1
|
Sudaraka Tennakoon MSBWTMN, Lee KH, Shin HJ. Expression of recombinant swine ferritin heavy chain with enhanced solubility in Escherichia coli and simplified purification of ferritin nanoparticles. Protein Expr Purif 2025; 231:106700. [PMID: 40086537 DOI: 10.1016/j.pep.2025.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Ferritin is a versatile biomolecule used in various medical applications such as drug delivery, vaccines, biological imaging, and diagnostics. The purity and concentration of the ferritin nanoparticles are crucial for achieving excellent outcomes. In this study, we expressed and purified the recombinant swine ferritin heavy chain (rsFTH) as a new candidate for recombinant ferritin nanoparticles. We generated two types of plasmids that can express rsFTH in mammalian and prokaryotic systems. The myc-tagged rsFTH expressed in the mammalian system was purified and ferritin nanoparticles were validated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). A prokaryotic expression system was used to produce rsFTH on a large scale. Protein expression was optimized in Escherichia coli BL21 under varying temperatures and IPTG conditions, and solubility was enhanced by incubation at 25 °C for 18-22 h in auto-induction media, resulting in approximately >50 % protein content in the soluble fraction compared with the pellet. Protein purification was achieved using His-tag affinity chromatography and dialysis with Tris-HCl buffer, yielding adequately pure rsFTH without any apparent protein aggregates. SDS-PAGE and Western blot analysis confirmed the expected molecular weight of rsFTH, and Native-PAGE demonstrated polymerization into higher molecular weight forms. Particle size analysis of purified rsFTH revealed a mean diameter of 15.5 nm, with transmission electron microscopy (TEM) imaging confirming spherical ferritin particles with an iron core. These results suggest that rsFTH can be efficiently expressed and purified in both mammalian and bacterial systems, and has potential applications in nanotechnology and biotechnology.
Collapse
Affiliation(s)
| | - Kyoung-Ho Lee
- Laboratory of Infectious diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea; CellEnVax Co., Ltd, South Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea; CellEnVax Co., Ltd, South Korea.
| |
Collapse
|
2
|
Givian A, Azizan A, Jamshidi A, Mahmoudi M, Farhadi E. Iron metabolism in rheumatic diseases. J Transl Autoimmun 2025; 10:100267. [PMID: 39867458 PMCID: PMC11763848 DOI: 10.1016/j.jtauto.2025.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired. Altered iron homeostasis can contribute to disease progression through ROS production, fibrosis, inflammation, abnormal bone homeostasis, NETosis and cell senescence. In this review, we have focused on the iron metabolism in rheumatic disease and its role in disease progression.
Collapse
Affiliation(s)
- Aliakbar Givian
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Amin Azizan
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lanser L, Pölzl G, Messner M, Ungericht M, Zaruba M, Hirsch J, Hechenberger S, Obersteiner S, Koller B, Haschka D, Ulmer H, Weiss G. Prevalence of iron deficiency in acute and chronic heart failure according to different clinical definitions. ESC Heart Fail 2025; 12:1606-1619. [PMID: 39930934 PMCID: PMC12055403 DOI: 10.1002/ehf2.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 05/08/2025] Open
Abstract
AIMS Iron is essential to maintain cellular energy metabolism in the myocardium. Impaired cellular iron availability negatively affects myocardial physiology and can aggravate heart failure (HF). Iron deficiency (ID) is frequently found in patients with acute and chronic HF (AHF, CHF) and associated with clinical outcome. The aim of this analysis was to assess the true ID prevalence in HF patients on the basis of different ID definitions. METHODS We performed a retrospective analysis of 329 AHF and 613 CHF patients, recruited between 02/2021 and 05/2022 at the Innsbruck Medical University (47%/32% female, median age 81/64 years). ID was defined according to a general definition, gastroenterology and cardiology guidelines as ferritin <30 or <45 ng/mL or <100/ng/mL (absolute ID), ferritin 30-100 or 45-150 or 100-299 ng/mL plus TSAT <20% (combined ID), and ferritin >100 or >150 or ≥300 ng/mL plus TSAT <20% (functional ID). RESULTS ID prevalence was significantly higher in AHF compared with CHF patients: general definition (74.8% vs. 32.6%, P < 0.001), gastroenterology guidelines (75.7% vs. 34.7%, P < 0.001), cardiology guidelines (79.9% vs. 47.3%, P < 0.001). We found distinctive differences in prevalence of ID types between the three definitions. Absolute ID prevalence was highest when applying cardiology compared with gastroenterology guidelines and general definition (AHF: 44.7% vs. 20.4% vs. 7.0%; CHF: 34.1% vs. 13.4% vs. 7.2%), while frequency of combined ID was almost equally distributed. Functional ID prevalence was highest when applying general definition compared with gastroenterology and cardiology guidelines (AHF: 34.7% vs. 23.4% vs. 11.6%; CHF: 13.1% vs. 9.0% vs. 3.4%). Out of 494 patients classified as having absolute or combined ID according to the cardiology guidelines, only 252 patients received the same classification while 107 and 135 patients were classified having no and functional ID when applying the general definition. CONCLUSIONS We show that ID prevalence is higher in AHF versus CHF patients in a continuous cohort of HF patients managed at the same institution over the same period of time. There were distinctive differences in detection of ID and the type of ID when applying several recommended definitions thus affecting sensitivity and specificity for absolute and functional ID detection. This may result in exclusion of patients, which may benefit from iron supplementation and inclusion of those who may not respond or even anticipate site effects. Our study calls for the urgent need of prospective trials for redefinition of ID and identification of biomarkers associated with therapeutic response to optimize patient outcomes.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Gerhard Pölzl
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Moritz Messner
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Maria Ungericht
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Marc‐Michael Zaruba
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Jakob Hirsch
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Hechenberger
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Obersteiner
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Bernhard Koller
- Department of Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - David Haschka
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Hanno Ulmer
- Institute of Medical Statistics and InformaticsMedical University of InnsbruckInnsbruckAustria
| | - Guenter Weiss
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory for Iron Metabolism of Anemia ResearchMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
Boughzala ML, Pereira B, Ruivard M, Lobbes H. A clinical predictive score of high liver iron content in metabolic hyperferritinemia: a retrospective cohort pilot study. BMC Gastroenterol 2025; 25:331. [PMID: 40316948 PMCID: PMC12046737 DOI: 10.1186/s12876-025-03891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND In metabolic hyperferritinemia, most patients do not require bloodletting as the liver iron content is mildly increased. We aimed to develop a clinical predictive score of high liver iron content in metabolic hyperferritinemia to guide the prescription of magnetic resonance imaging of the liver. METHODS We conducted a single-center retrospective cohort study including consecutive patients with metabolic hyperferritinemia who underwent a liver iron content evaluation at diagnosis. Excessive alcohol consumption was an exclusion criterion. A multivariate analysis followed by a 1000 bootstrap replicate analysis with an expectation-maximization algorithm was used to identify the predictive factors of high liver iron content. A ROC curve analysis was built to study the performance of the score based on the odds-ratio provided by the multivariate analysis. RESULTS 217 patients (180 men, mean age 57 years old) were included. Fifty-five patients (25%) had high liver iron content (≥ 100 µmol/g). In univariate analysis, a family history of hyperferritinemia requiring phlebotomies was associated with high LIC, as well as an increase of transferrin saturation > 45% (p < 0.001). In multivariate regression, a family history of hyperferritinemia (OR 6.15, CI95 [2.11-17.92]), increased ferritin level ≥ 600 µg/L (OR 5.53, CI95 [1.43-21.42]) and increased transferrin saturation ≥ 45% (OR 2.63, CI95 [1.32-5.23]) were significantly associated with high liver iron content. A 15-point predictive score (area-under-the-curve 0.72, CI95 [0.64-0.79], p < 0.001) was built, providing an OR of 4.17 (CI95 [2.15-8.07], p < 0.001) for high liver iron content (sensitivity 60%, specificity 97%, negative predictive value 84%). CONCLUSION in this pilot study, ferritin ≥ 600 µg/L, transferrin saturation ≥ 45% and a family history of hyperferritinemia requiring bloodletting provided a simple clinical score to predict high liver iron content in metabolic adult hyperferritinemia. The bootstrap analysis confirmed the robustness of our model.
Collapse
Affiliation(s)
- Mohamed Lotfi Boughzala
- Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, 1 Place Lucie et Raymond Aubrac, Clermont-Ferrand, 63100, France
| | - Bruno Pereira
- Département de Biostatistiques, Direction de la Recherche Clinique et de l'Innovation, Centre Hospitalier Universitaire de Clermont-Ferrand, 28 Place Henri Dunant, Clermont-Ferrand, 63000, France
| | - Marc Ruivard
- Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, 1 Place Lucie et Raymond Aubrac, Clermont-Ferrand, 63100, France
- Institut Pascal, Thérapies Guidées par l'Image, UMR 6602 CNRS, Université Clermont Auvergne, 28 Place Henri Dunant, Clermont-Ferrand, 63000, France
| | - Hervé Lobbes
- Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, 1 Place Lucie et Raymond Aubrac, Clermont-Ferrand, 63100, France.
- Institut Pascal, Thérapies Guidées par l'Image, UMR 6602 CNRS, Université Clermont Auvergne, 28 Place Henri Dunant, Clermont-Ferrand, 63000, France.
| |
Collapse
|
5
|
Yabaji SM, Zhernovkov V, Araveti PB, Lata S, Rukhlenko OS, Abdullatif SA, Vanvalkenburg A, Alekseev Y, Ma Q, Dayama G, Lau NC, Johnson WE, Bishai WR, Crossland NA, Campbell JD, Kholodenko BN, Gimelbrant AA, Kobzik L, Kramnik I. Lipid Peroxidation and Type I Interferon Coupling Fuels Pathogenic Macrophage Activation Causing Tuberculosis Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583602. [PMID: 38496444 PMCID: PMC10942339 DOI: 10.1101/2024.03.05.583602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop pulmonary TB. We developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: the development of necrotic lung granulomas and determined that the sst1-susceptible phenotype was driven by the aberrant macrophage activation. This study demonstrates that the aberrant response of the sst1-susceptible macrophages to prolonged stimulation with TNF is primarily driven by conflicting Myc and antioxidant response pathways leading to a coordinated failure 1) to properly sequester intracellular iron and 2) to activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled Ifn-beta superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. The upregulation of Myc pathway in peripheral blood cells of human TB patients was significantly associated with poor outcomes of TB treatment. Thus, Myc dysregulation in activated macrophages results in an aberrant macrophage activation and represents a novel target for host-directed TB therapies.
Collapse
|
6
|
Shi Y, Zheng W, Yang G, Liu H, Xing L. A causal inference study exploring the impact of iron status on the risk of thyroid cancer based on two-sample mendelian randomization. Discov Oncol 2025; 16:485. [PMID: 40192984 PMCID: PMC11977069 DOI: 10.1007/s12672-025-02270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND & AIMS Thyroid cancer is prone to early lymph node metastasis.This study investigated the influence of iron status on thyroid cancer risk and its mediating role in the relationship between thyroid cancer incidence and thyroid cancer-related exposure factors. METHOD Utilizing iron status-related Single Nucleotide Polymorphisms as instrumental variables, the research analyzed summary data on iron status and thyroid cancer from Genome-Wide Association Studies following the Two-sample Mendelian randomization guidelines, primarily using the Inverse-variance weighted method, with Mendelian randomization-Egger method, weighted median method, simple mode, and weighted mode as supplementary analyses. The reliability and robustness of the results were assessed using the Leave-one-out analysis and Cochran's Q Test. RESULTS The findings indicate that the iron status has a vital causal relationship with the occurrence of thyroid cancer. The Inverse-variance weighted model results revealed Iron || id:ieu-a-1049: OR = 1.409, 95%CI = (1.043, 1.904), P < 0.05; Ferritin || id:ieu-a-1050: OR = 2.029, 95% CI = (1.081, 3.808), P < 0.05; Transferrin Saturation || id:ieu-a-1051: OR = 1.337, 95%CI = (1.058, 1.690), P < 0.05. The reliability and robustness of these results were further supported by the Leave-one-out analysis and Cochran's Q Test (P > 0.05). CONCLUSION The study establishes a certain causal link between iron status and thyroid cancer, indicating that transferrin saturation, serum ferritin and serum iron are associated with thyroid cancer incidence.
