1
|
Adle-Biassette H, Ricci R, Martin A, Martini M, Ravegnini G, Kaci R, Gélébart P, Poirot B, Sándor Z, Lehman-Che J, Tóth E, Papp B. Sarco/endoplasmic reticulum calcium ATPase 3 (SERCA3) expression in gastrointestinal stromal tumours. Pathology 2024; 56:343-356. [PMID: 38184384 DOI: 10.1016/j.pathol.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 01/08/2024]
Abstract
Accurate characterisation of gastrointestinal stromal tumours (GIST) is important for prognosis and the choice of targeted therapies. Histologically the diagnosis relies on positive immunostaining of tumours for KIT (CD117) and DOG1. Here we report that GISTs also abundantly express the type 3 Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA3). SERCA enzymes transport calcium ions from the cytosol into the endoplasmic reticulum and play an important role in regulating the intensity and the periodicity of calcium-induced cell activation. GISTs from various localisations, histological and molecular subtypes or risk categories were intensely immunopositive for SERCA3 with the exception of PDGFRA-mutated cases where expression was high or moderate. Strong SERCA3 expression was observed also in normal and hyperplastic interstitial cells of Cajal. Decreased SERCA3 expression in GIST was exceptionally observed in a zonal pattern, where CD117 staining was similarly decreased, reflecting clonal heterogeneity. In contrast to GIST, SERCA3 immunostaining of spindle cell tumours and other gastrointestinal tumours resembling GIST was negative or weak. In conclusion, SERCA3 immunohistochemistry may be useful for the diagnosis of GIST with high confidence, when used as a third marker in parallel with KIT and DOG1. Moreover, SERCA3 immunopositivity may be particularly helpful in cases with negative or weak KIT or DOG1 staining, a situation that may be encountered de novo, or during the spontaneous or therapy-induced clonal evolution of GIST.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; INSERM NeuroDiderot, DMU DREAM, France
| | - Riccardo Ricci
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Antoine Martin
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR U978, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Maurizio Martini
- Dipartimento di patologia umana dell'adulto e dell'età evolutiva 'Gaetano Barresi' Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rachid Kaci
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Pascal Gélébart
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brigitte Poirot
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zsuzsanna Sándor
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Jacqueline Lehman-Che
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Bela Papp
- INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France; CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
2
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
3
|
Abdelaal MR, Haffez H. The potential roles of retinoids in combating drug resistance in cancer: implications of ATP-binding cassette (ABC) transporters. Open Biol 2022; 12:220001. [PMID: 35642494 PMCID: PMC9157304 DOI: 10.1098/rsob.220001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multidrug resistance (MDR) means that tumour cells become unresponsive during or after the course of treatment to one or more of chemotherapeutic drugs. Chemotherapeutic resistance critically limits the treatment outcomes and remains a key challenge for clinicians. The alternation in intracellular drug concentration through the modulation of its transport across the plasma membrane is the major cause for MDR and is adopted by various mediators, including ATP-requiring enzymes (ATPases). Among these ATPases, ABC transporters have been extensively studied, and found to be highly implicated in tumorigenesis and MDR. The present review sheds light on the documented effects of retinoids on ABC enzymes to understand their mechanism in combating cancer cell resistance. This would open the gate to test the mechanism and applicability of different new synthetic retinoids in literature and market as modulators of ATP-dependent efflux pumping activity, and promote their applicability in diminishing anti-cancer drug resistance.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt,Centre of Scientific Excellence ‘Helwan Structural Biology Research (HSBR)’, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt,Centre of Scientific Excellence ‘Helwan Structural Biology Research (HSBR)’, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
4
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
5
|
Tsuchiya M, Giuliani A, Zimatore G, Erenpreisa J, Yoshikawa K. A Unified Genomic Mechanism of Cell-Fate Change. Results Probl Cell Differ 2022; 70:35-69. [PMID: 36348104 DOI: 10.1007/978-3-031-06573-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The purpose of our studies is to elucidate the nature of massive control of the whole genome expression with a particular emphasis on cell-fate change. The whole genome expression is coordinated by the emergence of a critical point (CP: a peculiar set of biphasic genes) with the genome acting as an integrated dynamical system. In response to stimuli, the genome expression self-organizes into local sub-, near-, and super-critical states, each exhibiting distinct collective behaviors with its center of mass acting as a local attractor, coexisting with the whole genome attractor (GA). The CP serves as the organizing center of cell-fate change, and its activation makes local perturbation to spread over the genome affecting GA. The activation of CP is in turn elicited by genes with elevated temporal variance (oscillating-mode genes), normally in charge to keep genome expression at pace with microenvironment fluctuations. When oscillation exceeds a given threshold, the CP synchronizes with the GA driving genome expression state transition. The expression synchronization wave invading the entire genome is fostered by the fusion-splitting dynamics of silencing pericentromere-associated heterochromatin domains and the consequent folding-unfolding transitions of transcribing euchromatin domains. The proposed mechanism is a unified step toward a time-evolutional transition theory of biological regulation.
Collapse
Affiliation(s)
- Masa Tsuchiya
- SEIKO Life Science Laboratory, SEIKO Research Institute for Education, Osaka, Japan.
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanitá, Rome, Italy.
| | | | | | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
6
|
Targeting CAMKK2 and SOC Channels as a Novel Therapeutic Approach for Sensitizing Acute Promyelocytic Leukemia Cells to All-Trans Retinoic Acid. Cells 2021; 10:cells10123364. [PMID: 34943872 PMCID: PMC8699360 DOI: 10.3390/cells10123364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium ions (Ca2+) play important and diverse roles in the regulation of autophagy, cell death and differentiation. Here, we investigated the impact of Ca2+ in regulating acute promyelocytic leukemia (APL) cell fate in response to the anti-cancer agent all-trans retinoic acid (ATRA). We observed that ATRA promotes calcium entry through store-operated calcium (SOC) channels into acute promyelocytic leukemia (APL) cells. This response is associated with changes in the expression profiles of ORAI1 and STIM1, two proteins involved in SOC channels activation, as well as with a significant upregulation of several key proteins associated to calcium signaling. Moreover, ATRA treatment of APL cells led to a significant activation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and its downstream effector AMP-activated protein kinase (AMPK), linking Ca2+ signaling to autophagy. Pharmacological inhibition of SOC channels and CAMKK2 enhanced ATRA-induced cell differentiation and death. Altogether, our results unravel an ATRA-elicited signaling pathway that involves SOC channels/CAMKK2 activation, induction of autophagy, inhibition of cellular differentiation and suppression of cell death. We suggest that SOC channels and CAMKK2 may constitute novel drug targets for potentiating the anti-cancer effect of ATRA in APL patients.
Collapse
|
7
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
8
|
Pagliaro L, Marchesini M, Roti G. Targeting oncogenic Notch signaling with SERCA inhibitors. J Hematol Oncol 2021; 14:8. [PMID: 33407740 PMCID: PMC7789735 DOI: 10.1186/s13045-020-01015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
9
|
Almasi S, El Hiani Y. Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance. Cancers (Basel) 2020; 12:cancers12061624. [PMID: 32575381 PMCID: PMC7353007 DOI: 10.3390/cancers12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON KIH 8M5, Canada;
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
10
|
Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland JP, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. Int J Mol Sci 2020; 21:ijms21093351. [PMID: 32397400 PMCID: PMC7247589 DOI: 10.3390/ijms21093351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases (SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar). SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms, which can display isoform-specific calcium transport characteristics. SERCA expression levels and isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3 expression is restored during the pharmacologically induced differentiation of various cancer and leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium homeostasis in tumors.
