1
|
Guo SX, Zhang Q, Bai NN, Yue PY, Niu JP, Yin CC, Yue AQ, Du WJ, Zhao JZ. Swift and portable detection of soybean mosaic virus SC7 through RNA extraction and loop-mediated isothermal amplification using lateral flow device. Front Microbiol 2025; 15:1478218. [PMID: 39831125 PMCID: PMC11739293 DOI: 10.3389/fmicb.2024.1478218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The soybean mosaic disease-caused by the soybean mosaic virus (SMV)-significantly impacts soybean quality and yield. Among its various strains, SMV-SC7 is prevalent in China. Therefore, rapid and accurate diagnosis is deemed critical to mitigate the spread of SMV-SC7. In this study, a simple and rapid magnetic bead-based RNA extraction method was optimized. Furthermore, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay that requires no specialized equipment such as PCR Amplifier was proposed, employing a lateral flow device (LFD) for visual interpretation of SMV-SC7. The RT-LAMP-LFD approach facilitated specificity testing of SMV-SC7. Moreover, the limit of detection (LOD) of this method was as low as 10-5 ng (2.4 copies). The sensitivity of RT-LAMP-LFD was 10-fold higher than that of the colorimetric RT-LAMP method. In 194 field samples tested, the RT-LAMP-LFD detection of the SMV-SC7 had accuracy of 98.45% in comparison to RT-qPCR. In conclusion, the assay exhibited high specificity, sensitivity, and rapidity, enabling economical and portable detection of SMV-SC7 and providing technical support to identify SMV-SC7-infected soybeans.
Collapse
Affiliation(s)
- Shui-Xian Guo
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qing Zhang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Nan-Nan Bai
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pei-Yao Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jing-Ping Niu
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cong-Cong Yin
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ai-Qin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wei-Jun Du
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin-Zhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
2
|
Khudyakov JI. Protein Sample Preparation for Bottom-Up, Label-Free Quantitative Proteomics of Adipose Tissue. Methods Mol Biol 2025; 2884:43-56. [PMID: 39715996 DOI: 10.1007/978-1-0716-4298-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Adipose tissue (AT) is a complex, multifunctional endocrine organ that plays a significant role in animal evolution and human disease. Profiling of the proteome, or the set of proteins produced by a cell or tissue at a given time, can be used to explore the myriad functions of adipose tissue and understand its role in health and disease. The main challenges of adipose tissue proteomics include the high lipid and low protein content of the tissue and association of many proteins with lipid droplets. Here, we present a protocol for gel-free, label-free, bottom-up, relative quantitative proteomics of adipose tissue based on findings from the literature and our laboratory that yields reproducible protein and peptide identification rates while minimizing cost and processing time. This approach involves tissue homogenization, protein precipitation from homogenates, solubilization and denaturation of proteins in a buffer containing 5% sodium deoxycholate (SDC, an acid-insoluble detergent) and 5 mM tris(2-carboxyethyl)phosphine (TCEP, a reducing agent), alkylation with chloroacetamide, and in-solution tandem digestion with trypsin and Lys-C enzymes in the presence of 1% SDC. Acidification of peptides efficiently removes SDC prior to desalting and mass spectrometry. This method has been used successfully in our laboratory by both experienced researchers and those with limited technical backgrounds, including high school, undergraduate, and graduate students. We have identified >1500 proteins in adipose tissue of non-model mammals (e.g., blubber of marine mammals) spanning a dynamic range of 105 using this approach, including proteins of interest for comparative physiology such as adipokines, metabolic and antioxidant enzymes, lipid droplet proteins, metabolite transporters, and mitochondrial proteins, among others.
Collapse
Affiliation(s)
- Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA.
| |
Collapse
|
3
|
Rout-Pitt N, Boog B, McCarron A, Reyne N, Parsons D, Donnelley M. Insights into epithelial-mesenchymal transition from cystic fibrosis rat models. J Cyst Fibros 2025; 24:149-156. [PMID: 39266334 DOI: 10.1016/j.jcf.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Molecular pathways contributing to Cystic Fibrosis pathogenesis remain poorly understood. Epithelial-mesenchymal transition (EMT) has been recently observed in CF lungs and certain CFTR mutation classes may be more susceptible than others. No investigations of EMT processes in CF animal models have been reported. AIM The aim of this study was to assess the expression of EMT-related markers in Phe508del and knockout (CFTR-KO) rat lung tissue and tracheal-derived basal epithelial stem cells, to determine whether CFTR dysfunction can produce an EMT state. METHOD The expression of EMT-related markers in lung tissue and cultured tracheal basal epithelial stem cells from wildtype (WT), Phe508del, and CFTR-KO rats were assessed using qPCR and Western blots. Cell responses were evaluated in the presence of Rho-associated protein kinase (ROCK) inhibitor Y27632, which blocks EMT-pathways, or after treatment with TGFβ1 to stimulate EMT. RESULTS Different gene expression profiles were observed between Phe508del and CFTR-KO rat models compared to wild type. There was lower expression of type 1 collagen in KO lungs and primary cell cultures, while Phe508del lungs and cells had higher expression, particularly when treated with TGFβ1. The addition of Y27632 rescued changes in EMT related genes in Phe508del cells but not in KO cells. CONCLUSION Our findings show the first evidence of upregulated EMT pathways in the lungs and airway cells of any CF animal model. Differences in the regulation of the EMT genes and proteins in the Phe508del and CFTR-KO cells suggest that the signalling pathways underlying EMT are CFTR mutation dependent.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Bernadette Boog
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Nicole Reyne
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| |
Collapse
|
4
|
Razzaq F, Shahid S, Shahid W. Modulation of miR-205 expression using a Cheiranthus cheiri phyto-nano hybrid as a potential therapeutic agent against breast cancer. RSC Adv 2024; 14:37286-37298. [PMID: 39575377 PMCID: PMC11580155 DOI: 10.1039/d4ra03069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 11/24/2024] Open
Abstract