Collapse
Affiliation(s)
- Yihan Shi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenlian Zheng
- Department of Burn and Wound Repair, Shaoguan First People's Hospital, Shaoguan, 512023, Guangdong, China
| | - Guanglun Yang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lei Xing
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Feng C, Zhang L, Zhou X, Lu S, Guo R, Song C, Zhang X. Redox imbalance drives magnetic property and function changes in mice. Redox Biol 2025; 81:103561. [PMID: 40020452 PMCID: PMC11910372 DOI: 10.1016/j.redox.2025.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
The magnetic properties of substances directly determine their response to an externally applied magnetic field, which are closely associated with magnetoreception, magnetic resonance imaging (MRI), and magnetic bioeffects. However, people's understanding of the magnetic properties of living organisms remains limited. In this study, we utilized NRF2 (nuclear factor erythroid 2-related factor 2) deficient mice to investigate the contribution of redox (oxidation-reduction) homeostasis, in which the key process is the transfer of electron, a direct target of magnetic field and origin of paramagnetism. Our results show that the NRF2-/- mice exhibit significantly altered systemic redox state, accompanied by increased magnetic susceptibility, particularly in the liver and spleen. Further analyses reveal that the levels of paramagnetic reactive oxygen species (ROS) in these tissues are markedly elevated compared to wild-type mice. Moreover, the concentrations of Fe2+ and Fe3+ are significantly elevated in NRF2-/- mice, which are directly correlated with the increased magnetic susceptibility. The disrupted redox balance in NRF2-/- mice not only exacerbates oxidative stress and iron deposition, but also induces impairment to the liver and spleen. The findings highlight the combined effects of ROS and iron metabolism in driving magnetic susceptibility changes, providing valuable theoretical insights for further research into magnetic bioeffects and organ-specific sensitivity to magnetic fields.
Collapse
Affiliation(s)
- Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoyuan Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China
| | - Shiyu Lu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China.
| |
Collapse
|
8
|
Han Y, Sun Y, Shu C, Yue Z, Chang X, Lin C, Zhang J, Liu K, Hou J. Hepcidin-regulated iron metabolism disorders in patients with stage III/IV periodontitis. J Dent Sci 2025; 20:995-1001. [PMID: 40224112 PMCID: PMC11993015 DOI: 10.1016/j.jds.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/26/2024] [Indexed: 04/15/2025] Open
Abstract
Background /purposeThe disorders of iron metabolism in periodontal diseases have been reported, however, there is still lack of comprehensive and thorough analyses about the association between periodontitis and iron metabolism disorders. This study aimed to examine the association between periodontitis and iron metabolism disorders, and to analyze the characteristic changes of iron metabolism in periodontitis patients. Materials and methods 79 Stage III/IV periodontitis patients and 79 healthy controls were enrolled in this study. Periodontal clinical parameters, system inflammation markers, iron metabolism parameters and hematological parameters were collected and compared at baseline and 3 months after non-surgical periodontal therapy. Results Stage III/IV periodontitis patients exhibited higher levels of systemic inflammatory markers including white blood cell (WBC) counts and high-sensitivity C-reactive protein (hs- CRP). Serum hepcidin and ferritin were significantly increased in the periodontitis group, meanwhile serum iron and transferrin were significantly decreased. Periodontal therapy attenuated the higher levels of hepcidin and ferritin, and the lower levels of Fe and transferrin in periodontitis patients at 3 months after therapy. Probing depth (PD), bleeding index (BI) and clinical attachment loss (CAL) were positively correlated with hepcidin and ferritin, and negatively correlated with Fe and transferrin respectively. Hepcidin was significantly negatively correlated with Fe and positively correlated with ferritin in periodontitis patients. Conclusion Our findings suggest the association between periodontitis and iron metabolism disorders and indicate that periodontitis-activated host responses may increase the risk of iron metabolism disorders, while meaningfully provide new insights into the systemic effects of periodontitis.
Collapse
Affiliation(s)
| | | | - Chang Shu
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhaoguo Yue
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochi Chang
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Cheng Lin
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jie Zhang
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kaining Liu
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianxia Hou
- Department of Periodontology, National Center of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Wang J, Zhang Y, Zhong H, Zhang Y, Han R, Guo Y, Huang S, Yu H, Zhong Y. Silicone Oil Affects Fibrosis of Human Trabecular Meshwork Cells by Upregulating Ferroptosis Through a ROS/NOX4/Smad3 Axis. Invest Ophthalmol Vis Sci 2025; 66:25. [PMID: 40067295 PMCID: PMC11918095 DOI: 10.1167/iovs.66.3.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Silicone oil (SiO) is commonly employed as an intravitreal tamponade to manage complex retinal detachments associated with proliferative diabetic retinopathy, trauma, or severe myopia and to facilitate retinal reattachment. Nevertheless, SiO usage is linked to several complications, notably secondary glaucoma, which constitutes a significant proportion of adverse effects. This study investigated the impact of SiO on trabecular meshwork cells, given their pivotal role in regulating aqueous humor outflow. Methods Human trabecular meshwork cells (HTMCs) were co-cultured with SiO. The impact on proliferation, fibrosis-related markers, and ferroptosis levels on these cells was evaluated using 5-ethynyl-2'-deoxyuridine (EdU), western blot, and immunofluorescence assays. Further gene knockdown experiments with NOX4 and Smad3 were conducted to elucidate the underlying mechanisms of SiO-induced changes. Results SiO intervention inhibited HTMC proliferation, upregulated fibrosis-related markers, and elevated ferroptosis levels. Gene knockdown experiments revealed that SiO-induced ferroptosis and reactive oxygen species (ROS) increase were mediated through NOX4 upregulation and Smad3 activation. Conclusions These findings highlight the significance of ferroptosis and the ROS/NOX4/Smad3 axis in the mechanism of SiO-induced intraocular pressure elevation. The insights gained from this study identify potential therapeutic targets to mitigate postoperative complications associated with SiO tamponade in ophthalmic surgery.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yanzhi Guo
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Dev S, Asthana S, Singh P, Seth P, Banerjee C, Mukhopadhyay CK. Dopamine degrades ferritin by chaperone-mediated autophagy to elevate mitochondrial iron level in astroglial cells. Free Radic Biol Med 2025; 229:39-57. [PMID: 39818240 DOI: 10.1016/j.freeradbiomed.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited. Here we show that DA degrades iron storage protein ferritin in astroglial cells involving lysosomal proteolysis. Lysosomal ferritinophagy is mainly associated with macroautophagy; however, we revealed the involvement of chaperone-mediated autophagy (CMA) in DA-induced ferritin degradation. In CMA, cytosolic proteins containing a specific pentapeptide motif bind with HSC70 to be transported to lysosome mediated by LAMP2A. We identified the conserved pentapeptide motif in ferritin-H (Ft-H), mutations of which resulted loss of its interaction with HSC70. Pharmacological inhibitors of HSC70 or LAMP2/2A knockdown blocks DA-induced Ft-H degradation. DA also induces cytosolic cargo NCOA4 for ferritinophagy. We further reveal that DA promotes cathepsin B to lysis ferritin within the lysosome. Inhibitor of cathepsin B, knocking down of LAMP2, or HSC70 inhibitor attenuate DA-induced elevated mitochondrial iron level. Our results establish a direct role of DA on astroglial iron homeostasis and novel involvement of CMA in ferritin degradation in response to a biological stimulus. These results also may help in better understanding iron dyshomeostasis and mitochondrial dysfunction reported in PD.
Collapse
Affiliation(s)
- Som Dev
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, West Bengal, India, 741245
| | - Somya Asthana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pratibha Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Chayanika Banerjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Zhang K, Guo L, Li X, Hu Y, Luo N. Cancer-associated fibroblasts promote doxorubicin resistance in triple-negative breast cancer through enhancing ZFP64 histone lactylation to regulate ferroptosis. J Transl Med 2025; 23:247. [PMID: 40022222 PMCID: PMC11871786 DOI: 10.1186/s12967-025-06246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) have been identified to drive chemotherapy resistance in triple-negative breast cancer (TNBC). This study evaluated the functions of CAFs-mediated suppressive ferroptosis in doxorubicin (DOX) resistance in TNBC and its detailed molecular mechanisms. METHODS TNBC cell lines were co-cultured with CAFs isolated from DOX-sensitive (CAF/S) or DOX-resistant (CAF/R) breast cancer tissues. Cell viability and death were assessed by cell counting Kit-8 (CCK-8) and propidium iodide (PI) staining. Ferroptosis was evaluated by detection of Fe2+, malondialdehyde (MDA), glutathione (GSH), and lipid reactive oxygen species (ROS) levels. Histone lactylation was determined by lactate production, pan-Kla and H3K18la expression. Molecular mechanism was determined by chromatin immunoprecipitation (ChIP) and dual luciferase reporter system. Molecule and protein expression was detected by quantitative Real-Time PCR (RT-qPCR), Western blotting, immunofluorescence and immunohistochemical staining. TNBC cells were injected into the mammary fat pad of nude mice to investigate DOX sensitivity in vivo. RESULTS CAFs-derived lactate repressed ferroptosis to confer resistance of TNBC cells to DOX. Moreover, zinc finger protein 64 (ZFP64) expression was elevated in DOX-resistant TNBC and was associated with high histone lactylation level. CAFs facilitated histone lactylation to enhance ZFP64 expression, which triggered ferroptosis inhibition and DOX resistance. In addition, ZFP64 bound to the promoters of GTP cyclohydrolase-1 (GCH1) and ferritin heavy chain 1 (FTH1), thereby promoting their expression. Rescue experiments indicated that ZFP64 silencing-induced ferroptosis and high sensitivity of TNBC cells to DOX could be counteracted by GCH1 or FTH1 overexpression. CONCLUSION CAFs acted as a ferroptosis inhibitor to cause DOX resistance of TNBC via histone lactylation-mediated ZFP64 up-regulation and subsequent promotion of GCH1-induced lipid peroxidation inhibition and FTH1-induced intracellular Fe2+ consumption.
Collapse
Affiliation(s)
- KeJing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China.
- Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, Changsha, Hunan Province, 410008, P.R. China.
