1
|
Loy CA, Ali EMH, Seabrook LJ, Harris TJ, Kragness KA, Albrecht L, Trader DJ. ByeTAC: Bypassing E-Ligase-Targeting Chimeras for Direct Proteasome Degradation. J Med Chem 2025; 68:9694-9705. [PMID: 40252035 DOI: 10.1021/acs.jmedchem.5c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The development of targeted protein degradation by recruiting a protein of interest to a ubiquitin ligase to facilitate its degradation has become a powerful therapeutic tool. The potential of this approach is limited to proteins that can be readily ubiquitinated and relies on having a ligand with the various E3 ligases. Here, we describe a new methodology for targeted protein degradation that directly recruits a protein of interest to the proteasome for degradation. We generated bifunctional molecules that incorporate a small molecule ligand into a subunit on the 26S proteasome that recruits the protein directly for degradation. ByeTAC degradation requires binding to Rpn-13, a nonessential ubiquitin receptor of the 26S proteasome, and the protein of interest and does not have to rely on the E ligase cascade for ubiquitination. The ByeTAC methodology demonstrates the application of directly recruiting a protein to the proteasome via interactions with Rpn-13 for degradation.
Collapse
Affiliation(s)
- Cody A Loy
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Eslam M H Ali
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Laurence J Seabrook
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Timothy J Harris
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Kate A Kragness
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Lauren Albrecht
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Department of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
2
|
Shi M, Shen N, Liu X, Yu J, Shen X, Chen Y, Xia Y, Chen L. Exosome-transmitted HSPA9 facilitates bortezomib resistance by targeting TRIP13/USP1 signaling in multiple myeloma. Cell Commun Signal 2025; 23:152. [PMID: 40140922 PMCID: PMC11948694 DOI: 10.1186/s12964-025-02158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Resistance to the proteasome inhibitor bortezomib (BTZ) poses a formidable therapeutic challenge in multiple myeloma (MM). Our study aims to analyze the mechanism by which exosomes heat shock 70 kDa protein 9 (HSPA9) secreted by BTZ-resistant MM cells disseminate resistance to BTZ-sensitive MM cells. METHODS The serum exosomes were identified by nanoparticle tracking analysis and transmission electron microscopy. Liquid chromatography-mass spectrometry and public databases were performed to screen exosomes HSPA9. Cell counting kit-8, western blotting and colony formation assay were used to detected the role of HSPA9 protein in vitro. Co-immunoprecipitation, immunofluorescence and protein truncation test experiments were used to determine the regulatory network of the HSPA9-USP1-TRIP13 complex. Optical imaging in vivo and xenograft mouse models were performed to investigate that exosomes HSPA9 promoted MM proliferation and BTZ resistance. RESULTS We demonstrated that HSPA9 was highly expressed in serum exosomes and BTZ-resistant MM patients. Knockdown of HSPA9 significantly suppressed tumorigenesis and reversed BTZ resistance in vitro. As a downstream molecular of HSPA9, thyroid hormone receptor-interacting protein 13 (TRIP13) was also highly expressed in BTZ-resistant MM patients. Mechanistically, the carboxyl-terminal peptide-binding domain of HSPA9, provides a platform for recruiting the deubiquitinating enzyme ubiquitin-specific peptidase 1 (USP1), which prevents TRIP13 protein degradation. The HSPA9-USP1-TRIP13 complex exhibits stability in the cytoplasm, and its inhibition remarkably enhances BTZ resistance in vito. CONCLUSION Our findings propose a pioneering molecular regulatory network in which MM-cell-derived exosomes HSPA9 transmitted BTZ resistance through the USP1/TRIP13 signaling pathway. This research highlights exosomes HSPA9 as a promising target to overcome MM BTZ resistance.
Collapse
Affiliation(s)
- Min Shi
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Na Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xiangyu Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jiapei Yu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xuxing Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuan Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
3
|
Deng Z, Sun S, Zhou N, Peng Y, Cheng L, Yu X, Yuan Y, Guo M, Xu M, Cheng Y, Zhou F, Li N, Yang Y, Gu C. PNPO-Mediated Oxidation of DVL3 Promotes Multiple Myeloma Malignancy and Osteoclastogenesis by Activating the Wnt/β-Catenin Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407681. [PMID: 39656865 PMCID: PMC11792023 DOI: 10.1002/advs.202407681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Multiple myeloma (MM) is a cancer of plasma cells caused by abnormal gene expression and interactions within the bone marrow (BM) niche. The BM environment significantly influences the progression of MM. Celastrol, a natural compound derived from traditional Chinese medicine, exhibits significant anticancer effects. This study aimed to identify specific targets of celastrol and develop more effective and less toxic treatment options for MM. Celastrol is used as a probe to determine its specific target, pyridoxine-5'-phosphate oxidase (PNPO). Increased levels of PNPO are associated with poor outcomes in MM patients, and PNPO promotes MM cell proliferation and induces osteoclast differentiation through exosomes. Mechanistically, PNPO oxidizes disheveled 3M282 (DVL3), leading to abnormal activation of the Wnt/β-catenin pathway. Based on the critical sites of PNPOR95/K117, Eltrombopag is identified as a potential therapeutic candidate for MM. In addition, the experiments showed its efficacy in mouse models. Eltrombopag inhibited the growth of MM cells and reduced bone lesions by disrupting the interaction between PNPO and DVL3, as supported by preliminary clinical trials. The study highlights the importance of PNPO as a high-risk gene in the development of MM and suggests that Eltrombopag may be a promising treatment option.
Collapse
Affiliation(s)
- Zhendong Deng
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjing210022China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Nian Zhou
- Department of Hematology and OncologyJing'an District Zhabei Central HospitalShanghai200070China
- Yangtze River Delta County Hematology UnionShanghai200070China
| | - Yumeng Peng
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Long Cheng
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xichao Yu
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuxia Yuan
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Mengjie Guo
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Min Xu
- Yangtze River Delta County Hematology UnionShanghai200070China
- Department of HematologyZhangjiagang First People's HospitalZhangjiagang215600China
| | - Yuexin Cheng
- Yangtze River Delta County Hematology UnionShanghai200070China
- Department of HematologyYancheng Clinical College of Xuzhou Medical UniversityYancheng No.1 People's HospitalYancheng224006China
| | - Fan Zhou
- Department of Hematology and OncologyJing'an District Zhabei Central HospitalShanghai200070China
- Yangtze River Delta County Hematology UnionShanghai200070China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ye Yang
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjing210022China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| |
Collapse
|
4
|
Hunt LC, Curley M, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala VR, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity. PLoS Biol 2025; 23:e3002998. [PMID: 39879147 PMCID: PMC11778781 DOI: 10.1371/journal.pbio.3002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
5
|
Li R, Sun K. Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress. Cell Stress Chaperones 2024; 29:750-763. [PMID: 39515603 PMCID: PMC11626768 DOI: 10.1016/j.cstres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
Collapse
Affiliation(s)
- Renzhong Li
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu Province, China; The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Kui Sun
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China; Anhui Acupuncture Hospital, Hefei, Anhui Province, China.
| |
Collapse
|
6
|
Martin S, Scorzoni S, Cordone S, Mazzagatti A, Beznoussenko GV, Gunn AL, Di Bona M, Eliezer Y, Leor G, Ben-Yishay T, Loffreda A, Cancila V, Rainone MC, Ippolito MR, Martis V, Bedin F, Garrè M, Vaites LP, Vasapolli P, Polo S, Parazzoli D, Tripodo C, Mironov AA, Cuomo A, Ben-David U, Bakhoum SF, Hatch EM, Ly P, Santaguida S. A p62-dependent rheostat dictates micronuclei catastrophe and chromosome rearrangements. Science 2024; 385:eadj7446. [PMID: 39208097 PMCID: PMC11664475 DOI: 10.1126/science.adj7446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.
Collapse
Affiliation(s)
- Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Cordone
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Amanda L. Gunn
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Melody Di Bona
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Maria Chiara Rainone
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentino Martis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Bedin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Paolo Vasapolli
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Tripodo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | | | - Alessandro Cuomo
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily M. Hatch
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Rong Z, Zheng K, Chen J, Jin X. The cross talk of ubiquitination and chemotherapy tolerance in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:154. [PMID: 38521878 PMCID: PMC10960765 DOI: 10.1007/s00432-024-05659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Ubiquitination, a highly adaptable post-translational modification, plays a pivotal role in maintaining cellular protein homeostasis, encompassing cancer chemoresistance-associated proteins. Recent findings have indicated a potential correlation between perturbations in the ubiquitination process and the emergence of drug resistance in CRC cancer. Consequently, numerous studies have spurred the advancement of compounds specifically designed to target ubiquitinates, offering promising prospects for cancer therapy. In this review, we highlight the role of ubiquitination enzymes associated with chemoresistance to chemotherapy via the Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT), and cell cycle perturbation. In addition, we summarize the application and role of small compounds that target ubiquitination enzymes for CRC treatment, along with the significance of targeting ubiquitination enzymes as potential cancer therapies.
