1
|
Hagen MW, Setiawan NJ, Dexter S, Woodruff KA, Gaerlan FK, Orozco JJ, Termini CM. The bone marrow niche and hematopoietic system are distinctly remodeled by CD45-targeted astatine-211 radioimmunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.645037. [PMID: 40236126 PMCID: PMC11996527 DOI: 10.1101/2025.04.04.645037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Radioimmunotherapy (RIT) is used to treat patients with hematological malignancies known to infiltrate the bone marrow (BM) microenvironment. RIT uses target-specific monoclonal antibodies stably conjugated to radionuclides to deliver cytotoxic radiation to cells of interest. While RIT is effective at delivering radiation to cancer cells, normal tissue is also exposed to radiation upon RIT, the consequences of which are largely unknown. Here, we studied the cellular and molecular effects of CD45-targeted astatine-211 ( 211 At) RIT, IgG non-targeted 211 At RIT, and Cesium-137 total-body irradiation (TBI) on hematopoietic cells and their BM niche in wild-type immunocompetent mice. Relative to non-targeted RIT or TBI, CD45-targeted RIT significantly delayed hematopoietic regeneration overall in the peripheral blood and BM and reduced hematopoietic stem/progenitor cell recovery and colony-forming ability. While BM endothelial cells (ECs) do not express the CD45 antigen, CD45-targeted RIT significantly depleted BM ECs compared to non-targeted RIT or TBI. RNA sequence analysis revealed significantly different transcriptomic profiles of BM ECs from CD45-RIT-treated mice compared to non- targeted RIT or TBI. ECs from CD45-RIT-treated mice, but not TBI or IgG-RIT-treated mice, were transcriptionally enriched for TGFβ, NOTCH, and IFNα signaling pathways compared to untreated mice. Collectively, our study indicates that CD45-targeted RIT severely impacts hematopoietic and EC niche recovery compared to non- targeted approaches. Future studies are required to determine the long-term consequences of such RIT-driven effects on BM niche physiology and how BM niche reprogramming by RIT affects cancer cells. KEY POINTS CD45-targeted radioimmunotherapy more effectively suppresses the hematopoietic system than non- targeted radiation delivery.The bone marrow vascular niche is differentially reprogrammed by CD45-targeted radioimmunotherapy compared to non-targeted radiation delivery.
Collapse
|
2
|
Nishino J, Hu W, Kishtagari A, Shen B, Gao X, Blackman CM, Kassim A, Marneni N, Cherukuri AV, Vittrup R, Kalkan FN, Shah R, Ahn C, Gao A, Ahmedrabie A, Collins RH, Zeidan AM, Bidikian A, Gowda L, Shaffer BC, Madanat YF, Zhao Z, Chung SS, Morrison SJ. Nonselective β-Adrenergic Receptor Inhibitors Impair Hematopoietic Regeneration in Mice and Humans after Hematopoietic Cell Transplants. Cancer Discov 2025; 15:748-766. [PMID: 39786370 PMCID: PMC11962394 DOI: 10.1158/2159-8290.cd-24-0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/11/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Peripheral nerves promote mouse bone marrow regeneration by activating β2- and β3-adrenergic receptor signaling, raising the possibility that nonselective β-blockers could inhibit engraftment after hematopoietic cell transplants (HCT). We observed no effect of β-blockers on steady-state mouse hematopoiesis. However, mice treated with a nonselective β-blocker (carvedilol), but not a β1-selective inhibitor (metoprolol), exhibited impaired hematopoietic regeneration after syngeneic or allogeneic HCTs. At two institutions, patients who received nonselective, but not β1-selective, β-blockers after allogeneic HCT exhibited delayed platelet engraftment and reduced survival. This was particularly observed in patients who received posttransplant chemotherapy for graft-versus-host disease prophylaxis, which also accentuated the inhibitory effect of carvedilol on engraftment in mice. In patients who received autologous HCTs, nonselective β-blockers were associated with little or no delay in engraftment. The inhibitory effect of nonselective β-blockers after allogeneic HCT was overcome by transplanting larger doses of hematopoietic cells. Significance: Patients who receive allogeneic HCTs followed by posttransplant chemotherapy for graft-versus-host disease prophylaxis may be at risk of delayed engraftment and increased mortality if administered nonselective β-blockers after transplantation. Transient discontinuation of nonselective β-blockers or transitioning to β1-selective inhibitors after HCT may accelerate engraftment and improve clinical outcomes. See related commentary by Bhatia, p. 666.
Collapse
Affiliation(s)
- Jinsuke Nishino
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wenhuo Hu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ashwin Kishtagari
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiang Gao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Caroline M. Blackman
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adetola Kassim
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Naimisha Marneni
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abhisar V. Cherukuri
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Russell Vittrup
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fatma N. Kalkan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rahul Shah
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chul Ahn
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ang Gao
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Abeer Ahmedrabie
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert H. Collins
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | - Aram Bidikian
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | - Brian C. Shaffer
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yazan F. Madanat
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen S. Chung
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Du L, Freitas-Cortez MA, Zhang J, Xue Y, Veettil RT, Zhao Z, Morrison SJ. Periarteriolar niches become inflamed in aging bone marrow, remodeling the stromal microenvironment and depleting lymphoid progenitors. Proc Natl Acad Sci U S A 2025; 122:e2412317122. [PMID: 40063797 PMCID: PMC11929388 DOI: 10.1073/pnas.2412317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
In early postnatal and young adult bone marrow, Leptin receptor-expressing (LepR+) stromal cells and endothelial cells synthesize factors required for hematopoietic stem cell (HSC) maintenance, including Stem Cell Factor (SCF) and Cxcl12. However, little is known about how these stromal cells change during aging. We performed single-cell RNA sequencing of mouse bone marrow stromal cells at 2, 12, and 24 mo of age. We identified five transcriptionally distinct subsets of LepR+ cells, all of which expressed the highest levels of Scf and Cxcl12 in bone marrow throughout adult life. In aging bone marrow, SCF from LepR+ cells, but not endothelial cells, continued to be necessary for the maintenance of HSCs and early restricted progenitors. However, arteriolar endothelial cells and other periarteriolar cells expressed increasing levels of interferon during aging. This increased the numbers of periarteriolar Sca1+Cxcl9+LepR+ cells with an inflammatory gene signature and depleted lymphoid progenitors, at least some of which are also periarteriolar. The periarteriolar environment thus became particularly inflamed during aging, remodeling the stromal microenvironment and depleting lymphoid progenitors in an interferon-dependent manner.
