1
|
Yun IH, Yang J. Mechanisms of allorecognition and xenorecognition in transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:273-293. [PMID: 39743230 PMCID: PMC11732770 DOI: 10.4285/ctr.24.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells. Innate immune cells, such as dendritic cells, identify pathogen- or danger-associated molecular patterns through pattern recognition receptors, thereby facilitating effective antigen presentation to T cells. Recent studies have shown that innate immune cells, including macrophages and NK cells, can recognize allogeneic or xenogeneic antigens using immune receptors like CD47 or activating NK receptors, instead of pattern recognition receptors. Additionally, macrophages and NK cells are capable of exhibiting memory responses to alloantigens, although these responses are shorter than those of adaptive memory. T cells also recognize xenoantigens through either direct or indirect presentation. Notably, macrophages and NK cells can directly recognize xenoantigens via surface immune receptors in an antibody-independent manner, or they can be activated in an antibody-dependent manner. Advances in our understanding of the recognition mechanisms of adaptive and innate immunity against allogeneic and xenogeneic antigens may improve our understanding of graft rejection.
Collapse
Affiliation(s)
- Il Hee Yun
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 PMCID: PMC11414654 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
3
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
4
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
5
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Charmetant X, Chen CC, Hamada S, Goncalves D, Saison C, Rabeyrin M, Rabant M, Duong van Huyen JP, Koenig A, Mathias V, Barba T, Lacaille F, le Pavec J, Brugière O, Taupin JL, Chalabreysse L, Mornex JF, Couzi L, Graff-Dubois S, Jeger-Madiot R, Tran-Dinh A, Mordant P, Paidassi H, Defrance T, Morelon E, Badet L, Nicoletti A, Dubois V, Thaunat O. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Sci Transl Med 2022; 14:eabg1046. [PMID: 36130013 DOI: 10.1126/scitranslmed.abg1046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient's allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient's CD4+ T cells that recognize complexes of recipient's MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient's MHC II molecules expressed by B cell receptor-activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient's circulation; this, in turn, was associated with an early transient anti-MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sarah Hamada
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - David Goncalves
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Carole Saison
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Marion Rabant
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | | | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Thomas Barba
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, 75015 Paris, France
| | - Jérôme le Pavec
- Department of Pulmonology and Lung Transplantation, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Olivier Brugière
- Pulmonology Department, Adult Cystic Fibrosis Centre and Lung Transplantation Department, Foch Hospital, 92150 Suresnes, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis APHP, 75010 Paris, France
- INSERM U976 Institut de Recherche Saint-Louis, Université Paris Diderot, 75010 Paris, France
| | - Lara Chalabreysse
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon 1, INRAE, IVPC, UMR754, 69000 Lyon, France
- Department of Pneumology, GHE, Hospices Civils de Lyon, 69000 Lyon, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, Apheresis, Pellegrin Hospital, 33000 Bordeaux, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Alexy Tran-Dinh
- Université de Paris, LVTS, INSERM U1148, 75018 Paris, France
| | - Pierre Mordant
- Department of Vascular and Thoracic Surgery, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Lionel Badet
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Urology and Transplantation Surgery, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | | | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| |
Collapse
|
9
|
Martinez-Usatorre A, De Palma M. Dendritic cell cross-dressing and tumor immunity. EMBO Mol Med 2022; 14:e16523. [PMID: 35959554 PMCID: PMC9549722 DOI: 10.15252/emmm.202216523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022] Open
Abstract
In addition to direct and cross‐presentation, dendritic cells (DCs) can present tumor antigens (TAs) to T cells via a hitherto poorly understood mechanism called “cross‐dressing.” DC cross‐dressing involves the acquisition of preformed peptide‐major histocompatibility class I/II (p‐MHC) complexes from cancer cells. This process has been documented both in cell culture and in tumor models; may occur via the uptake of tumor‐derived extracellular vesicles or the horizontal transfer of plasma membrane fragments from cancer cells to DCs; and can be enhanced through DC engineering for therapeutic applications. In some experimental contexts, DC cross‐dressing may be essential for productive anti‐tumor immunity, possibly owing to the fact that tumor‐derived p‐MHC complexes encompass the full repertoire of immunologically relevant TAs against which primed cytotoxic T cells can exert their tumoricidal activity.
Collapse
Affiliation(s)
- Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Agora Cancer Research Center, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Agora Cancer Research Center, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| |
Collapse
|
10
|
MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J. Dendritic cells can prime anti-tumor CD8 + T cell responses through major histocompatibility complex cross-dressing. Immunity 2022; 55:982-997.e8. [PMID: 35617964 PMCID: PMC9883788 DOI: 10.1016/j.immuni.2022.04.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - James Godfrey
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Douglas E Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Justin Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Investigation of Cytotoxic T Lymphocyte Function during Allorejection in the Anterior Chamber of the Eye. Int J Mol Sci 2020; 21:ijms21134660. [PMID: 32629968 PMCID: PMC7369940 DOI: 10.3390/ijms21134660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/12/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) are an essential part of our immune system by killing infected and malignant cells. To fully understand this process, it is necessary to study CTL function in the physiological setting of a living organism to account for their interplay with other immune cells like CD4+ T helper cells and macrophages. The anterior chamber of the eye (ACE), originally developed for diabetes research, is ideally suited for non-invasive and longitudinal in vivo imaging. We take advantage of the ACE window to observe immune responses, particularly allorejection of islets of Langerhans cells by CTLs. We follow the onset of the rejection after vascularization on islets until the end of the rejection process for about a month by repetitive two-photon microscopy. We find that CTLs show reduced migration on allogeneic islets in vivo compared to in vitro data, indicating CTL activation. Interestingly, the temporal infiltration pattern of T cells during rejection is precisely regulated, showing enrichment of CD4+ T helper cells on the islets before arrival of CD8+ CTLs. The adaptation of the ACE to immune responses enables the examination of the mechanism and regulation of CTL-mediated killing in vivo and to further investigate the killing in gene-deficient mice that resemble severe human immune diseases.