Collapse
Affiliation(s)
- Ze Rong
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo, 315211, China.
| |
Collapse
|
9
|
Arakawa Y, Jo U, Kumar S, Sun NY, Elloumi F, Thomas A, Roper N, Varghese DG, Takebe N, Zhang X, Ceribelli M, Holland DO, Beck E, Itkin Z, McKnight C, Wilson KM, Travers J, Klumpp-Thomas C, Thomas CJ, Hoang CD, Hernandez JM, Del Rivero J, Pommier Y. Activity of the Ubiquitin-activating Enzyme Inhibitor TAK-243 in Adrenocortical Carcinoma Cell Lines, Patient-derived Organoids, and Murine Xenografts. CANCER RESEARCH COMMUNICATIONS 2024; 4:834-848. [PMID: 38451783 PMCID: PMC10949913 DOI: 10.1158/2767-9764.crc-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Current treatment options for metastatic adrenocortical carcinoma (ACC) have limited efficacy, despite the common use of mitotane and cytotoxic agents. This study aimed to identify novel therapeutic options for ACC. An extensive drug screen was conducted to identify compounds with potential activity against ACC cell lines. We further investigated the mechanism of action of the identified compound, TAK-243, its synergistic effects with current ACC therapeutics, and its efficacy in ACC models including patient-derived organoids and mouse xenografts. TAK-243, a clinical ubiquitin-activating enzyme (UAE) inhibitor, showed potent activity in ACC cell lines. TAK-243 inhibited protein ubiquitination in ACC cells, leading to the accumulation of free ubiquitin, activation of the unfolded protein response, and induction of apoptosis. TAK-243 was found to be effluxed out of cells by MDR1, a drug efflux pump, and did not require Schlafen 11 (SLFN11) expression for its activity. Combination of TAK-243 with current ACC therapies (e.g., mitotane, etoposide, cisplatin) produced synergistic or additive effects. In addition, TAK-243 was highly synergistic with BCL2 inhibitors (Navitoclax and Venetoclax) in preclinical ACC models including patient-derived organoids. The tumor suppressive effects of TAK-243 and its synergistic effects with Venetoclax were further confirmed in a mouse xenograft model. These findings provide preclinical evidence to support the initiation of a clinical trial of TAK-243 in patients with advanced-stage ACC. TAK-243 is a promising potential treatment option for ACC, either as monotherapy or in combination with existing therapies or BCL2 inhibitors. SIGNIFICANCE ACC is a rare endocrine cancer with poor prognosis and limited therapeutic options. We report that TAK-243 is active alone and in combination with currently used therapies and with BCL2 and mTOR inhibitors in ACC preclinical models. Our results suggest implementation of TAK-243 in clinical trials for patients with advanced and metastatic ACC.
Collapse
Affiliation(s)
- Yasuhiro Arakawa
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ukhyun Jo
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Suresh Kumar
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nai-Yun Sun
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fathi Elloumi
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Anish Thomas
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nitin Roper
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Diana Grace Varghese
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Michele Ceribelli
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - David O. Holland
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Erin Beck
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Zina Itkin
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Jameson Travers
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | | | - Craig J. Thomas
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Jaydira Del Rivero
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
10
|
Tang P, Yu Z, Sun H, Liu L, Gong L, Fang T, Sun X, Xie S, An G, Xu Z, Qiu L, Hao M. CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy. EBioMedicine 2024; 100:104961. [PMID: 38199044 PMCID: PMC10825369 DOI: 10.1016/j.ebiom.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable hematological malignancy of the plasma cells. The maintenance of protein homeostasis is critical for MM cell survival. Elevated levels of paraproteins in MM cells are cleared by proteasomes or lysosomes, which are independent but inter-connected with each other. Proteasome inhibitors (PIs) work as a backbone agent and successfully improved the outcome of patients; however, the increasing activity of autophagy suppresses the sensitivity to PIs treatment. METHODS The transcription levels of CRIP1 were explored in plasma cells obtained from healthy donors, patients with newly diagnosed multiple myeloma (NDMM), and relapsed/refractory multiple myeloma (RRMM) using Gene expression omnibus datasets. Doxycycline-inducible CRIP1-shRNA and CRIP1 overexpressed MM cell lines were constructed to explore the role of CRIP1 in MM pathogenesis. Proliferation, invasion, migration, proteasome activity and autophagy were examined in MM cells with different CRIP1 levels. Co-immunoprecipitation (Co-IP) with Tandem affinity purification/Mass spectrum (TAP/MS) was performed to identify the binding proteins of CRIP1. The mouse xenograft model was used to determine the role of CRIP1 in the proliferation and drug-resistance of MM cells. FINDINGS High CRIP1 expression was associated with unfavorable clinical outcomes in patients with MM and served as a biomarker for RRMM with shorter overall survival. In vitro and in vivo studies showed that CRIP1 plays a critical role in protein homeostasis via the dual regulation of the activities of proteasome and autophagy in MM cells. A combined analysis of RNA-seq, Co-IP and TAP/MS demonstrated that CRIP1 promotes proteasome inhibitors resistance in MM cells by simultaneously binding to de-ubiquitinase USP7 and proteasome coactivator PA200. CRIP1 promoted proteasome activity and autophagosome maturation by facilitating the dequbiquitination and stabilization of PA200. INTERPRETATION Our findings clarified the pivotal roles of the CRIP1/USP7/PA200 complex in ubiquitin-dependent proteasome degradation and autophagy maturation involved in the pathogenesis of MM. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Peixia Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiyi Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhenshu Xu
- Hematology Department Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, Fujian, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China; Gobroad Healthcare Group, Beijing, China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
11
|
Ali EMH, Loy CA, Trader DJ. ByeTAC: Bypassing an E3 Ligase for Targeted Protein Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576376. [PMID: 38293213 PMCID: PMC10827187 DOI: 10.1101/2024.01.20.576376] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Targeted protein degradation utilizing a bifunctional molecule to initiate ubiquitination and subsequent degradation by the 26S proteasome has been shown to be a powerful therapeutic intervention. Many bifunctional molecules, including covalent and non-covalent ligands to proteins of interest, have been developed. The traditional target protein degradation methodology targets the protein of interest in both healthy and diseased cell populations, and a therapeutic window is obtained based on the overexpression of the targeted protein. We report here a series of bifunctional degraders that do not rely on interacting with an E3 ligase, but rather a 26S proteasome subunit, which we have named ByeTACs: Bypassing E3 Targeting Chimeras. Rpn-13 is a non-essential ubiquitin receptor for the 26S proteasome. Cells under significant stress or require significant ubiquitin-dependent degradation of proteins for survival, incorporate Rpn-13 in the 26S to increase protein degradation rates. The targeted protein degraders reported here are bifunctional molecules that include a ligand to Rpn-13 and BRD4, the protein of interest we wish to degrade. We synthesized a suite of degraders with varying PEG chain lengths and showed that bifunctional molecules that incorporate a Rpn-13 binder (TCL1) and a BRD4 binder (JQ1) with a PEG linker of 3 or 4 units are the most effective to induce BRD4 degradation. We also demonstrate that our new targeted protein degraders are dependent upon proteasome activity and Rpn-13 expression levels. This establishes a new mechanism of action for our ByeTACs that can be employed for the targeted degradation of a wide variety of protein substrates.
