1
|
Yi E, Li H, Liu Y, Li Q, Xie C, Sun R, Wu F, Deng Z, Zhou K, Wang H, Ran X, Zhou Y, Ran P. An integrated machine learning model of transcriptomic genes in multi-center chronic obstructive pulmonary disease reveals the causal role of TIMP4 in airway epithelial cell. Respir Res 2025; 26:158. [PMID: 40269868 PMCID: PMC12020095 DOI: 10.1186/s12931-025-03238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome, resulting in inconsistent findings across studies. Identifying a core set of genes consistently involved in COPD pathogenesis, independent of patient variability, is essential. METHODS We integrated lung tissue sequencing data from patients with COPD across two centers. We used weighted gene co-expression network analysis and machine learning to identify 13 potential pathogenic genes common to both centers. Additionally, a gene-based model was constructed to distinguish COPD at the molecular level and validated in independent cohorts. Gene expression in specific cell types was analyzed, and Mendelian randomization was used to confirm associations between candidate genes and lung function/COPD. Preliminary in vitro functional validation was performed on prioritized core candidate genes. RESULTS Tissue inhibitor of metalloproteinase 4 (TIMP4) was identified as a key pathogenic gene and validated in COPD cohorts. Further analysis using single-cell sequencing from mice and patients with COPD revealed that TIMP4 is involved in ciliated cells. In primary human airway epithelial cells cultured at the air-liquid interface, TIMP4 overexpression reduced ciliated cell numbers. CONCLUSIONS We developed a 13-gene model for distinguishing COPD at the molecular level and identified TIMP4 as a potential hub pathogenic gene. This finding provides insights into shared disease mechanisms and positions TIMP4 as a promising therapeutic target for further investigation.
Collapse
Affiliation(s)
- Erkang Yi
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Yu Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Qingyang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Chengshu Xie
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China
| | - Ruining Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China
| | - Hairong Wang
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China
| | - Xinru Ran
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China.
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China.
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No.195 Dong Feng Xi Road, Guangzhou, 510182, Guangdong, China.
- Guangzhou National Laboratory, No.9 Xing Dao Huan Bei Road, Guangzhou International BioIsland, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
2
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2025; 480:1431-1448. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Shafi H, Lora AJ, Aggarwal S, Infanger DW, Lawrence BD, Mansour HM. Comprehensive Physicochemical Characterization and in Vitro Human Cell Culture Studies of an Innovative Biocompatible and Biodegradable Silk-Derived Protein Hydrolysate, SDP-4. ACS OMEGA 2025; 10:2762-2777. [PMID: 39895742 PMCID: PMC11780451 DOI: 10.1021/acsomega.4c08514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
SDP-4 is a soluble silk fibroin-derived protein hydrolysate extracted from the Bombyx mori silkworm cocoon and is a novel first-in-class biopolymer that is biodegradable, biocompatible, and shown to have regenerative properties. SDP-4 is currently used as a commercial wetting agent in topical eye drops, but it has also been shown to have anti-inflammatory properties that could be utilized in other biomedical applications. The purpose of this study was to comprehensively characterize the physicochemical properties that are necessary to design formulations and examine cell viability in response to varying doses of SDP-4 on different human cell types, with a particular attention toward respiratory applications. Lyophilized SDP-4 powder was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), hot-stage microscopy (HSM), Karl Fisher (KF) coulometric titration, Raman spectrometry, confocal Raman microscopy (CRM), and Fourier transform infrared microscopy. The lyophilized powder exhibited a nonuniform, angular glassy flake morphology with uniform chemical composition and minimal moisture uptake when tested under varying humidity conditions. Crystalline character was evident through birefringence at ambient temperature which changed during phase transitions, as evidenced through qualitative and quantitative assessments. Dose ranging SDP-4 biocompatibility studies on different human lung cells, nasal cells, skin cells, and brain cells was assessed by the in vitro cell viability assay. Assay results showed that cell viability was maintained at the various doses studied for different human cell types. The transepithelial resistance (TEER) assay showed that SDP-4 leads to transient fluctuations in cell membrane integrity and barrier tightness, followed by a recovery phase as cells adapt or repair the junctions. These findings demonstrate that SDP-4 is biocompatible with different types of human cells and safe at all of the doses studied. The unique physicochemical properties of SDP-4 revealed in this study demonstrate its favorable formulating ability for a variety of potential therapeutic applications.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Andrea J. Lora
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Saurabh Aggarwal
- Herbert
Wertheim College of Medicine, Department of Cellular & Molecular
Medicine, Florida International University, Miami, Florida 33199, United States
| | - David W. Infanger
- Silk
Technologies, Ltd., Maple Grove, Minnesota 55369, United States
| | - Brian D. Lawrence
- Silk
Technologies, Ltd., Maple Grove, Minnesota 55369, United States
| | - Heidi M. Mansour
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Herbert
Wertheim College of Medicine, Department of Cellular & Molecular
Medicine, Florida International University, Miami, Florida 33199, United States
- Robert
Stempel College of Public Health and Social Work, Department of Environmental
Health Sciences, Florida International University, Miami, Florida 33174, United States
- College
of Engineering and Computing, Department of Biomedical Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
4
|
Eriksson Ström J, Kebede Merid S, Linder R, Pourazar J, Lindberg A, Melén E, Behndig AF. Airway MMP-12 and DNA methylation in COPD: an integrative approach. Respir Res 2025; 26:10. [PMID: 39794761 PMCID: PMC11724436 DOI: 10.1186/s12931-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND In COPD, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors [tissue inhibitors of metalloproteinases (TIMPs)] is shifted towards excessive degradation, reflected in bronchoalveolar lavage (BAL) as increased MMP concentrations. Because of their critical role in lung homeostasis, MMP activity is tightly regulated, but to what extent this regulation occurs through epigenetic mechanisms remains unknown. METHODS To explore the interplay between MMPs, TIMPs, and DNA methylation (DNAm) we (1) analysed MMP-9, -12, and TIMP-1 concentrations in BAL fluid, and profiled DNAm in BAL cells from 18 COPD and 30 control subjects, (2) estimated protein-COPD relationships using multivariable regression, (3) identified protein quantitative trait methylation loci (pQTMs) with COPD as a potential modifier in a separate interaction model, and (4) integrated significant interactions with a previous COPD GWAS meta-analysis. RESULTS COPD was associated with higher levels of BAL MMP-12 (p = 0.016) but not with MMP-9 or TIMP-1. Further examination of MMP-12 identified association with DNAm at 34 loci (pQTMs), with TGFBR2 (p = 2.25 × 10-10) and THBS4 (p = 1.11 × 10-9) among the top ten pQTM genes. The interaction model identified 66 sites where the DNAm-MMP-12 association was significantly different in COPD compared to controls. Of these, one was colocalized with SNPs previously associated with COPD. CONCLUSIONS Our findings indicate that airway MMP-12 may partially be regulated by epigenetic mechanisms and that this regulation is disrupted in COPD. Furthermore, integration with COPD GWAS data suggests that this dysregulation is influenced by a combination of environmental factors, disease processes, and genetics, with the latter potentially playing a lesser role.
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden.
| | - Simon Kebede Merid
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Robert Linder
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs Children's Hospital, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
5
|
Dagnachew YM, Lim HY, Wupeng L, Lim SY, Lim SJN, Thiam CH, Tan SW, Eng JLJ, Mei D, Hazwany Mohammad Azhar S, Ong WS, Tan QHC, Wong WSF, Angeli V. Collagen deposition in lung parenchyma driven by depletion of interstitial Lyve-1 + macrophages prevents cigarette smoke-induced emphysema and loss of airway function. Front Immunol 2025; 15:1493395. [PMID: 39830508 PMCID: PMC11738928 DOI: 10.3389/fimmu.2024.1493395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Collagen is essential for maintaining lung structure and function and its remodeling has been associated with respiratory diseases including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Methods To address this question, we employed Lyve1wt/cre ; Csf1rflox/flox mice with specific depletion of Lyve-1+ macrophages and assessed the content, types and organization of collagen in lung compartments at steady state and after chronic exposure to cigarette smoke (CS). Results Using this mouse model, we found that the absence of this subpopulation of tissue resident macrophage led to the deposition of type I collagen fibers around the alveoli and bronchi at steady state. Further analysis by polarized light microscopy and Sircol collagen assay revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity together with an increase in Col1a1, Timp-3 and Lox expression accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mice lacking Lyve-1+ macrophages exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We found that deposition of collagen prior CS exposure protected these mice against destruction of alveoli (emphysema), and bronchi thickening and prevented loss of airway function. Discussion Thus, we uncover that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of collagen network in the lungs at steady state and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as promising approaches to treat respiratory diseases.