- Department of General Surgery, Xiangya Hospital, Central South University & Clinical Research Center For Breast Cancer Control and Prevention In Hunan Province, No. 87, Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| |
Collapse
|
12
|
Fan X, Zhang P, Wang L, Song W, Su A, Yu T. A retrospective study of the correlation between high serum ferritin levels and the risk of gestational diabetes mellitus in midpregnant women. PeerJ 2025; 13:e18965. [PMID: 39981048 PMCID: PMC11841586 DOI: 10.7717/peerj.18965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Aims Gestational diabetes mellitus (GDM) is any degree of glucose intolerance with onset or first detection during pregnancy, with an inconsistent association with serum ferritin (SF). We aimed to ascertain the relationship between SF and the risk of GDM in mid-pregnancy and provide evidence for implementing clinical individualized and reasonable iron supplementation regimens. Methods A retrospective study was conducted to investigate 1,052 pregnant women at 24-28 weeks of gestation who were examined in the obstetrics department of The Fourth Hospital of Shijiazhuang from January 2019 to December 2021. Questionnaires were used to obtain the general information. The levels of serum ferritin (SF), serum calcium, glycated haemoglobin (HbA1c) and Oral-Glucose-Tolerance-Test (OGTT) were reviewed. The GDM was diagnosed by glucose tests. Multivariate logistic regression was used to determine the relationship between serum ferritin and GDM. Results Compared to the non-GDM group, the GDM group had significantly higher level of SF (13.95 (8.59-23.65) ng/mL vs. 12.11 (7.27-19.86) ng/mL, (p = 0.012)). While SF levels positively correlated with 1-hour plasma glucose levels (PG1H) (r = 0.061, p = 0.047), there was a negative correlation between SF and HbA1c levels (r = - 0.078, p = 0.011). The risk of GDM with higher levels of SF was increased (1.010 (95% CI [1.001-1.020], p = 0.025)). In the univariate logistic regression model, the risk of GDM in pregnant women with high ferritin levels was 1.010 (95% CI [1.001-1.020], p = 0.025). After adjustment for age and pre-pregnancy body mass index (BMI), the risk of GDM was significantly increased by 44% and 42% respectively (adjusted odds ratio (AOR) = 1.440, 95% CI [1.025-2.023], p = 0.035), AOR = 1.420 (95% CI [1.011-1.995], p = 0.043). After multivariate adjustment for age and pre-pregnancy BMI, the results were moderately revised (AOR = 1.427, 95%CI [1.013-2.008], p = 0.042). Conclusions Elevated SF levels of mid-pregnancy was associated with risk of GDM, which may guide the implementation of pregnancy-specific supplementation to some extent with the support of further clinical trials.
Collapse
Affiliation(s)
- Xizhenzi Fan
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Pan Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lingli Wang
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Wenhui Song
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Achou Su
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Tianxiao Yu
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
13
|
Szymulewska-Konopko K, Reszeć-Giełażyn J, Małeczek M. Ferritin as an Effective Prognostic Factor and Potential Cancer Biomarker. Curr Issues Mol Biol 2025; 47:60. [PMID: 39852175 PMCID: PMC11763953 DOI: 10.3390/cimb47010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Ferritin is found in all cells of the body, serving as a reservoir of iron and protecting against damage to the molecules that make up cellular structures. It has emerged as a biomarker not only for iron-related disorders but also for inflammatory diseases and conditions in which inflammation plays a key role, including cancer, neurodegeneration, and infection. Oxidative stress, which can cause cellular damage, is induced by reactive oxygen species generated during the Fenton reaction, activating signaling pathways associated with tumor growth and proliferation. This review primarily emphasizes basic studies on the identification and function of ferritin, its essential role in iron metabolism, its involvement in inflammatory diseases, and its potential as an important prognostic factor and biomarker for cancer detection.
Collapse
Affiliation(s)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-089 Białystok, Poland; (K.S.-K.); (M.M.)
| | | |
Collapse
|
14
|
Prasadam I, Schrobback K, Kranz-Rudolph B, Fischer N, Sonar Y, Sun AR, Secondes E, Klein T, Crawford R, Subramaniam VN, Rishi G. Effects of iron overload in human joint tissue explant cultures and animal models. J Mol Med (Berl) 2025; 103:73-86. [PMID: 39531048 DOI: 10.1007/s00109-024-02495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease affecting over 530 million individuals worldwide. Recent studies suggest a potential link between iron overload, a condition characterised by the excessive accumulation of iron in the body, and the onset of OA. Iron is essential for various biological processes, and any disruption in its homeostasis can trigger significant health effects, including OA. This study aimed to elucidate the effects of excess iron on joint tissue and the underlying mechanisms associated with excess iron and OA development. Human articular cartilage (n = 6) and synovium (n = 4) were collected from patients who underwent total knee arthroplasty. Cartilage and synovium explants were incubated with a gradually increasing concentration of ferric ammonium citrate for 3 days respectively. The effects of iron homeostasis in tissue explants were analysed using a Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). To further study the effects of iron excess on OA initiation and development, male 3-week-old Hfe-/- and 5-week-old Tfr2-/- mice, animal models of hereditary haemochromatosis were established. Littermate wild-type mice were fed a high-iron diet to induce dietary overload. All animals were sacrificed at 8 weeks of age, and knee joints were harvested for histological analysis. The LA-ICP-MS analysis unveiled changes in the elemental composition related to iron metabolism, which included alterations in FTH1, FPN1, and HAMP within iron(III)-treated cartilage explants. While chondrocyte viability remained stable under different iron concentrations, ex vivo treatment with a high concentration of Fe3+ increased the catabolic gene expression of MMP13. Similar alterations were observed in the synovium, with added increases in GAG content and inflammation markers. In vivo studies further supported the role of iron overload in OA development as evidenced by spontaneous OA symptoms, proteoglycan loss, increased Mankin scores, synovial thickening, and enhanced immunohistochemical expression of MMP13, ADAMTS5, and P21 in Hfe-/-, Tfr2-/-, and diet-induced iron overload mouse models. Our findings elucidate the specific pathways through which excess iron accelerates OA progression and highlights potential targets for therapeutic intervention aimed at modulating iron levels to mitigate OA symptoms. KEY MESSAGES: Iron overload alters joint iron metabolism, increasing OA markers in cartilage and synovium. High iron levels in mice accelerate OA, highlighting genetic and dietary impacts. Excess iron prompts chondrocyte iron storage response, signalling potential OA pathways. Iron dysregulation linked to increased cartilage degradation and synovial inflammation. Our findings support targeted therapies for OA based on iron modulation strategies.
Collapse
Affiliation(s)
- Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Karsten Schrobback
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Bastian Kranz-Rudolph
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Nadine Fischer
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yogita Sonar
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Eriza Secondes
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Travis Klein
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Orthopedic Department, The Prince Charles Hospital, Brisbane, QLD, 4032, Australia
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld, 4059, Australia
| | - Gautam Rishi
- Hepatogenomics Research Group, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Qld, 4059, Australia
| |
Collapse
|
15
|
Chen S, Zhang C, Luo J, Lin Z, Chang T, Dong L, Chen D, Tang ZH. Macrophage activation syndrome in Sepsis: from pathogenesis to clinical management. Inflamm Res 2024; 73:2179-2197. [PMID: 39404874 DOI: 10.1007/s00011-024-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Sepsis represents a significant global health and hygiene challenge. Excessive activation of macrophages in sepsis can result in certain patients displaying characteristics akin to those observed in Macrophage Activation Syndrome (MAS). MAS represents a grave immune system disorder characterized by persistent and severe inflammation within the body. In the context of sepsis, MAS presents atypically, leading some researchers to refer to it as Macrophage Activation-Like Syndrome (MALS). However, there are currently no effective treatment measures for this situation. The purpose of this article is to explore potential treatment methods for sepsis-associated MALS. OBJECTIVE The objective of this review is to synthesize the specific pathophysiological mechanisms and treatment strategies of MAS to investigate potential therapeutic approaches for sepsis-associated MALS. METHOD We searched major databases (including PubMed, Web of Science, and Google Scholar etc.) for literature encompassing macrophage activation syndrome and sepsis up to Mar 2024 and combined with studies found in the reference lists of the included studies. CONCLUSION We have synthesized the underlying pathophysiological mechanism of MALS in sepsis, and then summarized the diagnostic criteria and the effects of various treatment modalities utilized in patients with MAS or MALS. In both scenarios, heterogeneous treatment responses resulting from identical treatment approaches were observed. The determination of whether the patient is genuinely experiencing MALS significantly impacts the ultimate outcomes of therapeutic efficacy. In order to tackle this concern, additional clinical trials and research endeavors are imperative.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Ferrara KM, Gupta KR, Pi H. Bacterial Organelles in Iron Physiology. Mol Microbiol 2024; 122:914-928. [PMID: 39545931 DOI: 10.1111/mmi.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Bacteria were once thought to be simple organisms, lacking the membrane-bound organelles found in eukaryotic cells. However, recent advancements in microscopy have changed this view, revealing a diverse array of organelles within bacterial cells. These organelles, surrounded by lipid bilayers, protein-lipid monolayers, or proteinaceous shells, play crucial roles in facilitating biochemical reactions and protecting cells from harmful byproducts. Unlike eukaryotic organelles, which are universally present, bacterial organelles are species-specific and induced only under certain conditions. This review focuses on the bacterial organelles that contain iron, an essential micronutrient for all life forms but potentially toxic when present in excess. To date, three types of iron-related bacterial organelles have been identified: two membrane-bound organelles, magnetosomes and ferrosomes, and one protein-enclosed organelle, the encapsulated ferritin-like proteins. This article provides an updated overview of the genetics, biogenesis, and physiological functions of these organelles. Furthermore, we discuss how bacteria utilize these specialized structures to adapt, grow, and survive under various environmental conditions.
Collapse
Affiliation(s)
- Kristina M Ferrara
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hualiang Pi
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Zhu Y, Dong C, Xu Z, Lou Y, Tian N, Guan Y, Nie P, Luo M, Luo P. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Diabetic Nephropathy by Inhibiting Ferroptosis via the JNK/KEAP1/NRF2 Signaling Pathway. Antioxid Redox Signal 2024. [PMID: 39602247 DOI: 10.1089/ars.2024.0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aims: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with no therapeutic interventions available to control its progression. Ferroptosis, an iron-dependent regulated cell death characterized by lipid peroxidation, plays a pivotal role in the pathogenesis of DN. Human umbilical cord mesenchymal stem cells (hUCMSCs) are an effective treatment modality for DN; however, the underlying mechanism of action remains unclear. The aim of the present study was to investigate whether hUCMSCs alleviate DN via inhibiting ferroptosis and its molecular mechanisms in type 2 diabetic mice and high-glucose and palmitate-stimulated human renal tubular epithelial cell (HK-11) models. Results: Our findings revealed that hUCMSCs improved the renal structure and function and tubular injuries. HUCMSC treatment can inhibit ferroptosis by decreasing iron content, reducing reactive oxygen species, malondialdehyde and 4-hydroxynonenal generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 and long-chain acyl-CoA synthetase 4, and enhancing the expression of negative ferroptosis mediators (i.e., ferritin heavy chain, glutathione peroxidase 4, and system Xc-cystine/glutamate reverse transporter). Mechanistically, hUCMSC treatment inhibited c-Jun N-terminal kinase (JNK) and Kelch-like ECH-associated protein 1 (KEAP1) activation while increasing the expression of nuclear factor erythroid 2-related factor 2 (NRF2). Furthermore, pretreatment of HK-11 cells with NRF2 siRNA, the JNK inhibitor SP600125, or the JNK agonist anisomycin demonstrated the regulation of the JNK/KEAP1/NRF2 signaling pathway by hUCMSCs. Innovation and Conclusion: HUCMSCs inhibit ferroptosis in DN via the JNK/KEAP1/NRF2 signaling pathway, providing a new perspective and scientific evidence for treating DN. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Changqing Dong
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhiheng Xu
- Department of Radiology, Changchun Stomatological Hospital, Changchun, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Na Tian
- Research and Development Department, Jilin Tuohua Biotechnology Co., Ltd., Siping, P.R. China
| | - Yucan Guan
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
18
|
Bao L, Huang Y, Gu F, Liu W, Guo Y, Chen H, Wang K, Wu Z, Li J. Zearalenone induces liver injury in mice through ferroptosis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175875. [PMID: 39216757 DOI: 10.1016/j.scitotenv.2024.175875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Throughout the world, some foods and feeds commonly consumed by humans and animals are inadvertently contaminated with mycotoxins. Zearalenone (ZEA) is a typical environmental/food contaminant that can cause varying degrees of damage to the body, such as reproductive toxicity, hepatotoxicity, immunotoxicity, etc. It poses a serious threat to the living environment and human and animal health. Increasing evidence shows that mycotoxin-induced organ damage may be closely related to ferroptosis. However, the mechanism of ZEA-induced liver injury is still not fully understood. Therefore, this study aimed to explore whether ZEA can trigger ferroptosis in the liver and cause liver injury. This study was conducted by establishing in vivo and in vitro ZEA exposure models. The results showed that ZEA exposure led to typical liver injury indicators. ZEA inhibited the Nrf2/keap1 antioxidant signaling pathway, aggravated the oxidative stress response, and inhibited the body's antioxidant function. Additionally, it was found that ZEA can aggravate lipid peroxidation by blocking the system Xc-/GSH/GPX4 axis, upregulating the protein expression of ACSL4, and affecting the import, storage, and export of iron ions, thereby inducing iron ion metabolism disorders. A combination of multiple factors induces ferroptosis in mouse liver and AML12 cells. Pretreatment with deferoxamine, an inhibitor of ferroptosis, can alleviate ferroptosis damage induced by ZEA, indicating the crucial role of ferroptosis in cell damage caused by ZEA. This study deeply explores the hepatic ferroptosis pathway induced by ZEA, provides a new theoretical basis for ZEA-induced hepatotoxicity, and offers new insights for exploring potential treatment strategies.