Collapse
|
13
|
Benichou G, Wang M, Ahrens K, Madsen JC. Extracellular vesicles in allograft rejection and tolerance. Cell Immunol 2020; 349:104063. [PMID: 32087929 DOI: 10.1016/j.cellimm.2020.104063] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, ectosomes and apoptotic vesicles, play an essential role in communication between cells of the innate and adaptive immune systems. Recent studies showed that EVs released after transplantation of allogeneic tissues and organs are involved in the immune recognition and response leading to rejection or tolerance in mice. After skin, pancreatic islet, and solid organ transplantation, donor-derived EVs were shown to initiate direct inflammatory alloresponses by T cells leading to acute rejection. This occurred through presentation of intact allogeneic MHC molecules on recipient antigen presenting cells (MHC cross-dressing) and subsequent activation of T cells via semi-direct allorecognition. On the other hand, some studies have documented the role of EVs in maternal tolerance of fetal alloantigens during pregnancy and immune privilege associated with spontaneous tolerance of liver allografts in laboratory rodents. The precise nature of the EVs, which are involved in rejection or tolerance, and the cells which produce them, is still unclear. Nevertheless, several reports showed that EVs released in the blood and urine by allografts can be used as biomarkers of rejection. This article reviews current knowledge on the contribution of EVs in allorecognition by T cells and discusses some mechanisms underlying their influence on T cell alloimmunity in allograft rejection or tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Mengchuan Wang
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaitlan Ahrens
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Lei H, Reinke P, Volk HD, Lv Y, Wu R. Mechanisms of Immune Tolerance in Liver Transplantation-Crosstalk Between Alloreactive T Cells and Liver Cells With Therapeutic Prospects. Front Immunol 2019; 10:2667. [PMID: 31803188 PMCID: PMC6877506 DOI: 10.3389/fimmu.2019.02667] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation (LTx) is currently the most powerful treatment for end-stage liver disease. Although liver allograft is more tolerogenic compared to other solid organs, the majority of LTx recipients still require long-term immune suppression (IS) to control the undesired alloimmune responses, which can lead to severe side effects. Thus, understanding the mechanism of liver transplant tolerance and crosstalk between immune cells, especially alloreactive T cells and liver cells, can shed light on more specific tolerance induction strategies for future clinical translation. In this review, we focus on alloreactive T cell mediated immune responses and their crosstalk with liver sinusoidal endothelial cells (LSECs), hepatocytes, hepatic stellate cells (HSCs), and cholangiocytes in transplant setting. Liver cells mainly serve as antigen presenting cells (APCs) to T cells, but with low expression of co-stimulatory molecules. Crosstalk between them largely depends on the different expression of adhesion molecules and chemokine receptors. Inflammatory cytokines secreted by immune cells further elaborate this crosstalk and regulate the fate of naïve T cells differentiation within the liver graft. On the other hand, regulatory T cells (Tregs) play an essential role in inducing and keeping immune tolerance in LTx. Tregs based adoptive cell therapy provides an excellent therapeutic option for clinical transplant tolerance induction. However, many questions regarding cell therapy still need to be solved. Here we also address the current clinical trials of adoptive Tregs therapy and other tolerance induction strategies in LTx, together with future challenges for clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Hong Lei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center of Advanced Therapies, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Kitazawa Y, Ueta H, Sawanobori Y, Katakai T, Yoneyama H, Ueha S, Matsushima K, Tokuda N, Matsuno K. Novel Targeting to XCR1 + Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes. Front Immunol 2019; 10:1195. [PMID: 31191552 PMCID: PMC6548820 DOI: 10.3389/fimmu.2019.01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
Abstract
Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
16
|
Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell Allorecognition Pathways in Solid Organ Transplantation. Front Immunol 2018; 9:2548. [PMID: 30455697 PMCID: PMC6230624 DOI: 10.3389/fimmu.2018.02548] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway; and as self-restricted processed alloantigen via the indirect pathway. Direct pathway responses are viewed as strong but short-lived and hence responsible for acute rejection, whereas indirect pathway responses are typically thought to be much longer lasting and mediate the progression of chronic rejection. However, this is based on surprisingly scant experimental evidence, and the recent demonstration that MHC alloantigen can be re-presented intact on recipient dendritic cells-the semi-direct pathway-suggests that the conventional view may be an oversimplification. We review recent advances in our understanding of how the different T cell allorecognition pathways are triggered, consider how this generates effector alloantibody and cytotoxic CD8 T cell alloresponses and assess how these responses contribute to early and late allograft rejection. We further discuss how this knowledge may inform development of cellular and pharmacological therapies that aim to improve transplant outcomes, with focus on the use of induced regulatory T cells with indirect allospecificity and on the development of immunometabolic strategies. KEY POINTS Acute allograft rejection is likely mediated by indirect and direct pathway CD4 T cell alloresponses.Chronic allograft rejection is largely mediated by indirect pathway CD4 T cell responses. Direct pathway recognition of cross-dressed endothelial derived MHC class II alloantigen may also contribute to chronic rejection, but the extent of this contribution is unknown.Late indirect pathway CD4 T cell responses will be composed of heterogeneous populations of allopeptide specific T helper cell subsets that recognize different alloantigens and are at various stages of effector and memory differentiation.Knowledge of the precise indirect pathway CD4 T cell responses active at late time points in a particular individual will likely inform the development of alloantigen-specific cellular therapies and will guide immunometabolic modulation.
Collapse
|
17
|
Measuring the ability of HIV-specific antibodies to mediate trogocytosis. J Immunol Methods 2018; 463:71-83. [PMID: 30240705 DOI: 10.1016/j.jim.2018.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
Antibody Fc effector functions contribute to HIV control and have been implicated in the partial efficacy seen in the RV144 vaccine trial. Fc-mediated trogocytosis has been previously described for anti-cancer antibodies and results in the removal of membrane fragments from target cells. Here we developed a flow cytometry-based assay which measures the transfer of membrane fragments from a gp120-coated CD4+ lymphocytic cell line (CEM.NKR-CCR5 cells stained with a membrane dye PKH26) to monocytic cells (THP-1 cells stained with CFSE). We showed that this transfer occurred rapidly, within 1 h, and was mediated through engagement of the FcγRIIa/b receptors on the THP-1 cells. HIV-specific IgG as well as gp120 and CD4 could be detected on the surface of THP-1 cells in a process that we demonstrated was distinct from phagocytosis. Furthermore, while the THP-1 effector cells remained intact following the receipt of new membrane proteins, the viability of the target CEM.NKR-CCR5 cells decreased over time. Analysis of HIV-specific plasma revealed that antibodies with trogocytic activity were common in acute and chronic HIV infection but were higher in individuals with broadly neutralizing antibody responses We also examined trogocytosis mediated by broadly neutralizing antibodies (bNAbs) targeting multiple epitopes on the BG505.SOSIP.664 trimer and show that levels of binding correlated with the trogocytosis score. Overall, our data describe a new antiviral Fc effector function mediated by HIV-specific antibodies that could be harnessed for vaccination and cure strategies.
Collapse
|
18
|
Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 2018; 40:477-490. [PMID: 29594331 DOI: 10.1007/s00281-018-0679-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
Eukaryotic cells employ different types of extracellular vesicles (EVs) to exchange proteins, mRNAs, non-coding regulatory RNAs, carbohydrates, and lipids. Cells of the immune system, in particular antigen (Ag)-presenting cells (APCs), acquire major histocompatibility complex (MHC) class I and II molecules loaded with antigenic peptides from leukocytes and tissue parenchymal and stromal cells, through a mechanism known as MHC cross-dressing. Increasing evidence indicates that cross-dressing of APCs with pre-formed Ag-peptide/MHC complexes (pMHCs) is mediated via passage of clusters of EVs with characteristics of exosomes. A percentage of the transferred EVs remain attached to the acceptor APCs, with the appropriate orientation, at sufficient concentration within localized areas of the plasma membrane, and for sufficient time, so the preformed pMHCs carried by the EVs are presented without further processing, to cognate T cells. Although its biological relevance is not fully understood, numerous studies have demonstrated that MHC cross-dressing of APCs represents a pathway of Ag presentation of acquired pre-formed pMHCs to T cells-alternative to direct and cross-presentation-participate in immune homeostasis and T cell tolerance, cross-regulate alloreactive T cells with different MHC restricted specificities, and is a mechanism of Ag spreading for autologous, allogeneic, microbial, tumor, or vaccine-delivered Ags. Here, we compare MHC cross-dressing with other mechanisms and terminologies used for pMHC transfer, including trogocytosis. We discuss the experimental evidence, mostly from in vitro and ex vivo studies, of the role of MHC cross-dressing of APCs via EVs in positive or negative regulation of T cell immunity in the steady state, transplantation, microbial diseases, and cancer.