Collapse
Affiliation(s)
- Bela Papp
- Institut National de la Santé et de la Recherche Médicale, UMR U976, Institut Saint-Louis, 75010 Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, 75010 Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
- Correspondence: or
| | - Sophie Launay
- EA481, UFR Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Pascal Gélébart
- Department of Clinical Science-Hematology Section, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway;
| | - Atousa Arbabian
- Laboratoire d’Innovation Vaccins, Institut Pasteur de Paris, 75015 Paris, France;
| | - Agnes Enyedi
- Second Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Jean-Philippe Brouland
- Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Edgardo D. Carosella
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
| | - Homa Adle-Biassette
- AP-HP, Service d’Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 75010 Paris, France;
- Université de Paris, NeuroDiderot, Inserm UMR 1141, 75019 Paris, France
| |
Collapse
|
11
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Pesakhov S, Nachliely M, Barvish Z, Aqaqe N, Schwartzman B, Voronov E, Sharoni Y, Studzinski GP, Fishman D, Danilenko M. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget 2017; 7:31847-61. [PMID: 26870993 PMCID: PMC5077981 DOI: 10.18632/oncotarget.7240] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by extremely heterogeneous molecular and biologic abnormalities that hamper the development of effective targeted treatment modalities. While AML cells are highly sensitive to cytotoxic Ca2+ overload, the feasibility of Ca2+- targeted therapy of this disease remains unclear. Here, we show that apoptotic response of AML cells to the synergistically acting polyphenols curcumin (CUR) and carnosic acid (CA), combined at low, non-cytotoxic doses of each compound was mediated solely by disruption of cellular Ca2+ homeostasis. Specifically, activation of caspase cascade in CUR+CA-treated AML cells resulted from sustained elevation of cytosolic Ca2+ (Ca2+cyt) and was not preceded by endoplasmic reticulum stress or mitochondrial damage. The CUR+CA-induced Ca2+cyt rise did not involve excessive influx of extracellular Ca2+ but, rather, occurred due to massive Ca2+ release from intracellular stores concomitant with inhibition of Ca2+cyt extrusion through the plasma membrane. Notably, the CUR+CA combination did not alter Ca2+ homeostasis and viability in non-neoplastic hematopoietic cells, suggesting its cancer-selective action. Most importantly, co-administration of CUR and CA to AML-bearing mice markedly attenuated disease progression in two animal models. Collectively, our results provide the mechanistic and translational basis for further characterization of this combination as a prototype of novel Ca2+-targeted pharmacological tools for the treatment of AML.
Collapse
Affiliation(s)
- Stella Pesakhov
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zeev Barvish
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.,Permanent address: Blood Bank Institute, Soroka University Medical Center, Beer Sheva 85025, Israel
| | - Nasma Aqaqe
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.,Permanent address: Department of Pathology, Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Bar Schwartzman
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - George P Studzinski
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel Fishman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
13
|
Bower DV, Lansdale N, Navarro S, Truong TV, Bower DJ, Featherstone NC, Connell MG, Al Alam D, Frey MR, Trinh LA, Fernandez GE, Warburton D, Fraser SE, Bennett D, Jesudason EC. SERCA directs cell migration and branching across species and germ layers. Biol Open 2017; 6:1458-1471. [PMID: 28821490 PMCID: PMC5665464 DOI: 10.1242/bio.026039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022] Open
Abstract
Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland, and the Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Nick Lansdale
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Division of Child Health, Institute of Translational Medicine, University of Liverpool, Liverpool L12 2AP, UK
| | - Sonia Navarro
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thai V Truong
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Dan J Bower
- Center for Space and Habitability, University of Bern, 3012 Bern, Switzerland
| | - Neil C Featherstone
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Marilyn G Connell
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Denise Al Alam
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Le A Trinh
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Biological Sciences and Molecular and Computational Biology, Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daimark Bennett
- Department of Biochemistry & Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- NHS Lothian, Edinburgh, EH14 1TY, UK
| |
Collapse
|
14
|
Aït Ghezali L, Arbabian A, Roudot H, Brouland JP, Baran-Marszak F, Salvaris E, Boyd A, Drexler HG, Enyedi A, Letestu R, Varin-Blank N, Papp B. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation. J Exp Clin Cancer Res 2017; 36:87. [PMID: 28651627 PMCID: PMC5485704 DOI: 10.1186/s13046-017-0556-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/18/2017] [Indexed: 11/15/2022] Open
Abstract
Background Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. Methods In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. Results We show that E2A-PBX1+ leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. Conclusion These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0556-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Aït Ghezali
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | | | - Hervé Roudot
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | | | - Fanny Baran-Marszak
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Evelyn Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Andrew Boyd
- Department of Medicine, University of Queensland, Queensland, Australia
| | - Hans G Drexler
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brauschweig, Germany
| | - Agnes Enyedi
- Second Institute of Pathology, Semmelweis University Medical School, Budapest, Hungary
| | - Remi Letestu
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | - Bela Papp
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France. .,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France. .,U978 Inserm, UFR SMBH, Université Paris-13, 74, rue Marcel Cachin, 93017, Bobigny, France.
| |
Collapse
|
15
|
Flores-Peredo L, Rodríguez G, Zarain-Herzberg A. Induction of cell differentiation activates transcription of the Sarco/Endoplasmic Reticulum calcium-ATPase 3 gene (ATP2A3) in gastric and colon cancer cells. Mol Carcinog 2017; 56:735-750. [PMID: 27433831 DOI: 10.1002/mc.22529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2023]
Abstract
The Sarco/Endoplasmic Reticulum Ca2+ -ATPases (SERCAs), pump Ca2+ into the endoplasmic reticulum lumen modulating cytosolic Ca2+ concentrations to regulate various cellular processes including cell growth. Previous studies have reported a downregulation of SERCA3 protein expression in gastric and colon cancer cell lines and showed that in vitro cell differentiation increases its expression. However, little is known about the transcriptional mechanisms and transcription factors that regulate SERCA3 expression in epithelial cancer cells. In this work, we demonstrate that SERCA3 mRNA is upregulated up to 45-fold in two epithelial cancer cell lines, KATO-III and Caco-2, induced to differentiate with histone deacetylase inhibitors (HDACi) and by cell confluence, respectively. To evaluate the transcriptional elements responding to the differentiation stimuli, we cloned the human ATP2A3 promoter, generated deletion constructs and transfected them into KATO-III cells. Basal and differentiation responsive DNA elements were located by functional analysis within the first -135 bp of the promoter region. Using site-directed mutagenesis and DNA-protein binding assays we found that Sp1, Sp3, and Klf-4 transcription factors bind to ATP2A3 proximal promoter elements and regulate basal gene expression. We showed that these factors participated in the increase of ATP2A3 expression during cancer cell differentiation. This study provides evidence for the first time that Sp1, Sp3, and Klf-4 transcriptionally modulate the expression of SERCA3 during induction of epithelial cancer cell differentiation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucía Flores-Peredo
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriela Rodríguez
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
16
|
Tsuchiya M, Giuliani A, Hashimoto M, Erenpreisa J, Yoshikawa K. Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change. PLoS One 2016; 11:e0167912. [PMID: 27997556 PMCID: PMC5173342 DOI: 10.1371/journal.pone.0167912] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. PRINCIPAL FINDINGS Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change. CONCLUSION AND SIGNIFICANCE 'Whole-genome' regulation of gene expression through self-regulatory SOC control complements gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium statistical mechanism that is responsible for the massive reprogramming of genome expression.
Collapse
Affiliation(s)
- Masa Tsuchiya
- Systems Biology Program, School of Media and Governance, Keio University, Fujisawa, Japan
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanitá, Rome, Italy
| | - Midori Hashimoto
- Graduate School of Frontier Science, the University of Tokyo, Kashiwa, Japan
| | | | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
17
|
Inhibition and conformational change of SERCA3b induced by Bcl-2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:121-131. [PMID: 27639965 DOI: 10.1016/j.bbapap.2016.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023]
Abstract
An interaction of Bcl-2 with SERCA had been documented in vitro using the SERCA1a isoform isolated from rat skeletal muscle [Dremina, E. S., Sharov, V. S., Kumar, K., Azidi, A., Michaelis, E. K., Schöneich, C. (2004) Biochem. J. 383 (361-370)]. Here, we demonstrate the interaction of Bcl-2 with the SERCA3b isoform both in vitro and in cell culture. In vitro, the interaction of Bcl-2 with SERCA3b was studied using Bcl-2∆21, a truncated form of human Bcl-2, and microsomes isolated from SERCA3b-overexpressing HEK-293 cells. For these experiments, SERCA3b was quantified by a combination of amino acid analysis and Western blotting. We observed that Bcl-2∆21 both inactivates SERCA3b and co-immunoprecipitates with SERCA3b. The incubation with Bcl-2∆21 changes the distribution of SERCA3b during sucrose density gradient centrifugation, likely as the result of Bcl-2∆21-induced conformational change of SERCA3b. When SERCA3b-overexpressing HEK-293 cells were co-transfected with Bcl-2, Bcl-2-dependent SERCA3b inactivation was observed. In these cells, Bcl-2 interaction with SERCA3b was demonstrated by co-immunoprecipitation. Furthermore, overexpression of Bcl-2 reduced fluorescein isothiocyanate (FITC) labeling of SERCA3b. Together, our data provide evidence for the interaction of Bcl-2 with SERCA3b in vitro and in cell culture, and for Bcl-2-dependent conformational and functional changes of SERCA3b.