Collapse
Affiliation(s)
- Yinebeb Mezgebu Dagnachew
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Sciences, School of Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Liao Wupeng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sheng Jie Natalie Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shu Wen Tan
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joan Lau Joo Eng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dan Mei
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Wei Siong Ong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qi Hui Caris Tan
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wai-Shiu Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Jang J, Lee J, Park J, Cha S, Lee SB, Park SM, Hong SH, Kim WJ, Lee M, Yang SR. Recombinant RAGE antagonist peptide promotes alveolar epithelial cell regeneration via the RAGE/MAPKs/MMP2 pathway in emphysema. Biochem Pharmacol 2025; 231:116668. [PMID: 39608502 DOI: 10.1016/j.bcp.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The progression of chronic obstructive pulmonary disease (COPD) results in irreversible pulmonary damage and sustained inflammatory responses. While alternative approaches have been explored, the specific role of alveolar epithelial cells in the pathogenesis of COPD remains unclear. Additionally, the association between emphysema and DAMP-RAGE signaling in COPD patients are not understood. Therefore, this study demonstrates to determine the therapeutic effect of a RAGE antagonist peptide (RAP), which we previously identified on the pathogenesis of COPD. We assessed the expression of RAGE ligands and RAGE binding signaling in COPD patients using GEO data. PPE-induced emphysema mouse model and AGER-/- mouse were employed, along treated with RAP. The association between RAGE and the development of emphysema was examined in H&E staining and western blot analysis in mouse lung tissue and BALF. We next analyzed the damage caused by oxidative stress and inflammation through CSE and RAP in human alveolar epithelial cell line A549. Our results show that inhibiting of RAGE alleviates emphysema by suppressing inflammation and MMP activity. Inhibition of RAGE in alveolar epithelial cells significantly induced the mitigation of lung injury, independent of macrophage infiltration. Furthermore, it was confirmed that RAP ameliorated CSE-induced oxidative stress, inflammation, and cell cycle arrest in human alveolar epithelial cells. These findings demonstrate that inhibiting RAGE in alveolar epithelial cells suppress lung injury and emphysema by inhibiting oxidative stress-induced inflammation and MMPs, while promoting alveolar epithelial cell proliferation. Furthermore, blocking of the DAMP-RAGE interaction through RAP offers a promising therapeutic approach for mitigating emphysema.
Collapse
Affiliation(s)
- Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sangryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea; Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon, Gangwon State, South Korea.
| |
Collapse
|
7
|
Jiran S, Jiling W, Sijing Z, Binbin Z, Pulin L, Rui H, Guanghe F, Chao C, Ran W. Integrating bioinformatics and machine learning to unravel shared mechanisms and biomarkers in chronic obstructive pulmonary disease and type 2 diabetes. Postgrad Med J 2024:qgae186. [PMID: 39691970 DOI: 10.1093/postmj/qgae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) are on the rise. While there is evidence of a link between the two diseases, the pathophysiological mechanisms they share are not fully understood. METHODS In this study, the co-expressed genes of COPD and T2DM in Gene Expression Omnibus database were identified by bioinformatics method, and the functional enrichment analysis was performed. Machine learning algorithms were used to identify biomarkers. The diagnostic value of these biomarkers was assessed by receiver operating characteristic analysis, and their relationship to immune cells was investigated by immunoinfiltration analysis. Finally, real-time quantitative polymerase chain reaction was performed. RESULTS A total of five overlapping genes were obtained, focusing on pathways associated with insulin resistance and inflammatory mediators. The machine learning method identified three biomarkers: matrix metalloproteinase 9, laminin α4, and differentially expressed in normal cells and neoplasia domain containing 4 C, all of which were shown to have high diagnostic values by receiver operating characteristic analysis. Immunoinfiltration analysis showed that it was associated with a variety of immune cells. In addition, the real-time quantitative polymerase chain reaction results confirmed agreement with our bioinformatics analysis. CONCLUSIONS Our study sheds light on the common pathogenesis and biomarkers of both diseases, and these findings have potential implications for the development of new diagnostic and treatment strategies for COPD and T2DM. Key message What is already known on this topic? Chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) often coexist as comorbidities. However, the exact mechanistic link between the two diseases remains complex, multifactorial, and not fully understood. What this study adds? Three biomarkers, including matrix metalloproteinase, laminin α4, and differentially expressed in normal cells and neoplasia domain containing 4 C, were identified as key co-expression hub genes in COPD and T2DM. How this study might affect research, practice or policy? Future studies may benefit from incorporating a larger sample set to further explore and validate the diagnostic and therapeutic effects of these core genes.
Collapse
Affiliation(s)
- Shen Jiran
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Wang Jiling
- Department of Infectious Diseases, Hefei Second People's Hospital, Heping Road 246, Hefei 230001, China
| | - Zhou Sijing
- Department of Occupational Disease, Hefei Third People's Hospital, Hefei Third Clinical College of Anhui Medical University, Wangjiang East Road 204, Hefei 230022, China
| | - Zhang Binbin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Li Pulin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Han Rui
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Fei Guanghe
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Cao Chao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, Zhejiang, China
| | - Wang Ran
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| |
Collapse
|
8
|
Shim WY, Seo SM, Kim DH, Park YJ, Kim NW, Yoo ES, Lee JH, Jeong HB, Seo JH, Lee KS, Choi YK. A novel chronic obstructive pulmonary disease mouse model induced by intubation-mediated intratracheal co-administration of porcine pancreatic elastase and lipopolysaccharide. BMC Pulm Med 2024; 24:564. [PMID: 39533282 PMCID: PMC11556203 DOI: 10.1186/s12890-024-03365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a significant respiratory disorder in humans characterized by persistent airway constriction or obstruction due to chronic bronchitis and pulmonary emphysema. Various methods of inducing COPD in mouse models are frequently used in COPD research; however, these cannot completely reproduce histopathologic lesions. This study aimed to establish a new COPD mouse model that reproduces histopathological lesions closely resembling clinical COPD within a shorter induction time. METHODS The new strategy involved the co-administration of porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS), with PPE intended to induce pulmonary emphysema and LPS intended to induce chronic bronchitis. Male C57BL/6J mice were administered PPE (8 U/kg) on days 0 and 3 and LPS (400 µg/kg) on days 6, 9, 12, and 15. Each administration was performed using a noninvasive intubation-mediated intratracheal instillation method with a laryngoscope. RESULTS Postmortem examination on day 22 revealed that pulmonary emphysema and chronic bronchitis were simultaneously induced in 90.91% of the lung lobes. Molecular studies revealed higher messenger ribonucleic acid (mRNA) expression levels of interleukin-6(IL-6) and matrix metalloproteinase-12(MMP-12) associated with the pathogenesis of COPD. CONCLUSION A new method was developed to establish a COPD mouse model that displays a more severe representation of the histopathological findings of clinical COPD than previous COPD models. It also reduces the time required for model induction. This newly developed COPD mouse model is expected to be a valuable tool for the pathogenesis and therapeutic research on human COPD.
Collapse
Affiliation(s)
- Won-Yong Shim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong-Hyun Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Jun Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Won Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eun-Seon Yoo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji-Hun Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Bi Jeong
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin-Hee Seo
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyoung-Sun Lee
- Non-Clinical Evaluation Center, Osong Medical Innovation Foundation, Cheongju, 28160, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
- KU Center for Animal Blood Medical Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
9
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
11
|
Ellingsen DG, Sikkeland LIB, Lund MB, Skaugset NP, Ulvestad B. A study of inflammatory biomarkers in crystalline silica exposed rock drillers. Int Arch Occup Environ Health 2024; 97:587-595. [PMID: 38702427 PMCID: PMC11130035 DOI: 10.1007/s00420-024-02070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Crystalline silica (CS) exposure can cause serious lung disease in humans, but mechanisms of pulmonary toxicity have not been completely elucidated. AIMS To assess pro-inflammatory and anti-inflammatory biomarkers and biomarkers related to the development of chronic obstructive pulmonary disease and fibrosis in serum of rock drillers exposed to CS. METHODS Rock drillers (N = 123) exposed to CS and non-specified particulate matter (PM) were compared to 48 referents without current or past exposure to PM in a cross-sectional study. RESULTS The rock drillers had been exposed to CS for 10.7 years on average. Geometric mean (GM) current exposure was estimated to 36 µg/m3. Their GM concentration of matrix metalloproteinase 12 (MMP-12) was significantly higher (16 vs. 13 ng/L; p = 0.04), while interleukin (IL) 6 and IL-8 were significantly lower compared to the referents. Also pentraxin 3 was significantly lower (3558 vs. 4592 ng/L; p = 0.01) in the rock drillers. A dose-response relationship was observed between cumulative exposure to CS and MMP-12, the highest exposed subgroup having significantly higher MMP-12 concentrations than the referents. CONCLUSION Exposure to CS may increase circulating MMP-12 concentrations in a dose-response related fashion. The results may also suggest a down-regulation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Dag G Ellingsen
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway.
| | - Liv Ingunn Bjoner Sikkeland
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - May Britt Lund
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| | - Bente Ulvestad
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| |
Collapse
|
12
|
Wong M, Gain C, Sharma MB, Fotooh Abadi L, Hugo C, Vassilopoulos H, Daskou M, Fishbein GA, Kelesidis T. Severe Acute Respiratory Syndrome Coronavirus 2 Infection Alters Mediators of Lung Tissue Remodeling In Vitro and In Vivo. J Infect Dis 2024; 229:1372-1381. [PMID: 38109685 DOI: 10.1093/infdis/jiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.