Collapse
Affiliation(s)
- Lige Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongze Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Weiqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuquan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
20
|
Ryan BJ, Barney DE, McNiff JL, Drummer DJ, Howard EE, Gwin JA, Carrigan CT, Murphy NE, Wilson MA, Pasiakos SM, McClung JP, Margolis LM. Strenuous training combined with erythropoietin induces red cell volume expansion-mediated hypervolemia and alters systemic and skeletal muscle iron homeostasis. Am J Physiol Regul Integr Comp Physiol 2024; 327:R473-R478. [PMID: 39241004 PMCID: PMC11563636 DOI: 10.1152/ajpregu.00164.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/08/2024]
Abstract
Strenuous physical training increases total blood volume (BV) through expansion of plasma volume (PV) and red cell volume (RCV). In contrast, exogenous erythropoietin (EPO) treatment increases RCV but decreases PV, rendering BV stable or slightly decreased. This study aimed to determine the combined effects of strenuous training and EPO treatment on BV and markers of systemic and muscle iron homeostasis. In this longitudinal study, eight healthy nonanemic males were treated with EPO (50 IU/kg body mass, three times per week, sc) across 28 days of strenuous training (4 days/wk, exercise energy expenditures of 1,334 ± 24 kcal/day) while consuming a controlled, energy-balanced diet providing 39 ± 4 mg/day iron. Before (PRE) and after (POST) intervention, BV compartments were measured using carbon monoxide rebreathing, and markers of iron homeostasis were assessed in blood and skeletal muscle (vastus lateralis). Training + EPO increased (P < 0.01) RCV (13 ± 6%) and BV (5 ± 4%), whereas PV remained unchanged (P = 0.86). The expansion of RCV was accompanied by a large decrease in whole body iron stores, as indicated by decreased (P < 0.01) ferritin (-77 ± 10%) and hepcidin (-49 ± 23%) concentrations in plasma. Training + EPO decreased (P < 0.01) muscle protein abundance of ferritin (-25 ± 20%) and increased (P < 0.05) transferrin receptor (47 ± 56%). These novel findings illustrate that strenuous training combined with EPO results in both increased total oxygen-carrying capacity and hypervolemia in young healthy males. The decrease in plasma and muscle ferritin suggests that the marked upregulation of erythropoiesis alters systemic and tissue iron homeostasis, resulting in a decline in whole body and skeletal muscle iron stores.NEW & NOTEWORTHY Strenuous exercise training combined with erythropoietin (EPO) treatment increases blood volume, driven exclusively by red cell volume expansion. This hematological adaptation results in increased total oxygen-carrying capacity and hypervolemia. The marked upregulation of erythropoiesis with training + EPO reduces whole body iron stores and circulating hepcidin concentrations. The finding that the abundance of ferritin in muscle decreased after training + EPO suggests that muscle may release iron to support red blood cell production.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - David E Barney
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Julie L McNiff
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Combat Feeding Division, United States Army Combat Capabilities Development Command (DEVCOM), Natick, Massachusetts, United States
| | - Devin J Drummer
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Emily E Howard
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jess A Gwin
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Christopher T Carrigan
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nancy E Murphy
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Marques A Wilson
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Stefan M Pasiakos
- Office of Dietary Supplements, United States Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, United States
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
21
|
Nickelsen S, Grosse Darrelmann E, Seidlmayer L, Fink K, Britsch S, Duerschmied D, Scharf RE, Elsaesser A, Helbing T. Ferritin Levels on Hospital Admission Predict Hypoxic-Ischemic Encephalopathy in Patients After Out-of-Hospital Cardiac Arrest: A Prospective Observational Single-Center Study. J Intensive Care Med 2024; 39:1120-1130. [PMID: 38748543 DOI: 10.1177/08850666241252602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
AIM Out-of-hospital cardiac arrest (OHCA) is a major health concern in Western societies. Poor outcome after OHCA is determined by the extent of hypoxic-ischemic encephalopathy (HIE). Dysregulation of iron metabolism has prognostic relevance in patients with ischemic stroke and sepsis. The aim of this study was to determine whether serum iron parameters help to estimate outcomes after OHCA. METHODS In this prospective single-center study, 70 adult OHCA patients were analyzed. Serum ferritin, iron, transferrin (TRF), and TRF saturation (TRFS) were measured in blood samples drawn on day 0 (admission), day 2, day 4, and 6 months after the return of spontaneous circulation (ROSC). The association of 4 iron parameters with in-hospital mortality, neurological outcome (cerebral performance category [CPC]), and HIE was investigated by receiver operating characteristics and multivariate regression analyses. RESULTS OHCA subjects displayed significantly increased serum ferritin levels on day 0 and lowered iron, TRF, and TRFS on days 2 and 4 after ROSC, as compared to concentrations measured at a 6-month follow-up. Iron parameters were not associated with in-hospital mortality or neurological outcomes according to the CPC. Ferritin on admission was an independent predictor of features of HIE on cranial computed tomography and death due to HIE. CONCLUSION OHCA is associated with alterations in iron metabolism that persist for several days after ROSC. Ferritin on admission can help to predict HIE.
Collapse
Affiliation(s)
- Swantje Nickelsen
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Eleonore Grosse Darrelmann
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Lea Seidlmayer
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Katrin Fink
- University Emergency Centre, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Simone Britsch
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ruediger E Scharf
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Division of Experimental and Clinical Haemostasis, Haemotherapy, and Transfusion Medicine, and Haemophilia Comprehensive Care Centre, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Centre, Düsseldorf, Germany
| | - Albrecht Elsaesser
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
| | - Thomas Helbing
- Department of Cardiology, University Hospital Oldenburg, Carl von Ossietzky University, Oldenburg, Germany
- Centre for Acute Cardiovascular Medicine Mannheim (DZKAM), Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Mannheim, Germany
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
22
|
Li W, Zheng L, Luo P, Chen T, Zou J, Chen Q, Cheng L, Gan L, Zhang F, Qian B. Critical role of non-coding RNA-mediated ferroptosis in urologic malignancies. Front Immunol 2024; 15:1486229. [PMID: 39544949 PMCID: PMC11560455 DOI: 10.3389/fimmu.2024.1486229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Urologic malignancies, characterized by their high aggressiveness and metastatic potential, pose a significant public health challenge globally. Ferroptosis, a novel mode of cell death, typically arises from intracellular iron ion overload and the accumulation of lipid peroxides. This process has been shown to play a crucial regulatory role in various pathological conditions, particularly in cancer, including urologic cancers. However, the comprehensive regulatory mechanisms underlying ferroptosis remain poorly understood, which somewhat limits its broader application in cancer therapy. Non-coding RNAs (ncRNAs), which encompass microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are non-coding transcripts that play pivotal roles in various physiological processes, such as proliferation, differentiation, apoptosis, and cell cycle regulation, by modulating the expression of target genes. The biological functions and potential regulatory mechanisms of ncRNAs in the context of cancer-related ferroptosis have been partially elucidated. Research indicates that ncRNAs can influence the progression of urologic cancers by affecting cell proliferation, migration, and drug resistance through the regulation of ferroptosis. Consequently, this review aims to clarify the functions and mechanisms of the ncRNA-ferroptosis axis in urologic cancers and to evaluate the clinical significance of ferroptosis-related ncRNAs, thereby providing new insights into cancer biology and therapeutic strategies that may ultimately benefit a diverse range of cancer patients.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Jiangxi, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Sobieska K, Buczyńska A, Krętowski AJ, Popławska-Kita A. Iron homeostasis and insulin sensitivity: unraveling the complex interactions. Rev Endocr Metab Disord 2024; 25:925-939. [PMID: 39287729 PMCID: PMC11470850 DOI: 10.1007/s11154-024-09908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Diabetes has arisen as a noteworthy global health issue, marked by escalating incidence and mortality rates. Insulin, crucial for preserving euglycemia, acts as a vital energy provider for various tissues. Iron metabolism notably plays a significant role in the development of insulin resistance, a key factor in the onset of various metabolic disorders. The intricate interaction between iron and insulin signaling encompasses complex regulatory mechanisms at the molecular level, thereby impacting cellular reactions to insulin. The intricate interplay between insulin and glucagon, essential for precise regulation of hepatic glucose production and systemic glucose levels, may be influenced by certain microelements for instance zinc, copper, iron, boron, calcium, cobalt, chromium, iodine, magnesium and selenium. While significant progress has been achieved in elucidating the pathophysiological connections between iron overload and glucose metabolism, our understanding of the involvement of the Fenton reaction and oxidative stress in insulin resistance influencing many chronical conditions remains limited. Furthermore, the exploration of the multifaceted roles of insulin in the human body continues to be a subject of active investigation by numerous scientific researchers. This review comprehensively outlines the potential adverse impact of iron overload on insulin function and glucose metabolism. Additionally, we provide a synthesis of findings derived from various research domains, encompassing population studies, animal models, and clinical investigations, to scrutinize the multifaceted relationship between iron and insulin sensitivity. Moreover, we delineate instances of correlations between serum iron levels and various medical conditions, including the diabetes also gestational diabetes and obesity.