Collapse
|
19
|
Lai JD, Cartier D, Hartholt RB, Swystun LL, van Velzen AS, den Haan JMM, Hough C, Voorberg J, Lillicrap D. Early cellular interactions and immune transcriptome profiles in human factor VIII-exposed hemophilia A mice. J Thromb Haemost 2018; 16:533-545. [PMID: 29285874 DOI: 10.1111/jth.13936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 12/16/2022]
Abstract
Essentials Initial immune cell interactions leading to factor (F) VIII immunity are not well characterized. We assessed cellular interactions and expression profiles in hemophilia A mice. MARCO+, followed by SIGLEC1+ and SIGNR1+ macrophages co-localize most with human FVIII. The splenic transcriptome highlights potential therapeutic targets to prevent inhibitors. SUMMARY Background Developing factor VIII (FVIII) inhibitory antibodies is the most serious complication in hemophilia A treatment, representing a significant health and economic burden. A better understanding of the early events in an immune response leading to this outcome may provide insight into inhibitor development. Objective To identify early mediators of FVIII immunity and to detail immune expression profiles in the spleen and liver. Methods C57Bl/6 F8 E16 knockout mice were infused with 5-20 μg (2000-8000 IU kg-1 ) of recombinant FVIII. Spleens were frozen at various time-points post-infusion and stained for FVIII and cellular markers. Splenic and liver RNA expression analysis was performed 3 h post-infusion of 0.6 μg (240 IU kg-1 ) FVIII by nCounter technology using a 561-gene immunology panel. Results FVIII localization in the spleen did not change over 2.5 h. We observed significantly higher co-localization of FVIII with MARCO+ cells compared with SIGLEC1+ and SIGNR1+ in the splenic marginal zone. FVIII exhibited little co-localization with CD11c+ dendritic cells and the macrophage mannose receptor, CD206. Following FVIII infusion, the splenic mRNA profiling identified genes such as Tnfaip6 and Il23r, which are implicated in chemotaxis and a proinflammatory Th17 response, respectively. In contrast, an upregulation of Gfi1 in the liver suggests an anti-inflammatory environment. Conclusions FVIII co-localizes predominantly with marginal zone macrophages (MARCO+ ) in the murine spleen following intravenous infusion. Targeting pathways that are implicated in the early FVIII innate immune response in the spleen may lead to therapeutic interventions to prevent inhibitor formation.
Collapse
Affiliation(s)
- J D Lai
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - D Cartier
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - R B Hartholt
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A S van Velzen
- Pediatrics, Hematology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - J M M den Haan
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - C Hough
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Marino J, Paster J, Benichou G. Allorecognition by T Lymphocytes and Allograft Rejection. Front Immunol 2016; 7:582. [PMID: 28018349 PMCID: PMC5155009 DOI: 10.3389/fimmu.2016.00582] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
Recognition of donor antigens by recipient T cells in secondary lymphoid organs initiates the adaptive inflammatory immune response leading to the rejection of allogeneic transplants. Allospecific T cells become activated through interaction of their T cell receptors with intact allogeneic major histocompatibility complex (MHC) molecules on donor cells (direct pathway) and/or donor peptides presented by self-MHC molecules on recipient antigen-presenting cells (APCs) (indirect pathway). In addition, recent studies show that alloreactive T cells can also be stimulated through recognition of allogeneic MHC molecules displayed on recipient APCs (MHC cross-dressing) after their transfer via cell-cell contact or through extracellular vesicles (semi-direct pathway). The specific allorecognition pathway used by T cells is dictated by intrinsic and extrinsic factors to the allograft and can influence the nature and magnitude of the alloresponse and rejection process. Consequently, various organs and tissues such as skin, cornea, and solid organ transplants are recognized differently by pro-inflammatory T cells through these distinct pathways, which may explain why these grafts are rejected in a different fashion. On the other hand, the mechanisms by which anti-inflammatory regulatory T cells (Tregs) recognize alloantigen and promote transplantation tolerance are still unclear. It is likely that thymic Tregs are activated through indirect allorecognition, while peripheral Tregs recognize alloantigens in a direct fashion. As we gain insights into the mechanisms underlying allorecognition by pro-inflammatory and Treg cells, novel strategies are being designed to prevent allograft rejection in the absence of ongoing immunosuppressive drug treatment in patients.
Collapse
Affiliation(s)
- Jose Marino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Paster
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, Abdi R, Uehara M, Kim JI, Markmann JF, Tocco G, Benichou G. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol 2016; 1. [PMID: 27942611 DOI: 10.1126/sciimmunol.aaf8759] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transplantation of allogeneic organs and tissues represents a lifesaving procedure for a variety of patients affected with end-stage diseases. Although current immunosuppressive therapy prevents early acute rejection, it is associated with nephrotoxicity and increased risks for infection and neoplasia. This stresses the need for selective immune-based therapies relying on manipulation of lymphocyte recognition of donor antigens. The passenger leukocyte theory states that allograft rejection is initiated by recipient T cells recognizing donor major histocompatibility complex (MHC) molecules displayed on graft leukocytes migrating to the host's lymphoid organs. We revisited this concept in mice transplanted with allogeneic skin, heart, or islet grafts using imaging flow cytometry. We observed no donor cells in the lymph nodes and spleen of skin-grafted mice, but we found high numbers of recipient cells displaying allogeneic MHC molecules (cross-dressed) acquired from donor microvesicles (exosomes). After heart or islet transplantation, we observed few donor leukocytes (100 per million) but large numbers of recipient cells cross-dressed with donor MHC (>90,000 per million). Last, we showed that purified allogeneic exosomes induced proinflammatory alloimmune responses by T cells in vitro and in vivo. Collectively, these results suggest that recipient antigen-presenting cells cross-dressed with donor MHC rather than passenger leukocytes trigger T cell responses after allotransplantation.
