous mutations in the GATA2 gene, encoding for a zinc finger transcription factor with a key role for the development and maintenance of a pool of hematopoietic stem cells; notably, most of these mutations arise de novo. Patients carrying a mutated allele usually develop a loss of some cell populations, such as B-cell, dendritic cell, natural killer cell, and monocytes, and are predisposed to disseminated human papilloma virus and mycobacterial infections. Also, these patients have a predisposition to myeloid neoplasms, including myelodysplastic syndromes, myeloproliferative neoplasms, chronic myelomonocytic leukaemia. The age of symptoms onset can vary greatly even also within the same family, ranging from early childhood to late adulthood; incidence increases by age and most frequently clinical presentation is between the second and third decade of life. Currently, haematopoietic stem cell transplantation represents the only curative treatment, restoring both the hematopoietic and immune system function.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatrics, Università degli Studi di Roma Tor Vergata, Rome, Italy
- *Correspondence: Francesco Fabozzi,
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giulia Ceglie
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatrics, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
27
|
AlGassim M, Al Seraihi AF, AlShaibani A, Conca W, AlShehri S, Abouzied MM, Hamadah I, AlReshoodi S, Dasouki M, Sheikh F. Familial Emberger Syndrome With Autoimmunity, Hyper-Immunoglobulin E and Lymphatic Impairment Caused by a Novel GATA2 Mutation. Hematol Oncol Stem Cell Ther 2022; 15:63-65. [PMID: 32497548 DOI: 10.1016/j.hemonc.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 01/28/2023] Open
Affiliation(s)
- Moneerah AlGassim
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ahad F Al Seraihi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - AlFadel AlShaibani
- Department of Hematology/Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Walter Conca
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Saleem AlShehri
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Issam Hamadah
- Department of Dermatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh AlReshoodi
- Department of Radiology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Farrukh Sheikh
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Li X, Qi L, Yang D, Hao S, Zhang F, Zhu X, Sun Y, Chen C, Ye J, Yang J, Zhao L, Altmann DM, Cao S, Wang H, Wei B. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci 2022; 25:577-587. [PMID: 35524140 DOI: 10.1038/s41593-022-01063-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 03/24/2022] [Indexed: 01/13/2023]
Abstract
Recent studies have demonstrated that brain meningeal lymphatic vessels (MLVs) act as a drainage path directly into the cervical lymph nodes (CLNs) for macromolecules contained in the cerebrospinal fluid (CSF). However, the role of MLVs during CNS viral infection remains unexplored. Here, we found that infection with several neurotropic viruses in mice promotes MLV expansion but also causes impaired MLV-mediated drainage of macromolecules. Notably, MLVs could drain virus from the CNS to CLNs. Surgical ligation of the lymph vessels or photodynamic ablation of dorsal MLVs increased neurological damage and mortality of virus-infected mice. By contrast, pretreatment with vascular endothelial growth factor C promoted expansion of functional MLVs and alleviated the effects of viral infection. Together, these data indicate that functional MLVs facilitate virus clearance, and MLVs represent a critical path for virus spreading from the CNS to the CLNs. MLV-based therapeutic strategies may thus be useful for alleviating infection-induced neurological damage.
Collapse
Affiliation(s)
- Xiaojing Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Linlin Qi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Dan Yang
- Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - ShuJie Hao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Xingguo Zhu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yue Sun
- School of Life Sciences, Peking University, Beijing, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- School of Life Sciences, Peking University, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College, Faculty of Medicine, Hammersmith Hospital, London, UK
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China. .,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China. .,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
29
|
Monte ER, Leubolt G, Windisch R, Kerbs P, Dutta S, Sippenauer T, Istvánffy R, Oostendorp RAJ, Chen-Wichmann L, Herold T, Cusan M, Schotta G, Wichmann C, Greif PA. Specific effects of somatic GATA2 zinc finger mutations on erythroid differentiation. Exp Hematol 2022; 108:26-35. [PMID: 35181392 DOI: 10.1016/j.exphem.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
GATA2 Zinc-Finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points towards different mechanisms of leukemogenesis depending on the affected ZF domain. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA-binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift towards granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V but not A318T or G320D caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Sayantanee Dutta
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Theresa Sippenauer
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Rouzanna Istvánffy
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Robert A J Oostendorp
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany.