Collapse
Affiliation(s)
- Liming Du
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Maria Angelica Freitas-Cortez
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jingzhu Zhang
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yuanyuan Xue
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Reshma T. Veettil
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
4
|
Soto CA, Lesch ML, Becker JL, Sharipol A, Khan A, Schafer XL, Becker MW, Munger JC, Frisch BJ. Elevated Lactate in the AML Bone Marrow Microenvironment Polarizes Leukemia-Associated Macrophages via GPR81 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.13.566874. [PMID: 39185193 PMCID: PMC11343108 DOI: 10.1101/2023.11.13.566874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Interactions between acute myeloid leukemia (AML) and the bone marrow microenvironment (BMME) are critical to leukemia progression and chemoresistance. In the solid tumor microenvironment, altered metabolite levels contribute to cancer progression. We performed a metabolomic analysis of AML patient bone marrow serum, revealing increased metabolites compared to age- and sex-matched controls. The most highly elevated metabolite in the AML BMME was lactate. Lactate signaling in solid tumors induces immunosuppressive tumor-associated macrophages and correlates with poor prognosis. This has not yet been studied in the leukemic BMME. Herein, we describe the role of lactate in the polarization of leukemia-associated macrophages (LAMs). Using a murine AML model of blast crisis chronic myelogenous leukemia (bcCML), we characterize the suppressive phenotype of LAMs by surface markers, transcriptomics, and cytokine profiling. Then, mice genetically lacking GPR81, the extracellular lactate receptor, were used to demonstrate GPR81 signaling as a mechanism of both the polarization of LAMs and the direct support of leukemia cells. Furthermore, elevated lactate diminished the function of hematopoietic progenitors and reduced stromal support for normal hematopoiesis. We report microenvironmental lactate as a mechanism of AML-induced immunosuppression and leukemic progression, thus identifying GPR81 signaling as an exciting and novel therapeutic target for treating this devastating disease.
Collapse
Affiliation(s)
- Celia A Soto
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Maggie L Lesch
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Jennifer L Becker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester School of Medicine, Rochester, NY, USA
| | - Amal Khan
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Xenia L Schafer
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joshua C Munger
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Benjamin J Frisch
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
5
|
Zhu Y, Cheng Q, Liu C, Wang H, Zhu C, Qian J, Hu H, Li B, Guo Q, Shi J. Integrated GelMA and liposome composite hydrogel with effective coupling of angiogenesis and osteogenesis for promoting bone regeneration. Int J Biol Macromol 2025; 297:139835. [PMID: 39824404 DOI: 10.1016/j.ijbiomac.2025.139835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 12/12/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue. We observed the utilization of Desferoxamine (DFO) facilitated angiogenesis, thereby enabling Kartogenin (KGN) to activate the β-catenin/Runx-2 pathway. Our study introduces a composite hydrogel loaded with KGN and DFO via liposomes to enhance the coupling of angiogenesis and osteogenesis. Within this composite hydrogel system, KGN and DFO undergo effective release. This controlled release substantially promotes a conducive microenvironment for angiogenesis and osteogenesis. Our in vitro studies provide compelling evidence of the synergistic impact between KGN and DFO on osteogenic processes. Moreover, the composite hydrogel exhibits the capability to enhance the expression of proteins and genes associated with both angiogenesis and osteogenesis. In rat skull defect model, the composite hydrogel notably stimulates vascularization and osteogenic differentiation without infection or mortality. In summary, results underscore the potential of this composite hydrogel as an alternative to autografts for bone defect repair, offering a promising approach for future clinical and regenerative applications.
Collapse
Affiliation(s)
- Yuanchen Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Qi Cheng
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Chengyuan Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Caihong Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Jin Qian
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Hanfeng Hu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.
| | - Qianping Guo
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.
| | - Jinhui Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China.
| |
Collapse
|
6
|
Long J, Lai H, Huang Y, You F, Jiang Y, Kuang Q. Unraveling the pathogenesis of bone marrow hematopoietic injury and the therapeutic potential of natural products. Pharmacol Res 2025; 212:107589. [PMID: 39778641 DOI: 10.1016/j.phrs.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing. Furthermore, we explored the potential and application prospects of natural products in the treatment of bone marrow hematopoietic injury. Natural products, particularly those derived from Chinese herbal medicines and other natural sources, have emerged as promising therapeutic options due to their distinctive mechanisms and minimal side effects. A deeper understanding of the underlying mechanisms of bone marrow hematopoietic injury could illuminate how natural products exert their effects, thereby optimizing treatment strategies and offering safer, more effective options for patients. Future research should leverage emerging technologies to further elucidate the composition and interactions within the bone marrow microenvironment, as well as the specific pathways through which natural products modulate hematopoietic dysfunction.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hengzhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qixuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
7
|
Ni Y, Wu J, Liu F, Yi Y, Meng X, Gao X, Xiao L, Zhou W, Chen Z, Chu P, Xing D, Yuan Y, Ding D, Shen G, Yang M, Wu R, Wang L, Melo LMN, Lin S, Cheng X, Li G, Tasdogan A, Ubellacker JM, Zhao H, Fang S, Shen B. Deep imaging of LepR + stromal cells in optically cleared murine bone hemisections. Bone Res 2025; 13:6. [PMID: 39800733 PMCID: PMC11725602 DOI: 10.1038/s41413-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR+) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR+ stromal cells, within optically cleared bone hemisections. Our method preserves the 3D tissue architecture and is extendable to other hematopoietic sites such as calvaria and vertebrae. The protocol entails tissue fixation, decalcification, and cryosectioning to reveal the marrow cavity. Completed within approximately 12 days, this process yields highly transparent tissues that maintain genetically encoded or antibody-stained fluorescent signals. The bone hemisections are compatible with diverse antibody labeling strategies. Confocal microscopy of these transparent samples allows for qualitative and quantitative image analysis using Aivia or Bitplane Imaris software, assessing a spectrum of parameters. With proper storage, the fluorescent signal in the stained and cleared bone hemisections remains intact for at least 2-3 months. This protocol is robust, straightforward to implement, and highly reproducible, offering a valuable tool for tissue architecture and cellular interaction studies.
Collapse
Affiliation(s)
- Yuehan Ni
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
| | - Jiamiao Wu
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fengqi Liu
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Yating Yi
- Chinese Institute for Brain Research, Beijing (CIBR), 102206, Beijing, China
| | - Xiangjiao Meng
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Xiang Gao
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Luyi Xiao
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
| | - Weiwei Zhou
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zexi Chen
- Chinese Institute for Brain Research, Beijing (CIBR), 102206, Beijing, China
| | - Peng Chu
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Dan Xing
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, 100044, Beijing, China
| | - Ye Yuan
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, 100044, Beijing, China
| | - Donghui Ding
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ge Shen
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Min Yang
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
| | - Ronjie Wu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Shatin, Hong Kong SAR, PR China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, National Center for Orthopaedics, 100035, Beijing, China
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Shatin, Hong Kong SAR, PR China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, National Center for Orthopaedics, 100035, Beijing, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Shatin, Hong Kong SAR, PR China
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing (CIBR), 102206, Beijing, China.