Collapse
Affiliation(s)
- Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Madhav B Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Leila Fotooh Abadi
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| | - Cristelle Hugo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Hariclea Vassilopoulos
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Gregory A Fishbein
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| |
Collapse
|
13
|
Nopsopon T, Barrett NA, Phipatanakul W, Laidlaw TM, Weiss ST, Akenroye A. Lung function trajectories in a cohort of patients with moderate-to-severe asthma on mepolizumab, omalizumab, or dupilumab. Allergy 2024; 79:1195-1207. [PMID: 38164813 PMCID: PMC11062846 DOI: 10.1111/all.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Lung function is an independent predictor of mortality. We evaluated the lung function trajectories of a cohort of patients with asthma receiving biologic therapy. METHODS We identified 229 monoclonal antibody-naïve adult patients with moderate-to-severe asthma who initiated omalizumab, mepolizumab, or dupilumab between 2010 and 2022 in a large healthcare system in Boston, MA. Generalized additive mixed models were used to estimate the lung function trajectories during the 156 weeks following biologic initiation. Response was defined as an improvement in FEV1 or a decrease of ≤0.5% per year. The Kaplan-Meier estimator was used to assess time to no additional improvement in FEV1 in responders. All models were adjusted for age, sex, body mass index, smoking status, baseline exacerbation rate, and baseline blood eosinophil count. RESULTS Eighty-eight patients initiated mepolizumab, 76 omalizumab, and 65 dupilumab. Baseline eosinophil count was highest in the mepolizumab group (405 cells/mcL) and lowest for omalizumab (250 cells/mcL). Both FEV1 and FVC improved in the mepolizumab group (FEV1 + 20 mL/year; FVC +43 mL/year). For omalizumab, there was an initial improvement in the first year followed by decline with an overall FEV1 loss of -44 mL/year and FVC -32 mL/year. For dupilumab, both FEV1 (+61 mL/year) and FVC (+74 mL/year) improved over time. Fifty percent of the mepolizumab group, 58% omalizumab, and 72% of dupilumab were responders. The median time to no additional FEV1 improvement in responders was 24 weeks for omalizumab, 48 weeks for mepolizumab, and 57 weeks for dupilumab. CONCLUSION In this clinical cohort, mepolizumab, omalizumab, and dupilumab had beneficial effects on FEV1 and FVC with distinct post-initiation trajectories.
Collapse
Affiliation(s)
- Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
| | | | - Tanya M. Laidlaw
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
14
|
Wang Y, Xue F, Cheng W, Zhao Q, Song N, Shi Z, Liu H, Li Y, Tang Q, Liu Q, Wang Y, Zhang F, Jiang X. Design and Synthesis of Novel Ultralong-Acting Peptides as EDP-EBP Interaction Inhibitors for Pulmonary Fibrosis Treatment. J Med Chem 2024; 67:6624-6637. [PMID: 38588467 DOI: 10.1021/acs.jmedchem.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.
Collapse
Affiliation(s)
- Yixiang Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- The First School of Clinical Medicine & The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fanghan Xue
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Wei Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Qian Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Nazi Song
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zihan Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Qinglin Tang
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Qi Liu
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Yiqing Wang
- The First School of Clinical Medicine & The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application & Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fangfang Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
15
|
Tan L, Yang X, Zhang J, Zhou K. Correlation Between HIF1-A Expression and Airway Remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2024; 19:921-931. [PMID: 38633565 PMCID: PMC11022883 DOI: 10.2147/copd.s447256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Background Airway remodeling is a significant pathological characteristic of chronic obstructive pulmonary disease (COPD). In recent years, hypoxia-inducible factor 1-α (HIF-1α), a member of the hypoxia-inducible factor protein family, has gained attention. However, the potential correlation between HIF-1α and COPD airway remodeling remains unclear. Objective This study explored the expression patterns of HIF-1α in patients with COPD and its association with airway remodelling. This investigation aims to furnish novel insights for the clinical identification of prospective therapeutic targets for ameliorating COPD-related airway remodelling. Patients and Methods A total of 88 subjects were included, consisting of 28 controls and 60 COPD patients. Various staining methods were employed to observe the pathological changes in airway tissues. Immunohistochemistry was utilized to detect the expression of HIF-1α and MMP9 (matrix metalloproteinase 9) in airway tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration in serum of HIF-1α and MMP9. Computed tomography (CT) airway parameters were measured in all participants to assess airway remodeling. The relationship between serum HIF-1α and MMP9 concentrations and airway parameters was analyzed. Results Staining of airway structures in COPD patients revealed significant pathological changes associated with airway remodelling, including mixed cilia and subepithelial fibrosis. The expression of HIF-1α and MMP9 was significantly higher in both human airway tissue and serum compared to controls. Chest CT scans exhibited typical imaging features of airway remodeling and increased airway parameters. Conclusion The findings suggest a correlation between increased HIF-1α expression and COPD airway remodelling. This study provides novel evidence that HIF-1α may be a potential biomarker for airway remodelling in COPD patients.
Collapse
Affiliation(s)
- Lingfang Tan
- The Nanhua Affiliated Hospital, Department of Respiratory Physicians, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Xuefeng Yang
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Jianxin Zhang
- The Nanhua Affiliated Hospital, Department of Cardiothoracic Surgeon, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Kebing Zhou
- The Nanhua Affiliated Hospital, Department of Respiratory Physicians, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| |
Collapse
|
16
|
Wang L, Koelink PJ, Garssen J, Folkerts G, Henricks PAJ, Braber S. Gut Microbiome and Transcriptomic Changes in Cigarette Smoke-Exposed Mice Compared to COPD and CD Patient Datasets. Int J Mol Sci 2024; 25:4058. [PMID: 38612871 PMCID: PMC11012690 DOI: 10.3390/ijms25074058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Pim J. Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), 1105 BK Amsterdam, The Netherlands;
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
- Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
| |
Collapse
|
17
|
Liu S, Tan X, Liu S. The role of extracellular vesicles in COPD and potential clinical value. Respir Res 2024; 25:84. [PMID: 38331841 PMCID: PMC10854156 DOI: 10.1186/s12931-024-02719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease and a major health burden worldwide. Extracellular vesicles (EVs) are nanosized vesicles which possess a lipid bilayer structure that are secreted by various cells. They contain a variety of bioactive substances, which can regulate various physiological and pathological processes and are closely related to the development of diseases. Recently, EVs have emerged as a novel tool for intercellular crosstalk, which plays an essential role in COPD development. This paper reviews the role of EVs in the development of COPD and their potential clinical value, in order to provide a reference for further research on COPD.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaowu Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
18
|
Kim MD, Chung S, Baumlin N, Qian J, Montgomery RN, Sabater J, Berkland C, Salathe M. The combination of propylene glycol and vegetable glycerin e-cigarette aerosols induces airway inflammation and mucus hyperconcentration. Sci Rep 2024; 14:1942. [PMID: 38253598 PMCID: PMC10803801 DOI: 10.1038/s41598-024-52317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Despite concerns over their safety, e-cigarettes (e-cigs) remain a popular tobacco product. Although nicotine and flavors found in e-cig liquids (e-liquids) can cause harm in the airways, whether the delivery vehicles propylene glycol (PG) and vegetable glycerin (VG) are innocuous when inhaled remains unclear. Here, we investigated the effects of e-cig aerosols generated from e-liquid containing only PG/VG on airway inflammation and mucociliary function in primary human bronchial epithelial cells (HBEC) and sheep. Primary HBEC were cultured at the air-liquid interface (ALI) and exposed to e-cig aerosols of 50%/50% v/v PG/VG. Ion channel conductance, ciliary beat frequency, and the expression of inflammatory markers, cell type-specific markers, and the major mucins MUC5AC and MUC5B were evaluated after seven days of exposure. Sheep were exposed to e-cig aerosols of PG/VG for five days and mucus concentration and matrix metalloproteinase-9 (MMP-9) activity were measured from airway secretions. Seven-day exposure of HBEC to e-cig aerosols of PG/VG caused a significant reduction in the activities of apical ion channels important for mucus hydration, including the cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. PG/VG aerosols significantly increased the mRNA expression of the inflammatory markers interleukin-6 (IL6), IL8, and MMP9, as well as MUC5AC. The increase in MUC5AC mRNA expression correlated with increased immunostaining of MUC5AC protein in PG/VG-exposed HBEC. On the other hand, PG/VG aerosols reduced MUC5B expression leading overall to higher MUC5AC/MUC5B ratios in exposed HBEC. Other cell type-specific markers, including forkhead box protein J1 (FOXJ1), keratin 5 (KRT5), and secretoglobin family 1A member 1 (SCGB1A1) mRNAs, as well as overall ciliation, were significantly reduced by PG/VG exposure. Finally, PG/VG aerosols increased MMP-9 activity and caused mucus hyperconcentration in sheep in vivo. E-cig aerosols of PG/VG induce airway inflammation, increase MUC5AC expression, and cause dysfunction of ion channels important for mucus hydration in HBEC in vitro. Furthermore, PG/VG aerosols increase MMP-9 activity and mucus concentration in sheep in vivo. Collectively, these data show that e-cig aerosols containing PG/VG are likely to be harmful in the airways.