Breast cancer is the fifth major cause of fatalities associated with cancer worldwide and in Pakistan, 34 066 female breast cancer cases were recorded in 2018. This study was designed to understand extracts of Cheiranthus cheiri (C. cheiri) and to evaluate the epigenetic modulation of microRNA expression for breast cancer therapy using a selected phyto-nanohybrid treatment. The phytochemical screening revealed the presence of potential phytochemicals and antioxidant scavenging activity in the C. cheiri extracts with a DPPH (2-diphenyl-1-picryl-hydroxyl) assay giving an IC50 value of 20.63 μg mL-1. GC-MS (gas chromatography-mass spectroscopy) analysis of the C. cheiri n-hexane extract detected 42 phytocompounds. Titanium oxide (TiO2) nanoparticles were synthesized and characterized using XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectrometry) to confirm the synthesis of anatase (tetragonal) TiO2. The prepared nanoparticles were conjugated with the selected plant i.e., C. cheiri. The resulting phyto-nanohybrid was used for the subsequent treatment of breast cancer induced in a female rat model. The treatment groups were as follows: doxorubicin as the standard treatment, C. cheiri, TiO2 and the phyto-nano hybrid treatment. After 8 weeks of treatment, the groups induced to exhibit breast cancer (with and without treatment) and the control groups were dissected and analysed for histopathological, haematological and microRNA expression. Histopathological examination revealed chronic inflammation in the dilated ducts and tumour embolus formation, thus confirming the presence of breast cancer in the DMBA-induced female rat model. MicroRNA expression analysis showed a statistically significant decrease in levels of miR-205 in the plasma of the breast cancer rat model compared to the control (p < 0.05). After treatment with the phyto-nano hybrid, a statistically significant increase in the expression of miR-205 was observed in the rat models induced to exhibit breast cancer compared to the rat model without any treatment (p < 0.05). The downregulation of miR-205 in the plasma of the breast cancer exhibiting model, as compared to the control, and its upregulation after treatment with the selected phyto-nano hybrid indicated its diagnostic and prognostic significance. It is concluded that the phyto-nano hybrid used in this study is effective against breast cancer induced female rat model. All the results support the finding that the selected phyto-nano hybrid has great potential as a possible therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fatima Razzaq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore Lahore Pakistan
- Research Centre for Health Sciences (RCHS), The University of Lahore Lahore Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore Lahore Pakistan
| |
Collapse
|
5
|
Mougin C, Chataigner M, Lucas C, Pallet V, Bouvret E, Joffre C, Dinel AL. Dietary marine hydrolysate alleviates D-galactose-induced brain aging by attenuating cognitive alterations, oxidative stress and inflammation through the AGE-RAGE axis. PLoS One 2024; 19:e0309542. [PMID: 39446794 PMCID: PMC11500938 DOI: 10.1371/journal.pone.0309542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Aging represents a natural and unavoidable phenomenon in organisms. With the acceleration of population aging, investigations into aging have garnered widespread global interest. One of the most striking aspects of human aging is the decline in brain function, a phenomenon intricately tied to the onset of neurodegenerative conditions. This study aimed to assess the impact of a fish hydrolysate, rich in low-molecular-weight peptides and n-3 LC-PUFAs, on cognitive function, inflammatory response, and oxidative stress via the AGE-RAGE axis in a mouse model of accelerated aging. This model induces cognitive decline and biochemical alterations akin to those observed during natural aging. The findings revealed that fish hydrolysate exhibited a protective effect against cognitive impairment induced by D-galactose. This effect was associated with increased protein expression of SOD1 and decreased genetic expression of IL-6 and advanced glycation end products (AGE). Consequently, within the realm of preventive and personalized nutrition, fish hydrolysate emerges as a promising avenue for mitigating age-related declines in memory function.
Collapse
Affiliation(s)
- Camille Mougin
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
- Abyss Ingredients, Caudan, France
| | - Mathilde Chataigner
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
- Abyss Ingredients, Caudan, France
| | - Céline Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Véronique Pallet
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
| | | | - Corinne Joffre
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
| | - Anne-Laure Dinel
- Nutrineuro, UMR 1286, Université Bordeaux, INRAE, Bordeaux INP, Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| |
Collapse
|
6
|
Ma Y, Liao X, Lu G, Chen X, Qin Y, Yuan A, Wang R, Xie Y, Pu J. Functionalizing Sgc8-Paclitaxel Conjugates with F-Base Modifications: Targeted Drug Delivery with Optimized Cardiac Safety. ChemMedChem 2024; 19:e202400112. [PMID: 38782722 DOI: 10.1002/cmdc.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Recent advancements in cancer treatment have improved patient prognoses, but chemotherapy induced cardiotoxicity remains a prevalent concern. This study explores the potential of F-base-modified aptamers for targeted drug delivery, focusing on their impact on cardiotoxicity. From the phosphoramidite, F-base-functionalized Sgc8-F23 was prepared in an automated and programmable way, which was further reacted with paclitaxel (PTX) to give the F-base- modified aptamer Sgc8-paclitaxel conjugates (Sgc8-F23-PTX) efficiently. The conjugate exhibited prolonged circulation time and enhanced efficacy as a precision anticancer drug delivery system. Echocardiographic assessments revealed no exacerbation of cardiac dysfunction after myocardial infarction (MI) and no pathological changes or increased apoptosis in non-infarcted cardiac regions. Autophagy pathway analysis showed no discernible differences in Sgc8-F23-PTX-treated cardiomyocytes compared with controls, in contrast to the increased autophagy with nanoparticle albumin-bound-paclitaxel (Nab-PTX). Similarly, apoptosis analysis showed no significant differences. Moreover, Sgc8-F23-PTX exhibited no inhibitory effect on hERG, hNav1.5, or hCav1.2 channels. These findings suggest the safety and efficacy of F-base-modified Sgc8 aptamers for targeted drug delivery with potential clinical applications. Further research is warranted for clinical translation and exploration of other drug carriers.
Collapse
Affiliation(s)
- Yue Ma
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xianying Liao
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guiping Lu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyuan Chen
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Qin
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ancai Yuan
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuquan Xie
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Pu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
7
|
Gu L, Pillay RP, Aronson R, Kaur M. Cholesteryl ester transfer protein knock-down in conjunction with a cholesterol-depleting agent decreases tamoxifen resistance in breast cancer cells. IUBMB Life 2024; 76:712-730. [PMID: 38733508 DOI: 10.1002/iub.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 05/13/2024]
Abstract
The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. CETP knock-down resulted in a >50% decrease in cell proliferation in both 'estrogen receptor-positive' (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and 'triple-negative' breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of CETP together with the combination treatment of tamoxifen (5 μM) and acetyl plumbagin (a cholesterol-depleting agent) (5 μM) resulted in twofold to threefold increase in apoptosis in both cell lines. CETP knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT2 Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-CETP knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated CETP's role as a cancer survival gene as knock-down of CETP stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.