Collapse
|
18
|
Dang D, Rao R. Calcium-ATPases: Gene disorders and dysregulation in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1344-50. [PMID: 26608610 DOI: 10.1016/j.bbamcr.2015.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022]
Abstract
Ca(2+)-ATPases belonging to the superfamily of P-type pumps play an important role in maintaining low, nanomolar cytoplasmic Ca(2+) levels at rest and priming organellar stores, including the endoplasmic reticulum, Golgi, and secretory vesicles with high levels of Ca(2+) for a wide range of signaling functions. In this review, we introduce the distinct subtypes of Ca(2+)-ATPases and their isoforms and splice variants and provide an overview of their specific cellular roles as they relate to genetic disorders and cancer, with a particular emphasis on recent findings on the secretory pathway Ca(2+)-ATPases (SPCA). Mutations in human ATP2A2, ATP2C1 genes, encoding housekeeping isoforms of the endoplasmic reticulum (SERCA2) and secretory pathway (SPCA1) pumps, respectively, confer autosomal dominant disorders of the skin, whereas mutations in other isoforms underlie various muscular, neurological, or developmental disorders. Emerging evidence points to an important function of dysregulated Ca(2+)-ATPase expression in cancers of the colon, lung, and breast where they may serve as markers of differentiation or novel targets for therapeutic intervention. We review the mechanisms underlying the link between calcium homeostasis and cancer and discuss the potential clinical relevance of these observations. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Ait-Ghezali L, Arbabian A, Jeibmann A, Hasselblatt M, Hallaert GG, Van den Broecke C, Gray F, Brouland JP, Varin-Blank N, Papp B. Loss of endoplasmic reticulum calcium pump expression in choroid plexus tumours. Neuropathol Appl Neurobiol 2014; 40:726-35. [DOI: 10.1111/nan.12098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/08/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Lamia Ait-Ghezali
- Institut National de la Santé et de la Recherche Médicale; UMR U978; Bobigny France
- Université Paris-13; PRES Sorbonne Paris-Cité; Bobigny France
| | | | - Astrid Jeibmann
- Institute of Neuropathology; University Hospital Münster; Münster Germany
| | - Martin Hasselblatt
- Institute of Neuropathology; University Hospital Münster; Münster Germany
| | | | | | - Françoise Gray
- AP-HP; Service d'Anatomie et Cytologie Pathologiques; Hôpital Lariboisière; Paris France
| | - Jean-Philippe Brouland
- AP-HP; Service d'Anatomie et Cytologie Pathologiques; Hôpital Lariboisière; Paris France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale; UMR U978; Bobigny France
- Université Paris-13; PRES Sorbonne Paris-Cité; Bobigny France
| | - Bela Papp
- Institut National de la Santé et de la Recherche Médicale; UMR U978; Bobigny France
- Université Paris-13; PRES Sorbonne Paris-Cité; Bobigny France
| |
Collapse
|
20
|
Weng S, Sprague JE, Oh J, Riek AE, Chin K, Garcia M, Bernal-Mizrachi C. Vitamin D deficiency induces high blood pressure and accelerates atherosclerosis in mice. PLoS One 2013; 8:e54625. [PMID: 23349943 PMCID: PMC3551761 DOI: 10.1371/journal.pone.0054625] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022] Open
Abstract
Multiple epidemiological studies link vitamin D deficiency to increased cardiovascular disease (CVD), but causality and possible mechanisms underlying these associations are not established. To clarify the role of vitamin D-deficiency in CVD in vivo, we generated mouse models of diet-induced vitamin D deficiency in two backgrounds (LDL receptor- and ApoE-null mice) that resemble humans with diet-induced hypertension and atherosclerosis. Mice were fed vitamin D-deficient or -sufficient chow for 6 weeks and then switched to high fat (HF) vitamin D-deficient or -sufficient diet for 8-10 weeks. Mice with diet-induced vitamin D deficiency showed increased systolic and diastolic blood pressure, high plasma renin, and decreased urinary sodium excretion. Hypertension was reversed and renin was suppressed by returning chow-fed vitamin D-deficient mice to vitamin D-sufficient chow diet for 6 weeks. On a HF diet, vitamin D-deficient mice had ~2-fold greater atherosclerosis in the aortic arch and ~2-8-fold greater atherosclerosis in the thoracic and abdominal aorta compared to vitamin D-sufficient mice. In the aortic root, HF-fed vitamin D-deficient mice had increased macrophage infiltration with increased fat accumulation and endoplasmic reticulum (ER) stress activation, but a lower prevalence of the M1 macrophage phenotype within atherosclerotic plaques. Similarly, peritoneal macrophages from vitamin D-deficient mice displayed an M2-predominant phenotype with increased foam cell formation and ER stress. Treatment of vitamin D-deficient mice with the ER stress reliever PBA during HF feeding suppressed atherosclerosis, decreased peritoneal macrophage foam cell formation, and downregulated ER stress proteins without changing blood pressure. Thus, we suggest that vitamin D deficiency activates both the renin angiotensin system and macrophage ER stress to contribute to the development of hypertension and accelerated atherosclerosis, highlighting vitamin D replacement as a potential therapy to reduce blood pressure and atherosclerosis.
Collapse
Affiliation(s)
- Sherry Weng
- Department of Anesthesiology, Washington University, St. Louis, Missouri, United States of America
| | - Jennifer E. Sprague
- Division of Pediatric Endocrinology and Diabetes, Washington University, St. Louis, Missouri, United States of America
| | - Jisu Oh
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, Missouri, United States of America
| | - Amy E. Riek
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, Missouri, United States of America
| | - Kathleen Chin
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, Missouri, United States of America
| | - Miguel Garcia
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, Missouri, United States of America
| | - Carlos Bernal-Mizrachi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Arbabian A, Brouland JP, Apáti Á, Pászty K, Hegedűs L, Enyedi Á, Chomienne C, Papp B. Modulation of endoplasmic reticulum calcium pump expression during lung cancer cell differentiation. FEBS J 2012; 280:5408-18. [PMID: 23157274 DOI: 10.1111/febs.12064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 12/14/2022]
Abstract
Cellular calcium signaling plays important roles in several signal transduction pathways that control proliferation, differentiation and apoptosis. In epithelial cells calcium signaling is initiated mainly by calcium release from endoplasmic-reticulum-associated intracellular calcium pools. Because calcium is accumulated in the endoplasmic reticulum by sarco/endoplasmic reticulum calcium ATPases (SERCA), these enzymes play a critical role in the control of calcium-dependent cell activation, growth and survival. We investigated the modulation of SERCA expression and function in human lung adenocarcinoma cells. In addition to the ubiquitous SERCA2 enzyme, the SERCA3 isoform was also expressed at variable levels. SERCA3 expression was selectively enhanced during cell differentiation in lung cancer cells, and marked SERCA3 expression was found in fully differentiated normal bronchial epithelium. As studied by using a recombinant fluorescent calcium probe, induction of the expression of SERCA3, a lower calcium affinity pump, was associated with decreased intracellular calcium storage, whereas the amplitude of capacitative calcium influx remained unchanged. Our observations indicate that the calcium homeostasis of the endoplasmic reticulum in lung adenocarcinoma cells presents a functional defect due to decreased SERCA3 expression that is corrected during pharmacologically induced differentiation. The data presented in this work show, for the first time, that endoplasmic reticulum calcium storage is anomalous in lung cancer cells, and suggest that SERCA3 may serve as a useful new phenotypic marker for the study of lung epithelial differentiation.
Collapse
Affiliation(s)
- Atousa Arbabian
- Institut National de la Santé et de la Recherche Médicale, UMR-S 940, Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, PRES Sorbonne Paris-Cité, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012; 287:11629-41. [PMID: 22356914 PMCID: PMC3320912 DOI: 10.1074/jbc.m111.338673] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Indexed: 01/18/2023] Open
Abstract
Macrophages are essential in atherosclerosis progression, but regulation of the M1 versus M2 phenotype and their role in cholesterol deposition are unclear. We demonstrate that endoplasmic reticulum (ER) stress is a key regulator of macrophage differentiation and cholesterol deposition. Macrophages from diabetic patients were classically or alternatively stimulated and then exposed to oxidized LDL. Alternative stimulation into M2 macrophages lead to increased foam cell formation by inducing scavenger receptor CD36 and SR-A1 expression. ER stress induced by alternative stimulation was necessary to generate the M2 phenotype through JNK activation and increased PPARγ expression. The absence of CD36 or SR-A1 signaling independently of modified cholesterol uptake decreased ER stress and prevented the M2 differentiation typically induced by alternative stimulation. Moreover, suppression of ER stress shifted differentiated M2 macrophages toward an M1 phenotype and subsequently suppressed foam cell formation by increasing HDL- and apoA-1-induced cholesterol efflux indicating suppression of macrophage ER stress as a potential therapy for atherosclerosis.