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Bo Shen
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
8
|
Dong R, Wei J, Tian S, Wang J, Ma Y, Li Y, Liu RX, Liu YQ. Single-cell RNA transcriptomics reveals Du-Zhong-Wan promotes osteoporotic fracture healing via YAP/β-catenin/VEGF axis in BMSCs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155572. [PMID: 39366157 DOI: 10.1016/j.phymed.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Our previous study demonstrated that Du-Zhong-Wan (DZW) promoted osteoporotic fracture (OPF) healing by enhancing osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of endothelial cells (ECs). However, the heterogeneity of BMSCs and ECs, as well as the specific molecular mechanism underlying these effects, still require further evaluation. PURPOSE The primary objective of this study was to elucidate the heterogeneity of BMSCs and ECs, as well as the cellular-level mechanism of DZW against OPF through single-cell RNA sequencing. METHODS In this study, we presented a single-cell atlas of mouse femoral callus, comparing samples with and without DZW treatment, utilizing single-cell RNA sequencing. Variable genes were identified using the FindVariableGenes (FVG) and principal component analysis (PCA) analysis. Additionally, uniform manifold approximation and projection (U-MAP) was employed to reduce and visualize the distinct subclusters. The CellPhoneDB2 method was employed to analyze intercellular communication and quantify the interaction between ligands and receptors within distinct cell clusters. The osteogenic differentiation capacity of BMSCs was assessed by micro-CT, alkaline phosphatase (ALP), and alizarin red S (ARS) assay. The scratch wound assay and tube formation assay were utilized to assess the angiogenic capabilities of ECs in vitro. Additionally, western blot and immunofluorescence experiments were utilized to elucidate the related protein expression. RESULTS Consistent with our previous studies, DZW obviously promoted osteoporotic fracture healing. Moreover, this study discovered 14 cell clusters at the femoral fracture callus, where the BMSCs most actively interacted with ECs, through single-cell sequencing. Notably, DZW significantly elevated the proportion of Lepr+ BMSCs and Podxl+ ECs subgroup, which were respectively considered essential cells for osteoblastogenesis and angiogenesis of arteriolar vessels. The increased proportion of Podxl+ ECs was partially attributed to vascular endothelial growth factor (VEGF), secreted by BMSCs, which were able to be reversed by YAP pharmacological inhibitor verteporfin. Furthermore, the western blot assay revealed elevated expression levels of YAP/β-catenin, VEGF, RUNX2, and OCN in BMSCs treated with DZW, which were counteracted by verteporfin. CONCLUSION The data above indicates that DZW elevates the proportion of LEPR+ BMSCs and Podxl+ ECs, therefore contributing for the osteogenic ability of BMSCs and BMSCs-mediated angiogenesis via activation of the YAP/β-catenin/VEGF axis, which provides novel potential targets and mechanism for DZW in treating OPF in sub-clusters and molecular level.
Collapse
Affiliation(s)
- Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui-Xia Liu
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Skulimowska I, Morys J, Sosniak J, Gonka M, Gulati G, Sinha R, Kowalski K, Mosiolek S, Weissman IL, Jozkowicz A, Szade A, Szade K. Polyclonal regeneration of mouse bone marrow endothelial cells after irradiative conditioning. Cell Rep 2024; 43:114779. [PMID: 39489938 PMCID: PMC11602546 DOI: 10.1016/j.celrep.2024.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 06/04/2024] [Accepted: 09/04/2024] [Indexed: 11/05/2024] Open
Abstract
Bone marrow endothelial cells (BM-ECs) are the essential components of the BM niche and support the function of hematopoietic stem cells (HSCs). However, conditioning for HSC transplantation causes damage to the recipients' BM-ECs and may lead to transplantation-related morbidity. Here, we investigated the cellular and clonal mechanisms of BM-EC regeneration after irradiative conditioning. Using single-cell RNA sequencing, imaging, and flow cytometry, we revealed how the heterogeneous pool of BM-ECs changes during regeneration from irradiation stress. Next, we developed a single-cell in vitro clonogenic assay and demonstrated that all EC fractions hold a high potential to reenter the cell cycle and form vessel-like structures. Finally, we used Rainbow mice and a machine-learning-based model to show that the regeneration of BM-ECs after irradiation is mostly polyclonal and driven by the broad fraction of BM-ECs; however, the cell output among clones varies at later stages of regeneration.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jan Morys
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kacper Kowalski
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Sylwester Mosiolek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
10
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Zhang Y, Chen X, Wang X, Chen J, Du C, Wang J, Liao W. Insights into ionizing radiation-induced bone marrow hematopoietic stem cell injury. Stem Cell Res Ther 2024; 15:222. [PMID: 39039566 PMCID: PMC11265359 DOI: 10.1186/s13287-024-03853-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
With the widespread application of nuclear technology across various fields, ionizing radiation-induced injuries are becoming increasingly common. The bone marrow (BM) hematopoietic tissue is a primary target organ of radiation injury. Recent researches have confirmed that ionizing radiation-induced hematopoietic dysfunction mainly results from BM hematopoietic stem cells (HSCs) injury. Additionally, disrupting and reshaping BM microenvironment is a critical factor impacting both the injury and regeneration of HSCs post radiation. However, the regulatory mechanisms of ionizing radiation injury to BM HSCs and their microenvironment remain poorly understood, and prevention and treatment of radiation injury remain the focus and difficulty in radiation medicine research. In this review, we aim to summarize the effects and mechanisms of ionizing radiation-induced injury to BM HSCs and microenvironment, thereby enhancing our understanding of ionizing radiation-induced hematopoietic injury and providing insights for its prevention and treatment in the future.
Collapse
Affiliation(s)
- Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu, 610008, Sichuan, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
12
|
Hofmann J, Kokkaliaris KD. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 2024; 144:21-34. [PMID: 38579285 DOI: 10.1182/blood.2023023788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.
Collapse
Affiliation(s)
- Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- University Cancer Center, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Prasad P, Cancelas JA. From Marrow to Bone and Fat: Exploring the Multifaceted Roles of Leptin Receptor Positive Bone Marrow Mesenchymal Stromal Cells. Cells 2024; 13:910. [PMID: 38891042 PMCID: PMC11171870 DOI: 10.3390/cells13110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFR+Sca-1+ subsets, Nestin+, or LepR+ cells. Of these, the LepR+ cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR+ cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR+ cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR+ cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR+ MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR+ cells, different subtypes, and the role of LepR+ cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact.