Collapse
Affiliation(s)
- Michael D Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel Chung
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jian Qian
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Robert N Montgomery
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, 33140, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
19
|
Axelsson GT, Jonmundsson T, Woo Y, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume: a Mendelian randomisation study. Respir Res 2024; 25:44. [PMID: 38238732 PMCID: PMC10797790 DOI: 10.1186/s12931-023-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Department of Internal Medicine, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Thorarinn Jonmundsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Youngjae Woo
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | | | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | | | - Anthony P Orth
- Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | | | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Respiratory Medicine and Sleep, Landspitali University Hospital, 108, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
20
|
Ojha M, Smith NJ, Devine AJ, Joshi R, Goodman EM, Fan Q, Schuman R, Porollo A, Wells JM, Tiwary E, Batie MR, Gray J, Deshmukh H, Borchers MT, Ammerman SA, Varisco BM. Anti-CELA1 antibody KF4 prevents emphysema by inhibiting stretch-mediated remodeling. JCI Insight 2024; 9:e169189. [PMID: 38193533 PMCID: PMC10906462 DOI: 10.1172/jci.insight.169189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
There are no therapies to prevent emphysema progression. Chymotrypsin-like elastase 1 (CELA1) is a serine protease that binds and cleaves lung elastin in a stretch-dependent manner and is required for emphysema in a murine antisense oligonucleotide model of α-1 antitrypsin (AAT) deficiency. This study tested whether CELA1 is important in strain-mediated lung matrix destruction in non-AAT-deficient emphysema and the efficacy of CELA1 neutralization. Airspace simplification was quantified after administration of tracheal porcine pancreatic elastase (PPE), after 8 months of cigarette smoke (CS) exposure, and in aging. In all 3 models, Cela1-/- mice had less emphysema and preserved lung elastin despite increased lung immune cells. A CELA1-neutralizing antibody was developed (KF4), and it inhibited stretch-inducible lung elastase in ex vivo mouse and human lung and immunoprecipitated CELA1 from human lung. In mice, systemically administered KF4 penetrated lung tissue in a dose-dependent manner and 5 mg/kg weekly prevented emphysema in the PPE model with both pre- and postinjury initiation and in the CS model. KF4 did not increase lung immune cells. CELA1-mediated lung matrix remodeling in response to strain is an important contributor to postnatal airspace simplification, and we believe that KF4 could be developed as a lung matrix-stabilizing therapy in emphysema.
Collapse
Affiliation(s)
- Mohit Ojha
- Lincoln Medical Center and Mental Health Center, New York, New York, USA
| | - Noah J. Smith
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew J. Devine
- Heritage College of Osteopathic Medicine, Ohio University, Athens Ohio, USA
| | - Rashika Joshi
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily M. Goodman
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Qiang Fan
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard Schuman
- Antibody and Immunoassay Consultants, Rockville, Maryland, USA
| | - Aleksey Porollo
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - J. Michael Wells
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- UAB Lung Health Center, Birmingham, Alabama, USA
| | - Ekta Tiwary
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- UAB Lung Health Center, Birmingham, Alabama, USA
| | | | - Jerilyn Gray
- Perinatal Institute, Center for Perinatal Immunity, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hitesh Deshmukh
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Perinatal Institute, Center for Perinatal Immunity, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Borchers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Brian M. Varisco
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
21
|
Li L, Jiao L, Feng D, Yuan Y, Yang X, Li J, Jiang D, Chen H, Meng Q, Chen R, Fang B, Zou X, Luo Z, Ye X, Hong Y, Liu C, Li C. Human apical-out nasal organoids reveal an essential role of matrix metalloproteinases in airway epithelial differentiation. Nat Commun 2024; 15:143. [PMID: 38168066 PMCID: PMC10762242 DOI: 10.1038/s41467-023-44488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Extracellular matrix (ECM) assembly/disassembly is a critical regulator for airway epithelial development and remodeling. Airway organoid is widely used in respiratory research, yet there is limited study to indicate the roles and mechanisms of ECM organization in epithelial growth and differentiation by using in vitro organoid system. Moreover, most of current Matrigel-based airway organoids are in basal-out orientation where accessing the apical surface is challenging. We present a human apical-out airway organoid using a biochemically defined hybrid hydrogel system. During human nasal epithelial progenitor cells (hNEPCs) differentiation, the gel gradually degrade, leading to the organoid apical surfaces facing outward. The expression and activity of ECM-degrading enzymes, matrix metalloproteinases (MMP7, MMP9, MMP10 and MMP13) increases during organoid differentiation, where inhibition of MMPs significantly suppresses the normal ciliation, resulting in increased goblet cell proportion. Moreover, a decrease of MMPs is found in goblet cell hyperplastic epithelium in inflammatory mucosa. This system reveals essential roles of epithelial-derived MMPs on epithelial cell fate determination, and provides an applicable platform enabling further study for ECM in regulating airway development in health and diseases.
Collapse
Affiliation(s)
- Liyue Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyi Jiao
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Feng
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhang Yuan
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqian Yang
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Dong Jiang
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxiang Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Bixing Fang
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhua Luo
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yue Hong
- School of Life Sciences, Hainan University, Haikou, China
| | - Chun Liu
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunwei Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
23
|
Yoshikawa H, Sato T, Horikoshi K, Komura M, Nitta NA, Mitsui A, Koike K, Kodama Y, Takahashi K. miR-146a regulates emphysema formation and abnormal inflammation in the lungs of two mouse models. Am J Physiol Lung Cell Mol Physiol 2024; 326:L98-L110. [PMID: 38050687 DOI: 10.1152/ajplung.00080.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.
Collapse
Affiliation(s)
- Hitomi Yoshikawa
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kimiko Horikoshi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Moegi Komura
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Arano Nitta
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aki Mitsui
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kengo Koike
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev 2023; 203:115144. [PMID: 37995899 DOI: 10.1016/j.addr.2023.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In recent years, RNA-based therapies have gained much attention as biomedicines due to their remarkable therapeutic effects with high specificity and potency. Lung diseases offer a variety of currently undruggable but attractive targets that could potentially be treated with RNA drugs. Inhaled RNA drugs for the treatment of lung diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome, have attracted more and more attention. A variety of novel nanoformulations have been designed and attempted for the delivery of RNA drugs to the lung via inhalation. However, the delivery of RNA drugs via inhalation poses several challenges. It includes protection of the stability of RNA molecules, overcoming biological barriers such as mucus and cell membrane to the delivery of RNA molecules to the targeted cytoplasm, escaping endosomal entrapment, and circumventing unwanted immune response etc. To address these challenges, ongoing researches focus on developing innovative nanoparticles to enhance the stability of RNA molecules, improve cellular targeting, enhance cellular uptake and endosomal escape to achieve precise delivery of RNA drugs to the intended lung cells while avoiding unwanted nano-bio interactions and off-target effects. The present review first addresses the pathologic hallmarks of different lung diseases, disease-related cell types in the lung, and promising therapeutic targets in these lung cells. Subsequently we highlight the importance of the nano-bio interactions in the lung that need to be addressed to realize disease-related cell-specific delivery of inhaled RNA drugs. This is followed by a review on the physical and chemical characteristics of inhaled nanoformulations that influence the nano-bio interactions with a focus on surface functionalization. Finally, the challenges in the development of inhaled nanomedicines and some key aspects that need to be considered in the development of future inhaled RNA drugs are discussed.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Liangkun Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
25
|
Qian Y, Cai C, Sun M, Lv D, Zhao Y. Analyses of Factors Associated with Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis 2023; 18:2707-2723. [PMID: 38034468 PMCID: PMC10683659 DOI: 10.2147/copd.s433183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is the exacerbation of a range of respiratory symptoms during the stable phase of chronic obstructive pulmonary disease (COPD). AECOPD is thus a dangerous stage and key event in the course of COPD, as its deterioration and frequency seriously affects the quality of life of patients and shortens their survival. Acute exacerbations occur and develop due to many factors such as infection, tobacco smoke inhalation, air pollution, comorbidities, airflow limitation, various biomarkers, history of previous deterioration, natural killer cell abnormalities, immunoglobulin G deficiency, genetics, abnormal muscle and nutritional status, negative psychology, and seasonal temperature changes. There is relatively limited research on the impact of the role of standardized management on the alleviation of AECOPD. However, with the establishment of relevant prevention and management systems and the promotion of artificial intelligence technology and Internet medical approaches, long-term effective and standardized management of COPD patients may help to achieve the quality of life and disease prognosis in COPD patients and reduce the risk of AE.