Collapse
Affiliation(s)
- Jisu Oh
- From the Division of Endocrinology, Metabolism, and Lipid Research
| | - Amy E. Riek
- From the Division of Endocrinology, Metabolism, and Lipid Research
| | - Sherry Weng
- From the Division of Endocrinology, Metabolism, and Lipid Research
| | - Marvin Petty
- From the Division of Endocrinology, Metabolism, and Lipid Research
| | - David Kim
- From the Division of Endocrinology, Metabolism, and Lipid Research
| | | | | | - Carlos Bernal-Mizrachi
- From the Division of Endocrinology, Metabolism, and Lipid Research
- Division of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
23
|
Papp B, Brouland JP, Arbabian A, Gélébart P, Kovács T, Bobe R, Enouf J, Varin-Blank N, Apáti A. Endoplasmic reticulum calcium pumps and cancer cell differentiation. Biomolecules 2012; 2:165-86. [PMID: 24970132 PMCID: PMC4030869 DOI: 10.3390/biom2010165] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major intracellular calcium storage pool and a multifunctional organelle that accomplishes several calcium-dependent functions involved in many homeostatic and signaling mechanisms. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA)-type calcium pumps. SERCA activity can determine ER calcium content available for intra-ER functions and for calcium release into the cytosol, and can shape the spatiotemporal characteristics of calcium signals. SERCA function therefore constitutes an important nodal point in the regulation of cellular calcium homeostasis and signaling, and can exert important effects on cell growth, differentiation and survival. In several cell types such as cells of hematopoietic origin, mammary, gastric and colonic epithelium, SERCA2 and SERCA3-type calcium pumps are simultaneously expressed, and SERCA3 expression levels undergo significant changes during cell differentiation, activation or immortalization. In addition, SERCA3 expression is decreased or lost in several tumor types when compared to the corresponding normal tissue. These observations indicate that ER calcium homeostasis is remodeled during cell differentiation, and may present defects due to decreased SERCA3 expression in tumors. Modulation of the state of differentiation of the ER reflected by SERCA3 expression constitutes an interesting new aspect of cell differentiation and tumor biology.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Jean-Philippe Brouland
- Service d'Anatomie et Cytologie Pathologique, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Atousa Arbabian
- Inserm UMR U 940, IUH Université Paris 7-Paris Diderot, 16, rue de la Grange aux Belles, 75010 Paris, France.
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Tünde Kovács
- Semmelweis University, Department of Medical Biochemistry, Tűzoltó u. 37-47, H-1094-Budapest, Hungary.
| | - Régis Bobe
- Inserm UMR U770, Université Paris-Sud 11. 80, rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
| | - Jocelyne Enouf
- Inserm UMR U689, Université Paris 7-Paris Diderot, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Agota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Diószegi út 64, H-1113-Budapest, Hungary.
| |
Collapse
|
24
|
Boutté AM, McDonald WH, Shyr Y, Yang L, Lin PC. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS One 2011; 6:e22446. [PMID: 21853032 PMCID: PMC3154190 DOI: 10.1371/journal.pone.0022446] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/22/2011] [Indexed: 01/04/2023] Open
Abstract
Expansion of Gr-1+/CD11b+ myeloid derived suppressor cells (MDSCs) is governed by the presence of increasingly metastatic, malignant primary tumors. Metastasis, not the primary tumor, is often the cause of mortality. This study sought to fully characterize the MDSC proteome in response to metastatic and non-metastatic mammary tumors using label-free mass spectrometry shotgun proteomics in a mouse model with tumor cell lines, 67NR and 4T1, derived from the same tumor. 67NR cells form only primary mammary tumors, whereas 4T1 cells readily metastasize to the lungs, lymph nodes, and blood. Overall analysis identified a total of 2825 protein groups with a 0.78% false discovery rate. Of the 2814 true identifications, 43 proteins were exclusive to the 67NR group, 153 were exclusive to the 4T1 group, and 2618 were shared. Among the shared cohort, 26 proteins were increased and 31 were decreased in the metastatic 4T1 cohort compared to non-metastatic 67NR controls after filtering. MDSCs selectively express proteins involved in the γ-glutamyl transferase, glutathione synthase pathways, CREB transcription factor signaling, and other pathways involved in platelet aggregation, as well as lipid and amino acid metabolism, in response to highly metastatic 4T1 tumors. Cell cycle regulation dominated protein pathways and ontological groups of the 67NR non-metastatic group. Not only does this study provide a starting point to identify potential biomarkers of metastasis expressed by MDSCs; it identifies critical pathways that are unique to non-metastatic and metastatic conditions. Therapeutic interventions aimed at these pathways in MDSC may offer a new route to control malignancy and metastasis.
Collapse
Affiliation(s)
- Angela M Boutté
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | |
Collapse
|
25
|
Papp B, Brouland JP. Altered Endoplasmic Reticulum Calcium Pump Expression during Breast Tumorigenesis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:163-74. [PMID: 21863130 PMCID: PMC3153116 DOI: 10.4137/bcbcr.s7481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum calcium homeostasis is involved in several essential cell functions including cell proliferation, protein synthesis, stress responses or secretion. Calcium uptake into the endoplasmic reticulum is performed by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). In order to study endoplasmic reticulum calcium homeostasis in situ in mammary tissue, in this work SERCA3 expression was investigated in normal breast and in its benign and malignant lesions in function of the cell type, degree of malignancy, and histological and molecular parameters of the tumors. Our data indicate, that although normal breast acinar epithelial cells express SERCA3 abundantly, its expression is strongly decreased already in very early non-malignant epithelial lesions such as adenosis, and remains low in lobular carcinomas. Whereas normal duct epithelium expresses significant amounts of SERCA3, its expression is decreased in several benign ductal lesions, as well as in ductal adenocarcinoma. The loss of SERCA3 expression is correlated with Elston-Ellis grade, negative hormone receptor expression or triple negative status in ductal carcinomas. The concordance between decreased SERCA3 expression and several histological, as well as molecular markers of ductal carcinogenesis indicates that endoplasmic reticulum calcium homeostasis is remodeled during tumorigenesis in the breast epithelium.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S 940, Institut Universitaire d'Hématologie, 16, rue de la Grange aux Belles, 75010 Paris, Université Paris Diderot, Sorbonne Paris Cité
| | | |
Collapse
|
26
|
Arbabian A, Brouland JP, Gélébart P, Kovàcs T, Bobe R, Enouf J, Papp B. Endoplasmic reticulum calcium pumps and cancer. Biofactors 2011; 37:139-49. [PMID: 21674635 DOI: 10.1002/biof.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/15/2010] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum calcium homeostasis is involved in a multitude of signaling, as well as "house-keeping" functions that control cell growth, differentiation or apoptosis in every human/eukaryotic cell. Calcium is actively accumulated in the endoplasmic reticulum by Sarco/Endoplasmic Reticulum Calcium transport ATPases (SERCA enzymes). SERCA-dependent calcium transport is the only calcium uptake mechanism in this organelle, and therefore the regulation of SERCA function by the cell constitutes a key mechanism to adjust calcium homeostasis in the endoplasmic reticulum depending on the cell type and its state of differentiation. The direct pharmacological modulation of SERCA activity affects cell differentiation and survival. SERCA expression levels can undergo significant changes during cell differentiation or tumorigenesis, leading to modified endoplasmic reticulum calcium storage. In several cell types such as cells of hematopoietic origin or various epithelial cells, two SERCA genes (SERCA2 and SERCA3) are simultaneously expressed. Expression levels of SERCA3, a lower calcium affinity calcium pump are highly variable. In several cell systems SERCA3 expression is selectively induced during differentiation, whereas during tumorigenesis and blastic transformation SERCA3 expression is decreased. These observations point at the existence of a cross-talk, via the regulation of SERCA3 levels, between endoplasmic reticulum calcium homeostasis and the control of cell differentiation, and show that endoplasmic reticulum calcium homeostasis itself can undergo remodeling during differentiation. The investigation of the anomalies of endoplasmic reticulum differentiation in tumor and leukemia cells may be useful for a better understanding of the contribution of calcium signaling to the establishment of malignant phenotypes.