Collapse
Affiliation(s)
| | - Jose A. Cancelas
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
14
|
Vosbeck K, Förster S, Mayr T, Sahu A, Haddouti EM, Al-Adilee O, Körber RM, Bisht S, Muders MH, Nesic S, Buness A, Kristiansen G, Schildberg FA, Gütgemann I. Neuropilin2 in Mesenchymal Stromal Cells as a Potential Novel Therapeutic Target in Myelofibrosis. Cancers (Basel) 2024; 16:1924. [PMID: 38792002 PMCID: PMC11119673 DOI: 10.3390/cancers16101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Bone marrow fibrosis in myeloproliferative neoplasm (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML) is associated with poor prognosis and early treatment failure. Myelofibrosis (MF) is accompanied by reprogramming of multipotent bone marrow mesenchymal stromal cells (MSC) into osteoid and fiber-producing stromal cells. We demonstrate NRP2 and osteolineage marker NCAM1 (neural cell adhesion molecule 1) expression within the endosteal niche in normal bone marrow and aberrantly in MPN, MDS MPN/MDS overlap syndromes and AML (n = 99), as assessed by immunohistochemistry. Increased and diffuse expression in mesenchymal stromal cells and osteoblasts correlates with high MF grade in MPN (p < 0.05 for NRP2 and NCAM1). Single cell RNA sequencing (scRNAseq) re-analysis demonstrated NRP2 expression in endothelial cells and partial co-expression of NRP2 and NCAM1 in normal MSC and osteoblasts. Potential ligands included transforming growth factor β1 (TGFB1) from osteoblasts and megakaryocytes. Murine ThPO and JAK2V617F myelofibrosis models showed co-expression of Nrp2 and Ncam1 in osteolineage cells, while fibrosis-promoting MSC only express Nrp2. In vitro experiments with MC3T3-E1 pre-osteoblasts and analysis of Nrp2-/- mouse femurs suggest that Nrp2 is functionally involved in osteogenesis. In summary, NRP2 represents a potential novel druggable target in patients with myelofibrosis.
Collapse
Affiliation(s)
- Karla Vosbeck
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Sarah Förster
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Thomas Mayr
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Anshupa Sahu
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany;
| | - El-Mustapha Haddouti
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (E.-M.H.)
| | - Osamah Al-Adilee
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Ruth-Miriam Körber
- Department of Medicine III, University Hospital Bonn, 53127 Bonn, Germany; (R.-M.K.); (S.B.)
| | - Savita Bisht
- Department of Medicine III, University Hospital Bonn, 53127 Bonn, Germany; (R.-M.K.); (S.B.)
| | - Michael H. Muders
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Svetozar Nesic
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.N.); (A.B.)
| | - Andreas Buness
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.N.); (A.B.)
| | - Glen Kristiansen
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany; (E.-M.H.)
| | - Ines Gütgemann
- Institute for Pathology, University Hospital Bonn, 53127 Bonn, Germany (T.M.); (O.A.-A.); (M.H.M.); (G.K.)
| |
Collapse
|
15
|
Poulos MG, Ramalingam P, Winiarski A, Gutkin MC, Katsnelson L, Carter C, Pibouin-Fragner L, Eichmann A, Thomas JL, Miquerol L, Butler JM. Complementary and Inducible creER T2 Mouse Models for Functional Evaluation of Endothelial Cell Subtypes in the Bone Marrow. Stem Cell Rev Rep 2024; 20:1135-1149. [PMID: 38438768 PMCID: PMC11087254 DOI: 10.1007/s12015-024-10703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Pradeep Ramalingam
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Agatha Winiarski
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | - Michael C Gutkin
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lizabeth Katsnelson
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cody Carter
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | | | - Anne Eichmann
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Paris Brain Institute, Université Pierre et Marie Curie Paris, 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13288, Marseille, France
| | - Jason M Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. Stem Cell Res Ther 2024; 15:123. [PMID: 38679747 PMCID: PMC11057170 DOI: 10.1186/s13287-024-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
- Justin Vercellino
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Beata Małachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Brett I Bell
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shahin Shajahan
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Eichenbaum
- Johnson & Johnson, Office of the Chief Medical Officer, New Brunswick, NJ, USA
- Bioconvergent Health, LLC, Purchase, NY, USA
| | - Amit K Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Bioconvergent Health, LLC, Purchase, NY, USA.
| |
Collapse
|
17
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. RESEARCH SQUARE 2024:rs.3.rs-3946910. [PMID: 38463959 PMCID: PMC10925435 DOI: 10.21203/rs.3.rs-3946910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has not yet been elucidated. Methods C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 hours post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. Results At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. Conclusions TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
| | | | - Shilpa Kulkarni
- NIAID: National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Peng F, Hong W, Wang Y, Peng Y, Fang Z. Mechanism of herb pair containing Astragali Radix and Spatholobi Caulis in the treatment of myelosuppression based on network pharmacology and experimental investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117178. [PMID: 37741472 DOI: 10.1016/j.jep.2023.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Astragali Radix and Spatholobi Caulis herb pair (ARSC) is one of the most commonly used herbal combinations for bone marrow suppression. According to traditional Chinese medicine, Astragali Radix strengthens the spleen and replenishes qi, while Spatholobi Caulis is a hematinic agent that promotes blood circulation and enrichment. The compatibility of the two helps the body to tonify the spleen and kidneys and compensate for visceral deficiencies. However, the multi-target mechanism of ARSC in bone marrow suppression has remained largely unknown. AIM OF THE STUDY The aim of this study is to explore the key targets and signaling pathways of the traditional Chinese herbal pair ARSC for the treatment of bone marrow suppression. MATERIALS AND METHODS The active components of ARSC and targets for myelosuppression were screened using network databases. Cytoscape 3.8.0 was used to construct compound-target, compound-disease-target and protein-protein interaction (PPI) networks. Go-function and pathway enrichment analyses were performed to explore the potential mechanism. In vivo animal experiments were conducted to verify the molecular mechanisms. RESULTS The 36 active compounds were identified from the ARSC, and a total of 108 genes involved in myelosuppression were screened. VEGFA, IL6, TNF, JUN, STAT3, PTGS2, CASP3 and MMP9 genes were identified as potential drug targets in the PPI network analyzed by CytoHubba. Enrichment analysis indicated that ARSC may treat myelosuppression through various biological processes, such as apoptosis, TNF-α signaling pathway via NF-κB, PI3K/AKT/mTOR signaling pathway, IL6/JAK/STAT3 signaling pathway, P53 signaling pathway and G2/M checkpoint signaling pathway. The results of the experiment showed that the aqueous extract of ARSC significantly alleviated myelosuppression, reduced the apoptosis rate of bone marrow cells, upregulated the mRNA expression levels of TNF-α, IL-6 and VEGF, and promoted NF-κB phosphorylation in myelosuppressed mice. CONCLUSIONS This study identified the active components and relevant mechanisms of ARSC in the treatment of myelosuppression. Our findings predicted that ARSC could treat bone marrow suppression through multiple components, multiple targets and multiple pathways. Pharmacological experiments showed that ARSC alleviated fluorouracil-induced myelosuppression by reducing the apoptosis rate of bone marrow cells and regulating the TNF-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fei Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Wanying Hong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Yingyu Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Yunru Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Zhijun Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
19
|
Gao X, Murphy MM, Peyer JG, Ni Y, Yang M, Zhang Y, Guo J, Kara N, Embree C, Tasdogan A, Ubellacker JM, Crane GM, Fang S, Zhao Z, Shen B, Morrison SJ. Leptin receptor + cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat Cell Biol 2023; 25:1746-1757. [PMID: 38012403 PMCID: PMC10709146 DOI: 10.1038/s41556-023-01284-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR+) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation. LepR+ cells, and the adipocytes they gave rise to, increased NGF production after myeloablation, promoting nerve sprouting in the bone marrow and haematopoietic and vascular regeneration. Nerves promoted regeneration by activating β2 and β3 adrenergic receptor signalling in LepR+ cells, and potentially in adipocytes, increasing their production of multiple haematopoietic and vascular regeneration growth factors. Peripheral nerves and LepR+ cells thus promote bone marrow regeneration through a reciprocal relationship in which LepR+ cells sustain nerves by synthesizing NGF and nerves increase regeneration by promoting the production of growth factors by LepR+ cells.