Collapse
Affiliation(s)
- Liang Gu
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruvesh Pascal Pillay
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruth Aronson
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mandeep Kaur
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Venmarath A, Karkal SS, Suresh PV, Kudre TG. Extraction optimization, partial purification, and characterization of sialoglycoproteins from Labeo rohita roes. Int J Biol Macromol 2024; 274:133462. [PMID: 38942403 DOI: 10.1016/j.ijbiomac.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In India, fish roes are generally considered worthless garbage and disposed of without recovering the valuable molecules, creating environmental and disposal problems. The present investigation aimed to optimize the extraction conditions, partial purification, and characterization of sialoglycoproteins (RRSGP) from Labeo rohita (rohu) roes. RSM generated optimum conditions for maximum RRSGP (70.49 %) extraction, which were 1.25 M NaCl, 1:32.5(w/v) solid-to-liquid ratio, 47.5 °C temperature, and 3 h time. Further, sialoglycoproteins from RRSGPs were partially purified, and result revealed that obtained peak-1 (PRRSGP) using QFF anion exchange chromatography exhibited higher glycoprotein and sialic acid content (p < 0.05). SDS-PAGE pattern of PRRSGP presented dominant bands of 97 kDa and 27 kDa glycoproteins. FTIR spectrum of PRRSGP confirmed the presence of glycated proteins. HPLC analysis revealed that PRRSGP consists of Neu5Ac. Furthermore, β-elimination reaction elucidated that PRRSGP contained N-glycosidic linkage. PRRSGP exhibited tyrosine and glutamate as primary amino acids. Glycan part of PRRSGP presented mannose and N-acetyl galactosamine as dominant neutral and amino sugar, respectively. Furthermore, PRRSGP exhibited antioxidant activity with EC50 value for DPPH (8.79 mg/ml) and ABTS (2.21 mg/ml). Besides, RRSGP displayed better protein solubility, foaming, and emulsion properties. Therefore, rohu roes are potential source of sialoglycoproteins that can be recovered and used as bio-functional ingredients in food and nutraceutical applications.
Collapse
Affiliation(s)
- Anushma Venmarath
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sandesh Suresh Karkal
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - P V Suresh
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Tanaji G Kudre
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
9
|
Ashiqueali SA, Chaudhari D, Zhu X, Noureddine S, Siddiqi S, Garcia DN, Gostynska A, Stawny M, Rubis B, Zanini BM, Mansoor MAM, Schneider A, Naser SA, Yadav H, Masternak MM. Fisetin modulates the gut microbiota alongside biomarkers of senescence and inflammation in a DSS-induced murine model of colitis. GeroScience 2024; 46:3085-3103. [PMID: 38191834 PMCID: PMC11009197 DOI: 10.1007/s11357-024-01060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.
Collapse
Affiliation(s)
- Sarah A Ashiqueali
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Diptaraj Chaudhari
- University of South Florida Morsani College of Medicine, Neurosurgery & Brain Repair, Tampa, FL, USA
| | - Xiang Zhu
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Sarah Noureddine
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Sarah Siddiqi
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Driele N Garcia
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Aleksandra Gostynska
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Maciej Stawny
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Bianka M Zanini
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Mishfak A M Mansoor
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Augusto Schneider
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Saleh A Naser
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Hariom Yadav
- University of South Florida Morsani College of Medicine, Neurosurgery & Brain Repair, Tampa, FL, USA
| | - Michal M Masternak
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
10
|
Wang B, Chen X, Huang S, Tan J, Zhang H, Wang J, Chen R, Zhang M. Bulk Segregant Analysis Sequencing and RNA-Seq Analyses Reveal Candidate Genes Associated with Sepal Color Phenotype of Eggplant ( Solanum melongena L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1385. [PMID: 38794455 PMCID: PMC11124939 DOI: 10.3390/plants13101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Eggplant is a highly significant vegetable crop and extensively cultivated worldwide. Sepal color is considered one of the major commercial traits of eggplant. Eggplant sepals develop from petals, and sepals have the ability to change color by accumulating anthocyanins, but whether the eggplants in sepal and their biosynthetic pathways are the same as those in petals is not known. To date, little is known about the underlying mechanisms of sepal color formation. In this study, we performed bulked segregant analysis and transcriptome sequencing using eggplant sepals and obtained 1,452,898 SNPs and 182,543 InDel markers, respectively, as well as 123.65 Gb of clean data using transcriptome sequencing. Through marker screening, the genes regulating eggplant sepals were localized to an interval of 2.6 cM on chromosome 10 by bulked segregant analysis sequencing and transcriptome sequencing and co-analysis, combined with screening of molecular markers by capillary electrophoresis. Eight possible candidate genes were then screened to further interpret the regulatory incentives for the eggplant sepal color.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China; (B.W.); (X.C.); (S.H.); (J.T.); (H.Z.); (J.W.); (R.C.)
| |
Collapse
|
11
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
12
|
Gandikota C, Vaddadi K, Sivasami P, Huang C, Liang Y, Pushparaj S, Deng X, Channappanava R, Metcalf JP, Liu L. The use of human iPSC-derived alveolar organoids to explore SARS-CoV-2 variant infections and host responses. J Med Virol 2024; 96:e29579. [PMID: 38572923 PMCID: PMC11603130 DOI: 10.1002/jmv.29579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.