Collapse
Affiliation(s)
- Atousa Arbabian
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S, Institut Universitaire d'Hématologie, Université Paris Diderot-Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Dellis O, Arbabian A, Brouland JP, Kovàcs T, Rowe M, Chomienne C, Joab I, Papp B. Modulation of B-cell endoplasmic reticulum calcium homeostasis by Epstein-Barr virus latent membrane protein-1. Mol Cancer 2009; 8:59. [PMID: 19650915 PMCID: PMC3098015 DOI: 10.1186/1476-4598-8-59] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/03/2009] [Indexed: 12/14/2022] Open
Abstract
Background Calcium signaling plays an important role in B lymphocyte survival and activation, and is critically dependent on the inositol-1,4,5-tris-phosphate-induced release of calcium stored in the endoplasmic reticulum (ER). Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes), and therefore these enzymes play an important role in ER calcium homeostasis and in the control of B of cell activation. Because Epstein-Barr virus (EBV) can immortalize B cells and contributes to lymphomagenesis, in this work the effects of the virus on SERCA-type calcium pump expression and calcium accumulation in the endoplasmic reticulum of B cells was investigated. Results Two Sarco-Endoplasmic Reticulum Calcium transport ATPase isoforms, the low Ca2+-affinity SERCA3, and the high Ca2+-affinity SERCA2 enzymes are simultaneously expressed in B cells. Latency type III infection of Burkitt's lymphoma cell lines with immortalization-competent virus expressing the full set of latency genes selectively decreased the expression of SERCA3 protein, whereas infection with immortalization-deficient virus that does not express the EBNA2 or LMP-1 viral genes was without effect. Down-modulation of SERCA3 expression could be observed upon LMP-1, but not EBNA2 expression in cells carrying inducible transgenes, and LMP-1 expression was associated with enhanced resting cytosolic calcium levels and increased calcium storage in the endoplasmic reticulum. Similarly to virus-induced B cell immortalisation, SERCA3 expression was also decreased in normal B cells undergoing activation and blastic transformation in germinal centers of lymph node follicles. Conclusion The data presented in this work indicate that EBV-induced immortalization leads to the remodelling of ER calcium homeostasis of B cells by LMP-1 that copies a previously unknown normal phenomenon taking place during antigen driven B cell activation. The functional remodelling of ER calcium homeostasis by down-regulation of SERCA3 expression constitutes a previously unknown mechanism involved in EBV-induced B cell immortalisation.
Collapse
Affiliation(s)
- Olivier Dellis
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S 940, Institut Universitaire d'Hématologie, Université Paris VII, Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 16, rue de la Grange aux Belles, 75010 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bredoux R, Corvazier E, Dally S, Chaabane C, Bobe R, Raies A, Moreau A, Enouf J. Human platelet Ca2+-ATPases: New markers of cell differentiation as illustrated in idiopathic scoliosis. Platelets 2009; 17:421-33. [PMID: 16973504 DOI: 10.1080/09537100600758719] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aetiology of adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is unclear. Previous studies showed controversial platelet abnormalities including intracellular calcium. Platelet Ca2+ homeostasis is controlled by a multi-Ca2+-ATPase system including SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) and PMCA (plasma membrane Ca2+-ATPase) isoforms. Here, we first investigated the expression of PMCA4b, SERCA3a and SERCA2b isoforms in platelets of 17 patients with AIS. Patients presenting thoracic curves were found to present a higher PMCA4b expression coupled to a lower SERCA3a one in agreement with an abnormality in platelet maturation. Indeed, using PMA-treated MEG 01 cells, an in vitro model of megakaryocytopoiesis, we found an increase in SERCA3a expression, associated to a caspase-3 mediated C terminal proteolysis of PMCA4b. To look whether platelets reflect a basic defect in cell differentiation, we next identified osteoblast Ca2+-ATPases and studied their expressions in AIS. Major expressions of PMCA4b and SERCA2b were found in normal osteoblasts. Comparing platelets and osteoblasts in two additional patients with AIS, we found opposite and concerted regulations of the expressions of PMCA4b and caspase-3 substrate, PARP in both cell types. A systemic defect in cell differentiation involving caspase-3 can be proposed as a novel mechanism in the etiopathogenesis of the most frequent type of AIS. *R. Bredoux and E. Corvazier contributed equally to this work.
Collapse
|
29
|
Bobe R, Bredoux R, Corvazier E, Lacabaratz-Porret C, Martin V, Kovács T, Enouf J. How many Ca2+ATPase isoforms are expressed in a cell type? A growing family of membrane proteins illustrated by studies in platelets. Platelets 2009; 16:133-50. [PMID: 16011958 DOI: 10.1080/09537100400016847] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ca(2+) signaling plays a key role in normal and abnormal platelet functions. Understanding platelet Ca(2+) signaling requires the knowledge of proteins involved in this process. Among these proteins are Ca(2+)ATPases or Ca(2+) pumps that deplete the cytosol of Ca(2+) ions. Here, we will particularly focus on two Ca(2+) pump families: the plasma membrane Ca(2+)ATPases (PMCAs) that extrude cytosolic Ca(2+) towards the extracellular medium and the sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) that pump Ca(2+) into the endoplasmic reticulum (ER). In the present review, we will summarize data on platelet Ca(2+)ATPases including their identification and biogenesis. First of all, we will present the Ca(2+)ATPase genes and their isoforms expressed in platelets. We will especially focus on a member of the SERCA family, SERCA3, recently found to give rise to a number of species-specific isoforms. Next, we will describe the differences in Ca(2+)ATPase patterns observed in human and rat platelets. Last, we will analyze how the expression of Ca(2+)ATPase isoforms changes during megakaryocytic maturation and show that megakaryocytopoiesis is associated with a profound reorganization of the expression and/or activity of Ca(2+)ATPases. Taken together, these data provide new aspects of investigations to better understand normal and abnormal platelet Ca(2+) signaling.
Collapse
Affiliation(s)
- R Bobe
- INSERM U.689 E6, IFR139 Lariboisière, Hôpital Lariboisière, 8 Rue Guy Patin, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Corvazier E, Bredoux R, Kovács T, Enouf J. Expression of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 3 proteins in two major conformational states in native human cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:587-99. [DOI: 10.1016/j.bbamem.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/29/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
31
|
Astashkin EI, Glezer MG, Grachev SV. Trimetazidine selectively inhibits SOC channels in plasma membranes of human HL-60 cells and does not affect the intracellular Ca2+ stores. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2009; 424:86-89. [PMID: 19341094 DOI: 10.1134/s0012496609010256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- E I Astashkin
- Sechenov Moscow Medical Academy, ul. Malaya Trubetskaya 8, Moscow 119881, Russia
| | | | | |
Collapse
|
32
|
Ribiczey P, Tordai A, Andrikovics H, Filoteo AG, Penniston JT, Enouf J, Enyedi Á, Papp B, Kovács T. Isoform-specific up-regulation of plasma membrane Ca2+ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium 2007; 42:590-605. [PMID: 17433436 PMCID: PMC2096732 DOI: 10.1016/j.ceca.2007.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/09/2007] [Indexed: 02/06/2023]
Abstract
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.
Collapse
Affiliation(s)
- Polett Ribiczey
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Attila Tordai
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Hajnalka Andrikovics
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Adelaida G. Filoteo
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, United States
| | | | - Jocelyne Enouf
- Institut National de la Santé et de la Recherche Médicale (INSERM) U689 E4, Paris, France
- Université Paris 7-Denis Diderot, IFR139, Site Lariboisière, Paris, France
| | - Ágnes Enyedi
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Béla Papp
- INSERM, U718, Laboratoire de Biologie Cellulaire Hématopoïétique, Paris, France
- Université Paris 7-Denis Diderot, Faculté de médecine, IFR105-Saint Louis-Institut Universitaire d’Hématologie, Paris, France
| | - Tünde Kovács
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
- *Corresponding author at: National Medical Centre, Institute of Haematology and Immunology, Diószegi u. 64, H-1113 Budapest, Hungary, Tel/Fax: 36-1-372-4353 E-mail address:
| |
Collapse
|
33
|
Astashkin EI, Glezer MG, Grachev SV. Trimetazidine decreases Ca2+ response to thapsigargin in differentiated and undifferentiated human HL-60 cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2007; 412:92-5. [PMID: 17515056 DOI: 10.1134/s0012496607010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- E I Astashkin
- Sechenov Moscow Medical Academy, ul. Malaya Trubetskaya 8, Moscow, 119881, Russia
| | | | | |
Collapse
|
34
|
Astashkin EI, Suvorov NI, Mikhailova AA, Grachev SV. Change in the Ca2+ response to formyl peptide in HL-60 myeloblastic leukemia cells after the induction of their differentiation by MP-4 myelogenic peptide. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 408:265-8. [PMID: 16909995 DOI: 10.1134/s0012496606030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Chaâbane C, Corvazier E, Bredoux R, Dally S, Raïes A, Villemain A, Dupuy E, Enouf J, Bobe R. Sarco/endoplasmic reticulum Ca2+ATPase type 3 isoforms (SERCA3b and SERCA3f): Distinct roles in cell adhesion and ER stress. Biochem Biophys Res Commun 2006; 345:1377-85. [PMID: 16725111 DOI: 10.1016/j.bbrc.2006.05.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 01/11/2023]
Abstract
Sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) pump free Ca(2+) from the cytosol into the endoplasmic reticulum. The human SERCA3 family counts six members named SERCA3a to 3f. However, the exact role of these different isoforms in cellular physiology remains undetermined. In this study, we compared some physiological consequences of SERCA3b and SERCA3f overexpression in HEK-293 cells. We observed that overexpression of SERCA3b affected cell adhesion capacity associated with a major disorganization of F-actin and a decrease in focal adhesion. Furthermore, we found that SERCA3f overexpression resulted in an increase in endoplasmic reticulum stress markers (including processing of X-box-binding protein-1 (XBP-1) mRNA and expression of chaperone glucose-regulated protein 78 (GRP78)). This was associated with the activation of caspase cascade and a higher spontaneous cell death. In conclusion, these data point for the first time to distinct physiological roles of SERCA3 isoforms in cell functions.