Collapse
Affiliation(s)
- Jose Marino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mohamed H Babiker-Mohamed
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick Crosby-Bertorini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua T Paster
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian LeGuern
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon Germana
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mayuko Uehara
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James I Kim
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges Tocco
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Campana S, De Pasquale C, Carrega P, Ferlazzo G, Bonaccorsi I. Cross-dressing: an alternative mechanism for antigen presentation. Immunol Lett 2015; 168:349-54. [DOI: 10.1016/j.imlet.2015.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
|
23
|
Abstract
Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
24
|
Mukherjee S, Mukhopadhyay A, Andriani G, Machado FS, Ashton AW, Huang H, Weiss LM, Tanowitz HB. Trypanosoma cruzi invasion is associated with trogocytosis. Microbes Infect 2015; 17:62-70. [PMID: 25448052 PMCID: PMC4302017 DOI: 10.1016/j.micinf.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023]
Abstract
Trogocytosis was originally thought to be restricted to the interaction of cells of the immune system with cancer cells. Such membrane exchanges are probably a general process in cell biology, and membrane exchange has been demonstrated to occur between non-immune cells within an organism. Herein, we report that membrane and protein exchange, consistent with trogocytosis, between Trypanosoma cruzi (both the Brazil and Tulahuen strains) and the mammalian cells it infects. Transfer of labeled membrane patches was monitored by labeling of either parasites or host cells, i.e. human foreskin fibroblasts and rat myoblasts. Trypomastigotes and amastigotes transferred specific surface glycoproteins to the host cells along with membranes. Exchange of membranes between the parasite and host cells occurred during successful invasion. Extracellular amastigotes did not transfer membrane patches and were did not transfer either membranes or proteins to the host cells. Membrane exchange was also found to occur between interacting epimastigotes in cell-free culture and may be important in parasite-parasite interactions as well. Further studies should provide new insights into pathogenesis and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, NY, USA.
| | - Aparna Mukhopadhyay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA; Department of Physiology, Presidency University, Kolkata, India
| | | | - Fabiana Simão Machado
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary, Laboratory of Medical Investigation, Faculty of Medicine, and the Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, N.S.W., Australia
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA
| | - Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
25
|
Azzoni E, Conti V, Campana L, Dellavalle A, Adams RH, Cossu G, Brunelli S. Hemogenic endothelium generates mesoangioblasts that contribute to several mesodermal lineages in vivo. Development 2014; 141:1821-34. [DOI: 10.1242/dev.103242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The embryonic endothelium is a known source of hematopoietic stem cells. Moreover, vessel-associated progenitors/stem cells with multilineage mesodermal differentiation potential, such as the ‘embryonic mesoangioblasts’, originate in vitro from the endothelium. Using a genetic lineage tracing approach, we show that early extra-embryonic endothelium generates, in a narrow time-window and prior to the hemogenic endothelium in the major embryonic arteries, hematopoietic cells that migrate to the embryo proper, and are subsequently found within the mesenchyme. A subpopulation of these cells, distinct from embryonic macrophages, co-expresses mesenchymal and hematopoietic markers. In addition, hemogenic endothelium-derived cells contribute to skeletal and smooth muscle, and to other mesodermal cells in vivo, and display features of embryonic mesoangioblasts in vitro. Therefore, we provide new insights on the distinctive characteristics of the extra-embryonic and embryonic hemogenic endothelium, and we identify the putative in vivo counterpart of embryonic mesoangioblasts, suggesting their identity and developmental ontogeny.
Collapse
Affiliation(s)
- Emanuele Azzoni
- Department of Health Sciences, University of Milano-Bicocca, Monza 20900, Italy
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Valentina Conti
- Department of Health Sciences, University of Milano-Bicocca, Monza 20900, Italy
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Lara Campana
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Arianna Dellavalle
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| | - Ralf H. Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster D-48149, Germany
- University of Münster, Faculty of Medicine, Münster D-48149, Germany
| | - Giulio Cossu
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
- Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Silvia Brunelli
- Department of Health Sciences, University of Milano-Bicocca, Monza 20900, Italy
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Via Olgettina 58, Milan 20132, Italy
| |
Collapse
|
26
|
Zimmerer J, Pham T, Wright C, Tobin K, Sanghavi P, Elzein S, Sanders V, Bumgardner G. Alloprimed CD8(+) T cells regulate alloantibody and eliminate alloprimed B cells through perforin- and FasL-dependent mechanisms. Am J Transplant 2014; 14:295-304. [PMID: 24472191 PMCID: PMC4018729 DOI: 10.1111/ajt.12565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/07/2013] [Accepted: 10/27/2013] [Indexed: 01/25/2023]
Abstract
While it is well known that CD4(+) T cells and B cells collaborate for antibody production, our group previously reported that CD8(+) T cells down-regulate alloantibody responses following transplantation. However, the exact mechanism involved in CD8(+) T cell-mediated down-regulation of alloantibody remains unclear. We also reported that alloantibody production is enhanced when either perforin or FasL is deficient in transplant recipients. Here, we report that CD8(+) T cell-deficient transplant recipient mice (high alloantibody producers) exhibit an increased number of primed B cells compared to WT transplant recipients. Furthermore, CD8(+) T cells require FasL, perforin and allospecificity to down-regulate posttransplant alloantibody production. In vivo CD8-mediated clearance of alloprimed B cells was also FasL- and perforin-dependent. In vitro data demonstrated that recipient CD8(+) T cells directly induce apoptosis of alloprimed IgG1(+) B cells in co-culture in an allospecific and MHC class I-dependent fashion. Altogether these data are consistent with the interpretation that CD8(+) T cells down-regulate posttransplant alloantibody production by FasL- and perforin-dependent direct elimination of alloprimed IgG1(+) B cells.
Collapse
Affiliation(s)
- J.M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - T.A. Pham
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - C.L. Wright
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - K.J. Tobin
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - P.B. Sanghavi
- Medical Student Research Program, College of Medicine, The Ohio State University, Columbus, OH
| | - S.M. Elzein
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - V.M. Sanders
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - G.L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
27
|
Bonaccorsi I, Morandi B, Antsiferova O, Costa G, Oliveri D, Conte R, Pezzino G, Vermiglio G, Anastasi GP, Navarra G, Münz C, Di Carlo E, Mingari MC, Ferlazzo G. Membrane transfer from tumor cells overcomes deficient phagocytic ability of plasmacytoid dendritic cells for the acquisition and presentation of tumor antigens. THE JOURNAL OF IMMUNOLOGY 2013; 192:824-32. [PMID: 24337377 DOI: 10.4049/jimmunol.1301039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The potential contribution of plasmacytoid dendritic cells (pDCs) in the presentation of tumor cell Ags remains unclear, and some controversies exist with regard to the ability of pDCs to phagocytose cell-derived particulate Ags and cross-present them to MHC class I-restricted T lymphocytes. In this study, we show that human pDCs, although inefficient in the internalization of cell membrane fragments by phagocytosis, can efficiently acquire membrane patches and associated molecules from cancer cells of different histotypes. The transfer of membrane patches to pDCs occurred in a very short time and required cell-to-cell contact. Membrane transfer also included intact HLA complexes, and the acquired Ags could be efficiently recognized on pDCs by tumor-specific CD8(+) T cells. Remarkably, pDCs isolated from human colon cancer tissues displayed a strong surface expression of epithelial cell adhesion molecule, indicating that the exchange of exogenous Ags between pDCs and tumor cells also can occur in vivo. These data demonstrate that pDCs are well suited to acquire membrane patches from contiguous tumor cells by a cell-to-cell contact-dependent mechanism that closely resembles "trogocytosis." This phenomenon may allow pDCs to proficiently present tumor cell-derived Ags, despite limited properties of endophagocytosis.