Collapse
Affiliation(s)
- Yang Qian
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Chenting Cai
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Mengqing Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Dan Lv
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Yun Zhao
- The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
26
|
Madison MC, Margaroli C, Genschmer KR, Russell DW, Wells JM, Sari E, Soto-Vazquez YM, Guo YY, Mincham KT, Snelgrove RJ, Gaggar A, Blalock JE. Protease-armed, Pathogenic Extracellular Vesicles Link Smoking and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:1115-1125. [PMID: 37713301 PMCID: PMC10867940 DOI: 10.1164/rccm.202303-0471oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023] Open
Abstract
Rationale: Mounting evidence demonstrates a role for extracellular vesicles (EVs) in driving lung disorders, such as chronic obstructive pulmonary disease (COPD). Although cigarette smoke (CS) is the primary risk factor for COPD, a link between CS and the EVs that could lead to COPD is unknown. Objective: To ascertain whether exposure to CS elicits a proteolytic EV signature capable of driving disease pathogenesis. Methods: Protease expression and enzymatic activity were measured in EVs harvested from the BAL fluid of smoke-exposed mice and otherwise healthy human smokers. Pathogenicity of EVs was examined using pathological tissue scoring after EV transfer into naive recipient mice. Measurements and Main Results: The analyses revealed a unique EV profile defined by neutrophil- and macrophage-derived EVs. These EVs are characterized by abundant surface expression of neutrophil elastase (NE) and matrix metalloproteinase 12 (MMP12), respectively. CS-induced mouse or human-derived airway EVs had a robust capacity to elicit rapid lung damage in naive recipient mice, with an additive effect of NE- and MMP12-expressing EVs. Conclusions: These studies demonstrate the capacity of CS to drive the generation of unique EV populations containing NE and MMP12. The coordinated action of these EVs is completely sufficient to drive emphysematous disease, and their presence could operate as a prognostic indicator for COPD development. Furthermore, given the robust capacity of these EVs to elicit emphysema in naive mice, they provide a novel model to facilitate preclinical COPD research. Indeed, the development of this model has led to the discovery of a previously unrecognized CS-induced protective mechanism against EV-mediated damage.
Collapse
Affiliation(s)
| | | | - Kristopher R. Genschmer
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine
- Program in Protease and Matrix Biology, and
| | - Derek W. Russell
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine
- Program in Protease and Matrix Biology, and
- Lung Health Center and Gregory Fleming James CF Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama; and
| | - James M. Wells
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine
- Program in Protease and Matrix Biology, and
- Lung Health Center and Gregory Fleming James CF Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama; and
| | - Ezgi Sari
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine
| | | | - Yuan-Yuan Guo
- Birmingham VA Medical Center, Birmingham, Alabama; and
| | - Kyle T. Mincham
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert J. Snelgrove
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amit Gaggar
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine
- Program in Protease and Matrix Biology, and
- Lung Health Center and Gregory Fleming James CF Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama; and
| | - James E. Blalock
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine
- Program in Protease and Matrix Biology, and
- Lung Health Center and Gregory Fleming James CF Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
Frank BS, Nandy D, Khailova L, Mitchell MB, Morgan GJ, Twite M, DiMaria MV, Davidson JA. Circulating biomarkers of extracellular matrix dysregulation are associated with adverse post-stage 2 outcomes in infants with single ventricle heart disease. Sci Rep 2023; 13:16318. [PMID: 37770592 PMCID: PMC10539532 DOI: 10.1038/s41598-023-43562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Children with single ventricle heart disease (SVHD) experience morbidity due to inadequate pulmonary blood flow. Using proteomic screening, our group previously identified members of the matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP), and fibroblast growth factor (FGF) families as potentially dysregulated in SVHD. No prior study has taken a targeted approach to mapping circulating levels of these protein families or their relationship to pulmonary vascular outcomes in SVHD. We performed a prospective cohort study of 70 SVHD infants pre-Stage 2 palliation and 24 healthy controls. We report targeted serum quantification of 39 proteins in the MMP, TIMP, and FGF families using the SomaScan platform. Clinical variables were extracted from the medical record. Twenty of 39 tested proteins (7/14 MMPs, 2/4 TIMPs, and 11/21 FGFs) differed between cases and controls. On single variable testing, 6 proteins and no clinical covariates were associated with both post-Stage 2 hypoxemia and length of stay. Multiple-protein modeling identified increased circulating MMP 7 and MMP 17, and decreased circulating MMP 8 and FGFR2 as most associated with post-Stage 2 hypoxemia; increased MMP 7 and TIMP 4 and decreased circulating MMP 1 and MMP 8 were most associated with post-operation length of stay. The MMP, TIMP, and FGF families are altered in SVHD. Pre-Stage 2 imbalance of extracellular matrix (ECM) proteins-increased MMP 7 and decreased MMP 8-was associated with multiple adverse post-operation outcomes. Maintenance of the ECM may be an important pathophysiologic driver of Stage 2 readiness in SVHD.
Collapse
Affiliation(s)
- Benjamin S Frank
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA.
| | - Debmalya Nandy
- Center for Innovative Design and Analysis, University of Colorado Department of Biostatistics and Informatics, Denver, CO, USA
| | - Ludmila Khailova
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| | - Max B Mitchell
- University of Colorado Department of Surgery, Denver, CO, USA
| | - Gareth J Morgan
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| | - Mark Twite
- University of Colorado Department of Anesthesiology, Denver, CO, USA
| | - Michael V DiMaria
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| | - Jesse A Davidson
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| |
Collapse
|
28
|
Takimoto-Sato M, Suzuki M, Kimura H, Ge H, Matsumoto M, Makita H, Arai S, Miyazaki T, Nishimura M, Konno S. Apoptosis inhibitor of macrophage (AIM)/CD5L is involved in the pathogenesis of COPD. Respir Res 2023; 24:201. [PMID: 37592330 PMCID: PMC10433671 DOI: 10.1186/s12931-023-02508-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Alveolar macrophages (AMs) and AM-produced matrix metalloprotease (MMP)-12 are known to play critical roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). The apoptosis inhibitor of the macrophages (AIM)/CD5 molecule-like (CD5L) is a multifunctional protein secreted by the macrophages that mainly exists in the blood in a combined form with the immunoglobulin (Ig)M pentamer. Although AIM has both facilitative and suppressive roles in various diseases, its role in COPD remains unclear. METHODS We investigated the role of AIM in COPD pathogenesis using porcine pancreas elastase (PPE)-induced and cigarette smoke-induced emphysema mouse models and an in vitro model using AMs. We also analyzed the differences in the blood AIM/IgM ratio among nonsmokers, healthy smokers, and patients with COPD and investigated the association between the blood AIM/IgM ratio and COPD exacerbations and mortality in patients with COPD. RESULTS Emphysema formation, inflammation, and cell death in the lungs were attenuated in AIM-/- mice compared with wild-type (WT) mice in both PPE- and cigarette smoke-induced emphysema models. The PPE-induced increase in MMP-12 was attenuated in AIM-/- mice at both the mRNA and protein levels. According to in vitro experiments using AMs stimulated with cigarette smoke extract, the MMP-12 level was decreased in AIM-/- mice compared with WT mice. This decrease was reversed by the addition of recombinant AIM. Furthermore, an analysis of clinical samples showed that patients with COPD had a higher blood AIM/IgM ratio than healthy smokers. Additionally, the blood AIM/IgM ratio was positively associated with disease severity in patients with COPD. A higher AIM/IgM ratio was also associated with a shorter time to the first COPD exacerbation and higher all-cause and respiratory mortality. CONCLUSIONS AIM facilitates the development of COPD by upregulating MMP-12. Additionally, a higher blood AIM/IgM ratio was associated with poor prognosis in patients with COPD. TRIAL REGISTRATION This clinical study, which included nonsmokers, healthy smokers, and smokers with COPD, was approved by the Ethics Committee of the Hokkaido University Hospital (012-0075, date of registration: September 5, 2012). The Hokkaido COPD cohort study was approved by the Ethics Committee of the Hokkaido University School of Medicine (med02-001, date of registration: December 25, 2002).
Collapse
Affiliation(s)
- Michiko Takimoto-Sato
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Hiroki Kimura
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Haiyan Ge
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Munehiro Matsumoto
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hironi Makita
- Hokkaido Medical Research Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
- Hokkaido Medical Research Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
29
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
30
|
Axelsson GT, Jonmundsson T, Woo YJ, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume - a Mendelian randomisation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.30.23292035. [PMID: 37425696 PMCID: PMC10327250 DOI: 10.1101/2023.06.30.23292035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A decline in forced expiratory volume (FEV1) is a hallmark of obstructive respiratory diseases, an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. Data from the general population-based AGES-Reykjavik study were used. Proteomic measurements were done using 4,782 DNA aptamers (SOMAmers). Data from 1,648 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5,368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). In observational analyses, 473 SOMAmers were associated with FEV1 after multiple testing adjustment. The most significant were R-Spondin 4, Alkaline Phosphatase, Placental Like 2 and Retinoic Acid Receptor Responder 2. Of the 235 SOMAmers with genetic data, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta and Apolipoprotein M. THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. In summary, this large scale proteogenomic analyses of FEV1 reveals protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
|
31
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
32
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
33
|
Yun HJ, Lee HY. The novel TAK1 inhibitor handelin inhibits NF-κB and AP-1 activity to alleviate elastase-induced emphysema in mice. Life Sci 2023; 319:121388. [PMID: 36640900 DOI: 10.1016/j.lfs.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
AIMS Emphysema, one of the two major components of chronic obstructive pulmonary disease (COPD), is driven by aberrant inflammatory responses and associated with irreversible lung parenchymal destruction. As effective therapy for preventing or treating COPD/emphysema is yet unavailable, development of molecular targets and therapeutic agents for COPD/emphysema is required. MAIN METHODS AND KEY FINDINGS We identified handelin-a guaianolide dimer of sesquiterpene lactones- from a chemical library of 431 natural products as it exhibited potent inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production, LPS-induced activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK)/AP-1, and expression of proinflammatory mediators in macrophage cells. In silico docking and biochemical studies enabled the identification of the ATP-binding pocket of transforming growth factor beta-activated kinase 1 (TAK1), a kinase upstream of NF-κB and MAPK/AP-1 pathways, as a molecular target for handelin. Moreover, oral administration of handelin (10 mg/kg) suppressed elastase-induced development of emphysematous phenotypes, including lung function disturbance, airspace enlargement, and increases in the level of neutrophils and CD8+ T cells in lung tissues, without overt toxicity. Consistent with in vitro results, analyses of lung tissues revealed that treatment with handelin suppressed elastase-induced NF-κB and AP-1 activation in the lungs, followed by downregulation of their targets including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase 9 (MMP9). SIGNIFICANCE These findings suggest that handelin, as a TAK1 inhibitor, effectively prevents development of emphysema in an elastase-induced mouse model by inhibiting a proinflammatory mediators mediated by NF-κB and AP-1.