| |
Collapse
|
30
|
Czepielewski RS, Erlich EC, Onufer EJ, Young S, Saunders BT, Han YH, Wohltmann M, Wang PL, Kim KW, Kumar S, Hsieh CS, Scallan JP, Yang Y, Zinselmeyer BH, Davis MJ, Randolph GJ. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 2021; 54:2795-2811.e9. [PMID: 34788601 PMCID: PMC8678349 DOI: 10.1016/j.immuni.2021.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Lymphangitis and the formation of tertiary lymphoid organs (TLOs) in the mesentery are features of Crohn's disease. Here, we examined the genesis of these TLOs and their impact on disease progression. Whole-mount and intravital imaging of the ileum and ileum-draining collecting lymphatic vessels (CLVs) draining to mesenteric lymph nodes from TNFΔARE mice, a model of ileitis, revealed TLO formation at valves of CLVs. TLOs obstructed cellular and molecular outflow from the gut and were sites of lymph leakage and backflow. Tumor necrosis factor (TNF) neutralization begun at early stages of TLO formation restored lymph transport. However, robustly developed, chronic TLOs resisted regression and restoration of flow after TNF neutralization. TNF stimulation of cultured lymphatic endothelial cells reprogrammed responses to oscillatory shear stress, preventing the induction of valve-associated genes. Disrupted transport of immune cells, driven by loss of valve integrity and TLO formation, may contribute to the pathology of Crohn's disease.
Collapse
Affiliation(s)
- Rafael S Czepielewski
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma C Erlich
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily J Onufer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon Young
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian T Saunders
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yong-Hyun Han
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mary Wohltmann
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter L Wang
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ki-Wook Kim
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shashi Kumar
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Bernd H Zinselmeyer
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Shin M, Lawson ND. Back and forth: History of and new insights on the vertebrate lymphatic valve. Dev Growth Differ 2021; 63:523-535. [PMID: 34716915 PMCID: PMC9299638 DOI: 10.1111/dgd.12757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Lymphatic valves develop from pre‐existing endothelial cells through a step‐wise process involving complex changes in cell shape and orientation, along with extracellular matrix interactions, to form two intraluminal leaflets. Once formed, valves prevent back‐flow within the lymphatic system to ensure drainage of interstitial fluid back into the circulatory system, thereby serving a critical role in maintaining fluid homeostasis. Despite the extensive anatomical characterization of lymphatic systems across numerous genus and species dating back several hundred years, valves were largely thought to be phylogenetically restricted to mammals. Accordingly, most insights into molecular and genetic mechanisms involved in lymphatic valve development have derived from mouse knockouts, as well as rare diseases in humans. However, we have recently used a combination of imaging and genetic analysis in the zebrafish to demonstrate that valves are a conserved feature of the teleost lymphatic system. Here, we provide a historical overview of comparative lymphatic valve anatomy together with recent efforts to define molecular pathways that contribute to lymphatic valve morphogenesis. Finally, we integrate our findings in zebrafish with previous work and highlight the benefits that this model provides for investigating lymphatic valve development.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
32
|
Tawana K, Brown AL, Churpek JE. Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 2021; 196:1293-1310. [PMID: 34658019 DOI: 10.1111/bjh.17855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 12/28/2022]
Abstract
Over the last decade, the field of hereditary haematological malignancy syndromes (HHMSs) has gained increasing recognition among clinicians and scientists worldwide. Germline mutations now account for almost 10% of adult and paediatric myelodysplasia/acute myeloid leukaemia (MDS/AML). As our ability to diagnose HHMSs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients with MDS/AML and how to optimise management and surveillance of patients and asymptomatic carriers. Discoveries of novel syndromes combined with clinical, genetic and epigenetic profiling of tumour samples, have highlighted unique patterns of disease evolution across HHMSs. Despite these advances, causative lesions are detected in less than half of familial cases and evidence-based guidelines are often lacking, suggesting there is much still to learn. Future research efforts are needed to sustain current momentum within the field, led not only by advancing genetic technology but essential collaboration between clinical and academic communities.