Collapse
Affiliation(s)
- Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sivaganesh S, Harper SJ, Conlon TM, Callaghan CJ, Saeb-Parsy K, Negus MC, Motallebzadeh R, Bolton EM, Bradley JA, Pettigrew GJ. Copresentation of intact and processed MHC alloantigen by recipient dendritic cells enables delivery of linked help to alloreactive CD8 T cells by indirect-pathway CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:5829-38. [PMID: 23630361 DOI: 10.4049/jimmunol.1300458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In transplantation, direct-pathway CD8 T cells that recognize alloantigen on donor cells require CD4 help for activation and cytolytic function. The ability of indirect-pathway CD4 T cells to provide this help remains unexplained, because a fundamental requirement for epitope linkage is seemingly broken. The simultaneous presentation, by host dendritic cells (DCs), of both intact MHC class I alloantigen and processed alloantigen would deliver linked help, but has not been demonstrated definitively. In this study, we report that following in vitro coculture with BALB/c DCs, small numbers (~1.5%) of C57BL/6 (B6) DCs presented acquired H-2(d) alloantigen both as processed allopeptide and as unprocessed Ag. This represented class I alloantigen provides a conformational epitope for direct-pathway allorecognition, because B6 DCs isolated from cocultures and transferred to naive B6 mice provoked cytotoxic CD8 T cell alloimmunity. Crucially, this response was dependent upon simultaneous presentation of class II-restricted allopeptide, because despite acquiring similar amounts of H-2(d) alloantigen upon coculture, MHC class II-deficient B6 DCs failed to elicit cytotoxic alloimmunity. The relevance of this pathway to solid-organ transplantation was then confirmed by the demonstration that CD8 T cell cytotoxicity was provoked in secondary recipients by transfer of DCs purified from wild-type, but not from MHC class II-deficient, C57BL/6 recipients of BALB/c heart transplants. These experiments demonstrate that representation of conformationally intact MHC alloantigen by recipient APC can induce cytotoxic alloimmunity, but simultaneous copresentation of processed allopeptide is essential, presumably because this facilitates linked recognition by indirect-pathway CD4 Th cells.
Collapse
Affiliation(s)
- Siva Sivaganesh
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Z, Divito S, Shufesky W, Sumpter T, Wang H, Tkacheva OA, Wang W, Liu C, Larregina AT, Morelli AE. Dendritic cell therapies in transplantation revisited: deletion of recipient DCs deters the effect of therapeutic DCs. Am J Transplant 2012; 12:1398-408. [PMID: 22500950 PMCID: PMC3365643 DOI: 10.1111/j.1600-6143.2012.04060.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A critical goal in transplantation is the achievement of donor-specific tolerance, minimizing the use of immunosuppressants. Dendritic cells (DCs) are antigen (Ag) presenting cells (APCs) with capability to promote immunity or tolerance. The immune-regulatory properties of DCs have been exploited for generation of tolerogenic/immunosuppressive (IS) DCs that, when transfer systemically, prolong allograft survival in murine models. Surprisingly, the in vivo mechanisms of therapies based on (donor- or recipient-derived) ISDCs in transplantation remain unknown, given that previous studies investigated their effects in vitro, or ex vivo after transplantation. Since once injected, ISDCs are short-lived and transfer Ag to recipient APCs, we assessed the role of recipient DCs by depleting them at the time of ISDC-therapy in a mouse model of cardiac transplantation. The results indicate that, contrary to the accepted paradigm, systemically administered ISDCs reduce the alloresponse and prolong allograft survival, not by themselves, but through conventional DCs (cDCs) of the recipient. These findings raise doubts on the advantages of the currently used ISDC-therapies, since the immune-regulatory properties of the injected ISDC do not seem to be functionally relevant in vivo, and the quiescent/pro-tolerogenic status of cDCs may be compromised in patients with end-stage diseases that require transplantation.
Collapse
Affiliation(s)
- Z. Wang
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - S.J. Divito
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - W.J. Shufesky
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - T. Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - H. Wang
- The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - O. A. Tkacheva
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - W. Wang
- The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - C. Liu
- The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - A. T. Larregina
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - A. E. Morelli
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
30
|
Choi DH, Kim KS, Yang SH, Chung DH, Song B, Sprent J, Cho JH, Sung YC. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses. Cancer Res 2011; 71:7442-51. [PMID: 22028323 DOI: 10.1158/0008-5472.can-11-1459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.
Collapse
Affiliation(s)
- Dong Hoon Choi
- Division of Molecular and Life Science, Pohang University of Science & Technology, Pohang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Klein L, Hinterberger M, von Rohrscheidt J, Aichinger M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol 2011; 32:188-93. [PMID: 21493141 DOI: 10.1016/j.it.2011.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 12/27/2022]
Abstract
Promiscuous expression of 'peripheral' tissue-restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs) is essential for central tolerance. Remarkably, the expression of individual TRAs varies among mTECs and is confined to a perplexingly small number of cells. To reconcile this with the ensuing robust state of tolerance, one might envisage that mTECs serve primarily as an antigen reservoir, whereas tolerogenic recognition of TRAs would ultimately require antigen uptake and presentation by dendritic cells (DCs). Here, we survey the evidence for this 'antigen-spreading' scenario and relate it to findings that document autonomous antigen-presentation by mTECs. We suggest that DC-dependent and autonomous tolerogenic functions of mTECs operate in parallel, and the underlying mechanisms remain to be established.