Collapse
Affiliation(s)
- Hye Jeong Yun
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
Kim MD, Chung S, Baumlin N, Sun L, Silswal N, Dennis JS, Yoshida M, Sabater J, Horrigan FT, Salathe M. E-cigarette aerosols of propylene glycol impair BK channel activity and parameters of mucociliary function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L468-L479. [PMID: 36809074 PMCID: PMC10042605 DOI: 10.1152/ajplung.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Propylene glycol (PG) is a common delivery vehicle for nicotine and flavorings in e-cigarette (e-cig) liquids and is largely considered safe for ingestion. However, little is known about its effects as an e-cig aerosol on the airway. Here, we investigated whether pure PG e-cig aerosols in realistic daily amounts impact parameters of mucociliary function and airway inflammation in a large animal model (sheep) in vivo and primary human bronchial epithelial cells (HBECs) in vitro. Five-day exposure of sheep to e-cig aerosols of 100% PG increased mucus concentrations (% mucus solids) of tracheal secretions. PG e-cig aerosols further increased the activity of matrix metalloproteinase-9 (MMP-9) in tracheal secretions. In vitro exposure of HBECs to e-cig aerosols of 100% PG decreased ciliary beating and increased mucus concentrations. PG e-cig aerosols further reduced the activity of large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. We show here for the first time that PG can be metabolized to methylglyoxal (MGO) in airway epithelia. PG e-cig aerosols increased levels of MGO and MGO alone reduced BK activity. Patch-clamp experiments suggest that MGO can disrupt the interaction between the major pore-forming BK subunit human Slo1 (hSlo1) and the gamma regulatory subunit LRRC26. PG exposures also caused a significant increase in mRNA expression levels of MMP9 and interleukin 1 beta (IL1B). Taken together, these data show that PG e-cig aerosols cause mucus hyperconcentration in sheep in vivo and HBECs in vitro, likely by disrupting the function of BK channels important for airway hydration.
Collapse
Affiliation(s)
- Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Samuel Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Frank T Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
35
|
Toumpanakis D, Usmani OS. Small airways disease in patients with alpha-1 antitrypsin deficiency. Respir Med 2023; 211:107222. [PMID: 36965591 DOI: 10.1016/j.rmed.2023.107222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder, characterized by panacinar emphysema mainly in the lower lobes, and predisposes to chronic obstructive pulmonary disease (COPD) at a younger age, especially in patients with concomitant cigarette smoking. Alpha-1 antitrypsin (a1-AT) is a serine protease inhibitor that mainly blocks neutrophil elastase and maintains protease/antiprotease balance in the lung and AATD is caused by mutations in the SERPINA1 gene that encodes a1-AT protein. PiZZ is the most common genotype associated with severe AATD, leading to reduced circulating levels of a1-AT. Besides its antiprotease function, a1-AT has anti-inflammatory and antioxidative effects and AATD results in defective innate immunity. Protease/antiprotease imbalance affects not only the lung parenchyma but also the small airways and recent studies have shown that AATD is associated with small airway dysfunction. Alterations in small airways structure with peripheral ventilation inhomogeneities may precede emphysema formation, providing a unique opportunity to detect early disease. The aim of the present review is to summarize the current evidence for the contribution of small airways disease in AATD-associated lung disease.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; General State Hospital for Thoracic Diseases of Athens "Sotiria", Greece.
| | - Omar S Usmani
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Roy A, Sarkar A, Nayak D, Das S. Ultradiluted SARS-CoV-2 Spike Protein mitigates hyperinflammation in lung via ferritin and MMP-9 regulation in BALB/c mice. Virus Res 2023; 329:199091. [PMID: 36918101 PMCID: PMC10015450 DOI: 10.1016/j.virusres.2023.199091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
AIM This study investigated the prophylactic and therapeutic role of ultradiluted preparation of the Delta variant of SARS-CoV-2 recombinant spike (S) protein during S antigen-induced inflammatory process of disease progression along with the probable mechanism of action. MAIN METHODS Ultradiluted S protein (UDSP) was prepared and administered orally to adult BALB/c mice before and after administration of S antigen intranasally. After an observation period of 72 h, animals were sacrificed and expression level of ferritin was assayed through ELISA. The genetic expressions of cytokines, IL-6, IL-10, IL-1β, TNFα, IL-17, MMP-9, TIMP-1, ferritin light and heavy chains, and mitochondrial ferritin from lung tissues were investigated through RT-PCR. Formalin-fixed lung tissue sections were stained with hematoxylin and eosin to observe the degree of pathological changes. The activity of MMP-9 in lung tissues was investigated through gelatin zymography and immunofluorescence of MMP-9 in lung tissue sections was performed to revalidate the finding from gelatin zymography. Systems biology approach was used to elucidate a probable pathway where UDSP attenuated the inflammation through the regulation of pro- and anti-inflammatory cytokines. KEY FINDINGS UDSP attenuated the S antigen-induced hyperinflammation in the lung by regulating pro- and anti-inflammatory cytokines, calming cytokine storm, reducing ferritin level both in transcriptional and translational levels, and restoring critical ratio of MMP-9: TIMP-1. SIGNIFICANCE Our findings suggest a probable pathway by which UDSP might have attenuated inflammation through the regulation of cytokines, receptors, and other molecules. This proclaims UDSP as a promising antiviral agent in the treatment of COVID-19-induced immunopathogenesis.
Collapse
Affiliation(s)
- Anirban Roy
- Virology Laboratory, DAC Regional Research Institute, Kolkata, West Bengal 700035, India
| | - Avipsha Sarkar
- Virology Laboratory, DAC Regional Research Institute, Kolkata, West Bengal 700035, India
| | - Debadatta Nayak
- CCRH, Institutional Area, Janakpuri, New Delhi, Delhi 110058, India
| | - Satadal Das
- Virology Laboratory, DAC Regional Research Institute, Kolkata, West Bengal 700035, India.
| |
Collapse
|
37
|
Christopoulou ME, Papakonstantinou E, Stolz D. Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24043786. [PMID: 36835197 PMCID: PMC9966421 DOI: 10.3390/ijms24043786] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling, which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore, proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema, which is associated with poor lung function in COPD patients. In this literature review, we describe and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as well as how their activity is regulated by specific tissue inhibitors. Considering the importance of MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention in COPD and present evidence from recent clinical trials in this regard.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eleni Papakonstantinou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
| | - Daiana Stolz
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +49-(0)-761-270-37050
| |
Collapse
|
38
|
Esposito R, Mirra D, Spaziano G, Panico F, Gallelli L, D’Agostino B. The Role of MMPs in the Era of CFTR Modulators: An Additional Target for Cystic Fibrosis Patients? Biomolecules 2023; 13:350. [PMID: 36830719 PMCID: PMC9952876 DOI: 10.3390/biom13020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Cystic fibrosis (CF) is a high-prevalence disease characterized by significant lung remodeling, responsible for high morbidity and mortality worldwide. The lung structural changes are partly due to proteolytic activity associated with inflammatory cells such as neutrophils and macrophages. Matrix metalloproteases (MMPs) are the major proteases involved in CF, and recent literature data focused on their potential role in the pathogenesis of the disease. In fact, an imbalance of proteases and antiproteases was observed in CF patients, resulting in dysfunction of protease activity and loss of lung homeostasis. Currently, many steps forward have been moved in the field of pharmacological treatment with the recent introduction of triple-combination therapy targeting the CFTR channel. Despite CFTR modulator therapy potentially being effective in up to 90% of patients with CF, there are still patients who are not eligible for the available therapies. Here, we introduce experimental drugs to provide updates on therapy evolution regarding a proportion of CF non-responder patients to current treatment, and we summarize the role of MMPs in pathogenesis and as future therapeutic targets of CF.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Francesca Panico
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
39
|
Prevention of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice by Bilobalide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1973163. [PMID: 36733844 PMCID: PMC9889159 DOI: 10.1155/2023/1973163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Bilobalide (BB) is a sesquiterpene isolated from Ginkgo biloba, and its role in IPF is poorly understood. Mice were intratracheally instilled with 2.5 mg/kg bleomycin (BLM) to induce IPF and then treated with 2.5, 5, and 10 mg/kg BB daily for 21 days. Treatment with BB ameliorated pathological injury and fibrosis of lung tissues in BLM-induced mice. BB suppressed BLM-induced inflammatory response in mice as demonstrated by reduced inflammatory cells counts (leukocytes, neutrophils, macrophages, and lymphocytes) and pro-inflammatory factors (CCL2 and TNF-α), as well as increased CXCL10 levels in BALF. The expression of BLM-induced hydroxyproline, LDH, and pro-fibrotic mediators including fibronectin, collagen I, α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-2, and MMP-9 in lung tissue was inhibited by BB treatment, and the tissue inhibitor of metalloproteinase-1 (TIMP-1) expression was increased. BB blocked the phosphorylation of JNK and NF-κB, and the nuclear translocation of NF-κB in the lung tissue of mice induced by BLM. Additionally, it abated the activation of NLRP3 inflammasome in lung tissue induced by BLM, which led to the downregulation of IL-18 and IL-1β in BALF. Our present study suggested that BB might ameliorate BLM-induced pulmonary fibrosis by inhibiting the early inflammatory response, which is probably via the inhibition of the JNK/NF-κB/NLRP3 signal pathway. Thus, BB might serve as a therapeutic potential agent for pulmonary inflammation and fibrosis.