Collapse
Affiliation(s)
- Kiran Tawana
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, School of Medicine and Public Health, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica 2021; 107:358-370. [PMID: 34615339 PMCID: PMC8804571 DOI: 10.3324/haematol.2021.279317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer treatment is constantly evolving from a one-size-fits-all towards bespoke approaches for each patient. In certain solid cancers, including breast and lung, tumor genome profiling has been incorporated into therapeutic decision-making. For chronic phase chronic myeloid leukemia (CML), while tyrosine kinase inhibitor therapy is the standard treatment, current clinical scoring systems cannot accurately predict the heterogeneous treatment outcomes observed in patients. Biomarkers capable of segregating patients according to outcome at diagnosis are needed to improve management, and facilitate enrollment in clinical trials seeking to prevent blast crisis transformation and improve the depth of molecular responses. To this end, gene expression (GE) profiling studies have evaluated whether GE signatures at diagnosis are clinically informative. Patient material from a variety of sources has been profiled using microarrays, RNA sequencing and, more recently, single-cell RNA sequencing. However, differences in the cell types profiled, the technologies used, and the inherent complexities associated with the interpretation of genomic data pose challenges in distilling GE datasets into biomarkers with clinical utility. The goal of this paper is to review previous studies evaluating GE profiling in CML, and explore their potential as risk assessment tools for individualized CML treatment. We also review the contribution that acquired mutations, including those seen in clonal hematopoiesis, make to GE profiles, and how a model integrating contributions of genetic and epigenetic factors in resistance to tyrosine kinase inhibitors and blast crisis transformation can define a route to GE-based biomarkers. Finally, we outline a four-stage approach for the development of GE-based biomarkers in CML.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation
| | - Dennis Dong Hwan Kim
- International Chronic Myeloid Leukemia Foundation; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto
| | - Timothy P Hughes
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Haematology, Royal Adelaide Hospital, Adelaide
| | - Susan Branford
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation; Department of Haematology, Singapore General Hospital, Singapore, Singapore; Department of Medical Oncology, National Cancer Centre Singapore; Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
34
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
35
|
Andrés‐Zayas C, Suárez‐González J, Rodríguez‐Macías G, Dorado N, Osorio S, Font P, Carbonell D, Chicano M, Muñiz P, Bastos M, Kwon M, Díez‐Martín JL, Buño I, Martínez‐Laperche C. Clinical utility of targeted next-generation sequencing for the diagnosis of myeloid neoplasms with germline predisposition. Mol Oncol 2021; 15:2273-2284. [PMID: 33533142 PMCID: PMC8410541 DOI: 10.1002/1878-0261.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Myeloid neoplasms (MN) with germline predisposition (MNGP) are likely to be more common than currently appreciated. Many of the genes involved in MNGP are also recurrently mutated in sporadic MN. Therefore, routine analysis of gene panels by next-generation sequencing provides an effective approach to detect germline variants with clinical significance in patients with hematological malignancies. Gene panel sequencing was performed in 88 consecutive and five nonconsecutive patients with MN diagnosis. Disease-causing germline mutations in CEBPα, ASXL1, TP53, MPL, GATA2, DDX41, and ETV6 genes were identified in nine patients. Six out of the nine patients with germline variants had a strong family history. These patients presented great heterogeneity in the age of diagnosis and phenotypic characteristics. In our study, there were families in which all the affected members presented the same subtype of disease, whereas members of other families presented various disease phenotypes. This intrafamiliar heterogeneity suggests that the acquisition of particular somatic variants may drive the evolution of the disease. This approach enabled high-throughput detection of MNGP in patients with MN diagnosis, which is of great relevance for both the patients themselves and the asymptomatic mutation carriers within the family. It is crucial to make a proper diagnosis of these patients to provide them with the most suitable treatment, follow-up, and genetic counseling.