Collapse
|
12
|
Singh RK, Jones RJ, Shirazi F, Qin L, Zou J, Hong S, Wang H, Lee HC, Patel KK, Wan J, Choudhary RK, Kuiatse I, Pahl A, Orlowski RZ. Novel Anti-B-cell Maturation Antigen Alpha-Amanitin Antibody-drug Conjugate HDP-101 Shows Superior Activity to Belantamab Mafodotin and Enhanced Efficacy in Deletion 17p Myeloma Models. RESEARCH SQUARE 2024:rs.3.rs-3843028. [PMID: 38260385 PMCID: PMC10802748 DOI: 10.21203/rs.3.rs-3843028/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
B-cell maturation antigen (BCMA) plays a pathobiologic role in myeloma and is a validated target with five BCMA-specific therapeutics having been approved for relapsed/refractory disease. However, these drugs are not curative, and responses are inferior in patients with molecularly-defined high-risk disease, including those with deletion 17p (del17p) involving the tumor suppressor TP53, supporting the need for further drug development. Del17p has been associated with reduced copy number and gene expression of RNA polymerase II subunit alpha (POLR2A) in other tumor types. We therefore studied the possibility that HDP-101, an anti-BCMA antibody drug conjugate (ADC) with the POLR2A poison α-amanitin could be an attractive agent in myeloma, especially with del17p. HDP-101 reduced viability in myeloma cell lines representing different molecular disease subtypes, and overcame adhesion-mediated and both conventional and novel drug resistance. After confirming that del17p is associated with reduced POLR2A levels in publicly available myeloma patient databases, we engineered TP53 wild-type cells with a TP53 knockout (KO), POLR2A knockdown (KD), or both, the latter to mimic del17p. HDP-101 showed potent anti-myeloma activity against all tested cell lines, and exerted enhanced efficacy against POLR2A KD and dual TP53 KO/POLR2A KD cells. Mechanistic studies showed HDP-101 up-regulated the unfolded protein response, activated apoptosis, and induced immunogenic cell death. Notably, HDP-101 impacted CD138-positive but not-negative primary cells, showed potent efficacy against aldehyde dehydrogenase-positive clonogenic cells, and eradicated myeloma in an in vivo cell line-derived xenograft (CDX). Interestingly, in the CDX model, prior treatment with HDP-101 precluded subsequent engraftment on tumor cell line rechallenge in a manner that appeared to be dependent in part on natural killer cells and macrophages. Finally, HDP-101 was superior to the BCMA-targeted ADC belantamab mafodotin against cell lines and primary myeloma cells in vitro, and in an in vivo CDX. Together, the data support the rationale for translation of HDP-101 to the clinic, where it is now undergoing Phase I trials, and suggest that it could emerge as a more potent ADC for myeloma with especially interesting activity against the high-risk del17p myeloma subtype.
Collapse
Affiliation(s)
| | | | | | - Li Qin
- The University of Texas MD Anderson Cancer Center
| | - Jianxuan Zou
- The University of Texas MD Anderson Cancer Center
| | - Samuel Hong
- The University of Texas MD Anderson Cancer Center
| | - Hua Wang
- The University of Texas MD Anderson Cancer Center
| | - Hans C Lee
- The University of Texas MD Anderson Cancer Center
| | | | - Jie Wan
- The University of Texas MD Anderson Cancer Center
| | | | | | | | | |
Collapse
|
13
|
Gao X, Keller KR, Bonzerato CG, Li P, Laemmerhofer M, Wojcikiewicz RJH. The ubiquitin-proteasome pathway inhibitor TAK-243 has major effects on calcium handling in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119618. [PMID: 37907195 DOI: 10.1016/j.bbamcr.2023.119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major route for protein degradation and a key regulatory mechanism in mammalian cells. UPP inhibitors, including TAK-243, a first-in-class inhibitor of the E1 ubiquitin-activating enzyme, are currently being used and tested for treatment of a range of diseases, particularly cancer. Here, we reveal that TAK-243 has major effects on Ca2+ handling in a range of cultured mammalian cells (αT3, HeLa and SH-SY5Y). Effects were seen on agonist-induced Ca2+ mobilization, basal cytosolic Ca2+ levels, Ca2+ leak from the endoplasmic reticulum (ER), store-operated Ca2+ entry and mitochondrial Ca2+ uptake. These effects correlated with induction of ER stress, as measured by PERK activation / eIF2α phosphorylation, and most seemed to be underpinned by enhanced Ca2+ leak from the ER. Overall, these data indicate that TAK-243 reprograms the Ca2+-handling properties of mammalian cells and that these effects should be considered when UPP inhibitors are employed as therapeutic agents.
Collapse
Affiliation(s)
- Xiaokong Gao
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Peng Li
- Institute of Pharmaceutical Sciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Michael Laemmerhofer
- Institute of Pharmaceutical Sciences, University of Tuebingen, Tuebingen 72076, Germany
| | | |
Collapse
|
14
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
15
|
Chen Y, Tao Y, Hu K, Lu J. GRP78 inhibitor HA15 increases the effect of Bortezomib on eradicating multiple myeloma cells through triggering endoplasmic reticulum stress. Heliyon 2023; 9:e19806. [PMID: 37809599 PMCID: PMC10559159 DOI: 10.1016/j.heliyon.2023.e19806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Bortezomib (BTZ), a selective proteasome inhibitor, exhibits a significant efficacy in the therapy of multiple myeloma (MM) partly through triggering endoplasmic reticulum (ER) stress-dependent apoptosis. However, sensitivity to BTZ varies greatly among patients. ER stress functions as a double-edged sword in regulating cell survival depending on cell context and ER stress extent. The major aim of this study was to investigate whether GRP78 inhibitor, HA15, increased the therapeutic effect of BTZ on MM to through further increasing ER stress and shifting the balance towards cell apoptosis. The biological role of BTZ and HA15 was assessed using Cell counting kit- (CCK-) 8, colony formation, and Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labelling (TUNEL) assay. We found that BTZ combined with HA15 remarkably decreased MM cell viability more effective than BTZ monotherapy, though low dose of HA15 did not exhibit a significant cytotoxicity to MM cells. BTZ combined with HA15 also repressed colony formation ability of MM cell and accelerated MM cell apoptosis compared with BTZ monotherapy. Mechanistically, HA15 synergized with BTZ to trigger ER stress, as evidence by significantly increased expression of ER stress markers (GRP78, ATF4, CHOP, and XBP1). Importantly, unfolded protein response (UPR) inhibitor significantly damaged the effect of BTZ combined with HA15 on accelerating MM cell death. In vivo, combination treatment with BTZ and HA15 inhibited tumor growth more effective than BTZ alone, whereas these effects were blocked by UPR inhibitor. Taken together, these results demonstrate that ER stress is a critical pathway in regulating MM cell survival, and that combination treatment with BTZ and HA15 may be an effective strategy to treat MM patients that fail to respond to BTZ monotherapy.
Collapse
Affiliation(s)
- Yirong Chen
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuchen Tao
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kexin Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiahui Lu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
16
|
Patiño-Escobar B, Talbot A, Wiita AP. Overcoming proteasome inhibitor resistance in the immunotherapy era. Trends Pharmacol Sci 2023; 44:507-518. [PMID: 37344251 DOI: 10.1016/j.tips.2023.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Proteasome inhibitors (PIs) are a fascinating class of small molecules that disrupt protein homeostasis and are highly efficacious in the blood cancer multiple myeloma. However, PIs are not curative, and overcoming PI resistance to extend patient survival remains a major unmet need. Recent strategies to overcome PI resistance, including inhibiting alternative protein homeostasis pathways and targeting the mitochondrion as a nexus of metabolic adaptation to PIs, are gaining momentum. However, these focused approaches may be surpassed or even obviated by quickly emerging immunotherapy strategies that do not selectively target PI resistance mechanisms but are highly efficacious in PI-resistant disease, nonetheless. Informed by insights from these promising areas of research moving in parallel, we propose that pharmacological strategies to enforce immunotherapeutic vulnerabilities in resistant disease may provide a unified outlook to overcome PI resistance in a 'new era' of myeloma treatment.
Collapse
Affiliation(s)
- Bonell Patiño-Escobar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alexis Talbot
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Chang YT, Chiu I, Wang Q, Bustamante J, Jiang W, Rycaj K, Yi S, Li J, Kowalski-Muegge J, Matsui W. Loss of p53 enhances the tumor-initiating potential and drug resistance of clonogenic multiple myeloma cells. Blood Adv 2023; 7:3551-3560. [PMID: 37042949 PMCID: PMC10368840 DOI: 10.1182/bloodadvances.2022009387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Tumor relapse and drug resistance are major factors that limit the curability of multiple myeloma (MM). New regimens have improved overall MM survival rates, but patients with high-risk features continue to have inferior outcomes. Chromosome 17p13 deletion (del17p) that includes the loss of the TP53 gene is a high-risk cytogenetic abnormality and is associated with poor clinical outcomes owing to relatively short remissions and the development of pan-drug resistant disease. Increased relapse rates suggest that del17p enhances clonogenic growth, and we found that the loss of p53 increased both the frequency and drug resistance of tumor-initiating MM cells (TICs). Subsequent RNA sequencing (RNA-seq) studies demonstrated significant activation of the Notch signaling pathway and upregulation of inhibitor of DNA binding (ID1/ID2) genes in p53-knock out (p53-KO) cells. We found that the loss of ID1 or HES-1 expression or treatment with a gamma-secretase inhibitor (GSI) significantly decreased the clonogenic growth of p53-KO but not p53 wild-type cells. GSI treatment in a small set of MM specimens also reduced the clonogenic growth in del17p samples but not in non-del17p samples. This effect was specific as overexpression of the Notch intracellular domain (NICD) rescued the effects of GSI treatment. Our study demonstrates that the Notch signaling and ID1 expression are required for TIC expansion in p53-KO MM cells. These findings also suggest that GSI may be specifically active in patients with p53 mutant MM.