Collapse
Affiliation(s)
- Katarzyna Sobieska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
24
|
Tian S, Wang B, Ding Y, Zhang Y, Yu P, Chang YZ, Gao G. The role of iron transporters and regulators in Alzheimer's disease and Parkinson's disease: Pathophysiological insights and therapeutic prospects. Biomed Pharmacother 2024; 179:117419. [PMID: 39245001 DOI: 10.1016/j.biopha.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yiqian Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
25
|
Lungu N, Jura AMC, Popescu DE, Horhat FG, Manea AM, Boia M. Understanding the Difficulties in Diagnosing Neonatal Sepsis: Assessing the Role of Sepsis Biomarkers. J Crit Care Med (Targu Mures) 2024; 10:316-328. [PMID: 39829727 PMCID: PMC11740700 DOI: 10.2478/jccm-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background Neonatal sepsis is a serious condition with high rates of morbidity and mortality, caused by the rapid growth of microorganisms that trigger a systemic reaction. Symptoms can range from mild to severe presentations. The causative microorganism is usually transmitted from mothers, especially from the urogenital tract, or can originate from the community or hospital. Methods Our retrospective study assessed 121 newborns, including both preterm and term infants, divided into three groups within the first 28 days of life: early-onset sepsis (35), late-onset sepsis (39), and a control group (47). Blood samples and cultures were obtained upon admission or at the onset of sepsis (at 24 and 72 hours). The study aimed to evaluate the limitations of commonly used biomarkers and new markers such as lactate dehydrogenase and ferritin in more accurately diagnosing neonatal sepsis. Results Our study revealed a significant difference between the initial and final measures of lactate dehydrogenase (LDH) and ferritin in the early-onset sepsis (EOS) and late-onset sepsis (LOS) groups. Conclusion Ferritin and LDH may serve as potential markers associated with systemic response and sepsis in cases of both early and late-onset sepsis. Monitoring these biomarkers can aid in the timely detection and management of sepsis, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Nicoleta Lungu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Timișoara, Romania
| | | | - Daniela-Eugenia Popescu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Timișoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Timișoara, Romania
| | - Aniko Maria Manea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Timișoara, Romania
| | - Marioara Boia
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
26
|
Bou-Abdallah F, Boumaiza M, Srivastava AK. Effects of ferritin iron loading, subunit composition, and the NCOA4-iron sulfur cluster on ferritin-NCOA4 interactions: An isothermal titration calorimetry study. Int J Biol Macromol 2024; 278:135044. [PMID: 39182888 DOI: 10.1016/j.ijbiomac.2024.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Ferritin is a 24-mer protein nanocage that stores iron and regulates intracellular iron homeostasis. The nuclear receptor coactivator-4 (NCOA4) binds specifically to ferritin H subunits and facilitates the autophagic trafficking of ferritin to the lysosome for degradation and iron release. Using isothermal titration calorimetry (ITC), we studied the thermodynamics of the interactions between ferritin and the soluble fragment of NCOA4 (residues 383-522), focusing on the effects of the recently identified FeS cluster bound to NCOA4, ferritin subunit composition, and ferritin-iron loading. Our findings show that in the presence of the FeS cluster, the binding is driven by a more favorable enthalpy change and a decrease in entropy change, indicating a key role for the FeS cluster in the structural organization and stability of the complex. The ferritin iron core further enhances this association, increasing binding enthalpy and stabilizing the NCOA4-ferritin complex. The ferritin subunit composition primarily affects binding stoichiometry of the reaction based on the number of H subunits in the ferritin H/L oligomer. Our results demonstrate that both the FeS cluster and the ferritin iron core significantly affect the binding thermodynamics of the NCOA4-ferritin interactions, suggesting regulatory roles for the FeS cluster and ferritin iron content in ferritinophagy.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Mohamed Boumaiza
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| |
Collapse
|
27
|
Pollio G, Rosa L, Costanzo AM, Paesano R, Tripepi G, Valenti P. Lactoferrin efficacy in treating hyperferritinemia in patients suffering from pathologies unrelated to hereditary hemochromatosis. Biochem Cell Biol 2024; 102:410-417. [PMID: 38981137 DOI: 10.1139/bcb-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Ferritin (Ftn), a globular protein, sequesters 4500 atoms of iron per molecule. Elevated serum Ftn levels (hyperferritinemia) is an indicator of iron homeostasis disorders. We present the results of an observational study involving 17 patients with hyperferritinemia unrelated to hereditary hemochromatosis (HH). All participants received treatment with 200 mg of bovine lactoferrin (bLf) once (n = 14) or twice (n = 3) a day before meals. The patients, treated with 200 mg/day of bLf, exhibited a significant increase in red blood cells (+10%, p < 0.001), hemoglobin (+4%, p < 0.001), and hematocrit (+15%, p = 0.004), accompanied by a significant reduction in serum Ftn levels (-52%, p < 0.001), C-reactive protein (CRP) (-85.0%, p < 0.001), and D-dimers (-19%, p < 0.001). Among the three patients treated with 400 mg/day of bLf, two had effects similar to those of patients bLf-treated with 200 mg/day and one experienced a strong reduction of Ftn, CRP, and erythrocyte sedimentation rate (from -97% to -75%). The decrease in serum Ftn levels due to bLf treatment was largely independent of gender (p = 0.78), age (p = 0.66), baseline symptoms (p = 0.20), and concomitant acute (p = 0.34) and chronic (p = 0.53) infections. Although this observational pilot study yields positive effects in patients with hyperferritinemia unrelated to HH treated with bLf, a larger sample size is needed for conclusive results.
Collapse
Affiliation(s)
- Giuditta Pollio
- Ambulatorio di ematologia, Distretto 66, ASL Salerno, Salerno, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | - Giovanni Tripepi
- Clinical Epidemiology of Renal Diseases and Hypertension, Institute of Clinical Physiology (IFC), National Research Council (CNR), Ospedali Riuniti, Reggio Calabria, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Zhang Y, Zhang J, Chen S, Li M, Yang J, Tan J, He B, Zhu L. Unveiling the Network regulatory mechanism of ncRNAs on the Ferroptosis Pathway: Implications for Preeclampsia. Int J Womens Health 2024; 16:1633-1651. [PMID: 39372667 PMCID: PMC11451465 DOI: 10.2147/ijwh.s485653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are transcripts originating from the genome that do not serve as templates for protein synthesis. They function as epigenetic and translational regulators in various pathophysiological mechanisms, including cell proliferation and apoptosis. The ferroptosis signaling pathway, a novel mode of cell death, participates in numerous pathophysiological processes. Its signaling transmission is both complex and precise, featuring interconnected and interdependent pathways. Recent studies suggest that ncRNAs can finely regulate key genes in the ferroptosis pathway, thus modulating cellular functions, reducing oxidative stress, and maintaining maternal-fetal interface homeostasis. Future strategies targeting the ncRNA/ferroptosis axis may provide new perspectives and potential intervention points for treating preeclampsia. This article clarifies how the ncRNA/ferroptosis axis impacts preeclampsia, revealing how ncRNAs interact with ferroptosis, and pinpointing new molecular targets for the treatment of preeclampsia, thereby providing theoretical support for clinical strategies.
Collapse
Affiliation(s)
- Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingjing Zhang
- Department of Gynaecology and Obstetrics, Hunan Provincial Maternal and Child Health Hospital, Changsha410219, People’s Republic of China
| | - Sirui Chen
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Mianxin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jin Yang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| |
Collapse
|
29
|
Cao S, Ma D, Ji S, Zhou M, Zhu S. Self-Assembled Ferritin Nanoparticles for Delivery of Antigens and Development of Vaccines: From Structure and Property to Applications. Molecules 2024; 29:4221. [PMID: 39275069 PMCID: PMC11397193 DOI: 10.3390/molecules29174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Ferritin, an iron storage protein, is ubiquitously distributed across diverse life forms, fulfilling crucial roles encompassing iron retention, conversion, orchestration of cellular iron metabolism, and safeguarding cells against oxidative harm. Noteworthy attributes of ferritin include its innate amenability to facile modification, scalable mass production, as well as exceptional stability and safety. In addition, ferritin boasts unique physicochemical properties, including pH responsiveness, resilience to elevated temperatures, and resistance to a myriad of denaturing agents. Therefore, ferritin serves as the substrate for creating nanomaterials typified by uniform particle dimensions and exceptional biocompatibility. Comprising 24 subunits, each ferritin nanocage demonstrates self-assembly capabilities, culminating in the formation of nanostructures akin to intricate cages. Recent years have witnessed the ascendance of ferritin-based self-assembled nanoparticles, owing to their distinctive physicochemical traits, which confer substantial advantages and wide-ranging applications within the biomedical domain. Ferritin is highly appealing as a carrier for delivering drug molecules and antigen proteins due to its distinctive structural and biochemical properties. This review aims to highlight recent advances in the use of self-assembled ferritin as a novel carrier for antigen delivery and vaccine development, discussing the molecular mechanisms underlying its action, and presenting it as a promising and effective strategy for the future of vaccine development.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| |
Collapse
|
30
|
Bou‐Abdallah F, Fish J, Terashi G, Zhang Y, Kihara D, Arosio P. Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism. Protein Sci 2024; 33:e5104. [PMID: 38995055 PMCID: PMC11241160 DOI: 10.1002/pro.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Collapse
Affiliation(s)
- Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| | - Jeremie Fish
- Department of Electrical & Computer EngineeringCoulter School of Engineering, Clarkson UniversityPotsdamNew YorkUSA
| | - Genki Terashi
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Paolo Arosio
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
31
|
Thornton JA, Koc ZC, Sollars VE, Valentovic MA, Denvir J, Wilkinson J, Koc EC. Alcohol- and Low-Iron Induced Changes in Antioxidant and Energy Metabolism Associated with Protein Lys Acetylation. Int J Mol Sci 2024; 25:8344. [PMID: 39125916 PMCID: PMC11312970 DOI: 10.3390/ijms25158344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the role of iron in ethanol-derived hepatic stress could help elucidate the efficacy of dietary or clinical interventions designed to minimize liver damage from chronic alcohol consumption. We hypothesized that normal levels of iron are involved in ethanol-derived liver damage and reduced dietary iron intake would lower the damage caused by ethanol. We used a pair-fed mouse model utilizing basal Lieber-DeCarli liquid diets for 22 weeks to test this hypothesis. In our mouse model, chronic ethanol exposure led to mild hepatic stress possibly characteristic of early-stage alcoholic liver disease, seen as increases in liver-to-body weight ratios. Dietary iron restriction caused a slight decrease in non-heme iron and ferritin (FeRL) expression while it increased transferrin receptor 1 (TfR1) expression without changing ferroportin 1 (FPN1) expression. It also elevated protein lysine acetylation to a more significant level than in ethanol-fed mice under normal dietary iron conditions. Interestingly, iron restriction led to an additional reduction in nicotinamide adenine dinucleotide (NAD+) and NADH levels. Consistent with this observation, the major mitochondrial NAD+-dependent deacetylase, NAD-dependent deacetylase sirtuin-3 (SIRT3), expression was significantly reduced causing increased protein lysine acetylation in ethanol-fed mice at normal and low-iron conditions. In addition, the detection of superoxide dismutase 1 and 2 levels (SOD1 and SOD2) and oxidative phosphorylation (OXPHOS) complex activities allowed us to evaluate the changes in antioxidant and energy metabolism regulated by ethanol consumption at normal and low-iron conditions. We observed that the ethanol-fed mice had mild liver damage associated with reduced energy and antioxidant metabolism. On the other hand, iron restriction may exacerbate certain activities of ethanol further, such as increased protein lysine acetylation and reduced antioxidant metabolism. This metabolic change may prove a barrier to the effectiveness of dietary reduction of iron intake as a preventative measure in chronic alcohol consumption.
Collapse
Affiliation(s)
| | | | | | | | | | - John Wilkinson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA (V.E.S.)
| | - Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA (V.E.S.)
| |
Collapse
|
32
|
Zhang SP, Zhang J, Wang QH, Ye Y, Zhang DZ, Liu QN, Tang BP, Dai LS. Ferritin Heavy-like subunit is involved in the innate immune defense of the red swamp crayfish Procambarus clarkii. Front Immunol 2024; 15:1411936. [PMID: 39108270 PMCID: PMC11300234 DOI: 10.3389/fimmu.2024.1411936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.