Collapse
Affiliation(s)
- Cristina Andrés‐Zayas
- Genomics UnitGregorio Marañón General University HospitalGregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
| | - Julia Suárez‐González
- Genomics UnitGregorio Marañón General University HospitalGregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
| | | | - Nieves Dorado
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Santiago Osorio
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Patricia Font
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Diego Carbonell
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - María Chicano
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Paula Muñiz
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Mariana Bastos
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - Mi Kwon
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| | - José Luis Díez‐Martín
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
- Department of MedicineSchool of MedicineComplutense University of MadridSpain
| | - Ismael Buño
- Genomics UnitGregorio Marañón General University HospitalGregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
- Department of Cell BiologySchool of MedicineComplutense University of MadridSpain
| | - Carolina Martínez‐Laperche
- Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of HematologyGregorio Marañón General University HospitalMadridSpain
| |
Collapse
|
36
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
37
|
Fabozzi F, Strocchio L, Mastronuzzi A, Merli P. GATA2 and marrow failure. Best Pract Res Clin Haematol 2021; 34:101278. [PMID: 34404529 DOI: 10.1016/j.beha.2021.101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
GATA2 gene encodes a zinc finger transcription factor crucial for normal hematopoiesis. Its haploinsufficiency, caused by a great variety of heterozygous loss-of-function mutations, underlies one of the most common causes of inherited bone marrow failure, recognized as GATA2 deficiency. Its phenotype is characterized by a broad spectrum of clinical presentations, including: haematological malignancies; immunodeficiency leading to invasive viral, mycobacterial and fungal infections; recurrent warts; lymphedema; pulmonary alveolar proteinosis; deafness; and miscarriage. The onset of symptoms ranges from early childhood to late adulthood, more frequently between adolescence and early adulthood. The only curative treatment is allogenic hematopoietic stem cell transplantation (HSCT), that can restore the function of both hematopoietic and immune system and prevent lung deterioration. Currently, there are no consensus guidelines about the management of patients affected by GATA2 deficiency, especially with regard to the optimal time to proceed to HSCT.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| |
Collapse
|
38
|
Homan CC, Venugopal P, Arts P, Shahrin NH, Feurstein S, Rawlings L, Lawrence DM, Andrews J, King-Smith SL, Harvey NL, Brown AL, Scott HS, Hahn CN. GATA2 deficiency syndrome: A decade of discovery. Hum Mutat 2021; 42:1399-1421. [PMID: 34387894 PMCID: PMC9291163 DOI: 10.1002/humu.24271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
GATA2 deficiency syndrome (G2DS) is a rare autosomal dominant genetic disease predisposing to a range of symptoms, of which myeloid malignancy and immunodeficiency including recurrent infections are most common. In the last decade since it was first reported, there have been over 480 individuals identified carrying a pathogenic or likely pathogenic germline GATA2 variant with symptoms of G2DS, with 240 of these confirmed to be familial and 24 de novo. For those that develop myeloid malignancy (75% of all carriers with G2DS disease symptoms), the median age of onset is 17 years (range 0-78 years) and myelodysplastic syndrome is the first diagnosis in 75% of these cases with acute myeloid leukemia in a further 9%. All variant types appear to predispose to myeloid malignancy and immunodeficiency. Apart from lymphedema in which haploinsufficiency seems necessary, the mutational requirements of the other less common G2DS phenotypes is still unclear. These predominantly loss-of-function variants impact GATA2 expression and function in numerous ways including perturbations to DNA binding, protein structure, protein:protein interactions, and gene transcription, splicing, and expression. In this review, we provide the first expert-curated ACMG/AMP classification with codes of published variants compatible for use in clinical or diagnostic settings.
Collapse
Affiliation(s)
- Claire C Homan
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - David M Lawrence
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - James Andrews
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Sarah L King-Smith
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Natasha L Harvey
- Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
39
|
Ortsäter H, Hernández-Vásquez MN, Ulvmar MH, Gow A, Mäkinen T. An inducible Cldn11-CreER T2 mouse line for selective targeting of lymphatic valves. Genesis 2021; 59:e23439. [PMID: 34338433 DOI: 10.1002/dvg.23439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/07/2022]
Abstract
Luminal valves of collecting lymphatic vessels are critical for maintaining unidirectional flow of lymph and their dysfunction underlies several forms of primary lymphedema. Here, we report on the generation of a transgenic mouse expressing the tamoxifen inducible CreERT2 under the control of Cldn11 promoter that allows, for the first time, selective and temporally controlled targeting of lymphatic valve endothelial cells. We show that within the vasculature CLDN11 is specifically expressed in lymphatic valves but is not required for their development as mice with a global loss of Cldn11 display normal valves in the mesentery. Tamoxifen treated Cldn11-CreERT2 mice also carrying a fluorescent Cre-reporter displayed reporter protein expression selectively in lymphatic valves and, to a lower degree, in venous valves. Analysis of developing vasculature further showed that Cldn11-CreERT2 -mediated recombination is induced during valve leaflet formation, and efficient labeling of valve endothelial cells was observed in mature valves. The Cldn11-CreERT2 mouse thus provides a valuable tool for functional studies of valves.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexander Gow
- Department of Neurology and Pediatrics, Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Allele-specific expression of GATA2 due to epigenetic dysregulation in CEBPA double-mutant AML. Blood 2021; 138:160-177. [PMID: 33831168 DOI: 10.1182/blood.2020009244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.