Collapse
Affiliation(s)
- Yu-Tai Chang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Ian Chiu
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
- College of Natural Sciences, The University of Texas at Austin, Austin, TX
| | - Qiuju Wang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Jorge Bustamante
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Wenxuan Jiang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Kiera Rycaj
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Song Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Joey Li
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeanne Kowalski-Muegge
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - William Matsui
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
18
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Podieh F, Wensveen R, Overboom M, Abbas L, Majolée J, Hordijk P. Differential role for rapid proteostasis in Rho GTPase-mediated control of quiescent endothelial integrity. J Biol Chem 2023; 299:104593. [PMID: 36894017 PMCID: PMC10124901 DOI: 10.1016/j.jbc.2023.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion- and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homologue RhoA, increase ∼10-fold in 5-8 h. We determined that, the depletion of RhoB, but not of RhoA, the inhibition of actin contractility and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact, is essential to preserve monolayer integrity.
Collapse
Affiliation(s)
- Fabienne Podieh
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Roos Wensveen
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - MaxC Overboom
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Lotte Abbas
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands; Developmental Biology and Stem Cell Research, Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - PeterL Hordijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer. Semin Cell Dev Biol 2022; 132:213-229. [PMID: 35184940 DOI: 10.1016/j.semcdb.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.
Collapse
|
21
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
22
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Barghout SH, Mann MK, Aman A, Yu Y, Alteen MG, Schimmer AD, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Combinatorial Anticancer Drug Screen Identifies Off-Target Effects of Epigenetic Chemical Probes. ACS Chem Biol 2022; 17:2801-2816. [PMID: 36084291 DOI: 10.1021/acschembio.2c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anticancer drug response is determined by genetic and epigenetic mechanisms. To identify the epigenetic regulators of anticancer drug response, we conducted a chemical epigenetic screen using chemical probes that target different epigenetic modulators. In this screen, we tested 31 epigenetic probes in combination with 14 mechanistically diverse anticancer agents and identified 8 epigenetic probes that significantly potentiate the cytotoxicity of TAK-243, a first-in-class ubiquitin-activating enzyme (UBA1) inhibitor evaluated in several solid and hematologic malignancies. These probes are TP-472, GSK864, A-196, UNC1999, SGC-CBP30, and PFI-4 (and its related analogues GSK6853 and GSK5959), and they target BRD9/7, mutant IDH1, SUV420H1/2, EZH2/1, p300/CBP, and BRPF1B, respectively. In contrast to epigenetic probes, negative control compounds did not have a significant impact on TAK-243 cytotoxicity. Potentiation of TAK-243 cytotoxicity was associated with reduced ubiquitylation and induction of apoptosis. Mechanistically, these epigenetic probes exerted their potentiation by inhibiting the efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) without inducing significant changes in the ubiquitylation pathways or ABCG2 expression levels. As assessed by docking analysis, the identified probes could potentially interact with ABCG2. Based on these data, we have developed a cell-based assay that can quantitatively evaluate ABCG2 inhibition by drug candidates. In conclusion, our study identifies epigenetic probes that profoundly potentiate TAK-243 cytotoxicity through off-target ABCG2 inhibition. We also provide experimental evidence that several negative control compounds cannot exclude a subset of off-target effects of chemical probes. Finally, potentiation of TAK-243 cytotoxicity can serve as a quantitative measure of ABCG2-inhibitory activity.
Collapse
Affiliation(s)
- Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Mandeep K Mann
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yifan Yu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthew G Alteen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
Lu Z, Zhang Z, Yang M, Xiao M. Ubiquitin-specific protease 1 inhibition sensitizes hepatocellular carcinoma cells to doxorubicin by ubiquitinated proliferating cell nuclear antigen-mediated attenuation of stemness. Anticancer Drugs 2022; 33:622-631. [PMID: 35324534 DOI: 10.1097/cad.0000000000001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, resistance to the chemotherapeutic agent doxorubicin (Dox) in hepatocellular carcinoma (HCC) cells is an obstacle in developing effective Dox-targeted clinical therapies. Ubiquitin-specific protease 1 (USP1) plays a crucial role in the progression of multiple cancers. In this study, the purpose was to investigate the effect of USP1 depletion with chemotherapeutant Dox on the HCC cells. Flow cytometry was used to detect the ratio of apoptosis. The expression levels of selected proteins were evaluated by western blotting. In addition, the expression of genes was quantitated by quantitative real-time PCR assay. Coimmunoprecipitation was performed to confirm the interaction between USP1 and proliferating cell nuclear antigen (PCNA). Sphere formation assay was carried out to investigate the cancer stemness. Subcutaneous xenograft and orthotopic liver tumor models were established to examine the growth of tumor. Knockdown of USP1 increased the rate of Dox-induced apoptosis in stem-like and nonstem-like HCC cells. The combination of Dox and the USP1 inhibitor SJB3-019A (SJB3) markedly enhanced apoptosis in the primary liver carcinoma/PRF/5 and MHCC-97H cell lines. Notably, Dox/SJB3-induced tumor inhibition was further determined in vivo using a xenograft and orthotopic liver tumor model. Mechanically, USP1 inhibition via SJB3 or short hairpin RNA significantly decreased cancer stemness, including sphere formation ability and the expression of Nanog, Sox2, and c-Myc. The sensitization of HCC to Dox by SJB3 is attributed to the upregulation of PCNA ubiquitylation. Thus, genetic or pharmacological inhibition of USP1 restored the sensitivity of HCC cells to Dox in vitro and in vivo , representing a new potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhe Lu
- Clinical Laboratory, Women and Children's Health Care Center of Hainan Province and Departments of
| | | | - Min Yang
- Medical Oncology, Hainan Cancer Hospital, Haikou, P.R. China
| | - Meifang Xiao
- Clinical Laboratory, Women and Children's Health Care Center of Hainan Province and Departments of
| |
Collapse
|
25
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
26
|
GRP78 blockade overcomes intrinsic resistance to UBA1 inhibitor TAK-243 in glioblastoma. Cell Death Dis 2022; 8:133. [PMID: 35347123 PMCID: PMC8960808 DOI: 10.1038/s41420-022-00950-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor of the central nervous system. Despite continuous progression in treatment options for GBM like surgery, radiotherapy, and chemotherapy, this disease still has a high rate of recurrence. The endoplasmic reticulum (ER) stress pathway is associated with chemotherapeutic drug resistance. The UBA1 inhibitor TAK-243 can induce strong ER stress. However, the sensitivity of TAK-243 varies greatly in different tumor cells. This study evaluated the antitumor effects of the GRP78 inhibitor, HA15, combined with TAK-243 on GBM in the preclinical models. HA15 synergistically enhanced the sensitivity of GBM cells to TAK-243. When compared with TAK-243 monotherapy, HA15 combined with TAK-243 significantly inhibited GBM cell proliferation. It also induced G2/M-phase arrest in the cell cycle. In vivo studies showed that HA15 combined with TAK-243 significantly inhibited the growth of intracranial GBM and prolonged survival of the tumor-bearing mice. Mechanistically, HA15 and TAK-243 synergistically activated the PERK/ATF4 and IRE1α/XBP1 signaling axes, thereby eventually activating PARP and the Caspase families, which induced cell apoptosis. Our data provided a new strategy for improving the sensitivity of GBM to TAK-243 treatment and experimental basis for further clinical trials to evaluate this combination therapy.