Collapse
Affiliation(s)
- Si-Pei Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Qing-Hao Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yang Ye
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Silva-Caso W, Kym S, Merino-Luna A, Aguilar-Luis MA, Tarazona-Castro Y, Carrillo-Ng H, Bonifacio-Velez de Villa E, Aquino-Ortega R, del Valle-Mendoza J. Analysis of Ferritin, Hepcidin, Zinc, C-Reactive Protein and IL-6 Levels in COVID-19 in Patients Living at Different Altitudes in Peru. Biomedicines 2024; 12:1609. [PMID: 39062181 PMCID: PMC11275107 DOI: 10.3390/biomedicines12071609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Despite great scientific efforts, understanding the role of COVID-19 clinical biomarkers remains a challenge. METHODS A cross-sectional descriptive study in two Peruvian cities at different altitudes for comparison: Lima and Huaraz. In each place, three groups were formed, made up of 25 patients with COVID-19 in the ICU, 25 hospitalized patients with COVID-19 who did not require the ICU, and 25 healthy subjects as a control group. Five biomarkers were measured: IL-6, hepcidin, ferritin, C-reactive protein, and zinc using ELISA assays. RESULTS Ferritin, C-reactive protein, and IL-6 levels were significantly higher in the ICU and non-ICU groups at both study sites. In the case of hepcidin, the levels were significantly higher in the ICU group at both study sites compared to the non-ICU group. Among the groups within each study site, the highest altitude area presented statistically significant differences between its groups in all the markers evaluated. In the lower altitude area, differences were only observed between the groups for the zinc biomarker. CONCLUSION COVID-19 patients residing at high altitudes tend to have higher levels of zinc and IL-6 in all groups studied compared to their lower altitude counterparts.
Collapse
Affiliation(s)
- Wilmer Silva-Caso
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Sungmin Kym
- Division of Infectious Disease, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 305764, Republic of Korea
| | - Alfredo Merino-Luna
- Unidad de Cuidados Intensivos, Clinica San Pablo, Sede Huaraz, Huaraz 02002, Peru
| | - Miguel Angel Aguilar-Luis
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| | - Yordi Tarazona-Castro
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
| | - Hugo Carrillo-Ng
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
| | - Eliezer Bonifacio-Velez de Villa
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
| | - Ronald Aquino-Ortega
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- School of Biology, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicdas, Lima 15023, Peru
| | - Juana del Valle-Mendoza
- Biomedicine Laboratory, Research Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos Cuadra 2, Chorrillos, Lima 15023, Peru; (M.A.A.-L.); (H.C.-N.); (R.A.-O.)
- Instituto de Investigación Nutricional, Lima 15024, Peru
| |
Collapse
|
34
|
Peng D, Liang M, Li L, Yang H, Fang D, Chen L, Guan B. Circ_BBS9 as an early diagnostic biomarker for lung adenocarcinoma: direct interaction with IFIT3 in the modulation of tumor immune microenvironment. Front Immunol 2024; 15:1344954. [PMID: 39139574 PMCID: PMC11320841 DOI: 10.3389/fimmu.2024.1344954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Background Introduction: Circular RNAs (circRNAs) have been identified as significant contributors to the development and advancement of cancer. The objective of this study was to examine the expression and clinical implications of circRNA circ_BBS9 in lung adenocarcinoma (LUAD), as well as its potential modes of action. Methods The expression of Circ_BBS9 was examined in tissues and cell lines of LUAD through the utilization of microarray profiling, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. In this study, we assessed the impact of circ_BBS9 on the proliferation of LUAD cells, as well as its influence on ferroptosis and tumor formation. To analyze these effects, we employed CCK-8 assays and ferroptosis assays. The identification of proteins that interact with Circ_BBS9 was achieved through the utilization of RNA pull-down and mass spectrometry techniques. A putative regulatory network comprising circ_BBS9, miR-7150, and IFIT3 was established using bioinformatics study. The investigation also encompassed the examination of the correlation between the expression of IFIT3 and the invasion of immune cells. Results Circ_BBS9 was significantly downregulated in LUAD tissues and cell lines. Low circ_BBS9 expression correlated with poor prognosis. Functional experiments showed that circ_BBS9 overexpression inhibited LUAD cell proliferation and promoted ferroptosis in vitro and suppressed tumor growth in vivo. Mechanistically, circ_BBS9 was found to directly interact with IFIT3 and regulate its expression by acting as a sponge for miR-7150. Additionally, IFIT3 expression correlated positively with immune infiltration in LUAD. Conclusion Circ_BBS9 has been identified as a tumor suppressor in lung adenocarcinoma (LUAD) and holds promise as a diagnostic biomarker. The potential mechanism of action involves the modulation of ferroptosis and the immunological microenvironment through direct interaction with IFIT3 and competitive binding to miR-7150. The aforementioned findings offer new perspectives on the pathophysiology of LUAD and highlight circ_BBS9 as a potentially valuable target for therapeutic interventions.
Collapse
Affiliation(s)
- Daijun Peng
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Mingyu Liang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Li
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Haisheng Yang
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Di Fang
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Lingling Chen
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Bing Guan
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
35
|
Wu H, Tang H, Zou X, Huang Q, Wang S, Sun M, Ye Z, Wang H, Wu Y, Sun L, Chen Y, Tang H. Role of the PARP1/NF-κB Pathway in DNA Damage and Apoptosis of TK6 Cells Induced by Hydroquinone. Chem Res Toxicol 2024; 37:1187-1198. [PMID: 38837948 DOI: 10.1021/acs.chemrestox.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.
Collapse
Affiliation(s)
- Haipeng Wu
- Guangdong Medical University, Dongguan 523808, China
| | - Huan Tang
- Guangdong Medical University, Dongguan 523808, China
| | - Xiangli Zou
- Guangdong Medical University, Dongguan 523808, China
| | - Qihao Huang
- Guangdong Medical University, Dongguan 523808, China
| | - Shimei Wang
- Guangdong Medical University, Dongguan 523808, China
| | - Mingzhu Sun
- Guangdong Medical University, Dongguan 523808, China
| | - Zhongming Ye
- Guangdong Medical University, Dongguan 523808, China
| | - Huanhuan Wang
- Guangdong Medical University, Dongguan 523808, China
| | - Yao Wu
- Guangdong Medical University, Dongguan 523808, China
| | - Lei Sun
- Guangdong Medical University, Dongguan 523808, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
36
|
Sun M, Tang M, Qian Y, Zong G, Zhu G, Jiang Y, Mu Y, Zhou M, Ding Q, Wang H, Zhu F, Yang C. Extracellular vesicles-derived ferritin from lipid-induced hepatocytes regulates activation of hepatic stellate cells. Heliyon 2024; 10:e33741. [PMID: 39027492 PMCID: PMC11255497 DOI: 10.1016/j.heliyon.2024.e33741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction and objectives: Extracellular vesicles (EVs) have emerged as key players in intercellular communication within the context of non-alcoholic fatty liver disease (NAFLD). This study aims to explore the intricate crosstalk between hepatocytes and hepatic stellate cells (HSCs) mediated by EVs in NAFLD. Materials and methods EVs ferritin was detected in hepatocytes stimulated with free fatty acids (FFA) as well as in NAFLD mice. Deferoxamine (DFO) was employed to reduce ferritin levels, while GW4869 was utilized to inhibit EVs. The impact of EVs ferritin on the HSCs activation was evaluated both in vitro and in vivo. Additionally, serum EVs ferritin levels were compared between NAFLD patients and controls. Results FFA treatment induces the formation and secretion of EVs and facilitates the release of ferritin from hepatocytes via EVs. Subsequently, EVs ferritin is hijacked by HSCs, prompting accelerated HSCs activation. Silencing ferritin with DFO and inhibiting EVs formation and secretion with GW4869 can reverse the effects of FFA treatment and disrupt the communication between hepatocytes and HSCs. Accumulation of ferritin leads to excessive reactive oxygen species (ROS) production, promoting HSCs fibrogenesis. Conversely, depleting EVs ferritin cargo restores liver function, concurrently mitigating NAFLD-associated fibrosis. Notably, NAFLD patients exhibit significantly elevated levels of serum EVs ferritin. Conclusions This study unveils a previously underestimated role of ferritin in HSCs upon its release from hepatocytes, emphasizing DFO as a promising compound to impede NAFLD advancement.
Collapse
Affiliation(s)
- Mengxue Sun
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaowang Zhu
- Department of Gastroenterology, Luodian Hospital, Baoshan District, Shanghai, China
| | - Yan Jiang
- Department of Infectious Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Mu
- Department of Cadre Ward, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minjun Zhou
- Kunshan Maternal and Child Health Care Hospital, Suzhou, China
| | - Qin Ding
- Nutrition Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Hao Wang
- Department of Oncology, The Air Force Hospital of Northern Theater PLA, Shenyang, China
| | - Fengshang Zhu
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia & Xinjiang Key Laboratory of Neurological Disorder Research, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Gastroenterology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Neu C, Beckers C, Frank N, Thomas K, Bartneck M, Simon TP, Mossanen J, Peters K, Singendonk T, Martin L, Marx G, Kraemer S, Zechendorf E. Ribonuclease inhibitor 1 emerges as a potential biomarker and modulates inflammation and iron homeostasis in sepsis. Sci Rep 2024; 14:14972. [PMID: 38951571 PMCID: PMC11217267 DOI: 10.1038/s41598-024-65778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Sepsis, marked by organ dysfunction, necessitates reliable biomarkers. Ribonuclease inhibitor 1 (RNH1), a ribonuclease (RNase) inhibitor, emerged as a potential biomarker for acute kidney injury and mortality in thoracoabdominal aortic aneurysm patients. Our study investigates RNH1 dynamics in sepsis, its links to mortality and organ dysfunction, and the interplay with RNase 1 and RNase 5. Furthermore, we explore RNH1 as a therapeutic target in sepsis-related processes like inflammation, non-canonical inflammasome activation, and iron homeostasis. We showed that RNH1 levels are significantly higher in deceased patients compared to sepsis survivors and correlate with creatine kinase, aspartate and alanine transaminase, bilirubin, serum creatinine and RNase 5, but not RNase 1. RNH1 mitigated LPS-induced TNFα and RNase 5 secretion, and relative mRNA expression of ferroptosis-associated genes HMOX1, FTH1 and HAMP in PBMCs. Monocytes were identified as the predominant type of LPS-positive PBMCs. Exogenous RNH1 attenuated LPS-induced CASP5 expression, while increasing IL-1β secretion in PBMCs and THP-1 macrophages. As RNH1 has contradictory effects on inflammation and non-canonical inflammasome activation, its use as a therapeutic agent is limited. However, RNH1 levels may play a central role in iron homeostasis during sepsis, supporting our clinical observations. Hence, RNH1 shows promise as biomarkers for renal and hepatic dysfunction and hepatocyte injury, and may be useful in predicting the outcome of septic patients.