Collapse
|
41
|
Clinical and biological characteristics and prognostic impact of somatic GATA2 mutations in myeloid malignancies: a single institution experience. Blood Cancer J 2021; 11:122. [PMID: 34193836 PMCID: PMC8245641 DOI: 10.1038/s41408-021-00517-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022] Open
|
42
|
Abstract
Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.
Collapse
Affiliation(s)
- Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (T.M.)
| | - Laurence M Boon
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium (L.M.B.).,Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (L.M.B., M.V.).,Walloon Excellence in Lifesciences and Biotechnology, University of Louvain, Brussels, Belgium (M.V.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland (K.A.)
| |
Collapse
|
43
|
Tumor suppressor function of Gata2 in Acute Promyelocytic Leukemia. Blood 2021; 138:1148-1161. [PMID: 34125173 DOI: 10.1182/blood.2021011758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022] Open
Abstract
Most patients with acute promyelocytic leukemia (APL) can be cured with combined All Trans Retinoic Acid (ATRA) and Arsenic Trioxide therapy, which induce the destruction of PML-RARA, the initiating fusion protein for this disease1. However, the underlying mechanisms by which PML-RARA initiates and maintains APL cells are still not clear. We therefore identified genes that are dysregulated by PML-RARA in mouse and human APL cells, and prioritized GATA2 for functional studies because 1) it is highly expressed in pre-leukemic cells expressing PML-RARA, 2) its high expression persists in transformed APL cells, and 3) spontaneous somatic mutations of GATA2 occur during APL progression in both mice and humans. These and other findings suggested that GATA2 may be upregulated to thwart the proliferative signal generated by PML-RARA, and that its inactivation by mutation (and/or epigenetic silencing) may accelerate disease progression in APL and other forms of AML. Indeed, biallelic knockout of Gata2 with CRISPR/Cas9-mediated gene editing increased the serial replating efficiency of PML-RARA-expressing myeloid progenitors (and also progenitors expressing RUNX1-RUNX1T1, or deficient for Cebpa), increased mouse APL penetrance, and decreased latency. Restoration of Gata2 expression suppressed PML-RARA-driven aberrant self-renewal and leukemogenesis. Conversely, addback of a mutant GATA2R362G protein associated with APL and AML minimally suppressed PML-RARA-induced aberrant self-renewal, suggesting that it is a loss-of-function mutation. These studies reveal a potential role for Gata2 as a tumor suppressor in AML, and suggest that restoration of its function (when inactivated) may provide benefit for AML patients.
Collapse
|
44
|
Francois M, Oszmiana A, Harvey NL. When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development 2021; 148:268989. [PMID: 34080610 DOI: 10.1242/dev.167098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.
Collapse
Affiliation(s)
- Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, The University of Sydney, SOLES, 2006 Camperdown, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| |
Collapse
|
45
|
Fu YK, Tan Y, Wu B, Dai YT, Xu XG, Pan MM, Chen ZW, Qiao N, Wu J, Jiang L, Lu J, Chen B, Rein A, Izraeli S, Sun XJ, Huang JY, Huang QH, Chen Z, Chen SJ. Gata2-L359V impairs primitive and definitive hematopoiesis and blocks cell differentiation in murine chronic myelogenous leukemia model. Cell Death Dis 2021; 12:568. [PMID: 34078881 PMCID: PMC8173010 DOI: 10.1038/s41419-021-03826-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
GATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation. We established a Gata2-L359V knockin mouse model in which the homozygous Gata2-L359V mutation caused major defects in primitive erythropoiesis with an accumulation of erythroid precursors and severe anemia, leading to embryonic lethality around E11.5. During adult life, the Gata2-L359V heterozygous mice exhibited a notable decrease in bone marrow (BM) recovery under stress induction with cytotoxic drug 5-fluorouracil. Using RNA sequencing, it was revealed that homozygous Gata2-L359V suppressed genes related to embryonic hematopoiesis in yolk sac, while heterozygous Gata2-L359V dysregulated genes related to cell cycle and proliferation in BM Lin-Sca1+c-kit+ cells. Furthermore, through chromatin immunoprecipitation sequencing and transactivation experiments, we found that this mutation enhanced the DNA-binding capacity and transcriptional activities of Gata2, which was likely associated with the altered expression of some essential genes during embryonic and adult hematopoiesis. In mice model harboring BCR/ABL, single-cell RNA-sequencing demonstrated that Gata2-L359V induced additional gene expression profile abnormalities and partially affected cell differentiation at the early stage of myelomonocytic lineage, evidenced by the increase of granulocyte-monocyte progenitors and monocytosis. Taken together, our study unveiled that Gata2-L359V mutation induces defective hematopoietic development and blocks the differentiation of CML cells.