Collapse
Affiliation(s)
- Chiraz Chaâbane
- Inserm U.689 E4, IFR-139, Centre de Recherche Cardiovasculaire Inserm Lariboisière, Hôpital Lariboisière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brouland JP, Valleur P, Papp B. Expression des pompes calciques de type SERCA au cours de la différenciation cellulaire et de la tumorigenèse: application à la carcinogenèse colique. Ann Pathol 2006; 26:159-72. [PMID: 17127848 DOI: 10.1016/s0242-6498(06)70701-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcium homeostasis of the endoplasmic reticulum (ER) is involved in intracellular signaling pathways and is implicated in major cell functions such as cell growth, differentiation, protein synthesis and apoptosis. The accumulation of calcium in the ER is performed by specific sarco/endoplasmic reticulum calcium transport ATPases (SERCA iso-enzymes). The expression of biochemically distinct SERCA isoforms is cell type dependent and developmentally regulated. This review summarizes pertinent data about the modulation of the expression of SERCA enzymes during the differentiation of normal and tumor cells. These data support the implication of SERCA pumps and especially SERCA3 in the differentiation program of cancer and leukemia cells. During the multi-step process of colon carcinogenesis, the decrease of SERCA3 expression seems to be linked to enhanced APC/ss-catenin/TCF4 signaling and deficient Sp1-like factor-dependent transcription.
Collapse
Affiliation(s)
- Jean-Philippe Brouland
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisière, 75475 Paris Cedex 10, France.
| | | | | |
Collapse
|
37
|
Hadri L, Pavoine C, Lipskaia L, Yacoubi S, Lompré AM. Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochem J 2006; 394:27-33. [PMID: 16250893 PMCID: PMC1385999 DOI: 10.1042/bj20051387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Histamine, known to induce Ca2+ oscillations in endothelial cells, was used to alter Ca2+ cycling. Treatment of HUVEC (human umbilical-vein endothelial cell)-derived EA.hy926 cells with histamine for 1-3 days increased the levels of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) 3, but not of SERCA 2b, transcripts and proteins. Promoter-reporter gene assays demonstrated that this increase in expression was due to activation of SERCA 3 gene transcription. The effect of histamine was abolished by mepyramine, but not by cimetidine, indicating that the H1 receptor, but not the H2 receptor, was involved. The histamine-induced up-regulation of SERCA 3 was abolished by cyclosporin A and by VIVIT, a peptide that prevents calcineurin and NFAT (nuclear factor of activated T-cells) from interacting, indicating involvement of the calcineurin/NFAT pathway. Histamine also induced the nuclear translocation of NFAT. NFAT did not directly bind to the SERCA 3 promoter, but activated Ets-1 (E twenty-six-1), which drives the expression of the SERCA 3 gene. Finally, cells treated with histamine and loaded with fura 2 exhibited an improved capacity in eliminating high cytosolic Ca2+ concentrations, in accordance with an increase in activity of a low-affinity Ca2+-ATPase, like SERCA 3. Thus chronic treatment of endothelial cells with histamine up-regulates SERCA 3 transcription. The effect of histamine is mediated by the H1R (histamine 1 receptor) and involves activation of the calcineurin/NFAT pathway. By increasing the rate of Ca2+ sequestration, up-regulation of SERCA 3 counteracts the cytosolic increase in Ca2+ concentration.
Collapse
Affiliation(s)
- Lahouaria Hadri
- *INSERM U621-IFR14/Université Pierre et Marie Curie, Faculté de médecine, 91 boulevard de l'Hôpital, 75634 Paris cedex 13, France
| | | | - Larissa Lipskaia
- *INSERM U621-IFR14/Université Pierre et Marie Curie, Faculté de médecine, 91 boulevard de l'Hôpital, 75634 Paris cedex 13, France
| | - Sabrina Yacoubi
- *INSERM U621-IFR14/Université Pierre et Marie Curie, Faculté de médecine, 91 boulevard de l'Hôpital, 75634 Paris cedex 13, France
| | - Anne-Marie Lompré
- *INSERM U621-IFR14/Université Pierre et Marie Curie, Faculté de médecine, 91 boulevard de l'Hôpital, 75634 Paris cedex 13, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Brouland JP, Gélébart P, Kovàcs T, Enouf J, Grossmann J, Papp B. The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep process of colon carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:233-42. [PMID: 15972967 PMCID: PMC1603437 DOI: 10.1016/s0002-9440(10)62968-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium accumulation in the endoplasmic reticulum is accomplished by sarco/endoplasmic reticulum calcium transport ATPases (SERCA enzymes). To better characterize the role of SERCA3 in colon carcinogenesis, its expression has been investigated in colonic epithelium, benign lesions, adenomas, and adenocarcinomas. In addition, the regulation of SERCA3 expression was analyzed in the context of the adenomatous polyposis coli/beta-catenin/T-cell factor 4 (TCF4) pathway and of specificity protein 1 (Sp1)-like factor-dependent transcription. We report that SERCA3 expression increased along the crypts as cells differentiated in normal colonic mucosa and in hyperplastic polyps, was moderately and heterogeneously expressed in colonic adenomas with expression levels inversely correlated with the degree of dysplasia, was barely detectable in well and moderately differentiated adenocarcinomas, and was absent in poorly differentiated tumors. Inhibition of Sp1-like factor-dependent transcription blocked SERCA3 expression during cell differentiation, and SERCA3 expression was induced by the expression of dominant-negative TCF4 in colon cancer cells. These data link SERCA3 expression to the state of differentiation of colonic epithelial cells, and relate SERCA3 expression, already decreased in adenomas, to enhanced adenomatous polyposis coli/beta-catenin/TCF4-dependent signaling and deficient Sp1-like factor-dependent transcription. In conclusion, intracellular calcium homeostasis becomes progressively anomalous during colon carcinogenesis as reflected by deficient SERCA3 expression.
Collapse
|
39
|
Papp B, Brouland JP, Gélébart P, Kovàcs T, Chomienne C. Endoplasmic reticulum calcium transport ATPase expression during differentiation of colon cancer and leukaemia cells. Biochem Biophys Res Commun 2004; 322:1223-36. [PMID: 15336970 DOI: 10.1016/j.bbrc.2004.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 11/19/2022]
Abstract
The calcium homeostasis of the endoplasmic reticulum (ER) is connected to a multitude of cell functions involved in intracellular signal transduction, control of proliferation, programmed cell death, or the synthesis of mature proteins. Calcium is accumulated in the ER by various biochemically distinct sarco/endoplasmic reticulum calcium transport ATPase isoenzymes (SERCA isoforms). Experimental data indicate that the SERCA composition of some carcinoma and leukaemia cell types undergoes significant changes during differentiation, and that this is accompanied by modifications of SERCA-dependent calcium accumulation in the ER. Because ER calcium homeostasis can also influence cell differentiation, we propose that the modulation of the expression of various SERCA isoforms, and in particular, the induction of the expression of SERCA3-type proteins, is an integral part of the differentiation program of some cancer and leukaemia cell types. The SERCA content of the ER may constitute a new parameter by which the calcium homeostatic characteristics of the organelle are adjusted. The cross-talk between ER calcium homeostasis and cell differentiation may have some implications for the better understanding of the signalling defects involved in the acquisition and maintenance of the malignant phenotype.