Collapse
Affiliation(s)
- Chaitanya Gandikota
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Kishore Vaddadi
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Pulavendran Sivasami
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Yurong Liang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Samuel Pushparaj
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Xufang Deng
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Rudragouda Channappanava
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma
| | - Jordan P. Metcalf
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
13
|
Jin U, Park SJ, Lee BG, Kim JB, Kim SJ, Joe EH, Woo HG, Park SM. Critical roles of parkin and PINK1 in coxsackievirus B3-induced viral myocarditis. Microbes Infect 2023; 25:105211. [PMID: 37574181 DOI: 10.1016/j.micinf.2023.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Viral myocarditis is an inflammatory disease of the myocardium, often leads to cardiac dysfunction and death. PARKIN (PRKN) and PINK1, well known as Parkinson's disease-associated genes, have been reported to be involved in innate immunity and mitochondrial damage control. Therefore, we investigated the role of parkin and PINK1 in coxsackievirus B3 (CVB3)-induced viral myocarditis because the etiology of myocarditis is related to abnormal immune response to viral infection and mitochondrial damage. After viral infection, the survival was significantly lower and myocardial damage was more severe in parkin knockout (KO) and PINK1 KO mice compared to wild-type (WT) mice. Parkin KO and PINK1 KO showed defective immune cell recruitment and impaired production of antiviral cytokines such as interferon-gamma, allowing increased viral replication. In addition, parkin KO and PINK1 KO mice were more susceptible to CVB3-induced mitochondrial damage than WT mice, resulting in susceptibility to viral-induced cardiac damage. Finally, using publicly available RNA-seq data, we found that pathogenic mutants of the PRKN gene are more common in patients with dilated cardiomyopathy and myocarditis than in controls or the general population. This study will help elucidate the molecular mechanism of CVB3-induced viral myocarditis.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Cardiology, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, South Korea
| | - Byoung Gil Lee
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Soo Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea; Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
14
|
Zhang B, Li H, Kong L, Yang N, Yang S, Qi L, Liu T, Wang X, Qin W. Tandem enrichment of serum exosomes and exosomal RNA with titanium dioxide. J Chromatogr A 2023; 1693:463882. [PMID: 36857982 DOI: 10.1016/j.chroma.2023.463882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Exosomes have great potential as biomarker carriers for disease diagnosis and prognosis. In recent years, exosomal RNA (exoRNA) has become a promising candidate for the early diagnosis and prognosis of cancers, and its pathophysiological roles in various diseases have been revealed. For example, exosome-derived mRNAs, miRNAs, circRNAs, and lncRNAs function as signalling molecules to regulate tumour growth, angiogenesis, invasion, metastasis, and the response to chemotherapy. However, the isolation of exosomes and exoRNA with high quality and purity remains challenging due to the relatively small size of exosomes and the limited amount of RNA in exosomes. In this work, we developed a novel tandem enrichment method to isolate exoRNA from serum based on the specific interaction between titanium dioxide (TiO2) and the phosphate groups on the lipid bilayer of exosomes and of the exoRNA. TiO2-based RNA isolation was first demonstrated and optimized in HeLa cells. A total of 130.9 ± 8.34 µg of RNA was rapidly enriched from approximately 5 × 106 HeLa cells within 10 min. This was a 41.5% higher yield than that using a commercial Ultrapure RNA Kit. TiO2-based tandem enrichment of exoRNA was then performed using human serum, obtaining 64.53±3.41 ng of exoRNA from 500 µL of human serum within 30 min. A total of 2,137,902 reads, including seven types of exoRNAs, were identified from the exosomes. This method is compatible with various downstream RNA processing techniques and does not use toxic or irritating reagents, such as phenol or chloroform, providing a simple, economical, rapid, and safe approach for exoRNA extraction from biological samples.
Collapse
Affiliation(s)
- Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Hang Li
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Tong Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| |
Collapse
|
15
|
Pan L, Yang Y, Chen X, Zhao M, Yao C, Sheng K, Yang Y, Ma G, Du A. Host autophagy limits Toxoplasma gondii proliferation in the absence of IFN-γ by affecting the hijack of Rab11A-positive vesicles. Front Microbiol 2022; 13:1052779. [PMID: 36532461 PMCID: PMC9751017 DOI: 10.3389/fmicb.2022.1052779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/14/2022] [Indexed: 09/11/2024] Open
Abstract
Introduction Autophagy has been recognized as a bona fide immunological process. Evidence has shown that this process in IFN-γ stimulated cells controls Toxoplasma gondii proliferation or eliminates its infection. However, little is known about the effect of T. gondii infection on the host cell autophagy in the absence of IFN-γ. Methods Multiple autophagy detection methods and CRISPR/CAS9 technology were used to study T. gondii-induced autophagy in HeLa and several other mammalian cell lines. Results Here, we report increased LC3 II, autophagosome-like membrane structures, enhanced autophagic flux, and decreased lysosomes in a range of mammalian cell lines without IFN-γ treatment after T. gondii infection. Specifically, disruption of host atg5 (a necessary gene for autophagy) in HeLa cells promoted the intracellular replication of T. gondii, with the transcript level of rab11a increased, compared with that in wild-type cells. Further, after T. gondii infection, the abundance of Rab11A remained stable in wild-type HeLa cells but decreased in atg5 -/- mutant. Disruption of rab11a in the HeLa cells compromised the proliferation of T. gondii, and increased the transcription of gra2 in the parasite. Compared to the T. gondii wild-type RH∆ku80 strain, the ∆gra2 mutant induces enhanced host autophagy in HeLa cells, and results in slower replication of the parasite. Discussion Collectively, these results indicate that host cell autophagy can limit T. gondii proliferation in an IFN-γ independent manner, possibly by affecting the hijack of host Rab11A-positive vesicles by the parasite which involved TgGRA2. The findings provide novel insights into T. gondii infection in host cells and toxoplasmosis research.