Collapse
|
40
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
41
|
Chapman F, Pour SJ, Wieczorek R, Trelles Sticken E, Budde J, Röwer K, Otte S, Mason E, Czekala L, Nahde T, O'Connell G, Simms L, Stevenson M. Twenty-eight day repeated exposure of human 3D bronchial epithelial model to heated tobacco aerosols indicates decreased toxicological responses compared to cigarette smoke. FRONTIERS IN TOXICOLOGY 2023; 5:1076752. [PMID: 36875887 PMCID: PMC9979258 DOI: 10.3389/ftox.2023.1076752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Tobacco harm reduction (THR) involves providing adult smokers with potentially reduced harm modes of nicotine delivery as alternatives to smoking combustible cigarettes. Heated tobacco products (HTPs) form a category with THR potential due to their ability to deliver nicotine and flavours through heating, not burning, tobacco. By eliminating burning, heated tobacco does not produce smoke but an aerosol which contains fewer and lower levels of harmful chemicals compared to cigarette smoke. In this study we assessed the in vitro toxicological profiles of two prototype HTPs' aerosols compared to the 1R6F reference cigarette using the 3D human (bronchial) MucilAir™ model. To increase consumer relevance, whole aerosol/smoke exposures were delivered repeatedly across a 28 day period (16, 32, or 48 puffs per exposure). Cytotoxicity (LDH secretion), histology (Alcian Blue/H&E; Muc5AC; FoxJ1 staining), cilia active area and beat frequency and inflammatory marker (IL-6; IL-8; MMP-1; MMP-3; MMP-9; TNFα) levels were assessed. Diluted 1R6F smoke consistently induced greater and earlier effects compared to the prototype HTP aerosols across the endpoints, and in a puff dependent manner. Although some significant changes across the endpoints were induced by exposure to the HTPs, these were substantially less pronounced and less frequently observed, with apparent adaptive responses occurring over the experimental period. Furthermore, these differences between the two product categories were observed at a greater dilution (and generally lower nicotine delivery range) for 1R6F (1R6F smoke diluted 1/14, HTP aerosols diluted 1/2, with air). Overall, the findings demonstrate the THR potential of the prototype HTPs through demonstrated substantial reductions in toxicological outcomes in in vitro 3D human lung models.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Röwer
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | - Sandra Otte
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | | | | | - Thomas Nahde
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | | | - Liam Simms
- Imperial Brands PLC, Bristol, United Kingdom
| | | |
Collapse
|
42
|
Padoan E, Ferraresso S, Pegolo S, Barnini C, Castagnaro M, Bargelloni L. Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals (Basel) 2022; 13:ani13010004. [PMID: 36611613 PMCID: PMC9817691 DOI: 10.3390/ani13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mild equine asthma (MEA) and severe equine asthma (SEA) are two of the most frequent equine airway inflammatory diseases, but knowledge about their pathogenesis is limited. The goal of this study was to investigate gene expression differences in the respiratory tract of MEA- and SEA-affected horses and their relationship with clinical signs. METHODS Clinical examination and endoscopy were performed in 8 SEA- and 10 MEA-affected horses and 7 healthy controls. Cytological and microbiological analyses of bronchoalveolar lavage (BAL) fluid were performed. Gene expression profiling of BAL fluid was performed by means of a custom oligo-DNA microarray. RESULTS In both MEA and SEA, genes involved in the genesis, length, and motility of respiratory epithelium cilia were downregulated. In MEA, a significant overexpression for genes encoding inflammatory mediators was observed. In SEA, transcripts involved in bronchoconstriction, apoptosis, and hypoxia pathways were significantly upregulated, while genes involved in the formation of the protective muco-protein film were underexpressed. The SEA group also showed enrichment of gene networks activated during human asthma. CONCLUSIONS The present study provides new insight into equine asthma pathogenesis, representing the first step in transcriptomic analysis to improve diagnostic and therapeutic approaches for this respiratory disease.
Collapse
Affiliation(s)
- Elisa Padoan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
- Correspondence: ; Tel.: +39-049-8272506
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | | | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
43
|
Baek EB, Kim YJ, Rho JH, Hong EJ, Lee MY, Kwun HJ. Anti-inflammatory effect of Gyeji-tang in a chronic obstructive pulmonary disease mouse model induced by cigarette smoke and lipopolysaccharide. PHARMACEUTICAL BIOLOGY 2022; 60:2040-2048. [PMID: 36267048 PMCID: PMC9590434 DOI: 10.1080/13880209.2022.2131841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with respiratory symptoms and narrowing of airways. Gyeji-tang (GJT) is a traditional Asian medicine that has been used to relieve early-stage cold symptoms, headache, and chills. OBJECTIVE We examined the effect and potential molecular action mechanism of GJT in a mouse model of COPD induced by cigarette smoke (CS) plus lipopolysaccharide (LPS). MATERIALS AND METHODS COPD was induced in C57BL/6J mice via daily exposure to CS for 1 h for 8 weeks and intranasal administration of LPS on weeks 1, 3, 5, and 7. GJT (100 or 200 mg/kg) or roflumilast (5 mg/kg) was administrated daily for the final 4 weeks of COPD induction. RESULTS Administration of GJT significantly suppressed the CS/LPS-induced increases in: the numbers of total cells and macrophages in bronchoalveolar lavage fluid; the expression levels of tumour necrosis factor-α, interleukin (IL)-6, IL-1β, and IL-8; the activities (phosphorylation) of nuclear factor kappa B and signal transducer and activator of transcription 3; and the expression levels of the structural remodelling markers, transforming growth factor beta, matrix metallopeptidase (MMP)-7, and MMP-9. DISCUSSION AND CONCLUSIONS These results demonstrate that GJT prevents the lung inflammation and airway remodelling induced by CS plus LPS exposure in mice, suggesting that GJT may have therapeutic potential for the treatment of COPD.
Collapse
Affiliation(s)
- Eun Bok Baek
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Yu Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Jin-Hyung Rho
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Mee-Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
44
|
Ma Q, Zhang AN, Zhang CX. Exploration of the Pharmacological Mechanism of Bufei Nashen Pill in Treating Chronic Obstructive Pulmonary Disease Using Network Pharmacology Integrated Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Based on network pharmacological analysis and molecular docking verification, the therapeutic mechanism of Bufei Nashen Pill (BFNSP) in treating chronic obstructive pulmonary disease (COPD) is discussed. Methods: First, the active ingredients and therapeutic targets of BFNSP were determined based on literature and the Chinese medicine system pharmacology database. Relevant targets of COPD were determined using GeneCard, Therapeutic Target Database and Online Mendelian Inheritance in Man (OMIM). The con-targets of BFNSP and COPD were then obtained through the Veen platform, which were implemented in Cytoscape to build “Drug-Ingredients-Potential Target network.” Target gene function enrichment analysis and signal pathway analysis were performed based on STRING database, Database for Annotation, Visualization, and Integrated Discovery, and Kyoto Encyclopedia of Genes and Genomes Pathway database. Finally, SYBYL 2.2.1 software was used to finish docking. Results: In the Drug-Ingredients-Potential Targets network, 172 active ingredients and 183 potential targets were found. Enrichment analysis showed that potential targets mainly involve biological functions such as inflammation, reactive oxygen, and immunity. Molecular docking showed that the active ingredients of BFNSP had preferential interaction with interleukin 6, mitogen-activated protein kinase 1, SRC, epidermal growth factor receptor, and matrix metalloproteinase-9. Conclusion: BFNSP can be used to treat COPD by the regulation of inflammation, immunity, and hypoxia tolerance.