Collapse
|
27
|
Liu N, Ling R, Tang X, Yu Y, Zhou Y, Chen D. Post-Translational Modifications of BRD4: Therapeutic Targets for Tumor. Front Oncol 2022; 12:847701. [PMID: 35402244 PMCID: PMC8993501 DOI: 10.3389/fonc.2022.847701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extraterminal (BET) family, is considered to be a major driver of cancer cell growth and a new target for cancer therapy. Over 30 targeted inhibitors currently in preclinical and clinical trials have significant inhibitory effects on various tumors, including acute myelogenous leukemia (AML), diffuse large B cell lymphoma, prostate cancer, breast cancer and so on. However, resistance frequently occurs, revealing the limitations of BET inhibitor (BETi) therapy and the complexity of the BRD4 expression mechanism and action pathway. Current studies believe that when the internal and external environmental conditions of cells change, tumor cells can directly modify proteins by posttranslational modifications (PTMs) without changing the original DNA sequence to change their functions, and epigenetic modifications can also be activated to form new heritable phenotypes in response to various environmental stresses. In fact, research is constantly being supplemented with regards to that the regulatory role of BRD4 in tumors is closely related to PTMs. At present, the PTMs of BRD4 mainly include ubiquitination and phosphorylation; the former mainly regulates the stability of the BRD4 protein and mediates BETi resistance, while the latter is related to the biological functions of BRD4, such as transcriptional regulation, cofactor recruitment, chromatin binding and so on. At the same time, other PTMs, such as hydroxylation, acetylation and methylation, also play various roles in BRD4 regulation. The diversity, complexity and reversibility of posttranslational modifications affect the structure, stability and biological function of the BRD4 protein and participate in the occurrence and development of tumors by regulating the expression of tumor-related genes and even become the core and undeniable mechanism. Therefore, targeting BRD4-related modification sites or enzymes may be an effective strategy for cancer prevention and treatment. This review summarizes the role of different BRD4 modification types, elucidates the pathogenesis in the corresponding cancers, provides a theoretical reference for identifying new targets and effective combination therapy strategies, and discusses the opportunities, barriers, and limitations of PTM-based therapies for future cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyu Chen
- *Correspondence: Deyu Chen, ; Yuepeng Zhou,
| |
Collapse
|
28
|
A drug repurposing strategy for overcoming human multiple myeloma resistance to standard-of-care treatment. Cell Death Dis 2022; 13:203. [PMID: 35246527 PMCID: PMC8897388 DOI: 10.1038/s41419-022-04651-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Despite several approved therapeutic modalities, multiple myeloma (MM) remains an incurable blood malignancy and only a small fraction of patients achieves prolonged disease control. The common anti-MM treatment targets proteasome with specific inhibitors (PI). The resulting interference with protein degradation is particularly toxic to MM cells as they typically accumulate large amounts of toxic proteins. However, MM cells often acquire resistance to PIs through aberrant expression or mutations of proteasome subunits such as PSMB5, resulting in disease recurrence and further treatment failure. Here we propose CuET—a proteasome-like inhibitor agent that is spontaneously formed in-vivo and in-vitro from the approved alcohol-abuse drug disulfiram (DSF), as a readily available treatment effective against diverse resistant forms of MM. We show that CuET efficiently kills also resistant MM cells adapted to proliferate under exposure to common anti-myeloma drugs such as bortezomib and carfilzomib used as the first-line therapy, as well as to other experimental drugs targeting protein degradation upstream of the proteasome. Furthermore, CuET can overcome also the adaptation mechanism based on reduced proteasome load, another clinically relevant form of treatment resistance. Data obtained from experimental treatment-resistant cellular models of human MM are further corroborated using rather unique advanced cytotoxicity experiments on myeloma and normal blood cells obtained from fresh patient biopsies including newly diagnosed as well as relapsed and treatment-resistant MM. Overall our findings suggest that disulfiram repurposing particularly if combined with copper supplementation may offer a promising and readily available treatment option for patients suffering from relapsed and/or therapy-resistant multiple myeloma.
Collapse
|
29
|
YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene 2022; 41:1482-1491. [PMID: 35075244 DOI: 10.1038/s41388-022-02191-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is still incurable partially due to lacking effective therapeutic targets. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in many cancers, however few researches are executed in MM. We first screened the m6A-related genes in MM patient cohorts and correlated these genes with patient outcomes. We found that YTHDF2, a well-recognized m6A reader, was increased in MM patients and associated with poor outcomes. Decreased YTHDF2 expression hampered MM cell proliferation in vitro and in vivo, while enforced YTHDF2 expression reversed those effects. The analyses of m6A-RIP-seq and RIP-PCR indicated that STAT5A was the downstream target of YTHDF2, which was binding to the m6A modification site of STAT5A to promote its mRNA degradation. ChIP-seq and PCR assays revealed that STAT5A suppressed MM cell proliferation by occupying the transcription site of MAP2K2 to decrease ERK phosphorylation. In addition, we confirmed that YTHDF2 mediated the unphosphorylated form of STAT5A to inhibit the expression of MAP2K2/p-ERK. In conclusion, our study highlights that YTHDF2/STAT5A/MAP2K2/p-ERK axis plays a key role in MM proliferation and targeting YTHDF2 may be a promising therapeutic strategy.
Collapse
|
30
|
Wu Z, Yang Y, Lei Z, Narayanan S, Wang J, Teng Q, Murakami M, Ambudkar SV, Ping F, Chen Z. ABCB1 limits the cytotoxic activity of TAK-243, an inhibitor of the ubiquitin-activating enzyme UBA1. FRONT BIOSCI-LANDMRK 2022; 27:5. [PMID: 35090310 PMCID: PMC10258814 DOI: 10.31083/j.fbl2701005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 01/13/2025]
Abstract
BACKGROUND One of the major concerns of cancer therapy is the emergence of multidrug resistance (MDR). The MDR-associated ATP-binding cassette sub-family B member 1 (ABCB1) transporter is established to mediate resistance against numerous anticancer drugs. In this study, we demonstrated that the Ubiquitin-like modifier activating enzyme 1 (UBA1) inhibitor TAK-243 is transported by the ABCB1. METHODS MTT assay was performed to evaluate the cytotoxicity of TAK-243. Western blot was carried out to investigate if TAK-243 affect to ABCB1 protein expression in cancer cells. High Performance Liquid Chromatography (HPLC) and ATPase assay were carried out to confirm TAK-243 as an ABCB1 substrate. [3H]-paclitaxel accumulation assay was used to determine the MDR reversal effect of TAK-243. Computational docking analysis was performed to investigate the drug-transporter binding position. RESULTS The cytotoxicity profile showed that TAK-243 was less effective in ABCB1-overexpressing cells than in the parental cells, but pharmacological inhibition or knockout the gene of ABCB1 was able to reverse TAK-243 resistance. Furthermore, TAK-243 potently stimulated ABCB1 ATPase activity and the HPLC analysis revealed that TAK-243 accumulation was significantly reduced in ABCB1-overexpressing cells. Finally, the computational docking analysis indicates a high binding affinity between TAK-243 and human ABCB1 transporter. CONCLUSIONS Our in vitro data characterized TAK-243 as a substrate of ABCB1, which may predict limited anticancer effect of this compound in drug resistant tumors.
Collapse
Affiliation(s)
- Zhuoxun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Jingquan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Qiuxu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fengfeng Ping
- Department of Reproductive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|
31
|
Moscvin M, Ho M, Bianchi G. Overcoming drug resistance by targeting protein homeostasis in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1028-1046. [PMID: 35265794 PMCID: PMC8903187 DOI: 10.20517/cdr.2021.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains. Although incurable, a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades, significantly improving patient outcomes. Proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies are among the most effective anti-MM drugs, targeting not only the cancerous cells, but also the bone marrow microenvironment. However, de novo resistance has been reported, and acquired resistance is inevitable for most patients over time, leading to relapsed/refractory disease and poor outcomes. Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis, offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes. This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Matthew Ho
- Department of Medicine, Mayo Clinic, Rochester, MN 240010, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
32
|
Mostofa A, Distler A, Meads MB, Sahakian E, Powers JJ, Achille A, Noyes D, Wright G, Fang B, Izumi V, Koomen J, Rampakrishnan R, Nguyen TP, De Avila G, Silva AS, Sudalagunta P, Canevarolo RR, Siqueira Silva MDC, Alugubelli RR, Dai HA, Kulkarni A, Dalton WS, Hampton OA, Welsh EA, Teer JK, Tungesvik A, Wright KL, Pinilla-Ibarz J, Sotomayor EM, Shain KH, Brayer J. Plasma cell dependence on histone/protein deacetylase 11 reveals a therapeutic target in multiple myeloma. JCI Insight 2021; 6:151713. [PMID: 34793338 PMCID: PMC8783683 DOI: 10.1172/jci.insight.151713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The clinical utility of histone/protein deacetylase (HDAC) inhibitors in combinatorial regimens with proteasome inhibitors for patients with relapsed and refractory multiple myeloma (MM) is often limited by excessive toxicity due to HDAC inhibitor promiscuity with multiple HDACs. Therefore, more selective inhibition minimizing off-target toxicity may increase the clinical effectiveness of HDAC inhibitors. We demonstrated that plasma cell development and survival are dependent upon HDAC11, suggesting this enzyme is a promising therapeutic target in MM. Mice lacking HDAC11 exhibited markedly decreased plasma cell numbers. Accordingly, in vitro plasma cell differentiation was arrested in B cells lacking functional HDAC11. Mechanistically, we showed that HDAC11 is involved in the deacetylation of IRF4 at lysine103. Further, targeting HDAC11 led to IRF4 hyperacetylation, resulting in impaired IRF4 nuclear localization and target promoter binding. Importantly, transient HDAC11 knockdown or treatment with elevenostat, an HDAC11-selective inhibitor, induced cell death in MM cell lines. Elevenostat produced similar anti-MM activity in vivo, improving survival among mice inoculated with 5TGM1 MM cells. Elevenostat demonstrated nanomolar ex vivo activity in 34 MM patient specimens and synergistic activity when combined with bortezomib. Collectively, our data indicated that HDAC11 regulates an essential pathway in plasma cell biology establishing its potential as an emerging theraputic vulnerability in MM.