Collapse
Affiliation(s)
- Lingtao Pan
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingxiu Zhao
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis, West Indies
| | - Kaiyin Sheng
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Luo L, Gong J, Wang Z, Liu Y, Cao J, Qin J, Zuo R, Zhang H, Wang S, Zhao P, Yang D, Zhang M, Wang Y, Zhang J, Zhou Y, Li C, Ni B, Tian Z, Liu M. Injectable cartilage matrix hydrogel loaded with cartilage endplate stem cells engineered to release exosomes for non-invasive treatment of intervertebral disc degeneration. Bioact Mater 2022; 15:29-43. [PMID: 35386360 PMCID: PMC8940768 DOI: 10.1016/j.bioactmat.2021.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Low back pain, mainly caused by intervertebral disc degeneration (IVDD), is a common health problem; however, current surgical treatments are less than satisfactory. Thus, it is essential to develop novel non-invasive surgical methods for IVDD treatment. Here, we describe a therapeutic strategy to inhibit IVDD by injecting hydrogels modified with the extracellular matrix of costal cartilage (ECM-Gels) that are loaded with cartilage endplate stem cells (CESCs). After loaded with CESCs overexpressing Sphk2 (Lenti-Sphk2-CESCs) and injected near the cartilage endplate (CEP) of rats in vivo, ECM-Gels produced Sphk2-engineered exosomes (Lenti-Sphk2-Exos). These exosomes penetrated the annulus fibrosus (AF) and transported Sphk2 into the nucleus pulposus cells (NPCs). Sphk2 activated the phosphatidylinositol 3-kinase (PI3K)/p-AKT pathway as well as the intracellular autophagy of NPCs, ultimately ameliorating IVDD. This study provides a novel and efficient non-invasive combinational strategy for IVDD treatment using injectable ECM-Gels loaded with CESCs that express Sphk2 with sustained release of functional exosomes.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junfeng Gong
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Corresponding authors. Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaming Cao
- Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
| | - Jinghao Qin
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Zuo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongyu Zhang
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanqiu Wang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changqing Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. , Department of Pathophysiology, College of High Altitude Military Medicine, & Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Military Medical University, Chongqing, 400038, China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Corresponding author. Institute of Immunology, Army Medical University, Chongqing, 400038, China.
| | - MingHan Liu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
17
|
Barbosa M, Santos M, de Sousa N, Duarte-Silva S, Vaz AR, Salgado AJ, Brites D. Intrathecal Injection of the Secretome from ALS Motor Neurons Regulated for miR-124 Expression Prevents Disease Outcomes in SOD1-G93A Mice. Biomedicines 2022; 10:biomedicines10092120. [PMID: 36140218 PMCID: PMC9496075 DOI: 10.3390/biomedicines10092120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with short life expectancy and no effective therapy. We previously identified upregulated miR-124 in NSC-34-motor neurons (MNs) expressing human SOD1-G93A (mSOD1) and established its implication in mSOD1 MN degeneration and glial cell activation. When anti-miR-124-treated mSOD1 MN (preconditioned) secretome was incubated in spinal cord organotypic cultures from symptomatic mSOD1 mice, the dysregulated homeostatic balance was circumvented. To decipher the therapeutic potential of such preconditioned secretome, we intrathecally injected it in mSOD1 mice at the early stage of the disease (12-week-old). Preconditioned secretome prevented motor impairment and was effective in counteracting muscle atrophy, glial reactivity/dysfunction, and the neurodegeneration of the symptomatic mSOD1 mice. Deficits in corticospinal function and gait abnormalities were precluded, and the loss of gastrocnemius muscle fiber area was avoided. At the molecular level, the preconditioned secretome enhanced NeuN mRNA/protein expression levels and the PSD-95/TREM2/IL-10/arginase 1/MBP/PLP genes, thus avoiding the neuronal/glial cell dysregulation that characterizes ALS mice. It also prevented upregulated GFAP/Cx43/S100B/vimentin and inflammatory-associated miRNAs, specifically miR-146a/miR-155/miR-21, which are displayed by symptomatic animals. Collectively, our study highlights the intrathecal administration of the secretome from anti-miR-124-treated mSOD1 MNs as a therapeutic strategy for halting/delaying disease progression in an ALS mouse model.
Collapse
Affiliation(s)
- Marta Barbosa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta Santos
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nídia de Sousa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Sara Duarte-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - António J. Salgado
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
18
|
Fish Hydrolysate Supplementation Prevents Stress-Induced Dysregulation of Hippocampal Proteins Relative to Mitochondrial Metabolism and the Neuronal Network in Mice. Foods 2022; 11:foods11111591. [PMID: 35681342 PMCID: PMC9180483 DOI: 10.3390/foods11111591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past several decades, stress has dramatically increased in occidental societies. The use of natural resources, such as fish hydrolysates, may be an attractive strategy to improve stress management. Our previous study demonstrated the anxiolytic effects of fish hydrolysate supplementation in mice exposed to acute mild stress by limiting stress-induced corticosterone release and modulating the expression of a number of stress-responsive genes. Here, we explore hippocampal protein modulation induced by fish hydrolysate supplementation in mice submitted to acute mild stress, with the aim of better elucidating the underlying mechanisms. Hippocampi from the same cohort of Balb/c mice supplemented with fish hydrolysate (300 mg·kg−1 body weight) or vehicle daily for seven days before being submitted or not to an acute mild stress protocol (four groups, n = 8/group) were subjected to label-free quantitative proteomics analysis combined with gene ontology data mining. Our results show that fish hydrolysate supplementation prevented the observed stress-induced dysregulation of proteins relative to mitochondrial pathways and the neuronal network. These findings suggest that fish hydrolysate represents an innovative strategy to prevent the adverse effects of stress and participate in stress management.
Collapse
|
19
|
Faraldi M, Mangiavini L, Conte C, Banfi G, Napoli N, Lombardi G. A novel methodological approach to simultaneously extract high-quality total RNA and proteins from cortical and trabecular bone. Open Biol 2022; 12:210387. [PMID: 35506206 PMCID: PMC9065961 DOI: 10.1098/rsob.210387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular differences between cortical and trabecular bone, of relevance to understanding the pathophysiological basis of bone diseases, can be determined only through effective isolation methods for RNA and proteins. Here we present a TRIzol-based method, which combines bone pulverization and homogenization to extract simultaneously total RNA and proteins from human cortical and trabecular bone from the same carrot. RNA integrity and purity were determined as the 260/280 nm and 260/230 nm absorbance ratios and the 28S/18S rRNA ratio. Protein integrity and quality were evaluated by Coomassie blue staining. Reverse transcription quantitative polymerase chain reaction and immunoblotting for bone-specific genes and proteins were performed to verify the suitability of the isolated material in downstream applications. The 260/280 nm and 260/230 nm absorbance ratios were, on average, less than or equal to 1.8. Bands on agarose gel were consistent with intact RNA, with mean 28S/18S ratios of 1.68 ± 0.35 and 1.88 ± 0.10 for cortical and trabecular bone, respectively. Band patterns after Coomassie blue staining confirmed protein integrity. Successful gene and protein expression analysis, with relevant differences between the two compartments, highlighted the suitability of the material in downstream applications. The method presented here is appropriate and effective for the study of human bone.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy,Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy,Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
20
|
Shah AH, Govindarajan V, Doucet-O'Hare TT, Rivas S, Ampie L, DeMarino C, Banasavadi-Siddegowda YK, Zhang Y, Johnson KR, Almsned F, Gilbert MR, Heiss JD, Nath A. Differential expression of an endogenous retroviral element [HERV-K(HML-6)] is associated with reduced survival in glioblastoma patients. Sci Rep 2022; 12:6902. [PMID: 35477752 PMCID: PMC9046263 DOI: 10.1038/s41598-022-10914-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Ashish H Shah
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.