Collapse
Affiliation(s)
- Qin Ma
- Ningxia Medical University, Yinchuan, China
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - An-ni Zhang
- School of Medicine, Jinan University, Guangzhou, China
| | - Chang-xi Zhang
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| |
Collapse
|
45
|
Hussain SS, Edwards YJK, Libby EF, Stanford D, Byzek SA, Sin DD, McDonald ML, Raju SV, Rowe SM. Comparative transcriptomics in human COPD reveals dysregulated genes uniquely expressed in ferrets. Respir Res 2022; 23:277. [PMID: 36217144 PMCID: PMC9552453 DOI: 10.1186/s12931-022-02198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with poor treatment options. However, most mouse models of COPD produce a primarily emphysematous disease not recapitulating clinically meaningful COPD features like chronic bronchitis. METHODS Wild-type ferrets (Mustela putorius furo) were divided randomly into two groups: whole body cigarette smoke exposure and air controls. Ferrets were exposed to smoke from 1R6F research cigarettes, twice daily for six months. RNA-sequencing was performed on RNA isolated from lung tissue. Comparative transcriptomics analyses of COPD in ferrets, mice, and humans were done to find the uniquely expressed genes. Further, Real-time PCR was performed to confirmed RNA-Seq data on multiple selected genes. RESULTS RNA-sequence analysis identified 420 differentially expressed genes (DEGs) that were associated with the development of COPD in ferrets. By comparative analysis, we identified 25 DEGs that are uniquely expressed in ferrets and humans, but not mice. Among DEGs, a number were related to mucociliary clearance (NEK-6, HAS1, and KL), while others have been correlated with abnormal lung function (IL-18), inflammation (TREM1, CTSB), or oxidative stress (SRX1, AHRR). Multiple cellular pathways were aberrantly altered in the COPD ferret model, including pathways associated with COPD pathogenesis in humans. Validation of these selected unique DEGs using real-time PCR demonstrated > absolute 2-fold changes in mRNA versus air controls, consistent with RNA-seq analysis. CONCLUSION Cigarette smoke-induced COPD in ferrets modulates gene expression consistent with human COPD and suggests that the ferret model may be uniquely well suited for the study of aspects of the disease.
Collapse
Affiliation(s)
- Shah S Hussain
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Yvonne J K Edwards
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Stephen A Byzek
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Merry-Lynn McDonald
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA.
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Kim MD, Chung S, Dennis JS, Yoshida M, Aguiar C, Aller SP, Mendes ES, Schmid A, Sabater J, Baumlin N, Salathe M. Vegetable glycerin e-cigarette aerosols cause airway inflammation and ion channel dysfunction. Front Pharmacol 2022; 13:1012723. [PMID: 36225570 PMCID: PMC9549247 DOI: 10.3389/fphar.2022.1012723] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023] Open
Abstract
Vegetable glycerin (VG) and propylene glycol (PG) serve as delivery vehicles for nicotine and flavorings in most e-cigarette (e-cig) liquids. Here, we investigated whether VG e-cig aerosols, in the absence of nicotine and flavors, impact parameters of mucociliary function in human volunteers, a large animal model (sheep), and air-liquid interface (ALI) cultures of primary human bronchial epithelial cells (HBECs). We found that VG-containing (VG or PG/VG), but not sole PG-containing, e-cig aerosols reduced the activity of nasal cystic fibrosis transmembrane conductance regulator (CFTR) in human volunteers who vaped for seven days. Markers of inflammation, including interleukin-6 (IL6), interleukin-8 (IL8) and matrix metalloproteinase-9 (MMP9) mRNAs, as well as MMP-9 activity and mucin 5AC (MUC5AC) expression levels, were also elevated in nasal samples from volunteers who vaped VG-containing e-liquids. In sheep, exposures to VG e-cig aerosols for five days increased mucus concentrations and MMP-9 activity in tracheal secretions and plasma levels of transforming growth factor-beta 1 (TGF-β1). In vitro exposure of HBECs to VG e-cig aerosols for five days decreased ciliary beating and increased mucus concentrations. VG e-cig aerosols also reduced CFTR function in HBECs, mechanistically by reducing membrane fluidity. Although VG e-cig aerosols did not increase MMP9 mRNA expression, expression levels of IL6, IL8, TGFB1, and MUC5AC mRNAs were significantly increased in HBECs after seven days of exposure. Thus, VG e-cig aerosols can potentially cause harm in the airway by inducing inflammation and ion channel dysfunction with consequent mucus hyperconcentration.
Collapse
Affiliation(s)
- Michael D. Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Chung
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - John S. Dennis
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Makoto Yoshida
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Carolina Aguiar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheyla P. Aller
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eliana S. Mendes
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andreas Schmid
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Matthias Salathe,
| |
Collapse
|
47
|
Saraiva-Romanholo BM, de Genaro IS, de Almeida FM, Felix SN, Lopes MRC, Amorim TS, Vieira RP, Arantes-Costa FM, Martins MA, de Fátima Lopes Calvo Tibério I, Prado CM. Exposure to Sodium Hypochlorite or Cigarette Smoke Induces Lung Injury and Mechanical Impairment in Wistar Rats. Inflammation 2022; 45:1464-1483. [PMID: 35501465 DOI: 10.1007/s10753-022-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/11/2020] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Pulmonary irritants, such as cigarette smoke (CS) and sodium hypochlorite (NaClO), are associated to pulmonary diseases in cleaning workers. We examined whether their association affects lung mechanics and inflammation in Wistar rats. Exposure to these irritants alone induced alterations in the lung mechanics, inflammation, and remodeling. The CS increased airway cell infiltration, acid mucus production, MMP-12 expression, and alveolar enlargement. NaClO increased the number of eosinophils and macrophages in the bronchoalveolar lavage fluid, with cells expressing IL-13, MMP-12, MMP-9, TIMP-1, and iNOS in addition to increased IL-1β and TNF-α levels. Co-exposure to both irritants increased epithelial and smooth muscle cell area, acid mucus production, and IL-13 expression in the airways, while it reduced the lung inflammation. In conclusion, the co-exposure of CS with NaClO reduced the pulmonary inflammation, but increased the acidity of mucus, which may protect lungs from more injury. A cross-resistance in people exposed to multiple lung irritants should also be considered.
Collapse
Affiliation(s)
- Beatriz Mangueira Saraiva-Romanholo
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil.
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil.
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil.
- Laboratory of Studies in Pulmonary Inflammation, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, Brazil.
| | - Isabella Santos de Genaro
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Francine Maria de Almeida
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Soraia Nogueira Felix
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | | | | | - Rodolfo Paula Vieira
- Post-Graduation Program in Bioengineering and in Biomedical Engineering, Brazil University, Sao Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, Brazil
- School of Medicine, Anhembi Morumbi University, Sao Jose dos Campos, SP, Brazil
| | - Fernanda Magalhães Arantes-Costa
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Carla Máximo Prado
- Laboratory of Studies in Pulmonary Inflammation, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
48
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
49
|
Baker JR, Fenwick PS, Koss CK, Owles HB, Elkin SL, Fine JS, Thomas M, Kasmi KC, Barnes PJ, Donnelly LE. Imbalance between IL-36 receptor agonist and antagonist drives neutrophilic inflammation in COPD. JCI Insight 2022; 7:155581. [PMID: 35763349 PMCID: PMC9462491 DOI: 10.1172/jci.insight.155581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Current treatments fail to modify the underlying pathophysiology and disease progression of chronic obstructive pulmonary disease (COPD), necessitating alternative therapies. Here, we show that COPD subjects have increased IL-36γ and decreased IL-36 receptor antagonist (IL-36Ra) in bronchoalveolar and nasal fluid compared to control subjects. IL-36γ is derived from small airway epithelial cells (SAEC) and further induced by a viral mimetic, whereas IL-36RA is derived from macrophages. IL-36γ stimulates release of the neutrophil chemoattractants CXCL1 and CXCL8, as well as elastolytic matrix metalloproteinases (MMPs) from small airway fibroblasts (SAF). Proteases released from COPD neutrophils cleave and activate IL-36γ thereby perpetuating IL-36 inflammation. Transfer of culture media from SAEC to SAF stimulated release of CXCL1, that was inhibited by exogenous IL-36RA. The use of a therapeutic antibody that inhibits binding to the IL-36 receptor (IL-36R) attenuated IL-36γ driven inflammation and cellular cross talk. We have demonstrated a mechanism for the amplification and propagation of neutrophilic inflammation in COPD and that blocking this cytokine family via a IL-36R neutralizing antibody could be a promising new therapeutic strategy in the treatment of COPD.
Collapse
Affiliation(s)
- Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter S Fenwick
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Harriet B Owles
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah L Elkin
- Department of Respiratory Medicine, Imperial College Healthcare Trust, London, United Kingdom
| | - Jay S Fine
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, United States of America
| | - Matthew Thomas
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Karim C Kasmi
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
Caird R, Williamson M, Yusuf A, Gogoi D, Casey M, McElvaney NG, Reeves EP. Targeting of Glycosaminoglycans in Genetic and Inflammatory Airway Disease. Int J Mol Sci 2022; 23:ijms23126400. [PMID: 35742845 PMCID: PMC9224208 DOI: 10.3390/ijms23126400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine–GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.
Collapse
|