Collapse
Affiliation(s)
- Xiang Gao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Integrated Microscopy and Imaging Laboratory, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - James G Peyer
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cambrian Bio, Inc., New York, NY, USA
| | - Yuehan Ni
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Min Yang
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yixuan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jiaming Guo
- National Institute of Biological Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Ensoma, Inc., Boston, MA, USA
| | - Claire Embree
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alpaslan Tasdogan
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Wang X, Huang J, You R, Hou D, Liu J, Wu L, Yao M, Yang F, Huang H. Downregulation of ITGA5 inhibits lymphangiogenesis and cell migration and invasion in male laryngeal squamous cell carcinoma. PROTOPLASMA 2023; 260:1569-1580. [PMID: 37338646 DOI: 10.1007/s00709-023-01873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
ITGA5, a fibronectin receptor was highly expressed in laryngeal squamous cell carcinoma (LSCC) samples and was related to poor survival. However, the potential mechanism remains unclear. To elucidate the regulatory role of ITGA5 in LSCC progression, we investigated the effect of ITGA5 expression on lymphangiogenesis, migration, and invasion of LSCC cells in vitro and in vivo using immunohistochemistry, siRNA transfection, qRT-PCR, western blotting, enzyme-linked immunosorbent assay, flow cytometry, transwell co-culture, tube formation, cell migration, and invasion assays, and a subcutaneous graft tumor model. The expression of ITGA5 was higher in the LSCC tissues and linked to lymph node metastasis and T staging. Moreover, ITGA5 expression was significantly positively correlated with VEGF-C expression, and the lymphatic vessel density of patients with high ITGA5 expression was noticeably higher than that of patients with low ITGA5 expression. Additionally, it was found in vitro that downregulation of ITGA5 expression not only inhibited the expression and secretion of VEGF-C, but also suppressed the tube-forming ability of human lymphatic endothelial cells (HLECs) and the migration and invasion ability of LSCC cells, while exogenous VEGF-C supplementation reversed these phenomena. Furthermore, a tumor xenograft assay showed that si-ITGA5 restrained the growth and metastasis of TU212-derived tumors in vivo. Our findings suggested that ITGA5 induces lymphangiogenesis and LSCC cell migration and invasion by enhancing VEGF-C expression and secretion.
Collapse
Affiliation(s)
- Xiaoting Wang
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jun Huang
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Diyu Hou
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Long Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuwen Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, The 900th Hospital of the People's Liberation Army Joint Service Support Force, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
21
|
Rauniyar K, Bokharaie H, Jeltsch M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis 2023; 26:437-461. [PMID: 37017884 PMCID: PMC10328876 DOI: 10.1007/s10456-023-09874-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Together with the platelet-derived growth factors (PDGFs), the vascular endothelial growth factors (VEGFs) form the PDGF/VEGF subgroup among cystine knot growth factors. The evolutionary relationships within this subgroup have not been examined thoroughly to date. Here, we comprehensively analyze the PDGF/VEGF growth factors throughout all animal phyla and propose a phylogenetic tree. Vertebrate whole-genome duplications play a role in expanding PDGF/VEGF diversity, but several limited duplications are necessary to account for the temporal pattern of emergence. The phylogenetically oldest PDGF/VEGF-like growth factor likely featured a C-terminus with a BR3P signature, a hallmark of the modern-day lymphangiogenic growth factors VEGF-C and VEGF-D. Some younger VEGF genes, such as VEGFB and PGF, appeared completely absent in important vertebrate clades such as birds and amphibia, respectively. In contrast, individual PDGF/VEGF gene duplications frequently occurred in fish on top of the known fish-specific whole-genome duplications. The lack of precise counterparts for human genes poses limitations but also offers opportunities for research using organisms that diverge considerably from humans. Sources for the graphical abstract: 326 MYA and older [1]; 72-240 MYA [2]; 235-65 MYA [3].
Collapse
Affiliation(s)
- Khushbu Rauniyar
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland
| | - Honey Bokharaie
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Helsinki, Finland.
- Helsinki One Health, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Fan W, Cao W, Shi J, Gao F, Wang M, Xu L, Wang F, Li Y, Guo R, Bian Z, Li W, Jiang Z, Ma W. Contributions of bone marrow monocytes/macrophages in myeloproliferative neoplasms with JAK2 V617F mutation. Ann Hematol 2023; 102:1745-1759. [PMID: 37233774 PMCID: PMC10213596 DOI: 10.1007/s00277-023-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
The classic BCR-ABL1-negative myeloproliferative neoplasm (MPN) is a highly heterogeneous hematologic tumor that includes three subtypes, namely polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). Despite having the same JAK2V617F mutation, the clinical manifestations of these three subtypes of MPN differ significantly, which suggests that the bone marrow (BM) immune microenvironment may also play an important role. In recent years, several studies have shown that peripheral blood monocytes play an important role in promoting MPN. However, to date, the role of BM monocytes/macrophages in MPN and their transcriptomic alterations remain incompletely understood. The purpose of this study was to clarify the role of BM monocytes/macrophages in MPN patients with the JAK2V617F mutation. MPN patients with the JAK2V617F mutation were enrolled in this study. We investigated the roles of monocytes/macrophages in the BM of MPN patients, using flow cytometry, monocyte/macrophage enrichment sorting, cytospins and Giemsa-Wright staining, and RNA-seq. Pearson correlation coefficient analysis was also used to detect the correlation between BM monocytes/macrophages and the MPN phenotype. In the present study, the proportion of CD163+ monocytes/macrophages increased significantly in all three subtypes of MPN. Interestingly, the percentages of CD163+ monocytes/macrophages are positively correlated with HGB in PV patients and PLT in ET patients. In contrast, the percentages of CD163+ monocytes/macrophages are negatively correlated with HGB and PLT in PMF patients. It was also found that CD14+CD16+ monocytes/macrophages increased and correlated with MPN clinical phenotypes. RNA-seq analyses demonstrated that the transcriptional expressions of monocytes/macrophages in MPN patients are relatively distinct. Gene expression profiles of BM monocytes/macrophages suggest a specialized function in support of megakaryopoiesis in ET patients. In contrast, BM monocytes/macrophages yielded a heterogeneous status in the support or inhibition of erythropoiesis. Significantly, BM monocytes/macrophages shaped an inflammatory microenvironment, which, in turn, promotes myelofibrosis. Thus, we characterized the roles of increased monocytes/macrophages in the occurrence and progression of MPNs. Our findings of the comprehensive transcriptomic characterization of BM monocytes/macrophages provide important resources to serve as a basis for future studies and future targets for the treatment of MPN patients.