| | - Vaidya Govindarajan
- Department of Neurosurgery, University of Miami School of Medicine, Miami, FL, USA
| | - Tara T Doucet-O'Hare
- Center for Cancer Research (CCR), National Institutes of Health, National Cancer Institute (NCI), Neuro-Oncology Branch (NOB), Bethesda, MD, USA
| | - Sarah Rivas
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Leo Ampie
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Catherine DeMarino
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | | | - Yong Zhang
- Bioinformatics Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Fahad Almsned
- Bioinformatics Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Mark R Gilbert
- Center for Cancer Research (CCR), National Institutes of Health, National Cancer Institute (NCI), Neuro-Oncology Branch (NOB), Bethesda, MD, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Avindra Nath
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| |
Collapse
|
21
|
Cho YW, Kwon YH. Regulation of gene expression in the development of colitis-associated colon cancer in mice fed a high-fat diet. Biochem Biophys Res Commun 2022; 592:81-86. [PMID: 35033870 DOI: 10.1016/j.bbrc.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Studies have shown that the higher prevalence of colorectal cancers among patients with inflammatory bowel disease. Thus, proinflammatory stimulus due to a high-fat diet may impose a higher risk on the development of colorectal cancer. In the present study, we applied a transcriptomic approach to characterize the molecular mechanism(s) by which high-fat feeding aggravates colitis-associated colorectal cancer (CAC). A high-fat diet was supplied in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model for 10 weeks and then the severity of CAC and global gene expression in colon were assessed. Although consumption of high-fat diet did not significantly aggravate CAC, it substantially changed gene expression profile in colon. In AOM/DSS treated mice (AD group) and AD mice fed a high-fat diet (AD + HF group), 34 and 54 DEGs were enriched in 'pathways in cancer', respectively. Notably, high-fat diet upregulated the expression of genes associated with spliceosome and ribosome biogenesis, and downregulated the expression of genes associated with lipid catabolism in mice treated with AOM/DSS. In addition, we identified that DEGs between the AD and AD + HF groups, were enriched in 'metabolic pathways', especially amino acid and nucleotide metabolism. Taken together, this study provides the molecular mechanism in understanding the high-fat diet-mediated CAC development.
Collapse
Affiliation(s)
- Young Woo Cho
- Department of Food and Nutrition, Seoul National University, Republic of Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Republic of Korea.
| |
Collapse
|
22
|
Allen JM, Balagtas M, Barajas E, Cano Macip C, Alvarez Zepeda S, Iberkleid I, Duncan EM, Zayas RM. RNAi Screen of RING/U-Box Domain Ubiquitin Ligases Identifies Critical Regulators of Tissue Regeneration in Planarians. Front Cell Dev Biol 2022; 9:803419. [PMID: 35127720 PMCID: PMC8807557 DOI: 10.3389/fcell.2021.803419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Regenerative processes depend on the interpretation of signals to coordinate cell behaviors. The role of ubiquitin-mediated signaling is known to be important in many cellular and biological contexts, but its role in regeneration is not well understood. To investigate how ubiquitylation impacts tissue regeneration in vivo, we are studying planarians that are capable of regenerating after nearly any injury using a population of stem cells. Here we used RNAi to screen RING/U-box E3 ubiquitin ligases that are highly expressed in planarian stem cells and stem cell progeny. RNAi screening identified nine genes with functions in regeneration, including the spliceosomal factor prpf19 and histone modifier rnf2; based on their known roles in developmental processes, we further investigated these two genes. We found that prpf19 was required for animal survival but not for stem cell maintenance, suggesting a role in promoting cell differentiation. Because RNF2 is the catalytic subunit of the Polycomb Repressive Complex 1 (PRC1), we also examined other putative members of this complex (CBX and PHC). We observed a striking phenotype of regional tissue misspecification in cbx and phc RNAi planarians. To identify genes regulated by PRC1, we performed RNA-seq after knocking down rnf2 or phc. Although these proteins are predicted to function in the same complex, we found that the set of genes differentially expressed in rnf2 versus phc RNAi were largely non-overlapping. Using in situ hybridization, we showed that rnf2 regulates gene expression levels within a tissue type, whereas phc is necessary for the spatial restriction of gene expression, findings consistent with their respective in vivo phenotypes. This work not only uncovered roles for RING/U-box E3 ligases in stem cell regulation and regeneration, but also identified differential gene targets for two putative PRC1 factors required for maintaining cell-type-specific gene expression in planarians.