Collapse
Affiliation(s)
- Agm Mostofa
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Allison Distler
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Mark B Meads
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Eva Sahakian
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - John J Powers
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Alexandra Achille
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - David Noyes
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Gabriela Wright
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Bin Fang
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Victoria Izumi
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - John Koomen
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Rupal Rampakrishnan
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Tuan P Nguyen
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Gabriel De Avila
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Ariosto S Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Praneeth Sudalagunta
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Rafael Renatino Canevarolo
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Maria D Coelho Siqueira Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Raghunandan Reddy Alugubelli
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | | | | | | | | | - Eric A Welsh
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Alexandre Tungesvik
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Kenneth L Wright
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Eduardo M Sotomayor
- School of Medicine and Health Sciences, George Washington University Cancer Center, Washington DC, United States of America
| | - Kenneth H Shain
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Jason Brayer
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| |
Collapse
|
33
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:11971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
34
|
Yin YP, Shi WH, Deng K, Liu XL, Li H, Lv XT, Lui VWY, Ding C, Hong B, Lin WC. Combinations of proteasome inhibitors with obatoclax are effective for small cell lung cancer. Acta Pharmacol Sin 2021; 42:1298-1310. [PMID: 33139838 PMCID: PMC8285499 DOI: 10.1038/s41401-020-00544-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023]
Abstract
Proteasome inhibitors, bortezomib (BTZ), and carfilzomib (CFZ) are approved drugs for hematological malignancies, but lack anticancer activities against most solid tumors. Small cell lung cancer (SCLC) is a very aggressive neuroendocrine carcinoma of the lungs demanding effective therapy. In this study we investigated whether BTZ or CFZ combined with obatoclax (OBX), an antagonist for MCL-1 and a pan-BCL family inhibitor, could cause synergistic growth inhibition of SCLC cells. We showed that combined application of BTZ or CFZ with OBX caused synergistic growth inhibition of human SCLC cell lines (H82, H526, DMS79, H196, H1963, and H69) than single agent alone. Both BTZ-OBX and CFZ-OBX combinations displayed marked synergism on inducing apoptosis (~50% increase vs BTZ or CFZ alone). A comprehensive proteomics analysis revealed that BTZ preferentially induced the expression of MCL-1, an antiapoptotic protein, in SCLC cells. Thus, proteasome inhibitor-OBX combinations could specifically induce massive growth inhibition and apoptosis in SCLC cells. Subsequent proteome-wide profiling analysis of activated transcription factors suggested that BTZ- or CFZ-induced MCL-1 upregulation was transcriptionally driven by FOXM1. In nude mice bearing in SCLC H82 xenografts, both BTZ-OBX, and CFZ-OBX combinations exhibited remarkable antitumor activities against SCLC tumors evidenced by significant reduction of tumor size and the proliferation marker Ki-67 signals in tumor tissues as compared with single agent alone. Thus, proteasome inhibitor-OBX combinations are worth immediate assessments for SCLC in clinical settings.
Collapse
Affiliation(s)
- Yan-Ping Yin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wen-Hao Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Ke Deng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiao-Li Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hong Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiao-Tong Lv
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, 453007, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, China.
| | - Bo Hong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Wen-Chu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
35
|
Murai Y, Jo U, Murai J, Jenkins LM, Huang SYN, Chakka S, Chen L, Cheng K, Fukuda S, Takebe N, Pommier Y. SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Res 2021; 81:3067-3078. [PMID: 33863777 DOI: 10.1158/0008-5472.can-20-2694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Schlafen11 (SLFN11) inactivation occurs in approximately 50% of cancer cell lines and in a large fraction of patient tumor samples, which leads to chemoresistance. Therefore, new therapeutic approaches are needed to target SLFN11-deficient cancers. To that effect, we conducted a drug screen with the NCATS mechanistic drug library of 1,978 compounds in isogenic SLFN11-knockout (KO) and wild-type (WT) leukemia cell lines. Here we report that TAK-243, a first-in-class ubiquitin activating enzyme UBA1 inhibitor in clinical development, causes preferential cytotoxicity in SLFN11-KO cells; this effect is associated with claspin-mediated DNA replication inhibition by CHK1 independently of ATR. Additional analyses showed that SLFN11-KO cells exhibit consistently enhanced global protein ubiquitylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and protein aggregation. TAK-243 suppressed global protein ubiquitylation and activated the UPR transducers PERK, phosphorylated eIF2α, phosphorylated IRE1, and ATF6 more effectively in SLFN11-KO cells than in WT cells. Proteomic analysis using biotinylated mass spectrometry and RNAi screening also showed physical and functional interactions of SLFN11 with translation initiation complexes and protein folding machinery. These findings uncover a previously unknown function of SLFN11 as a regulator of protein quality control and attenuator of ER stress and UPR. Moreover, they suggest the potential value of TAK-243 in SLFN11-deficient tumors. SIGNIFICANCE: This study uncovers that SLFN11 deficiency induces proteotoxic stress and sensitizes cancer cells to TAK-243, suggesting that profiling SLFN11 status can serve as a therapeutic biomarker for cancer therapy.
Collapse
Affiliation(s)
- Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Sirisha Chakka
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Lu Chen
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Ken Cheng
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
36
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
37
|
Emerging Therapeutic Strategies to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071686. [PMID: 33918370 PMCID: PMC8038312 DOI: 10.3390/cancers13071686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma is a deadly blood cancer, but fortunately drug development has substantially prolonged the lifespan of patients to average more than a decade after diagnosis with optimal therapy. As a result, the population of patients living with multiple myeloma has grown considerably. Through its course, patients suffer repeated relapses for which they require new lines of treatment. Currently, the key drug classes for treatment are immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. The goal of this review is to summarize the understanding of the problem of resistance to these drugs, which is ultimately responsible for patient fatality. In addition, we will focus on how new agents that are promising in clinical trials overcome resistance. Abstract Multiple myeloma is a malignant plasma cell neoplasm that remains incurable and is ultimately fatal when patients acquire multi-drug resistance. Thus, advancing our understanding of the mechanisms behind drug resistance in multi-relapsed patients is critical for developing better strategies to extend their lifespan. Here, we review the understanding of resistance to the three key drug classes approved for multiple myeloma treatment: immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. We consider how the complex, heterogenous biology of multiple myeloma may influence the acquisition of drug resistance and reflect on the gaps in knowledge where additional research is needed to improve our treatment approaches. Fortunately, many agents are currently being evaluated preclinically and in clinical trials that have the potential to overcome or delay drug resistance, including next-generation immunomodulatory drugs and proteasome inhibitors, novel small molecule drugs, chimeric antigen receptor T cells, antibody-drug conjugates, and bispecific antibodies. For each class, we discuss the potential of these strategies to overcome resistance through modifying agents within each class or new classes without cross-resistance to currently available drugs.
Collapse
|
38
|
Huang Q, Ford NC, Gao X, Chen Z, Guo R, Raja SN, Guan Y, He S. Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist-induced pain inhibition in neuropathic rats. Pain 2021; 162:1082-1094. [PMID: 33110031 PMCID: PMC7969388 DOI: 10.1097/j.pain.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Agonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury. Here, we investigated whether tolerance develops after repeated MrgC agonist treatments and examined the underlying mechanisms. In animal behavior studies conducted in male rats at 4 to 5 weeks after an L5 spinal nerve ligation (SNL), the ability of dipeptide MrgC agonist JHU58 (0.1 mM, 10 μL, i.t.) to inhibit mechanical and heat hypersensitivity decreased after 3 days of treatment with a tolerance-inducing dose (0.5 mM, 10 μL, i.t., twice/day). In HEK293T cells, acute treatment with JHU58 or BAM8-22 (a large peptide MrgC agonist) led to MrgC endocytosis from the cell membrane and later sorting to the membrane for reinsertion. However, chronic exposure to JHU58 increased the coupling of MrgC to β-arrestin-2 and led to the ubiquitination and degradation of MrgC. Importantly, pretreatment with TAK-243 (0.2 mM, 5 μL, i.t.), a small-molecule inhibitor of the ubiquitin-activating enzyme, during tolerance induction attenuated the development of tolerance to JHU58-induced inhibition of mechanical and heat hypersensitivity in SNL rats. Interestingly, morphine analgesia was also decreased in SNL rats that had become tolerant to JHU58, suggesting a cross-tolerance. Furthermore, i.t. pretreatment with TAK-243, which reduced JHU58 tolerance, also attenuated the cross-tolerance to morphine analgesia. These findings suggest that tolerance can develop to MrgC agonist-induced pain inhibition after repeated i.t. administrations. This tolerance development to JHU58 may involve increased coupling of MrgC to β-arrestin-2 and ubiquitin-mediated receptor degradation.