Collapse
Affiliation(s)
- Béla Papp
- INSERM EMI-00-03 Laboratoire de Biologie Cellulaire Hématopoïétique, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 1, Avenue Claude Vellefaux, 75010 Paris, France.
| | | | | | | | | |
Collapse
|
40
|
Rocca B, Morosetti R, Habib A, Maggiano N, Zassadowski F, Ciabattoni G, Chomienne C, Papp B, Ranelletti FO. Cyclooxygenase-1, but not -2, is upregulated in NB4 leukemic cells and human primary promyelocytic blasts during differentiation. Leukemia 2004; 18:1373-9. [PMID: 15190260 DOI: 10.1038/sj.leu.2403407] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclooxygenase (COX)-1 or -2 and specific prostaglandin (PG) synthases catalyze the formation of various PGs. We investigated the expression and activity of COX-1 and -2 during granulocyte-oriented maturation induced by all-trans-retinoic acid (ATRA) of NB4 cells, originated from a human acute promyelocytic leukemia (APL), and in blasts from APL patients. The expression of COX isoenzymes or prostaglandin synthases was also investigated in circulating granulocytes and human bone marrow. COX-1 was expressed and enzymatically active in NB4 cells and primary blasts. COX-1 mRNA and protein were induced by ATRA. COX-1 protein increased approximately 2-3.5-fold by culture day 3 in NB4 cells and primary blasts, while basal COX-2 expression was very low and unaffected by ATRA. COX-1-dependent PGE(2) biosynthesis increased during differentiation approx. 5-fold. Indomethacin and the selective COX-1 inhibitor SC-560, but not selective COX-2 inhibition, impaired NB4 differentiation, reducing NADPH-oxidase activity, CD11b and CD11c expression. The immunohistochemistry of granulocytes and myeloid precursors in the bone marrow showed a large prevalence of COX-1 as compared to COX-2. In conclusion, COX-1 is induced during ATRA-dependent maturation and appears to contribute to myeloid differentiation both in vitro and ex vivo, and COX-1 activity may potentiate the differentiation of human APL.Leukemia (2004) 18, 1373-1379. doi:10.1038/sj.leu.2403407 Published online 10 June 2004
Collapse
Affiliation(s)
- B Rocca
- Department of Internal Medicine, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bobe R, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, Kovács T, Enouf J. Identification, Expression, Function, and Localization of a Novel (Sixth) Isoform of the Human Sarco/Endoplasmic Reticulum Ca2+ATPase 3 Gene. J Biol Chem 2004; 279:24297-306. [PMID: 15028735 DOI: 10.1074/jbc.m314286200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding of Ca(2+) signaling requires the knowledge of proteins involved in this process. Among these proteins are sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) that pump Ca(2+) into the endoplasmic reticulum (ER). Recently, the human SERCA3 gene was shown to give rise to five isoforms (SERCA3a-e (h3a-h3e)). Here we demonstrate the existence of an additional new member, termed SERCA3f (h3f). By reverse transcriptase-PCR using monocytic U937 cell RNA, h3f mRNA was found to exclude the antepenultimate exon 21. h3f mRNA expression appeared as a human-specific splice variant. It was not found in rats or mice. h3f mRNA gave rise to an h3f protein differing in its C terminus from h3a-h3e. Of particular interest, h3f diverged in the first amino acids after the first splice site but presented the same last 21 amino acids as h3b. Consequently, we further investigated the structure-function-location relationships of the h3b and h3f isoforms. Comparative functional study of h3b and h3f recombinant proteins in intact HEK-293 cells and in fractionated membranes showed the following distinct characteristics: (i) resting cytosolic Ca(2+) concentration ([Ca(2+)](c)) and (ii) ER Ca(2+) content ([Ca(2+)](er)); similar characteristics were shown for the following: (i) the effects of the SERCA inhibitor, thapsigargin, on Ca(2+) release ([Ca(2+)](Tg)) and subsequent Ca(2+) entry ([Ca(2+)](e)) and (ii) the low apparent Ca(2+) affinity and the enhanced rate of dephosphorylation of the E(2)P phosphoenzyme intermediate. Subcellular location of h3b and h3f by immunofluorescence and/or confocal microscopy using the h3b- and h3f-specific polyclonal and the pan-h3 monoclonal (PL/IM430) antibodies suggested overlapping but distinct ER location. The endogenous expression of h3f protein was also proved in U937 cells. Altogether these data suggest that the SERCA3 isoforms have a more widespread role in cellular Ca(2+) signaling than previously appreciated.
Collapse
Affiliation(s)
- Régis Bobe
- INSERM U.348, IFR6 Circulation Lariboisière, Hôpital Lariboisière, 8 Rue Guy Patin, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Berardi AC, Parafioriti A, Barisani D, Papp B, Armiraglio E, Martinoli M, Dalprà L, Santoro A. A new human cell line, PDSS-26, from poorly differentiated synovial sarcoma, with unique chromosomal anomalies. CANCER GENETICS AND CYTOGENETICS 2003; 146:116-124. [PMID: 14553945 DOI: 10.1016/s0165-4608(03)00135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Permanent synovial sarcoma cell lines are invaluable tools for understanding of the biology of this tumor. The present study reports the establishment of a new human cell line, PDSS-26, derived from a surgical specimen of a poorly differentiated synovial sarcoma. PDSS-26 has a doubling time of a 72 hours and grows as a monolayer of spindle cells that retain immunoreactivity for bcl-2 and vimentin. Karyotypic analysis revealed a rearrangement involving chromosomes 17 and 18, at the breakpoints q11.2 and q11.2, respectively, as the only structural aberrations. Analysis by reverse transcriptase polymerase chain reaction showed the presence of the SYT-SSX1 fusion transcript in both the primary tumor and the cell line. Cytoplasmic PTEN staining was detected by immunohistochemistry in both the PDSS-26 cell line and in original tumor, whereas no mutation was identified by automatic sequencing. Thus, PDSS-26 cells could be useful for future functional studies.
Collapse
MESH Headings
- Adult
- Chromosome Aberrations
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 18
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Oncogene Proteins, Fusion/analysis
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/analysis
- Public Opinion
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/pathology
- Translocation, Genetic
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/analysis
Collapse
Affiliation(s)
- Anna C Berardi
- Haematology/Oncology Laboratory, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Launay S, Giannì M, Diomede L, Machesky LM, Enouf J, Papp B. Enhancement of ATRA-induced cell differentiation by inhibition of calcium accumulation into the endoplasmic reticulum: cross-talk between RAR alpha and calcium-dependent signaling. Blood 2003; 101:3220-8. [PMID: 12515718 DOI: 10.1182/blood-2002-09-2730] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sarco-endoplasmic reticulum calcium ATPase (SERCA) enzymes control calcium-induced cellular activation by accumulating calcium from the cytosol into the endoplasmic reticulum (ER). To better understand the role of SERCA proteins and cellular calcium homeostasis in all-trans retinoic acid (ATRA)-induced differentiation, we investigated the effect of pharmacologic inhibition of SERCA-dependent calcium uptake into the ER on ATRA-induced differentiation of the HL-60 myelogenous and the NB4 promyelocytic cell lines. SERCA inhibitors di-tert-butyl-benzohydroquinone (tBHQ), thapsigargin, and cyclopiazonic acid significantly enhanced the induction of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and CD11b marker expression induced by suboptimal concentrations of ATRA (50 nM) in both cell lines. Analysis of cellular calcium homeostasis revealed that a 60% mobilization of the total SERCA-dependent intracellular calcium pool was necessary to obtain enhancement of ATRA-dependent differentiation by tBHQ. Moreover, after 3 days of ATRA treatment in combination with tBHQ, NB4 cells showed a significantly decreased calcium mobilization compared with treatments with tBHQ or ATRA alone, suggesting that enhanced differentiation and calcium mobilization are causally related. Interestingly, several ATRA-resistant NB4-derived cell lines were partially responsive to the differentiation-inducing effect of the combination of the 2 drugs. In addition, we found that retinoic acid receptor alpha (RAR alpha) and PML-RAR alpha proteins are protected from ATRA-induced proteolytic degradation by SERCA inhibition, indicating that cellular calcium homeostasis may interact with signaling systems involved in the control of ATRA-dependent transcriptional activity. By linking calcium to ATRA-dependent signaling, our data open new avenues in the understanding of the mechanisms of differentiation-induction therapy of leukemia.