Collapse
Affiliation(s)
- John M Allen
- Department of Biology, San Diego State University, San Diego, CA, United States
- Deparment of Biology, University of Kentucky, Lexington, KY, United States
| | - Madison Balagtas
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth Barajas
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Carolina Cano Macip
- Department of Biology, San Diego State University, San Diego, CA, United States
| | | | - Ionit Iberkleid
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth M Duncan
- Deparment of Biology, University of Kentucky, Lexington, KY, United States
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
23
|
Fernandes A, Caldeira C, Cunha C, Ferreiro E, Vaz AR, Brites D. Differences in Immune-Related Genes Underlie Temporal and Regional Pathological Progression in 3xTg-AD Mice. Cells 2022; 11:cells11010137. [PMID: 35011699 PMCID: PMC8750089 DOI: 10.3390/cells11010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| | - Cláudia Caldeira
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Carolina Cunha
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Bruno Silva-Santos Lab, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elisabete Ferreiro
- MitoXT-Mitochondrial Toxicologu and Experimental Therapeutics Laboratory, CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-516 Coimbra, Portugal;
- III-Institute for Interdisciplinary Research (IIIUC), Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - Ana Rita Vaz
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| |
Collapse
|
24
|
Chataigner M, Lucas C, Di Miceli M, Pallet V, Laye S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary Fish Hydrolysate Improves Memory Performance Through Microglial Signature Remodeling During Aging. Front Nutr 2021; 8:750292. [PMID: 34888336 PMCID: PMC8650686 DOI: 10.3389/fnut.2021.750292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Brain aging is characterized by a chronic low-grade inflammation, which significantly impairs cognitive function. Microglial cells, the immunocompetent cells of the brain, present a different phenotype, switching from a homeostatic signature (M0) to a more reactive phenotype called “MGnD” (microglial neurodegenerative phenotype), leading to a high production of pro-inflammatory cytokines. Furthermore, microglial cells can be activated by age-induced gut dysbiosis through the vagus nerve or the modulation of the peripheral immune system. Nutrients, in particular n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides, display powerful immunomodulatory properties, and can thus prevent age-related cognitive decline. The objective of this study was to investigate the effects of n-3 LC-PUFAs and low molecular weight peptides contained in a marine by-product-derived hydrolysate on microglial phenotypes and intestinal permeability and their consequences on cognition in mice. We demonstrated that the hydrolysate supplementation for 8 weeks prevented short- and long-term memory decline during aging. These observations were linked to the modulation of microglial signature. Indeed, the hydrolysate supplementation promoted homeostatic microglial phenotype by increasing TGF-β1 expression and stimulated phagocytosis by increasing Clec7a expression. Moreover, the hydrolysate supplementation promoted anti-inflammatory intestinal pathway and tended to prevent intestinal permeability alteration occurring during aging. Therefore, the fish hydrolysate appears as an interesting candidate to prevent cognitive decline during aging.
Collapse
Affiliation(s)
- Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Abyss Ingredients, Caudan, France
| | - Céline Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Mathieu Di Miceli
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Sophie Laye
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | | | - Anne-Laure Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| |
Collapse
|
25
|
Chenodeoxycholic Acid Has Non-Thermogenic, Mitodynamic Anti-Obesity Effects in an In Vitro CRISPR/Cas9 Model of Bile Acid Receptor TGR5 Knockdown. Int J Mol Sci 2021; 22:ijms222111738. [PMID: 34769169 PMCID: PMC8584144 DOI: 10.3390/ijms222111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BA) have shown promising effects in animal models of obesity. However, the said effects are thought to rely on a thermogenic effect, which is questionably present in humans. A previous work has shown that the BA chenodeoxycholic acid (CDCA) can revert obesity and accelerate metabolism in animal and cell culture models. Thus, the aim of this study was to understand if this obesity reduction is indeed thermogenically-dependent. A CRISPR/Cas9 model of TGR5 (BA receptor) knockdown in 3T3-L1 adipocytes was developed to diminish thermogenic effects. Various parameters were assessed, including mitochondrial bioenergetics by Seahorse flux analysis, oxidative stress and membrane potential by fluorometry, intermediary metabolism by NMR, protein content assessment by Western Blot, gene expression by qPCR, and confocal microscopy evaluation of mitophagy. CDCA was still capable, for the most part, of reversing the harmful effects of cellular obesity, elevating mitophagy and leading to the reduction of harmed mitochondria within the cells, boosting mitochondrial activity, and thus energy consumption. In summary, CDCA has a non-thermogenic, obesity reducing capacity that hinges on a healthy mitochondrial population, explaining at least some of these effects and opening avenues of human treatment for metabolic diseases.
Collapse
|
26
|
Isolation of Mitochondria from Liver and Extraction of Total RNA and Protein: Analyses of miRNA and Protein Expression. Methods Mol Biol 2021; 2310:1-15. [PMID: 34095994 DOI: 10.1007/978-1-0716-1433-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Several studies have indicated the presence of microRNAs (miRNAs) within mitochondria although the origin, as well as the biological function, of these mitochondrially located miRNAs is largely unknown. The identification and significance of this subcellular localization is gaining increasing relevance to the pathogenesis of certain disease states. Here, we describe the isolation of highly purified mitochondria from rat liver by differential centrifugation, followed by RNAse A treatment to eliminate contaminating RNA. The coupled extraction of total RNA and protein is a more efficient design for allowing the downstream evaluation of miRNA and protein expression in mitochondria.
Collapse
|
27
|
Lin Y, Wang J, Yang K, Fan L, Wang Z, Yin Y. Regulation of conidiation, polarity growth, and pathogenicity by MrSte12 transcription factor in entomopathogenic fungus, Metarhizium rileyi. Fungal Genet Biol 2021; 155:103612. [PMID: 34303798 DOI: 10.1016/j.fgb.2021.103612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metarhizium rileyi, a well-known filamentous biocontrol fungus, is the main pathogen of numerous field pests, especially noctuid pests. To explore the potential factors involved in the fungal pathogenicity, MrSte12, an important and conserved functional transcription factor in mitogen-activated protein kinase pathway was carried out by functional analysis. Homologous recombination was used to disrupt the MrSte12 gene in M. rileyi. The deletant fungal strain exhibited malformed hyphae and impaired conidiogenesis, and conidia could not be collected from △MrSte12 in vitro towards SMAY medium. Although conidia could be collected again supplemented with KCl within SMAY medium, the conidial germination, growth and stress tolerance were much weaker compared with that in WT. Additionally, △MrSte12 showed a dramatic reduction in virulence in intra-hemolymph injections and no pathogenicity in topical inoculations against noctuid pests, which is due to the failure of appressorium formation. Moreover, the content of chitin and β-1, 3-glucan in cell wall significantly reduced in mutant conidia. These results indicate that the MrSte12 gene markedly contributes to invasive growth and conidiation, as well as the major pathogenicity in M. rileyi.
Collapse
Affiliation(s)
- Yunlong Lin
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing 400030, People's Republic of China
| | - Jing Wang
- Instituty of Tobacco Scientific and Technology of Chongqing, Chongqing, China
| | - Kai Yang
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing 400030, People's Republic of China
| | - Liqin Fan
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing 400030, People's Republic of China.