Collapse
Affiliation(s)
- Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
39
|
Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021; 9:638. [PMID: 33808578 PMCID: PMC8003559 DOI: 10.3390/microorganisms9030638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000 Prague, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| |
Collapse
|
40
|
Barghout SH, Aman A, Nouri K, Blatman Z, Arevalo K, Thomas GE, MacLean N, Hurren R, Ketela T, Saini M, Abohawya M, Kiyota T, Al-Awar R, Schimmer AD. A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity. JCI Insight 2021; 6:141518. [PMID: 33476303 PMCID: PMC8021101 DOI: 10.1172/jci.insight.141518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
TAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase I clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown. Here, we conducted a genome-wide CRISPR/Cas9 knockout screen in acute myeloid leukemia (AML) cells in the presence of TAK-243 to identify genes essential for TAK-243 action. We identified BEN domain-containing protein 3 (BEND3), a transcriptional repressor and a regulator of chromatin organization, as the top gene whose knockout confers resistance to TAK-243 in vitro and in vivo. Knockout of BEND3 dampened TAK-243 effects on ubiquitylation, proteotoxic stress, and DNA damage response. BEND3 knockout upregulated the ATP-binding cassette efflux transporter breast cancer resistance protein (BCRP; ABCG2) and reduced the intracellular levelsof TAK-243. TAK-243 sensitivity correlated with BCRP expression in cancer cell lines of different origins. Moreover, chemical inhibition and genetic knockdown of BCRP sensitized intrinsically resistant high-BCRP cells to TAK-243. Thus, our data demonstrate that BEND3 regulates the expression of BCRP for which TAK-243 is a substrate. Moreover, BCRP expression could serve as a predictor of TAK-243 sensitivity.
Collapse
Affiliation(s)
- Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zachary Blatman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Arevalo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geethu E Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mehakpreet Saini
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Moustafa Abohawya
- Department of Biomedical Sciences, Zewail City of Science, Technology and Innovation, Giza, Egypt
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021; 13:369. [PMID: 33652634 PMCID: PMC7996891 DOI: 10.3390/v13030369] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.
Collapse
Affiliation(s)
- Karl M. Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| |
Collapse
|
42
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
43
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
44
|
Wirth M, Schick M, Keller U, Krönke J. Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers (Basel) 2020; 12:cancers12123764. [PMID: 33327527 PMCID: PMC7764993 DOI: 10.3390/cancers12123764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Multiple myeloma is a cancer of plasma cells causing bone fractures, anemia, renal insufficiency and hypercalcemia. Despite the introduction of new drugs in the past years, it still remains incurable and most patients die from the disease. Multiple myeloma cells are characterized by the production of high amounts of monoclonal antibodies. Therefore, maintaining protein homeostasis from synthesis through folding to degradation is crucial for multiple myeloma cells. While protein ubiquitination and organized degradation are typically considered critical for cellular health, an emerging strategy is to block these processes to induce cell death in disease-state cells characterized by protein over-production. Recent development of compounds that alter the ubiquitin proteasome pathway and drugs that affect ubiquitin-like modifications appear promising in both preclinically and in clinical trials. This review summarizes the impact of protein modifications such as ubiquitination and ubiquitin-like modifications in the biology of multiple myeloma and how it can be exploited to develop new effective therapies for multiple myeloma. Abstract Multiple myeloma is a genetically heterogeneous plasma cell malignancy characterized by organ damage and a massive production of (in-)complete monoclonal antibodies. Coping with protein homeostasis and post-translational regulation is therefore essential for multiple myeloma cells to survive. Furthermore, post-translational modifications such as ubiquitination and SUMOylation play key roles in essential pathways in multiple myeloma, including NFκB signaling, epigenetic regulation, as well as DNA damage repair. Drugs modulating the ubiquitin–proteasome system, such as proteasome inhibitors and thalidomide analogs, are approved and highly effective drugs in multiple myeloma. In this review, we focus on ubiquitin and ubiquitin-like modifications in the biology and current developments of new treatments for multiple myeloma.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-30-450-513-538
| |
Collapse
|
45
|
Get rid of pancreatic cancer by inhibiting garbage disposal?: Comment on "UAE1 Inhibition mediates the unfolded protein response, DNA damage and caspase-dependent cell death in pancreatic cancer" by Rehemtulla et al. Transl Oncol 2020; 14:100968. [PMID: 33285366 PMCID: PMC7720072 DOI: 10.1016/j.tranon.2020.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
stress pathways including the ER stress, the proteasome and the unfolded protein response (UPR) are increasingly reported to be suitable targets in PDAC UAE1 is the most abundant of two ubiquitin activating enzymes (UAE) regulating the initial step of the ER stress associated protein degradation (ERAD) pathway The group of Rehemtulla elegantly showed that TAK-243, a small molecule inhibitor of Ubiquitin activating enzyme 1 (UAE1) nduced apoptosis in PDAC cells and a subcutaneous mouse model of the disease In other preclinical models of cancer, especially in lymphatic malignancies, this compound showed promising results in directly inducing apoptosis but also in increasing the response to other conventional cytotoxic therapeutic approaches Strikingly, these effects were also reported in cells resistant to drugs that target other protein degradation pathways, like proteasome inhibitors, indicating divergent molecular mechanisms.
Collapse
|
46
|
Shan Y, Yang G, Huang H, Zhou Y, Hu X, Lu Q, Guo P, Hou J, Cao L, Tian F, Pan Q. Ubiquitin-Like Modifier Activating Enzyme 1 as a Novel Diagnostic and Prognostic Indicator That Correlates With Ferroptosis and the Malignant Phenotypes of Liver Cancer Cells. Front Oncol 2020; 10:592413. [PMID: 33344241 PMCID: PMC7744729 DOI: 10.3389/fonc.2020.592413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Ferroptosis is a type of cell death that is iron dependent, a characteristic that distinguishes it from necrosis, apoptosis, and autophagy. However, the ferroptotic mechanisms for hepatitis B virus-associated hepatocellular carcinoma (HCC) remain incompletely described. METHODS Two hepatitis B virus-associated HCC public datasets, GSE22058 (n=192) and GSE54238 (n=23), were obtained from the NCBI Gene Expression Omnibus (GEO) database. Bioinformatics methods, including weighted gene coexpression network analysis (WGCNA), Cox regression, and LASSO analysis, were used to identify signature markers for diagnosis and prognosis. CCK8, wound healing, Transwell migration/invasion, and ferroptosis assays were employed to explore the biological function of novel candidate markers weight gene coexpression network analysis. RESULTS In total, 926 differentially expressed genes (DEGs) were common between the GSE22058 and GSE54238 datasets. Following WGCNA, 515 DEGs derived from the MEturquoise gene module were employed to establish diagnosis and prognosis models in The Cancer Genome Atlas (TCGA) HCC RNA-Seq cohort (n=423). The score of the diagnostic model was strikingly upregulated in the TCGA HCC group (p<2.2e-16). The prognostic model exhibited high specificity and sensitivity in both training and validation (AUC=0.835 and 0.626, respectively), and the high-risk group showed dismal prognostic outcomes compared with the low-risk group (training: p=1.416e-10; validation: p=4.495e-02). Ubiquitin-like modifier activating enzyme 1 (UBA1) was identified among both diagnosis and prognosis signature genes, and its overexpression was associated with poor survival. We validated the expression level of UBA1 in eight pairs of HCC patient tissues and liver cancer cell lines. UBA1 silencing decreased proliferation, migration, and invasion in Huh7 cells while elevating the Fe2+ and malondialdehyde (MDA) levels. Additionally, these biological effects were recovered by oltipraz (an Nrf2 activator). Furthermore, blocking UBA1 strikingly repressed the protein expression levels of Nrf2, HO-1, NQO1, and FTH1 in the Nrf2 signal transduction pathway. CONCLUSION Our findings demonstrated that UBA1 participates in the development of HCC by modulating Huh7 phenotypes and ferroptosis via the Nrf2 signal transduction pathway and might be a promising diagnostic and prognostic indicator for HCC.