Collapse
Affiliation(s)
- Ludger Klein
- University of Munich, Institute for Immunology, Goethestr. 31, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
32
|
Iwasaki S, Masuda S, Baba T, Tomaru U, Katsumata K, Kasahara M, Ishizu A. Plasma-dependent, antibody- and Fcγ receptor-mediated translocation of CD8 molecules from T cells to monocytes. Cytometry A 2010; 79:46-56. [DOI: 10.1002/cyto.a.20984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Brown K, Fidanboylu M, Wong W. Intercellular exchange of surface molecules and its physiological relevance. Arch Immunol Ther Exp (Warsz) 2010; 58:263-72. [PMID: 20508995 DOI: 10.1007/s00005-010-0085-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
Abstract
For many decades, cellular immunologists have relied on the expression of various cell surface molecules to divide cells into different types and subtypes to study their function. However, in recent years, a large and fast-expanding body of work has described the transfer of surface molecules, including MHC class I and II molecules, between cells, both in vitro and in vivo. The function of this process is still largely unknown, but it is likely to have a significant role in the control of the immune system. It is also likely that this process takes place in a regulated rather than stochastic manner, thus providing another way for the immune system to orchestrate its function. In this review we will summarize the key findings so far, examining the mechanisms of transfer, the consequences of this transfer as shown by in vitro experiments, and possible consequences for the wider immune response.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
34
|
Daubeuf S, Lindorfer MA, Taylor RP, Joly E, Hudrisier D. The direction of plasma membrane exchange between lymphocytes and accessory cells by trogocytosis is influenced by the nature of the accessory cell. THE JOURNAL OF IMMUNOLOGY 2010; 184:1897-908. [PMID: 20089699 DOI: 10.4049/jimmunol.0901570] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exchange of plasma membrane fragments, including cell-surface proteins and lipids, in conjugates formed between lymphocytes and their cellular partners is a field of intense investigation. Apart from its natural occurrence during Ag recognition, the process of membrane transfer can be triggered in experimental or therapeutic settings when lymphocytes targeted by Abs are conjugated to FcgammaR-expressing accessory cells. The direction of membrane capture (i.e., which of the two cells is going to donate or accept plasma membrane fragments) can have important functional consequences, such as insensitivity of tumor cells to treatment by therapeutic mAbs. This effect, called antigenic modulation or shaving, occurs as a result of a process in which the FcgammaR-expressing cells remove the mAb and its target protein from the tumor cells. We therefore analyzed this process in conjugates formed between various FcgammaR-expressing cells and a series of normal or tumor T and B cells opsonized with different Abs capable of triggering membrane exchange (including the therapeutic Ab rituximab). Our results show that the direction of membrane capture is dictated by the identity of the FcgammaR-expressing cell, much more so than the type of lymphocyte or the Ab used. We found that monocytes and macrophages are prone to be involved in bidirectional trogocytosis with opsonized target cells, a process they can perform in parallel to phagocytosis. Our observations open new perspectives to understand the mechanisms involved in trogocytosis and may contribute to optimization of Ab-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Sandrine Daubeuf
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | |
Collapse
|
35
|
Abstract
In a multicellular system, cellular communication is a must for orchestration and coordination of cellular events. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the intercellular communication. An intercellular exchange of proteins or intact membrane patches is a ubiquitous phenomenon, and has been the subject of renewed interest, particularly in the context of immune cells. Recent evidence implicates that intercellular protein transfers, including trogocytosis is an important mechanism of the immune system to modulate immune responses and transferred proteins can also contribute to pathology. It has been demonstrated that intercellular protein transfer can be through the internalization/pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we will discuss the important findings concerning intercellular protein transfers, possible mechanisms and highlight their physiological relevance to the immune system, with special reference to T cells such as the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
36
|
Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9:833-44. [DOI: 10.1038/nri2669] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Gervais A, Eymard JC, Toulmonde E, Bernard J. Selected allogeneic dendritic cells markedly enhance human tumour antigen-specific T cell response in vitro. Cancer Immunol Immunother 2009; 58:1831-41. [PMID: 19330330 PMCID: PMC11030287 DOI: 10.1007/s00262-009-0694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 03/07/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. OBJECTIVE This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. RESULTS Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. CONCLUSION Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses.
Collapse
Affiliation(s)
- Alban Gervais
- Institut Jean Godinot, Unité de Thérapie Cellulaire, Reims, France.
| | | | | | | |
Collapse
|
38
|
Hudrisier D, Clemenceau B, Balor S, Daubeuf S, Magdeleine E, Daëron M, Bruhns P, Vié H. Ligand binding but undetected functional response of FcR after their capture by T cells via trogocytosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:6102-13. [PMID: 19841164 DOI: 10.4049/jimmunol.0900821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intercellular transfer of cell surface proteins by trogocytosis is common and could affect T cell responses. Yet, the role of trogocytosis in T cell function is still elusive, and it is unknown whether a molecule, once captured by T cells, harbors the same biological properties as in donor APC. In this study, we showed that FcgammaR as well as the associated FcRgamma subunit could be detected at high levels on murine and human T cells after their intercellular transfer from FcgammaR-expressing APC. Capture of FcgammaR occurred during coculture of T cells with FcgammaR-expressing APC upon Ab- or Ag-mediated T cell stimulation. Once captured by T cells, FcgammaR were expressed in a conformation compatible with physiological function and conferred upon T cells the ability to bind immune complexes and to provision B cells with this source of Ag. However, we were unable to detect downstream signal or signaling-dependent function following the stimulation of FcgammaR captured by T cells, and biochemical studies suggested the improper integration of FcgammaR in the recipient T cell membrane. Thus, our study demonstrates that T cells capture FcgammaR that can efficiently exert ligand-binding activity, which, per se, could have functional consequences in T cell-B cell cooperation.
Collapse
Affiliation(s)
- Denis Hudrisier
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Venkatachari NJ, Alber S, Watkins SC, Ayyavoo V. HIV-1 infection of DC: evidence for the acquisition of virus particles from infected T cells by antigen uptake mechanism. PLoS One 2009; 4:e7470. [PMID: 19829715 PMCID: PMC2759578 DOI: 10.1371/journal.pone.0007470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/22/2009] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naïve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus.
Collapse
Affiliation(s)
- Narasimhan J. Venkatachari
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sean Alber
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Manches O, Lui G, Molens JP, Sotto JJ, Chaperot L, Plumas J. Whole lymphoma B cells allow efficient cross-presentation of antigens by dendritic cells. Cytotherapy 2009; 10:642-9. [PMID: 18836919 DOI: 10.1080/14653240802317647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND In order to compensate for the paucity of defined tumor antigens (Ag) in non-Hodgkin's lymphomas, a promising approach might be the use of whole tumor cells as a source of tumor Ag to pulse antigen-presenting cells (APC). However, it is not presently known how the tumor cells should be delivered to APC to optimize the cross-presentation of tumor Ag to anti-tumor CD8 T cells. We aimed to compare CD20-opsonized, apoptotic and necrotic human tumor cells for their capacity to induce endocytosis and cross-presentation of tumor-associated Ag by dendritic cells (DC) or macrophages. METHODS Endocytosis of human tumor-derived material by macrophages or DC was monitored by flow cytometry. We used a previously described influenza model and studied cross-presentation of viral Ag as cellular surrogate tumor-associated Ag by APC after endocytosis of lymphoma B cells treated by inactivated influenza virus. RESULTS Optimal endocytosis was obtained when tumor cells were opsonized by an anti-CD20 antibody and, as expected, macrophages were more phagocytic than DC. However, Ag from opsonized, apoptotic and live cells, but not from necrotic lymphoma cells, were efficiently cross-presented by DC but not by macrophages. DISCUSSION We have developed a new model with human primary lymphoma cells to study the cross-presentation of tumor-associated Ag by APC. The results we have obtained support the use of whole lymphoma cells from patients to pulse DC to induce an anti-tumor immune response.