Collapse
Affiliation(s)
- Ya-Kai Fu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China ,grid.415869.7Present Address: Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Bo Wu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences and SJTU School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Xiao-Guang Xu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Meng-Meng Pan
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Zhi-Wei Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Niu Qiao
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jing Wu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Lu Jiang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jing Lu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Bing Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Avigail Rein
- grid.12136.370000 0004 1937 0546Cancer Research Center, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Izraeli
- grid.12136.370000 0004 1937 0546Division of Pediatric Hemato-Oncology, Schneider Children’s Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiao-Jian Sun
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jin-Yan Huang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Qiu-Hua Huang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Zhu Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| |
Collapse
|
46
|
A patient with a germline GATA2 mutation and primary myelofibrosis. Blood Adv 2021; 5:791-795. [PMID: 33560389 DOI: 10.1182/bloodadvances.2020003401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Key Points
First description of a patient with a germline GATA2 mutation and diagnosis of primary myelofibrosis. Development of bone marrow failure on a Janus kinase inhibitor.
Collapse
|
47
|
Hernández Vásquez MN, Ulvmar MH, González-Loyola A, Kritikos I, Sun Y, He L, Halin C, Petrova TV, Mäkinen T. Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels. EMBO J 2021; 40:e107192. [PMID: 33934370 PMCID: PMC8204859 DOI: 10.15252/embj.2020107192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.
Collapse
Affiliation(s)
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alejandra González-Loyola
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Ioannis Kritikos
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Di Genua C, Nerlov C. To bi or not to bi: Acute erythroid leukemias and hematopoietic lineage choice. Exp Hematol 2021; 97:6-13. [PMID: 33600869 DOI: 10.1016/j.exphem.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Acute erythroid leukemia (AEL) is an acute leukemia characterized by erythroid lineage transformation. The World Health Organization (WHO) 2008 classification recognized two subtypes of AEL: bilineage erythroleukemia (erythroid/myeloid leukemia) and pure erythroid leukemia. The erythroleukemia subtype was removed in the updated 2016 WHO classification, with about half of cases reclassified as myelodysplastic syndrome (MDS) and half as acute myeloid leukemia (AML). Diagnosis and classification are currently based on morphology using standard blast cutoffs, without integration of underlying genomic and other molecular features. Key outstanding questions are therefore whether AEL can be accurately diagnosed based solely on morphology or whether genetic or other molecular criteria should be included in its classification, and whether considering AEL as an entity distinct from AML and MDS is clinically relevant. We discuss recent work on the molecular basis of AEL, including the identification of mutations causative of AEL and of transcriptional and epigenetic features that can be used to distinguish AEL from MDS and nonerythroid AML, and the prognostic value of these molecular features.
Collapse
MESH Headings
- Animals
- Epigenesis, Genetic
- Erythroid Cells/metabolism
- Erythroid Cells/pathology
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Erythroblastic, Acute/diagnosis
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Mutation
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
Collapse
Affiliation(s)
- Cristina Di Genua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK.
| |
Collapse
|
49
|
das Neves SP, Delivanoglou N, Da Mesquita S. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front Pharmacol 2021; 12:655052. [PMID: 33995074 PMCID: PMC8113819 DOI: 10.3389/fphar.2021.655052] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
A genuine and functional lymphatic vascular system is found in the meninges that sheath the central nervous system (CNS). This unexpected (re)discovery led to a reevaluation of CNS fluid and solute drainage mechanisms, neuroimmune interactions and the involvement of meningeal lymphatics in the initiation and progression of neurological disorders. In this manuscript, we provide an overview of the development, morphology and unique functional features of meningeal lymphatics. An outline of the different factors that affect meningeal lymphatic function, such as growth factor signaling and aging, and their impact on the continuous drainage of brain-derived molecules and meningeal immune cells into the cervical lymph nodes is also provided. We also highlight the most recent discoveries about the roles of the CNS-draining lymphatic vasculature in different pathologies that have a strong neuroinflammatory component, including brain trauma, tumors, and aging-associated neurodegenerative diseases like Alzheimer's and Parkinson's. Lastly, we provide a critical appraisal of the conundrums, challenges and exciting questions involving the meningeal lymphatic system that ought to be investigated in years to come.
Collapse
Affiliation(s)
| | | | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
50
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|