Collapse
Affiliation(s)
- Wenjuan Fan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengcai Gao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meng Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fang Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rong Guo
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
23
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
24
|
Kara N, Xue Y, Zhao Z, Murphy MM, Comazzetto S, Lesser A, Du L, Morrison SJ. Endothelial and Leptin Receptor + cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev Cell 2023; 58:348-360.e6. [PMID: 36868235 PMCID: PMC10035381 DOI: 10.1016/j.devcel.2023.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
Mammalian hematopoietic stem cells (HSCs) colonize the bone marrow during late fetal development, and this becomes the major site of hematopoiesis after birth. However, little is known about the early postnatal bone marrow niche. We performed single-cell RNA sequencing of mouse bone marrow stromal cells at 4 days, 14 days, and 8 weeks after birth. Leptin-receptor-expressing (LepR+) stromal cells and endothelial cells increased in frequency during this period and changed their properties. At all postnatal stages, LepR+ cells and endothelial cells expressed the highest stem cell factor (Scf) levels in the bone marrow. LepR+ cells expressed the highest Cxcl12 levels. In early postnatal bone marrow, SCF from LepR+/Prx1+ stromal cells promoted myeloid and erythroid progenitor maintenance, while SCF from endothelial cells promoted HSC maintenance. Membrane-bound SCF in endothelial cells contributed to HSC maintenance. LepR+ cells and endothelial cells are thus important niche components in early postnatal bone marrow.
Collapse
Affiliation(s)
- Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Xue
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malea M Murphy
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA
| | - Stefano Comazzetto
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Lesser
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liming Du
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, Wen WX, Sousos N, Murphy LC, Grygielska B, Perrella G, Mahony CB, Ling RE, Elliott NE, Karali CS, Stone AP, Kemble S, Cutler EA, Fielding AK, Croft AP, Bassett D, Poologasundarampillai G, Roy A, Gooding S, Rayes J, Machlus KR, Psaila B. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov 2023; 13:364-385. [PMID: 36351055 PMCID: PMC9900323 DOI: 10.1158/2159-8290.cd-22-0199] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michela Colombo
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Guanlin Wang
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wei Xiong Wen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nikolaos Sousos
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lauren C. Murphy
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca E. Ling
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Natalina E. Elliott
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew P. Stone
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Emily A. Cutler
- University College London Cancer Institute, London, United Kingdom
| | | | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | | | - Anindita Roy
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
26
|
Grigoryan A, Zacharaki D, Balhuizen A, Côme CR, Garcia AG, Hidalgo Gil D, Frank AK, Aaltonen K, Mañas A, Esfandyari J, Kjellman P, Englund E, Rodriguez C, Sime W, Massoumi R, Kalantari N, Prithiviraj S, Li Y, Dupard SJ, Isaksson H, Madsen CD, Porse BT, Bexell D, Bourgine PE. Engineering human mini-bones for the standardized modeling of healthy hematopoiesis, leukemia, and solid tumor metastasis. Sci Transl Med 2022; 14:eabm6391. [PMID: 36223446 DOI: 10.1126/scitranslmed.abm6391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.
Collapse
Affiliation(s)
- Ani Grigoryan
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Alexander Balhuizen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christophe Rm Côme
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Carmen Rodriguez
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Nasim Kalantari
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Sujeethkumar Prithiviraj
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Yuan Li
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Steven J Dupard
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 221 85 Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Paul E Bourgine
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
27
|
Deng ZH, Zhong J, Jiang HL, Jeong HW, Chen JW, Shu YH, Tan M, Adams RH, Xie KP, Chen Q, Liu Y. Antipsychotic drugs induce vascular defects in hematopoietic organs. FASEB J 2022; 36:e22538. [PMID: 36065631 DOI: 10.1096/fj.202200862r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
Antipsychotic agents are clinically utilized to treat schizophrenia and other mental disorders. These drugs induce neurological and metabolic side effects, but their influence on blood vessels remains largely unknown. Here, we show that haloperidol, one of the most frequently prescribed antipsychotic agents, induces vascular defects in bone marrow. Acute haloperidol treatment results in vascular dilation that is specific to hematopoietic organs. This vessel dilation is associated with disruption of hematopoiesis and hematopoietic stem/progenitor cells (HSPCs), both of which are reversible after haloperidol withdrawal. Mechanistically, haloperidol treatment blocked the secretion of vascular endothelial growth factor A (VEGF-A) from HSPCs. Genetic blockade of VEGF-A secretion from hematopoietic cells or inhibition of VEGFR2 in endothelial cells result in similar vessel dilation in bone marrow during regeneration after irradiation and transplantation. Conversely, VEGF-A gain of function rescues the bone marrow vascular defects induced by haloperidol treatment and irradiation. Our work reveals an unknown effect of antipsychotic agents on the vasculature and hematopoiesis with potential implications for drug application in clinic.
Collapse
Affiliation(s)
- Zhao-Hua Deng
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jing Zhong
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Lin Jiang
- Department of Pathology and Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany
| | - Jian-Wei Chen
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ya-Hai Shu
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ming Tan
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany
| | - Ke-Ping Xie
- Department of Pathology and Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qi Chen
- Center for cell lineage and development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China.,Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre
- NHC Key Laboratory of biotechnology drugs
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yang Liu
- Department of Pathology and Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Phosphate Metabolic Inhibition Contributes to Irradiation-Induced Myelosuppression through Dampening Hematopoietic Stem Cell Survival. Nutrients 2022; 14:nu14163395. [PMID: 36014901 PMCID: PMC9415467 DOI: 10.3390/nu14163395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
Myelosuppression is a common and intractable side effect of cancer therapies including radiotherapy and chemotherapy, while the underlying mechanism remains incompletely understood. Here, using a mouse model of radiotherapy-induced myelosuppression, we show that inorganic phosphate (Pi) metabolism is acutely inhibited in hematopoietic stem cells (HSCs) during irradiation-induced myelosuppression, and closely correlated with the severity and prognosis of myelosuppression. Mechanistically, the acute Pi metabolic inhibition in HSCs results from extrinsic Pi loss in the bone marrow niche and the intrinsic transcriptional suppression of soluble carrier family 20 member 1 (SLC20A1)-mediated Pi uptake by p53. Meanwhile, Pi metabolic inhibition blunts irradiation-induced Akt hyperactivation in HSCs, thereby weakening its ability to counteract p53-mediated Pi metabolic inhibition and the apoptosis of HSCs and consequently contributing to myelosuppression progression. Conversely, the modulation of the Pi metabolism in HSCs via a high Pi diet or renal Klotho deficiency protects against irradiation-induced myelosuppression. These findings reveal that Pi metabolism and HSC survival are causally linked by the Akt/p53–SLC20A1 axis during myelosuppression and provide valuable insights into the pathogenesis and management of myelosuppression.