Collapse
Affiliation(s)
- O Manches
- EFS Rhone-Alpes, Laboratoire R&D, La Tronche, France
| | | | | | | | | | | |
Collapse
|
41
|
Brown K, Sacks SH, Wong W. Extensive and bidirectional transfer of major histocompatibility complex class II molecules between donor and recipient cells in vivo following solid organ transplantation. FASEB J 2008; 22:3776-84. [PMID: 18632850 DOI: 10.1096/fj.08-107441] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intercellular transfer of surface molecules has been demonstrated in vitro, or in vivo under artificial situations. Transplantation is a unique clinical situation in which foreign major histocompatibility complex (MHC) molecules are deliberately introduced. This provides a model to study intercellular MHC transfer because donor MHC molecules can easily be tracked. Here we describe the bidirectional transfer of MHC class II molecules between donor and recipient cells after transplantation of vascularized kidney and cardiac allografts in mice. Cells that are positive for both donor and recipient MHC class II accounted for up to 30% of the donor MHC class II(+) population, suggesting that they play a significant role in the antigen presentation process. The majority of these cells were dendritic cells, but macrophages and B cells were also able to acquire foreign MHC molecules. Most double-positive cells were also positive for costimulatory molecules, indicating a capability to elicit a T-cell response. This transfer of MHC molecules between donor and recipient cells provides a link between the direct and indirect pathways of alloantigen presentation and suggests that MHC transfer is also likely to occur under normal physiological conditions, which has implications in the fields of infection, vaccination, and tumor immunology.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Center for Transplantation, Fifth Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | | |
Collapse
|
42
|
Sarić T, Frenzel LP, Hescheler J. Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs 2008; 188:78-90. [PMID: 18303241 DOI: 10.1159/000118784] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Replacement of diseased tissues with healthy cells derived from embryonic stem (ES) cells has a potential to become, in the future, a better alternative to current treatments of a number of conditions characterized by irreversible tissue injury, such as heart and liver failure, diabetes mellitus and neurodegeneration. However, several obstacles have to be overcome before this new therapeutic modality becomes part of a standard clinical practice. First of all, ethical and safety issues have to be resolved, the methodologies must be developed to enable obtaining sufficient amounts of differentiated cells, and the immune rejection of allogeneic cells must be prevented in order to ensure their long-term engraftment and function. Data on immunological properties of human and murine ES cells and their differentiated derivatives are controversial, ranging from those claiming unique immune-privileged properties for ES cells to those which refute these conclusions. This indicates that much more research is required to definitively understand the immunological features and engraftment capacity of ES cell derivatives. We review here the current state of the art in this new and exciting field of ES cell immunology and discuss the implications of these findings for the development of ES cell-based therapies.
Collapse
Affiliation(s)
- Tomo Sarić
- Center for Physiology, Medical Faculty of the University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
43
|
Arina A, Murillo O, Hervás-Stubbs S, Azpilikueta A, Dubrot J, Tirapu I, Huarte E, Alfaro C, Pérez-Gracia JL, González-Aseguinolaza G, Sarobe P, Lasarte JJ, Jamieson A, Prieto J, Raulet DH, Melero I. The combined actions of NK and T lymphocytes are necessary to reject an EGFP+ mesenchymal tumor through mechanisms dependent on NKG2D and IFN gamma. Int J Cancer 2007; 121:1282-95. [PMID: 17520674 DOI: 10.1002/ijc.22795] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Better understanding of the mechanisms that mediate spontaneous immune rejections ought to be important in the quest for improvements in immunotherapy of cancer. A set of intraperitoneal tumors of mesenchymal origin that had been chemically induced in ubiquitously expressing EGFP transgenic mice provided a model in which both T and NK cells were absolutely required for tumor rejection. Tumor cells were traceable because of being fluorescent and readily grafted in RAG1(-/-) immunodeficient mice, whereas they were rejected in a majority of syngeneic C57BL/6 and EGFP-transgenic mice. Tumor-cell clones with the highest EGFP expression tended to be rejected, but a direct involvement of EGFP as the antigen recognized for the immune rejections was ruled out. Rejections were absolutely dependent on NK cells as well as on CD4(+) and CD8(+) T lymphocytes according to selective depletion studies. Furthermore, CD8(+) and CD4(+) T lymphocytes as well as NK cells were detected in the inflammatory infiltrate that mediates tumor rejection along with some DC. The effects of IFN gamma, produced at the tumor site by T and NK lymphocytes, were only required at the malignant cell level and were necessary for tumor eradication. NK recognition of tumor cells was mediated by the NKG2D-activating receptor and blocking its function in vivo partially interfered with rejection. Therefore, complete rejection of these mesenchymal tumors requires a concerted set of activities including direct tumor-cell destruction and IFN gamma production that are mediated by both NK and T cells.
Collapse
Affiliation(s)
- Ainhoa Arina
- Gene Therapy Unit, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Draube A, Beyer M, Schumer S, Thomas RK, von Tresckow B, Koslowsky TC, Krieglstein CF, Schultze JL, Wolf J. Efficient activation of autologous tumor-specific T cells: a simple coculture technique of autologous dendritic cells compared to established cell fusion strategies in primary human colorectal carcinoma. J Immunother 2007; 30:359-69. [PMID: 17457211 DOI: 10.1097/cji.0b013e31802bfefe] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different technologies have been employed to deliver the whole spectrum of tumor antigens (TAs) to dendritic cells (DCs) to be presented to T cells. These include whole tumor RNA-transfected DCs, preparations of DCs loaded with tumor-derived apoptotic bodies or tumor cell lysates, and DC tumor cell fusions. Early clinical trials have been conducted using such techniques. The presented study was aimed to revisit the necessity of tumor cell manipulation in DC-based immunotherapy strategies for colorectal carcinoma. We investigated a simple coculture method of autologous monocyte-derived DCs and human primary colorectal carcinoma (pCC) in comparison with 2 well-described cell fusion strategies for the efficacy of uptake, processing and presentation of TAs to autologous T cells. Before coculture or fusion, pCC had been cryopreserved without further manipulation. Fluorescence microscopy and flow cytometry analyses of fluorescent dye labeled cells were used for monitoring engulfment of pCC by DCs. The coculture procedure resulted in a double positive cell fraction of up to 22% and thus was comparable to that observed after cell fusion. More important, DCs after coculture with autologous pCC induced significant tumor-specific interferon-gamma-producing autologous T cells in the same number of patients as DC/pCC fusions. Furthermore, tumor-specific major histocompatibility complex class I restricted cytotoxic T lymphocytes were generated by stimulation with DCs cocultured with pCC. In prior studies for human carcinomas coculture techniques were described to be inferior. In contrast, our data strongly suggest that at least for human pCC and autologous DCs this simple coculture method is similarly efficient compared to established fusion techniques.
Collapse
Affiliation(s)
- Andreas Draube
- Department of Internal Medicine I, University of Cologne, Joseph-Stelzmann-Str. 9, D-50924 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Smyth LA, Afzali B, Tsang J, Lombardi G, Lechler RI. Intercellular transfer of MHC and immunological molecules: molecular mechanisms and biological significance. Am J Transplant 2007; 7:1442-9. [PMID: 17511673 PMCID: PMC3815510 DOI: 10.1111/j.1600-6143.2007.01816.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intercellular transfer of many molecules, including the major histocompatibility complexes (MHC), both class I and II, costimulatory and adhesion molecules, extracellular matrix organization molecules as well as chemokine, viral and complement receptors, has been observed between cells of the immune system. In this review, we aim to summarize the findings of a large body of work, highlight the molecules transferred and how this is achieved, as well as the cells capable of acquiring molecules from other cells. Although a physiological role for this phenomenon has yet to be established we suggest that the exchange of molecules between cells may influence the immune system with respect to immune amplification as well as regulation and tolerance. We will discuss why this may be the case and highlight the influence intercellular transfer of MHC molecules may have on allorecognition and graft rejection.