Collapse
Affiliation(s)
- Carolina Neu
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Beckers
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nadine Frank
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Katharina Thomas
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Mossanen
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Kimmo Peters
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tobias Singendonk
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lukas Martin
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sandra Kraemer
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
38
|
Zhou Y, Cheng T, Tang K, Li H, Luo C, Yu F, Xiao F, Jin L, Hung IFN, Lu L, Yuen KY, Chan JFW, Yuan S, Sun H. Integration of metalloproteome and immunoproteome reveals a tight link of iron-related proteins with COVID-19 pathogenesis and immunity. Clin Immunol 2024; 263:110205. [PMID: 38575044 DOI: 10.1016/j.clim.2024.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Increasing clinical data show that the imbalance of host metallome is closely associated with different kinds of disease, however, the intrinsic mechanisms of action of metals in immunity and pathogenesis of disease remain largely undefined. There is lack of multiplexed profiling system to integrate the metalloproteome-immunoproteome information at systemic level for exploring the roles of metals in immunity and disease pathogenesis. In this study, we build up a metal-coding assisted multiplexed proteome assay platform for serum metalloproteomic and immunoproteomic profiling. By taking COVID-19 as a showcase, we unbiasedly uncovered the most evident modulation of iron-related proteins, i.e., Ft and Tf, in serum of severe COVID-19 patients, and the value of Ft/Tf could work as a robust biomarker for COVID-19 severity stratification, which overtakes the well-established clinical risk factors (cytokines). We further uncovered a tight association of transferrin with inflammation mediator IL-10 in COVID-19 patients, which was proved to be mainly governed by the monocyte/macrophage of liver, shedding light on new pathophysiological and immune regulatory mechanisms of COVID-19 disease. We finally validated the beneficial effects of iron chelators as anti-viral agents in SARS-CoV-2-infected K18-hACE2 mice through modulation of iron dyshomeostasis and alleviating inflammation response. Our findings highlight the critical role of liver-mediated iron dysregulation in COVID-19 disease severity, providing solid evidence on the involvement of iron-related proteins in COVID-19 pathophysiology and immunity.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Fu Yu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, PR China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, PR China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Guangzhou Laboratory, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, PR China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, PR China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Guangzhou Laboratory, Guangdong Province, China.
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China; Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, PR China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, PR China.
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
39
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
Lv C, Larbi A, Li C, Liang J, Wu G, Shao Q, Quan Q. Decoding the influence of semen collection processes on goat sperm quality from a perspective of seminal plasma proteomics. J Proteomics 2024; 298:105141. [PMID: 38408605 DOI: 10.1016/j.jprot.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
This study aims to assess the impact of semen collection methods on goat semen quality and seminal plasma (SP) proteomes. Semen was collected by artificial vagina (AV) or electro-ejaculator (EE) and semen parameters were evaluated. Tandem mass tag coupled with liquid chromatography-tandem mass spectrometry was used to screen SP differentially abundant proteins (DAPs) between EE and AV. PRM was used to confirm the reliability of the data. In contrast to EE, a lower volume, higher progressive motility and concentration were observed in AV. No differences were found in total motility, membrane integrity, acrosome integrity, and ROS production between EE and AV. In total, 1692 proteins were identified in SP, including 210 DAPs. Among them, 120 and 90 proteins were down-regulated and up-regulated in AV compared to EE, respectively. The GO annotation showed that DAPs are mainly localized in the membrane, involved in deference responses to bacterium, RNA processing, and related to oxidoreductase activity. KEGG demonstrated tight associations of DAPs with specific amino acids, carbon metabolism, citrate cycle, and propanoate metabolism. In conclusion, this study provides valuable insights into the effects of semen collection on goat semen quality and explores the potential action mechanism based on the modification of SP proteomes. SIGNIFICANCE OF THE STUDY: The quality of fresh semen directly influences the results of artificial insemination and semen cryopreservation in livestock. This study represents the first attempt to evaluate the impact of semen collection methods including electroejaculation and artificial vagina on sperm quality and seminal plasma proteomes in goat. The results of this study demonstrated that semen collection methods directly impacted the quality of goat semen. Then, the proteomic strategy was used to explore the potential action mechanism of semen collection methods on sperm. Some differentially abundant proteins that potentially influence semen quality were identified. Furthermore, this study suggests the possibility of utilizing specific proteins as predictive markers for goat semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Jiangchong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Quobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
41
|
Naeimzadeh F, Sadeghi A, Saghaleini S, Sarbakhsh P, Mahmoodpoor A, Gharekhani A. Effect of parenteral L-carnitine in hospitalized patients with moderate to severe COVID-19: A randomized double-blind clinical trial. BIOIMPACTS : BI 2024; 15:30261. [PMID: 39963575 PMCID: PMC11830133 DOI: 10.34172/bi.2024.30261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 02/20/2025]
Abstract
Introduction Pro-inflammatory responses have an important role in developing coronavirus disease 2019 (COVID-19). L-carnitine (LC) has been known to possess anti-inflammatory, anticoagulant, and antiviral effects. So, we aimed to evaluate the efficacy of LC in hospitalized patients with moderate-to-severe COVID-19. Methods This double-blind, placebo-controlled, randomized clinical trial was conducted on hospitalized patients with moderate to severe COVID-19. The patients were randomized (1:1) to receive LC (n = 50) at a dose of 20 mg/kg or matching placebo (n = 51) from normal saline once daily for 14 days or until hospitalization and standard care. The primary outcome was hospital mortality and disease severity according to the World Health Organization's clinical progression scale. We also assessed the free carnitine level at baseline and the end of the study. C-reactive protein (CRP), ferritin, D-dimer, lactate dehydrogenase (LDH), and improvement of respiratory conditions were chosen as secondary outcomes. Results From 104 patients who met the inclusion criteria, 101 individuals' data were analyzed. The LC group showed a significant reduction in LDH levels (P = 0.003), although CRP, ferritin, and D-dimer levels did not significantly differ from the placebo group. Also, no significant difference was observed in disease severity, oxygenation status, hospital mortality, or hospital stay between the two groups. Additionally, there was no increase in serum-free carnitine levels in the LC group (P > 0.05 for all). Conclusion The results of the current study did not support the superiority of LC over placebo in improving oxygenation, decreasing mortality, and hospital stay, as well as CRP, ferritin, and D-dimer in moderate to severe COVID-19 patients. Trial Registration IRCT20170609034406N10; https://en.irct.ir/trial/60306.
Collapse
Affiliation(s)
- Farnaz Naeimzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Iran
- Department of Clinical Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seiedhadi Saghaleini
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Department of Clinical Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Bozzini C, Busti F, Marchi G, Vianello A, Cerchione C, Martinelli G, Girelli D. Anemia in patients receiving anticancer treatments: focus on novel therapeutic approaches. Front Oncol 2024; 14:1380358. [PMID: 38628673 PMCID: PMC11018927 DOI: 10.3389/fonc.2024.1380358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Anemia is common in cancer patients and impacts on quality of life and prognosis. It is typically multifactorial, often involving different pathophysiological mechanisms, making treatment a difficult task. In patients undergoing active anticancer treatments like chemotherapy, decreased red blood cell (RBC) production due to myelosuppression generally predominates, but absolute or functional iron deficiency frequently coexists. Current treatments for chemotherapy-related anemia include blood transfusions, erythropoiesis-stimulating agents, and iron supplementation. Each option has limitations, and there is an urgent need for novel approaches. After decades of relative immobilism, several promising anti-anemic drugs are now entering the clinical scenario. Emerging novel classes of anti-anemic drugs recently introduced or in development for other types of anemia include activin receptor ligand traps, hypoxia-inducible factor-prolyl hydroxylase inhibitors, and hepcidin antagonists. Here, we discuss their possible role in the treatment of anemia observed in patients receiving anticancer therapies.
Collapse
Affiliation(s)
- Claudia Bozzini
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giacomo Marchi
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Cerchione
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
43
|
Krupnik L, Avaro J, Liebi M, Anaraki NI, Kohlbrecher J, Sologubenko A, Handschin S, Rzepiela AJ, Appel C, Totu T, Blanchet CE, Alston AEB, Digigow R, Philipp E, Flühmann B, Silva BFB, Neels A, Wick P. Iron-carbohydrate complexes treating iron anaemia: Understanding the nano-structure and interactions with proteins through orthogonal characterisation. J Control Release 2024; 368:566-579. [PMID: 38438093 DOI: 10.1016/j.jconrel.2024.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a plethora of physicochemical characterisation data and clinical studies are available for these products, evidence-based correlation between physicochemical properties of iron-carbohydrate complexes and clinical outcome has not fully been elucidated yet. Studies on other metal oxide NPs suggest that early interactions between NPs and blood upon IV injection are key to understanding how differences in physicochemical characteristics of iron-carbohydrate complexes cause variance in clinical outcomes. We therefore investigated the core-ligand structure of two clinically relevant iron-carbohydrate complexes, iron sucrose (IS) and ferric carboxymaltose (FCM), and their interactions with two structurally different human plasma proteins, human serum albumin (HSA) and fibrinogen, using a combination of cryo-scanning transmission electron microscopy (cryo-STEM), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). Using this orthogonal approach, we defined the nano-structure, individual building blocks and surface morphology for IS and FCM. Importantly, we revealed significant differences in the surface morphology of the iron-carbohydrate complexes. FCM shows a localised carbohydrate shell around its core, in contrast to IS, which is characterised by a diffuse and dynamic layer of carbohydrate ligand surrounding its core. We hypothesised that such differences in carbohydrate morphology determine the interaction between iron-carbohydrate complexes and proteins and therefore investigated the NPs in the presence of HSA and fibrinogen. Intriguingly, IS showed significant interaction with HSA and fibrinogen, forming NP-protein clusters, while FCM only showed significant interaction with fibrinogen. We postulate that these differences could influence bio-response of the two formulations and their clinical outcome. In conclusion, our study provides orthogonal characterisation of two clinically relevant iron-carbohydrate complexes and first hints at their interaction behaviour with proteins in the human bloodstream, setting a prerequisite towards complete understanding of the correlation between physicochemical properties and clinical outcome.
Collapse
Affiliation(s)
- Leonard Krupnik
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Jonathan Avaro
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Marianne Liebi
- Photon Science Division, PSI Paul Scherrer Institute, Villigen CH-5232, Switzerland; Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Neda Iranpour Anaraki
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, PSI Paul Scherrer Institute, Villigen CH-5232, Switzerland
| | - Alla Sologubenko
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrzej J Rzepiela
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Christian Appel
- Photon Science Division, PSI Paul Scherrer Institute, Villigen CH-5232, Switzerland
| | - Tiberiu Totu
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; ETH Zurich, Department of Health Sciences and Technology (D-HEST), CH-8093 Zurich, Switzerland; SIB, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Clement E Blanchet
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, Hamburg 22603, Germany
| | | | | | - Erik Philipp
- CSL Vifor, Flughofstrasse 61, CH-8152 Glattbrugg, Switzerland
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, CH-8152 Glattbrugg, Switzerland
| | - Bruno F B Silva
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
44
|
Cavalera MA, Gusatoaia O, Uva A, Gernone F, Tarallo VD, Donghia R, Silvestrino M, Zatelli A. Erythrocyte sedimentation rate in heartworm naturally infected dogs "with or without" Leishmania infantum seropositivity: an observational prospective study. Front Vet Sci 2024; 11:1371690. [PMID: 38560628 PMCID: PMC10978755 DOI: 10.3389/fvets.2024.1371690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Canine heartworm disease by Dirofilaria immitis and canine leishmaniosis by Leishmania infantum (CanL) are both vector-borne diseases with frequently overlapping endemicity and able to trigger the acute phase response, being characterized by variations in acute phase proteins (APP). Recently, erythrocyte sedimentation rate (ESR), an indicator of inflammation, has gained attention in veterinary medicine, proving useful in several conditions that include CanL active forms in dogs. This study aims to evaluate ESR in heartworm-infected dogs, compare levels with heartworm-infected and L. infantum seropositive dogs as well as clinically healthy dogs, and assess correlations with other laboratory parameters. From October 2022 to January 2023, a prospective observational study was conducted enrolling heartworm-infected (Dirofilaria group) and heartworm-infected L. infantum seropositive (Dirofilaria/Leishmania group) animals subgrouped according to the CanL clinical form (Dirofilaria/Leishmania active and non-active groups). A group of clinically healthy dogs (control group) was also included. For each dog enrolled physical examination and laboratory tests (complete blood count, biochemical panel including APP, serum protein electrophoresis) were performed. Dirofilaria and Dirofilaria/Leishmania groups presented a significantly higher ESR level compared to healthy dogs. Dirofilaria/Leishmania active group had the highest ESR level among the groups considered. Dirofilaria/Leishmania non-active group had an ESR similar to the Dirofilaria group, but significantly higher and lower compared to the control and the Dirofilaria/Leishmania active group, respectively. A significant positive correlation between ESR and C-Reactive Protein has been found in all groups except for the Dirofilaria/Leishmania non-active group. In Dirofilaria/Leishmania active group a strong positive correlation between ESR and gamma globulins percentage as well as a strong negative correlation between ESR and albumin, albumin/globulins ratio were found. Overall, the ESR was confirmed to be an inflammation marker as well as a helpful disease index, being notably increased in heartworm-infected dogs affected by an active form of CanL.