Collapse
|
29
|
Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharm Res 2022; 45:558-571. [PMID: 35951164 DOI: 10.1007/s12272-022-01400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Sometimes, people can be exposed to moderate or high doses of radiation accidentally or through the environment. Radiation can cause great harm to several systems within organisms, especially the hematopoietic system. Several types of drugs protect the hematopoietic system against radiation damage in different ways. They can be classified as "synthetic drugs" and "natural compounds." Their cellular mechanisms to protect organisms from radiation damage include free radical-scavenging, anti-oxidation, reducing genotoxicity and apoptosis, and alleviating suppression of the bone marrow. These topics have been reviewed to provide new ideas for the development and research of drugs alleviating radiation-induced damage to the hematopoietic system.
Collapse
|
30
|
Kiani-Zadeh M, Rezvany MR, Namjoo S, Barati M, Mohammadi MH, Ghasemi B, Tabatabaei T, Ghavamzadeh A, Zaker F, Teimoori-Toolabi L. Studying the potential of upregulated PTGS2 and VEGF-C besides hyper-methylation of PTGS2 promoter as biomarkers of Acute myeloid leukemia. Mol Biol Rep 2022; 49:7849-7862. [PMID: 35733068 DOI: 10.1007/s11033-022-07615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Hereby, we aimed to investigate the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and Vascular Endothelial Factor-C (VEGF-C) besides the methylation of PTGS2 in AML patients. VEGF-C and PTGS2 expression analysis were evaluated in newly diagnosed AML patients and healthy controls by quantitative Reverse Transcriptase PCR method. Also, PTGS2 methylation status was evaluated by Methylation-Sensitive High-Resolution Melting Curve Analysis (MS-HRM). While 34% of patients were female, the mean age of the patients was 43.41 ± 17.60 years suffering mostly from M4 (48.21%) type of AML. Although methylation level between patients and controls was not significantly different, none of the normal controls showed methylation in the PTGS2 promoter. PTGS2 and VEGF-C levels were elevated in AML cases and correlated with WBC, Platelet, and Hemoglobin levels. The survival of patients with overexpressed VEGF-C and PTGS2 was poorer than others. It can be concluded that PTGS2 and especially VEGF-C expression but not PTGS2 methylation can be considered as diagnostic biomarkers for AML.
Collapse
Affiliation(s)
- Masoumeh Kiani-Zadeh
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, 17176, Stockholm, Sweden
| | - Soodeh Namjoo
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of HSCT research center, Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Ghasemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Tahere Tabatabaei
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street Kargar Avenue, 1316943551, Tehran, Iran.
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
31
|
Ye J, Calvo IA, Cenzano I, Vilas A, Martinez-de-Morentin X, Lasaga M, Alignani D, Paiva B, Viñado AC, San Martin-Uriz P, Romero JP, Quilez Agreda D, Miñana Barrios M, Sancho-González I, Todisco G, Malcovati L, Planell N, Saez B, Tegner JN, Prosper F, Gomez-Cabrero D. Deconvolution of the hematopoietic stem cell microenvironment reveals a high degree of specialization and conservation. iScience 2022; 25:104225. [PMID: 35494238 PMCID: PMC9046238 DOI: 10.1016/j.isci.2022.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.
Collapse
Affiliation(s)
- Jin Ye
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| | - Isabel A. Calvo
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Itziar Cenzano
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | - Amaia Vilas
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Xabier Martinez-de-Morentin
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Miren Lasaga
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Diego Alignani
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Bruno Paiva
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Ana C. Viñado
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | - Juan P. Romero
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
| | | | | | | | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia & Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Nuria Planell
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
| | - Borja Saez
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Jesper N. Tegner
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Stockholm, Sweden
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| | - Felipe Prosper
- Universidad de Navarra, CIMA, Hematology-Oncology Program, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Service of Hematology and Cell Therapy, Clínica Universidad de Navarra; CCUN, Pamplona, Navarra, 31008; Spain
| | - David Gomez-Cabrero
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
- Navarrabiomed, ComplejoHospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 31008 Navarra, Spain
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Stockholm, Sweden
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College, London WC2R 2LS, UK
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
32
|
Zhong L, Yao L, Holdreith N, Yu W, Gui T, Miao Z, Elkaim Y, Li M, Gong Y, Pacifici M, Maity A, Busch TM, Joeng KS, Cengel K, Seale P, Tong W, Qin L. Transient expansion and myofibroblast conversion of adipogenic lineage precursors mediate bone marrow repair after radiation. JCI Insight 2022; 7:150323. [PMID: 35393948 PMCID: PMC9057603 DOI: 10.1172/jci.insight.150323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Radiation causes a collapse of bone marrow cells and elimination of microvasculature. To understand how bone marrow recovers after radiation, we focused on mesenchymal lineage cells that provide a supportive microenvironment for hematopoiesis and angiogenesis in bone. We recently discovered a nonproliferative subpopulation of marrow adipogenic lineage precursors (MALPs) that express adipogenic markers with no lipid accumulation. Single-cell transcriptomic analysis revealed that MALPs acquire proliferation and myofibroblast features shortly after radiation. Using an adipocyte-specific Adipoq-Cre, we validated that MALPs rapidly and transiently expanded at day 3 after radiation, coinciding with marrow vessel dilation and diminished marrow cellularity. Concurrently, MALPs lost most of their cell processes, became more elongated, and highly expressed myofibroblast-related genes. Radiation activated mTOR signaling in MALPs that is essential for their myofibroblast conversion and subsequent bone marrow recovery at day 14. Ablation of MALPs blocked the recovery of bone marrow vasculature and cellularity, including hematopoietic stem and progenitors. Moreover, VEGFa deficiency in MALPs delayed bone marrow recovery after radiation. Taken together, our research demonstrates a critical role of MALPs in mediating bone marrow repair after radiation injury and sheds light on a cellular target for treating marrow suppression after radiotherapy.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, China
| | - Nicholas Holdreith
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhen Miao
- Department of Biostatistics, Epidemiology and Informatics
| | - Yehuda Elkaim
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics
| | - Yanqing Gong
- Division of Translational Medicine and Human Genetics
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Kyu Sang Joeng
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|
34
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
35
|
Schiavo RK, Tamplin OJ. Vascular endothelial growth factor c regulates hematopoietic stem cell fate in the dorsal aorta. Development 2022; 149:dev199498. [PMID: 34919128 PMCID: PMC8917412 DOI: 10.1242/dev.199498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.
Collapse
|
36
|
Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. CURRENT STEM CELL REPORTS 2021; 7:194-203. [PMID: 34868826 PMCID: PMC8639543 DOI: 10.1007/s40778-021-00198-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/26/2022]
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.