Collapse
|
46
|
Curry AJ, Pettigrew GJ, Negus MC, Easterfield AJ, Young JL, Bolton EM, Bradley JA. Dendritic cells internalise and re-present conformationally intact soluble MHC class I alloantigen for generation of alloantibody. Eur J Immunol 2007; 37:696-705. [PMID: 17266175 DOI: 10.1002/eji.200636543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following organ transplantation soluble MHC class I is released from the graft and may contribute to alloimmunity. We determined in a well-established rat model whether DC are able to internalise soluble MHC class I alloantigen and then re-present intact alloantigen to B cells and T cells for generation of an alloantibody or CD8 T cell response. PVG.RT1(u) BM-derived DC internalised (via an active process) and retained intact a recombinant soluble form of RT1-A(a) (sRT1-A(a)). When PVG.RT1(u) rats were immunised with sRT1-A(a)-pulsed syngeneic DC, they developed a strong anti-sRT1-A(a) alloantibody response and showed accelerated rejection of RT1-A(a)-disparate PVG.R8 heart grafts. Alloantibody production and accelerated heart graft rejection were both dependent on immunisation with viable sRT1-A(a)-pulsed DC. The alloantibody response to sRT1-A(a)-pulsed DC was directed exclusively against conformational epitopes expressed by sRT1-A(a) and not epitopes expressed, for example, by non-conformational sRT1-A(a) heavy chain. Immunisation with sRT1-A(a)-pulsed syngeneic DC did not stimulate a CD8 T cell response. Our findings suggest a novel alloantigen recognition pathway whereby soluble MHC class I alloantigen released from an allograft may be taken up by recipient DC and presented in an intact unprocessed form to B cells for the generation of an alloantibody response.
Collapse
Affiliation(s)
- Allison J Curry
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Davis DM. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 2007; 7:238-43. [PMID: 17290299 DOI: 10.1038/nri2020] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells can extend the limits of their transcriptome by using proteins captured from other cells. Through an exchange of specific proteins, tools and information can be shared to establish integrated communities of cells that are better able to coordinate stages of an immune response. Transferred proteins can also contribute to pathology by allowing, for example, infection of cell types not otherwise infected. Here, I present the case for considering the intercellular transfer of cell-surface proteins between immune cells as commonplace and important.
Collapse
Affiliation(s)
- Daniel M Davis
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
48
|
Smyth LA, Herrera OB, Golshayan D, Lombardi G, Lechler RI. A novel pathway of antigen presentation by dendritic and endothelial cells: Implications for allorecognition and infectious diseases. Transplantation 2006; 82:S15-8. [PMID: 16829787 DOI: 10.1097/01.tp.0000231347.06149.ca] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DCs) are the major antigen presenting cells capable of stimulating T cell responses following either organ transplantation or a viral infection. In the context of allorecognition, T cells can be activated following presentation of alloantigens by donor DCs (direct), as well as by recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect). We have recently described another mechanism by which alloreactive T cells are activated. Recipient DCs can acquire donor MHC through cell-to-cell contact and this acquired MHC can stimulate a T cell response (the semidirect pathway). Similarly, during a viral infection, DCs are capable of stimulating T cells directly, as occurs when infected DCs present processed viral antigens, or indirectly by a process known as cross-presentation. Although cross-presentation of exogenous antigen is an important mechanism for controlling infectious diseases, it is possible that peptide:MHC acquisition (the semidirect pathway) may also play a part in immunity against pathogens. In this review, we discuss the possible contributions of the semidirect pathway/MHC transfer in infectious disease.
Collapse
Affiliation(s)
- Lesley Ann Smyth
- Department of Nephrology and Transplantation, Kings College London, Guy's Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Abstract
Dendritic cells (DCs) play a crucial role during the initiation of immune responses against non-self antigens. Following organ transplantation, activated donor- and recipient-derived DCs participate actively in graft rejection by sensitising recipient T cells via the direct or indirect pathways of allorecognition, respectively. There is increasing evidence that immature/semi-mature DCs induce antigen-specific unresponsiveness or tolerance to self antigens, both in central lymphoid tissue and in the periphery, through a variety of mechanisms (deletion, anergy and regulation). In the past few years, DC-based therapy of experimental allograft rejection has focused on ex vivo biological, pharmacological and genetic engineering of DCs to mimic/enhance their natural tolerogenicity. Successful outcomes in rodent models have built the case that DC-based therapy may provide a novel approach to transplant tolerance. Ongoing research into the role that DCs play in the induction of tolerance should allow for its clinical application in the near future.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Texas A&M University System Health Science Center, Baylor College of Dentistry, Department of Biomedical Sciences, Immunology Laboratory, 3302 Gaston Avenue, Dallas, TX 75246, USA.
| | | |
Collapse
|
50
|
Kipshidze N, Tsapenko M, Iversen P, Burger D. Antisense therapy for restenosis following percutaneous coronary intervention. Expert Opin Biol Ther 2006; 5:79-89. [PMID: 15709911 DOI: 10.1517/14712598.5.1.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in vascular gene transfer have shown potential new treatment modalities for cardiovascular disease, particularly in the treatment of vascular restenosis. The antisense approach to inhibiting gene expression involves introducing oligonucleotides complementary to mRNA into cells in order to block any one of the following processes: uncoiling of DNA, transcription of DNA, export of RNA, DNA splicing, RNA stability, or RNA translation involved in the synthesis of proteins in cellular proliferation. The approach includes the use of antisense oligonucleotides, antisense mRNA, autocatalytic ribozymes, and the insertion of a section of DNA to form a triple helix. Proof of principle has been established that inhibition of several cellular proto-oncogenes, including DNA binding protein c-myb, non-muscle myosin heavy chain, PCNA proliferating-cell nuclear antigen, platelet-derived growth factor, basic fibroblast growth factor and c-myc, inhibits smooth muscle cell proliferation in vitro and in several animal models. The first clinical study demonstrated the safety and feasibility of local delivery of antisense in the treatment and prevention of restenosis; another randomised clinical trial (AVAIL) with local delivery of c-myc morpholino compound in patients with coronary artery disease demonstrated its long-term effect on reducing neointimal formation, as well as its safety. These preliminary findings from the small cohort of patients require confirmation in a larger trial utilising more sophisticated drug-eluting technologies.
Collapse
Affiliation(s)
- Nicholas Kipshidze
- Lenox Hill Hospital, Department of Interventional Cardiac & Vascular Services, 130 East 77th Street, New York, NY 10021, USA.
| | | | | | | |
Collapse
|