Collapse
Affiliation(s)
- Yiru Shan
- Department of Oncology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haixia Huang
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China international Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangyu Hu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qiuhong Lu
- Department of Orthopaedics, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Peng Guo
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Hou
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Cao
- Department of Patient Service Center, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Fuhua Tian
- Department of Oncology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Qi Pan
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- College of Bioengineering, “111 Project” Laboratory of Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
47
|
Beider K, Rosenberg E, Dimenshtein-Voevoda V, Sirovsky Y, Vladimirsky J, Magen H, Ostrovsky O, Shimoni A, Bromberg Z, Weiss L, Peled A, Nagler A. Blocking of Transient Receptor Potential Vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J Hematol Oncol 2020; 13:158. [PMID: 33239060 PMCID: PMC7687998 DOI: 10.1186/s13045-020-00993-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemoresistance remains a major treatment obstacle in multiple myeloma (MM). Novel new therapies are thus in need. Transient Receptor Potential Vanilloid type 1 (TRPV1) is a calcium-permeable ion channel that has been demonstrated to be expressed in solid tumors. Calcium channels have been shown to be involved in the regulation of cell proliferation, chemoresistance, migration and invasion. The aim of the current study was to evaluate its possible role in MM. Methods Pharmacological inhibitor was used to evaluate the role of TRPV1 in MM cell lines and primary MM cells. Flow cytometry, molecular analysis, fluorescent microscopy, proteomic analysis and xenograft in vivo model of MM with BM involvement were employed to assess the effect of TRPV1 inhibition and decipher its unique mechanism of action in MM. Results TRPV1 was found to be expressed by MM cell lines and primary MM cells. TRPV1 inhibition using the antagonist AMG9810-induced MM cell apoptosis and synergized with bortezomib, overcoming both CXCR4-dependent stroma-mediated and acquired resistance. In accordance, AMG9810 suppressed the expression and activation of CXCR4 in MM cells. TRPV1 inhibition increased mitochondrial calcium levels with subsequent mitochondrial ROS accumulation and depolarization. These effects were reversed by calcium chelation, suggesting the role of calcium perturbations in oxidative stress and mitochondrial destabilization. Furthermore, AMG9810 abolished bortezomib-induced accumulation of mitochondrial HSP70 and suppressed protective mitochondrial unfolded protein response. Proteomics revealed unique molecular signature related to the modification of ubiquitin signaling pathway. Consequently, 38 proteins related to the ubiquitylation machinery were downregulated upon combined bortezomib/AMG9810 treatment. Concomitantly, AMG9810 abolished bortezomib-induced ubiquitination of cytosolic and mitochondrial proteins. Furthermore, bortezomib/AMG9810 treatment induced mitochondrial accumulation of PINK1, significantly reduced the mitochondrial mass and promoted mitochondrial-lysosomal fusion, indicating massive mitophagy. Finally, in a recently developed xenograft model of systemic MM with BM involvement, bortezomib/AMG9810 treatment effectively reduced tumor burden in the BM of MM-bearing mice. Conclusions Altogether, our results unravel the mechanism mediating the strong synergistic anti-MM activity of bortezomib in combination with TRPV1 inhibition which may be translated into the clinic.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Evgenia Rosenberg
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Valeria Dimenshtein-Voevoda
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Yaarit Sirovsky
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Julia Vladimirsky
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Hila Magen
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Olga Ostrovsky
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Avichai Shimoni
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Zohar Bromberg
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Arnon Nagler
- Division of Hematology, CBB and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
| |
Collapse
|
48
|
Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis. Proc Natl Acad Sci U S A 2020; 117:21588-21597. [PMID: 32817432 DOI: 10.1073/pnas.2001323117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteasome inhibitors, such as bortezomib (BTZ), are highly effective and widely used treatments for multiple myeloma. One proposed reason for myeloma cells' exceptional sensitivity to proteasome inhibition is that they produce and continually degrade unusually large amounts of abnormal immunoglobulins. We, therefore, hypothesized that, heat shock may also be especially toxic to myeloma cells by causing protein unfolding, increasing further the substrate load on proteasomes, and, thus, putting further stress on their capacity for protein homeostasis. After a shift from 37 to 43 °C, all four myeloma lines studied underwent extensive apoptosis in 4 h, unlike 13 nonmyeloma cell lines, even though the myeloma cells induced heat-shock proteins and increased protein degradation similar to other cells. Furthermore, two myeloma lines resistant to proteasome inhibitors were also more resistant to 43 °C. Shifting myeloma cells to 43, 41, or 39 °C (which was not cytotoxic) dramatically increased their killing by proteasome inhibitors and inhibitors of ubiquitination or p97/VCP. Combining increased temperature with BTZ increased the accumulation of misfolded proteins and substrate load on the 26S proteasome. The apoptosis seen at 43 °C and at 39 °C with BTZ was mediated by caspase-9 and was linked to an accumulation of the proapoptotic Bcl-2-family member Noxa. Thus, myeloma cells are exceptionally sensitive to increased temperatures, which greatly increase substrate load on the ubiquitin-proteasome system and eventually activate the intrinsic apoptotic pathway. Consequently, for myeloma, mild hyperthermia may be a beneficial approach to enhance the therapeutic efficacy of proteasome inhibitors.
Collapse
|
49
|
Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer. Nat Chem Biol 2020; 16:1218-1226. [PMID: 32807965 PMCID: PMC7904387 DOI: 10.1038/s41589-020-0625-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/20/2020] [Accepted: 07/12/2020] [Indexed: 01/04/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a highly regulated protein disposal process critical to cell survival. Inhibiting the pathway induces proteotoxic stress and can be an effective cancer treatment. The therapeutic window observed upon proteasomal blockade has motivated multiple UPS-targeting strategies, including preventing ubiquitination altogether. E1 initiates the cascade by transferring ubiquitin to E2 enzymes. A small molecule that engages the E1 ATP-binding site and derivatizes ubiquitin disrupts enzymatic activity and kills cancer cells. However, binding-site mutations cause resistance, motivating alternative approaches to block this promising target. We identified an interaction between the E2 N-terminal alpha-1 helix and a pocket within the E1 ubiquitin-fold domain as a potentially druggable site. Stapled peptides modeled after the E2 alpha-1 helix bound to the E1 groove, induced a consequential conformational change and inhibited E1 ubiquitin thiotransfer, disrupting E2 ubiquitin charging and ubiquitination of cellular proteins. Thus, we provide a blueprint for a distinct E1-targeting strategy to treat cancer.
Collapse
|
50
|
Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci U S A 2020; 117:20004-20014. [PMID: 32747568 DOI: 10.1073/pnas.2005052117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
KRAS, NRAS, and BRAF mutations which activate p44/42 mitogen-activated protein kinase (MAPK) signaling are found in half of myeloma patients and contribute to proteasome inhibitor (PI) resistance, but the underlying mechanisms are not fully understood. We established myeloma cell lines expressing wild-type (WT), constitutively active (CA) (G12V/G13D/Q61H), or dominant-negative (DN) (S17N)-KRAS and -NRAS, or BRAF-V600E. Cells expressing CA mutants showed increased proteasome maturation protein (POMP) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) expression. This correlated with an increase in catalytically active proteasome subunit β (PSMB)-8, PSMB9, and PSMB10, which occurred in an ETS transcription factor-dependent manner. Proteasome chymotrypsin-like, trypsin-like, and caspase-like activities were increased, and this enhanced capacity reduced PI sensitivity, while DN-KRAS and DN-NRAS did the opposite. Pharmacologic RAF or MAPK kinase (MEK) inhibitors decreased proteasome activity, and sensitized myeloma cells to PIs. CA-KRAS, CA-NRAS, and CA-BRAF down-regulated expression of endoplasmic reticulum (ER) stress proteins, and reduced unfolded protein response activation, while DN mutations increased both. Finally, a bortezomib (BTZ)/MEK inhibitor combination showed enhanced activity in vivo specifically in CA-NRAS models. Taken together, the data support the hypothesis that activating MAPK pathway mutations enhance PI resistance by increasing proteasome capacity, and provide a rationale for targeting such patients with PI/RAF or PI/MEK inhibitor combinations. Moreover, they argue these mutations promote myeloma survival by reducing cellular stress, thereby distancing plasma cells from the apoptotic threshold, potentially explaining their high frequency in myeloma.
Collapse
|