Collapse
|
37
|
Termini CM, Pang A, Fang T, Roos M, Chang VY, Zhang Y, Setiawan NJ, Signaevskaia L, Li M, Kim MM, Tabibi O, Lin PK, Sasine JP, Chatterjee A, Murali R, Himburg HA, Chute JP. Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nat Commun 2021; 12:6990. [PMID: 34848712 PMCID: PMC8635308 DOI: 10.1038/s41467-021-27263-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/07/2021] [Indexed: 12/27/2022] Open
Abstract
Ionizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell - specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A - NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A - NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.
Collapse
Affiliation(s)
- Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Orthopedic Surgery, UCLA, Los Angeles, CA, USA
| | - Amara Pang
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Vivian Y Chang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Pediatric Hematology/Oncology, UCLA, Los Angeles, CA, USA
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicollette J Setiawan
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Lia Signaevskaia
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Orel Tabibi
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paulina K Lin
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Los Angeles, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Los Angeles, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John P Chute
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Cancer Center, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Soto CA, Lo Celso C, Purton LE, Frisch BJ. From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus 2021; 5:e10516. [PMID: 34693187 PMCID: PMC8520063 DOI: 10.1002/jbm4.10516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
The bone marrow microenvironment (BMME) regulates hematopoiesis through a complex network of cellular and molecular components. Hematologic malignancies reside within, and extensively interact with, the same BMME. These interactions consequently alter both malignant and benign hematopoiesis in multiple ways, and can encompass initiation of malignancy, support of malignant progression, resistance to chemotherapy, and loss of normal hematopoiesis. Herein, we will review supporting studies for interactions of the BMME with hematologic malignancies and discuss challenges still facing this exciting field of research. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Celia A. Soto
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Cristina Lo Celso
- Department of Life SciencesImperial College LondonLondonUK
- Sir Francis Crick InstituteLondonUK
| | - Louise E. Purton
- St Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Medicine at St. Vincent's HospitalThe University of MelbourneMelbourneVictoriaAustralia
| | - Benjamin J. Frisch
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Wilmot Cancer InstituteUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
- Center for Musculoskeletal ResearchUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| |
Collapse
|
39
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
40
|
Zhong L, Yao L, Seale P, Qin L. Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Pract Res Clin Endocrinol Metab 2021; 35:101518. [PMID: 33812853 PMCID: PMC8440665 DOI: 10.1016/j.beem.2021.101518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow mesenchymal stromal cells are a highly heterogenic cell population containing mesenchymal stem cells as well as other cell types. With the advance of single cell transcriptome analysis, several recent reports identified a prominent subpopulation of mesenchymal stromal cells that specifically express adipocyte markers but do not contain lipid droplets. We name this cell type marrow adipogenic lineage precursor, MALP, and consider it as a major cellular component of marrow adipose tissue. Here, we review the discovery of MALPs and summarize their unique features and regulatory roles in bone. We further discuss how these findings advance our understanding of bone remodeling, mesenchymal niche regulation of hematopoiesis, and marrow vasculature maintenance.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell 2021; 56:1848-1860. [PMID: 34146467 DOI: 10.1016/j.devcel.2021.05.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
In mammals, hematopoietic stem cells (HSCs) engage in hematopoiesis throughout adult life within the bone marrow, where they produce the mature cells necessary to maintain blood cell counts and immune function. In the bone marrow and spleen, HSCs are sustained in perivascular niches (microenvironments) associated with sinusoidal blood vessels-specialized veins found only in hematopoietic tissues. Endothelial cells and perivascular leptin receptor+ stromal cells produce the known factors required to maintain HSCs and many restricted progenitors in the bone marrow. Various other cells synthesize factors that maintain other restricted progenitors or modulate HSC or niche function. Recent studies identified new markers that resolve some of the heterogeneity among stromal cells and refine the localization of restricted progenitor niches. Other recent studies identified ways in which niches regulate HSC function and hematopoiesis beyond growth factors. We summarize the current understanding of hematopoietic niches, review recent progress, and identify important unresolved questions.
Collapse
|
42
|
Han X, Sun M, Chen B, Saiding Q, Zhang J, Song H, Deng L, Wang P, Gong W, Cui W. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater 2021; 6:1639-1652. [PMID: 33313444 PMCID: PMC7701916 DOI: 10.1016/j.bioactmat.2020.11.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
In the field of bone defect repair, 3D printed scaffolds have the characteristics of personalized customization and accurate internal structure. However, how to construct a well-structured vascular network quickly and effectively inside the scaffold is essential for bone repair after transplantation. Herein, inspired by the unique biological structure of "lotus seedpod", hydrogel microspheres encapsulating deferoxamine (DFO) liposomes were prepared through microfluidic technology as "lotus seeds", and skillfully combined with a three-dimensional (3D) printed bioceramic scaffold with biomimetic "lotus" biological structure which can internally grow blood vessels. In this composite scaffold system, DFO was effectively released by 36% in the first 6 h, which was conducive to promote the growth of blood vessels inside the scaffold quickly. In the following 7 days, the release rate of DFO reached 69%, which was fundamental in the formation of blood vessels inside the scaffold as well as osteogenic differentiation of bone mesenchymal stem cells (BMSCs). It was confirmed that the composite scaffold could significantly promote the human umbilical vein endothelial cells (HUVECs) to form the vascular morphology within 6 h in vitro. In vivo, the composite scaffold increased the expression of vascularization and osteogenic related proteins Hif1-α, CD31, OPN, and OCN in the rat femoral defect model, significantly cutting down the time of bone repair. To sum up, this "lotus seedpod" inspired porous bioceramic 3D printed scaffold with internal vascularization functionality has broad application prospects in the future.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Mingjie Sun
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Bo Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Qimanguli Saiding
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Junyue Zhang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Hongliang Song
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
43
|
Sendker S, Waack K, Reinhardt D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. CHILDREN (BASEL, SWITZERLAND) 2021; 8:371. [PMID: 34066861 PMCID: PMC8150304 DOI: 10.3390/children8050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia among children. Although significant progress in AML therapy has been achieved, treatment failure is still associated with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between leukemic cells and their microenvironment is required. The tremendous role of this bone marrow microenvironment in providing a supportive and protective shelter for leukemic cells, leading to disease development, progression, and relapse, has been emphasized by recent research. It has been revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular components is critical in the process of leukemogenesis. In this review, we provide a comprehensive overview of recently gained knowledge about the importance of the microenvironment in AML whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical trials and future challenges for the development of targeted therapies for AML.
Collapse
Affiliation(s)
| | | | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, Essen University Hospital, 45147 Essen, Germany; (S.S.); (K.W.)
| |
Collapse
|
44
|
Mosteo L, Storer J, Batta K, Searle EJ, Duarte D, Wiseman DH. The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Front Cell Dev Biol 2021; 9:635189. [PMID: 33777944 PMCID: PMC7991089 DOI: 10.3389/fcell.2021.635189] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.
Collapse
Affiliation(s)
- Laura Mosteo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Joanna Storer
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Kiran Batta
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Emma J Searle
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.,Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom.,Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
45
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|