Collapse
Affiliation(s)
| | - Oana Gusatoaia
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Annamaria Uva
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Floriana Gernone
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Rossella Donghia
- National Institute of Gastroenterology - IRCCS “Saverio de Bellis”, Bari, Italy
| | | | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
45
|
Zhang W, Wang H, Wu T, Gao X, Shang Y, Zhang Z, Liu X, Li Y. A SARS-CoV-2 Nanobody Displayed on the Surface of Human Ferritin with High Neutralization Activity. Int J Nanomedicine 2024; 19:2429-2440. [PMID: 38476285 PMCID: PMC10929646 DOI: 10.2147/ijn.s450829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose COVID-19 is rampant throughout the world, which has caused great damage to human lives and seriously hindered the development of the global economy. Aiming at the treatment of SARS-CoV-2, in this study, we proposed a novel fenobody strategy based on ferritin (Fe) self-assembly technology. Methods The neutralizing nanobody H11-D4 of SARS-CoV-2 fused to the C-terminus of end-modified human ferritin was expressed in E. coli and silkworm baculovirus expression systems. A large number of nanoparticles were successfully self-assembled in silkworms, while relatively few nanoparticles can be observed in the treated products from E. coli by electron microscopy. Subsequently, the fenobody's expression level and neutralizing activity were then evaluated. Results The results showed that the IC50 of H11-D4 and fenobody Fe-H11-D4 expressed in E. coli were 171.1 nmol L-1 and 20.87 nmol L-1, respectively. However, the IC50 of Fe-HD11-D4 expressed in silkworms was 1.46 nmol L-1 showing better neutralization activity. Conclusion Therefore, fenobodies can be well self-assembled in silkworm baculovirus expression system, and ferritin self-assembly technology can effectively improve nanobody neutralization activity.
Collapse
Affiliation(s)
- Wenrong Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Life Sciences, Capital Normal University, Beijing, People’s Republic of China
| | - Haining Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Tong Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xintao Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuting Shang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhifang Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yinü Li
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
46
|
Wang J, Hu Y, Xu Y, Long Q, Gu C, Tang C, Wang R, Yong S. Phospholipase D regulates ferroptosis signal transduction in mouse spleen hypoxia response. Braz J Med Biol Res 2024; 57:e13218. [PMID: 38451609 PMCID: PMC10913393 DOI: 10.1590/1414-431x2023e13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/28/2023] [Indexed: 03/08/2024] Open
Abstract
High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.
Collapse
Affiliation(s)
- Jiayang Wang
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Ying Hu
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Yuzhen Xu
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Qifu Long
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Cunlin Gu
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Chaoqun Tang
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Ru Wang
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| | - Sheng Yong
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
47
|
Song Y, Gao M, Wei B, Huang X, Yang Z, Zou J, Guo Y. Mitochondrial ferritin alleviates ferroptosis in a kainic acid-induced mouse epilepsy model by regulating iron homeostasis: Involvement of nuclear factor erythroid 2-related factor 2. CNS Neurosci Ther 2024; 30:e14663. [PMID: 38439636 PMCID: PMC10912846 DOI: 10.1111/cns.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Epilepsy is a widespread and chronic disease of the central nervous system caused by a variety of factors. Mitochondrial ferritin (FtMt) refers to ferritin located within the mitochondria that may protect neurons against oxidative stress by binding excess free iron ions in the cytoplasm. However, the potential role of FtMt in epilepsy remains unclear. We aimed to investigate whether FtMt and its related mechanisms can regulate epilepsy by modulating ferroptosis. METHODS Three weeks after injection of adeno-associated virus (AAV) in the skull of adult male C57BL/6 mice, kainic acid (KA) was injected into the hippocampus to induce seizures. Primary hippocampal neurons were transfected with siRNA using a glutamate-mediated epilepsy model. After specific treatments, Western blot analysis, immunofluorescence, EEG recording, transmission electron microscopy, iron staining, silver staining, and Nissl staining were performed. RESULTS At different time points after KA injection, the expression of FtMt protein in the hippocampus of mice showed varying degrees of increase. Knockdown of the FtMt gene by AAV resulted in an increase in intracellular free iron levels and a decrease in the function of iron transport-related proteins, promoting neuronal ferroptosis and exacerbating epileptic brain activity in the hippocampus of seizure mice. Additionally, increasing the expression level of FtMt protein was achieved by AAV-mediated upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene in the hippocampus of seizure mice. CONCLUSIONS In epilepsy, Nrf2 modulates ferroptosis by involving the expression of FtMt and may be a potential therapeutic mechanism of neuronal injury after epilepsy. Targeting this relevant process for treatment may be a therapeutic strategy to prevent epilepsy.
Collapse
Affiliation(s)
- Yu Song
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mengjiao Gao
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Boyang Wei
- Department of Cerebrovascular Surgery, Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhouChina
| | - Junjie Zou
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanwu Guo
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
48
|
Zhao X, Zhou Y, Zhang Y, Zhang Y. Ferritin: Significance in viral infections. Rev Med Virol 2024; 34:e2531. [PMID: 38502012 DOI: 10.1002/rmv.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
As an indispensable trace element, iron is essential for many biological processes. Increasing evidence has shown that virus infection can perturb iron metabolism and play a role in the occurrence and development of viral infection-related diseases. Ferritin plays a crucial role in maintaining the body's iron homoeostasis. It is an important protein to stabilise the iron balance in cells. Ferritin is a 24-mer hollow iron storage protein composed of two subunits: ferritin heavy chain and ferritin light chain. It was reported that ferritin is not only an intra-cellular iron storage protein, but also a pathogenic mediator that enhances the inflammatory process and stimulates the further inflammatory pathway, which is a key member of the vicious pathogenic cycle to perpetuate. Ferritin exerts immuno-suppressive and pro-inflammatory functions during viral infection. In this review, we describe in detail the basic information of ferritin in the first section, including its structural features, the regulation of ferritin. In the second part, we focus on the role of ferritin in viral infection-related diseases and the molecular mechanisms by which viral infection regulates ferritin. The last section briefly outlines the potential of ferritin in antiviral therapy. Given the importance of iron and viral infection, understanding the role of ferritin during viral infection helps us understand the relationship between iron metabolic dysfunction and viral infection, which provides a new direction for the development of antiviral therapeutic drugs.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuntao Zhou
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yong Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| |
Collapse
|
49
|
Yadav S, Saini NK, Kulshreshtha D, Mukhopadhyay CK. Lipopolysaccharide inhibits translation of iron chaperone PCBP1 to regulate inflammatory cytokine response in macrophage. Cytokine 2024; 174:156456. [PMID: 38061091 DOI: 10.1016/j.cyto.2023.156456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024]
Abstract
Macrophages play a key role in maintaining systemic iron homeostasis and immunity. During pro-inflammatory stage macrophages retain iron due to the decrease of the unique iron exporter ferroportin. Increased cellular iron is sequestered in to storage protein ferritin by iron chaperone poly(rC)-binding protein 1 (PCBP1). However, the fate of PCBP1 and its interaction with ferritin in pro-inflammatory macrophages has not been studied so far. Here we report that PCBP1 protein level is down-regulated in lipopolysaccharide (LPS) treated macrophages. LPS did not alter PCBP1 mRNA and protein stability suggesting inhibition of translation as a mechanism of PCBP1 down-regulation that was confirmed by 35S-methionine incorporation assay. PCBP1 interacts with ferritin-H (Ft-H) subunit to load iron into ferritin. We detected a decreased interaction between PCBP1 and Ft-H after LPS-stimulation. As a result iron loading in to ferritin was affected with simultaneous increase in labile iron pool (LIP). Pre-treatment of cells with iron chelator dampened LPS-induced expression of TNF-α, IL-1β and IL-6 mRNA. Silencing of PCBP1 increased the magnitude of expression of these cytokines compared to control siRNA transfected LPS-treated macrophages. In contrast, overexpression of PCBP1 resulted a decrease in expression of these cytokines compared to vector transfected macrophages. Our results reveal a novel regulation of PCBP1 and its role in expression of cytokines in LPS-induced pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Sameeksha Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neeraj K Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diksha Kulshreshtha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
50
|
Nguyen Thi Thu H, Nguyen Van H, Nguyen Minh T, Nguyen Trung K, Le Viet T. High Ferritin and Low Total Iron-Binding Capacity in Plasma Predict All-Cause Mortality During the First 3 Years of Hemodialysis in Patients with End-Stage Chronic Kidney Disease. Int J Gen Med 2024; 17:105-113. [PMID: 38229881 PMCID: PMC10790587 DOI: 10.2147/ijgm.s446115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Aim To determine all-cause mortality rate and the predictive value of plasma ferritin and total iron-binding capacity (TIBC) concentrations for mortality during the first 3 years of hemodialysis in patients with end-stage chronic renal disease (ESRD). Methods We conducted a study on 174 ESRD patients (estimated Glomerular Filtration Rate < 15 mL/min/1.73m2). The plasma TIBC level was quantified by the ELISA method in all patients at the time before hemodialysis. Based on TIBC concentration, patients were divided equally into 2 groups. Each group had 87 patients. Patients were initiated on hemodialysis, and patients who died from any cause during the first 3 years of hemodialysis were recorded. Results The all-cause mortality rate of ESRD patients in the first 3 years of maintenance hemodialysis was 22.9%. Plasma high hs-CRP, high ferritin, and low TIBC concentrations were independent factors associated with all-cause mortality in the patients. Plasma ferritin (cut-off value = 454.2 ng/L) and TIBC (cut-off value = 39.84 µmol/L) were predictors of all-cause mortality, AUC is: 0.772; 0.723, p < 0.001. Conclusion Plasma ferritin and TIBC were good predictors of all-cause mortality in ESRD patients during the first 3 years of hemodialysis.
Collapse
Affiliation(s)
- Ha Nguyen Thi Thu
- Department of Selection, Preparation and Treatment, Organ Transplant Center, Military Hospital 103, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Hung Nguyen Van
- Nephrology and Hemodialysis Department, Transport Hospital, Ha Noi, Vietnam
| | - Tuan Nguyen Minh
- Nephrology, Urology and Hemodialysis Department, E Hospital, Ha Noi, Vietnam
| | - Kien Nguyen Trung
- Hematology and Blood Transfusion Center, Military Hospital 103, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Thang Le Viet
- Department of Selection, Preparation and Treatment, Organ Transplant Center, Military Hospital 103, Vietnam Military Medical University, Ha Noi, Vietnam
| |
Collapse
|