Collapse
Affiliation(s)
- Sophie Launay
- U348 Institut National de la Santé et de la Recherche Médicale, IFR Circulation Lariboisière, Hôpital Lariboisière, Paris, France.
| | | | | | | | | | | |
Collapse
|
44
|
Gélébart P, Martin V, Enouf J, Papp B. Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 2003; 303:676-84. [PMID: 12659872 DOI: 10.1016/s0006-291x(03)00405-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sarco/endoplasmic reticulum-type calcium transport ATPases (SERCA enzymes) pump calcium ions from the cytosol into the endoplasmic reticulum. We report that in addition to the ubiquitously expressed SERCA2b isoform, a new splice variant of SERCA2 can be detected (SERCA2c) that arises from the inclusion of a short intronic sequence located between exons 20 and 21 of the SERCA2a isoform. Sequence analysis revealed classical splice donor and acceptor sites, as well as a branch-point site. Due to the presence in the new exon of an in-frame stop codon that is preceded by a 17 bp coding sequence, this mRNA potentially codes for a protein with a truncated C-terminus containing a short unique C-terminal peptide stretch. SERCA2c message was detected in epithelial, mesenchymal, and hematopoietic cell lines, as well as in primary human monocytes. Moreover, we found that during monocytic differentiation total SERCA2 ATPase expression is induced on the protein and mRNA level and that the novel SERCA2c messenger is also up-regulated during this process. These data indicate that the alternative splicing pattern of the 3(') region of the SERCA2 primary transcript is more complex than that previously thought and that this enzyme may be involved in the process of monocyte differentiation.
Collapse
Affiliation(s)
- Pascal Gélébart
- U. 348 INSERM, IFR-6, Hôpital Lariboisière, 8, rue Guy Patin, 75010 Paris, France
| | | | | | | |
Collapse
|
45
|
Launay S, Brown G, Machesky LM. Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cells. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:274-85. [PMID: 12601690 DOI: 10.1002/cm.10101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Wiskott-Aldrich Syndrome (WAS) is a disease associated with mutations in the WAS gene and characterised by developmental defects in haematopoietic cells such as myeloid cells. The Wiskott-Aldrich Syndrome protein (WASP)-family includes Scar1 and WASP, which are key regulators of actin reorganization in motile cells. To understand the roles of Scar1 and WASP in myeloid cells and their cytoskeletal control in haematopoietic tissues, we have explored their expression during differentiation of the promyeloid cell line HL-60. Undifferentiated HL-60 cells expressed Scar1 and WASP, and differentiation to neutrophils, induced by retinoic acid or non-retinoid agent treatments, led to a decrease in the level of expression of Scar1, whereas WASP expression was unaffected. Differentiation to monocytes/macrophages, induced by phorbol ester treatment, resulted in a decreased expression of both proteins in the adherent mature cells. Vitamin D(3) treatment or cytochalasin D in combination with PMA treatment did not affect WASP expression suggesting that adhesion and cytoskeletal integrity were both essential to regulate WASP expression. Scar1 expression was regulated by differentiation, adhesion, and cytoskeletal integrity. Recently, WASP was found to colocalize with actin in the podosomes. In contrast, we show here that Scar1 did not localize with the podosomes in mature monocytes/macrophages. These observations show for the first time that modulation of Scar1 and WASP expression is a component of the differentiation program of myeloid precursors and indicate that WASP and Scar1 have different roles in mature myeloid cells.
Collapse
Affiliation(s)
- Sophie Launay
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | |
Collapse
|
46
|
Magdalena J, Millard TH, Etienne-Manneville S, Launay S, Warwick HK, Machesky LM. Involvement of the Arp2/3 complex and Scar2 in Golgi polarity in scratch wound models. Mol Biol Cell 2003; 14:670-84. [PMID: 12589062 PMCID: PMC150000 DOI: 10.1091/mbc.e02-06-0345] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.
Collapse
Affiliation(s)
- Juana Magdalena
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease. CALRETICULIN 2003. [DOI: 10.1007/978-1-4419-9258-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Abstract
Intracellular Ca(2+)-transport ATPases exert a pivotal role in the endoplasmic reticulum and in the compartments of the cellular secretory pathway by maintaining a sufficiently high lumenal Ca(2+) (and Mn(2+)) concentration in these compartments required for an impressive number of vastly different cell functions. At the same time this lumenal Ca(2+) represents a store of releasable activator Ca(2+) controlling an equally impressive number of cytosolic functions. This review mainly focuses on the different Ca(2+)-transport ATPases found in the intracellular compartments of mainly animal non-muscle cells: the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. Although it is not our intention to treat the ATPases of the specialized sarcoplasmic reticulum in depth, we can hardly ignore the SERCA1 pump of fast-twitch skeletal muscle since its structure and function is by far the best understood and it can serve as a guide to understand the other members of the family. In a second part of this review we describe the relatively novel family of secretory pathway Ca(2+)/Mn(2+) ATPases (SPCA), which in eukaryotic cells are primarily found in the Golgi compartment.
Collapse
Affiliation(s)
- F Wuytack
- Laboratorium voor Fysiologie, K.U.Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | |
Collapse
|
49
|
Hadri L, Ozog A, Soncin F, Lompré AM. Basal transcription of the mouse sarco(endo)plasmic reticulum Ca2+-ATPase type 3 gene in endothelial cells is controlled by Ets-1 and Sp1. J Biol Chem 2002; 277:36471-8. [PMID: 12119294 DOI: 10.1074/jbc.m204731200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that the sarco(endo)plasmic reticulum Ca(2+)-ATPase type 3 (SERCA3) gene is expressed in many tissues and in a subset of cells such as endothelial, epithelial, and lymphoid lineages. Here we analyzed the mechanisms involved in the regulation of transcription of the SERCA3 gene in endothelial cells. The promoter of the murine SERCA3 gene was isolated, and a single transcription initiation site located 301 bp upstream of the translation initiation site was identified. Analysis of the transcriptional activity of fragments of the SERCA3 promoter showed the existence of a minimal promoter region located between bases -97 and +153 that contains one ETS-binding site (EBS) and two Sp1 elements that are essential for basal transcription. Mutation of the EBS or of the Sp1 sites abolished the basal activity of the promoter. We identified Ets-1 and Sp1 among endothelial nuclear factors that recognize the EBS and Sp1 sites on the promoter. Furthermore, transactivation of the -97/+301 promoter fragment by Ets-1 requires the presence of both the EBS and Sp1 sites, suggesting an interaction of the transcription factors on the gene promoter. Finally, overexpression of Ets-1 induced the expression of SERCA3 in endothelial cells and in fibroblasts.
Collapse
Affiliation(s)
- Lahouaria Hadri
- INSERM U446/Biochimie, IFR-75, Signalisation et Innovation Thérapeutique Tour D4, Faculté de Pharmacie, 92296 Chatenay-Malabry, France
| | | | | | | |
Collapse
|
50
|
Clark RA, Li SL, Pearson DW, Leidal KG, Clark JR, Denning GM, Reddick R, Krause KH, Valente AJ. Regulation of calreticulin expression during induction of differentiation in human myeloid cells. Evidence for remodeling of the endoplasmic reticulum. J Biol Chem 2002; 277:32369-78. [PMID: 12065601 DOI: 10.1074/jbc.m205269200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of differentiation of HL-60 human myeloid cells profoundly affected expression of calreticulin, a Ca(2+)-binding endoplasmic reticulum chaperone. Induction with Me(2)SO or retinoic acid reduced levels of calreticulin protein by approximately 60% within 4 days. Pulse-chase studies indicated that labeled calreticulin decayed at similar rates in differentiated and undifferentiated cells (t(12) approximately 4.6 days), but the biosynthetic rate was <10% of control after 4 days. Differentiation also induced a rapid decline in calreticulin mRNA levels (90% reduction after 1 day) without a decrease in transcript stability (t(12) approximately 5 h). Nuclear run-on analysis demonstrated rapid down-regulation of gene transcription (21% of control at 2 h). Differentiation also greatly reduced the Ca(2+) content of the cells (25% of control), although residual Ca(2+) pools remained sensitive to thapsigargin, ionomycin, and inositol trisphosphate. Progressive decreases were also observed in levels of calnexin and ERp57, whereas BiP/GRP78 and protein disulfide isomerase were only modestly affected. Ultrastructural studies showed a substantial reduction in endoplasmic reticulum content of the cells. Thus, terminal differentiation of myeloid cells was associated with decreased endoplasmic reticulum content, selective reductions in molecular chaperones, and diminished intracellular Ca(2+) stores, perhaps reflecting an endoplasmic reticulum remodeling program as a prominent feature of granulocytic differentiation.
Collapse
Affiliation(s)
- Robert A Clark
- Department of Medicine, South Texas Veterans Health Care System and University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|