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing 400030, People's Republic of China.
| |
Collapse
|
28
|
Jaswal S, Anand V, Ali SA, Jena MK, Kumar S, Kaushik JK, Mohanty AK. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J 2021; 35:e21621. [PMID: 33977573 DOI: 10.1096/fj.202002476rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
The lactating mammary gland harbours numerous matured alveoli with their lumen surrounded by differentiated mammary epithelial cells (MECs), which are exclusively involved in milk synthesis and secretion. Buffalo (Bubalus bubalis) is the second major milk-producing animal, and its physiology is different from cattle. The complete protein machinery involved in MECs differentiation is still not defined in ruminants, in particular, buffalo. Therefore, we have studied the differential expression of regulated proteins in the in vitro grown buffalo MECs (BuMECs) at different time points (on 3, 6, 12, and 15 days) of their differentiation in the presence of lactogenic hormones. TMT-based MS analysis identified 4,934 proteins; of them, 681 were differentially expressed proteins (DEPs). The principal component analysis suggested a highly heterogeneous expression of DEPs at the four-time points of hormone treatment, with most of them (307) attained the highest expression on 12 days. Bioinformatics analysis revealed the association of DEPs with 24 KEGG pathways. We observed few new proteins, namely ABCA13, IVL, VPS37, CZIB, RFX7, Rab5, TTLL12, SMEK1, GDI2, and TMEM131 in BuMECs. The function of one of the highly upregulated proteins, namely involucrin in the differentiation of BuMECs was confirmed based on biochemical inhibition assay. The results further conclude that the proteins with higher abundance can be considered as the potential biomarkers for differentiation, and they may have a significant association with the lactation process in buffalo too. The proteome dataset obtained can be used to understand the species-specific variations among other lactating animals.
Collapse
Affiliation(s)
- Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Vijay Anand
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute (TANUVAS), Orathanadu, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Manoj K Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Jai K Kaushik
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| |
Collapse
|
29
|
Gopal V, Nilsson-Payant BE, French H, Siegers JY, Yung WS, Hardwick M, te Velthuis AJW. Zinc-Embedded Polyamide Fabrics Inactivate SARS-CoV-2 and Influenza A Virus. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30317-30325. [PMID: 34180223 PMCID: PMC8262172 DOI: 10.1021/acsami.1c04412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 05/18/2023]
Abstract
Influenza A viruses (IAV) and SARS-CoV-2 can spread via liquid droplets and aerosols. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of these viruses. However, IAV and SARS-CoV-2 are stable for hours on various materials, which makes frequent and correct disposal of these PPE important. Metal ions embedded into PPE may inactivate respiratory viruses, but confounding factors such as adsorption of viruses make measuring and optimizing the inactivation characteristics difficult. Here, we used polyamide 6.6 (PA66) fibers containing embedded zinc ions and systematically investigated if these fibers can adsorb and inactivate SARS-CoV-2 and IAV H1N1 when woven into a fabric. We found that our PA66-based fabric decreased the IAV H1N1 and SARS-CoV-2 titer by approximately 100-fold. Moreover, we found that the zinc content and the virus inactivating property of the fabric remained stable over 50 standardized washes. Overall, these results provide insights into the development of reusable PPE that offer protection against RNA virus spread.
Collapse
Affiliation(s)
- Vikram Gopal
- Ascend
Performance Materials, 1010 Travis Street, Suite 900, Houston, Texas 77002, United States
| | - Benjamin E. Nilsson-Payant
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Hollie French
- Division
of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, U.K.
| | - Jurre Y. Siegers
- Department
of Viroscience, Erasmus University Medical
Centre, Rotterdam 3015 GD, the Netherlands
| | - Wai-shing Yung
- Ascend
Performance Materials, 1010 Travis Street, Suite 900, Houston, Texas 77002, United States
| | - Matthew Hardwick
- ResInnova
Laboratories, 8807 Colesville
Rd, 3rd Floor, Silver Spring, Maryland 20910, United
States
| | - Aartjan J. W. te Velthuis
- Division
of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, U.K.
| |
Collapse
|
30
|
Cetinkaya-Fisgin A, Zhu J, Luan X, Kim JS, Oh B, Brayton C, Alt J, Rais R, Slusher B, Höke A. Development of EQ-6, a Novel Analogue of Ethoxyquin to Prevent Chemotherapy-Induced Peripheral Neuropathy. Neurotherapeutics 2021; 18:2061-2072. [PMID: 34291431 PMCID: PMC8608988 DOI: 10.1007/s13311-021-01093-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and often dose-limiting side effect of many cancer drugs. Because the onset of neuronal injury is known, it is an ideal clinical target to develop neuroprotective strategies. Several years ago, we had identified ethoxyquin as a potent neuroprotective drug against CIPN through a phenotypic drug screening and demonstrated a novel mechanism of action, inhibition of chaperone domain of heat shock protein 90. To improve its drug-like properties we synthesized a novel analogue of ethoxyquin and named it EQ-6 (6-(5-amino)-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline hydrochloride). Here we show that EQ-6 prevents axon degeneration in primary dorsal root ganglion neurons in vitro, and this axon protection is associated with preserved levels of nicotinamide adenine dinucleotide, a key metabolite in programmed axon degeneration pathway. We also found that EQ-6 prevents loss of epidermal nerve fibers in a mouse model of CIPN induced by paclitaxel and that doses of EQ-6 that provide neuroprotection are associated with reduced tissue levels of SF3B2, a potential biomarker of target engagement. Furthermore, we show that EQ-6 is safe in vitro and in mice with daily administration for a month. We found that oral bioavailability is about 10%, partly due to rapid metabolism in liver, but EQ-6 appears to be concentrated in neural tissues. Given these findings, we propose EQ-6 as a first-in-class drug to prevent CIPN.
Collapse
Affiliation(s)
- Aysel Cetinkaya-Fisgin
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Jing Zhu
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinghua Luan
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
- Current address: Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun-Soon Kim
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
- Current address: Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Byoungchol Oh
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Cory Brayton
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Jesse Alt
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Rana Rais
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Barbara Slusher
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA
| | - Ahmet Höke
- School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Suite 248, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Zhou G, Wang T, Zha XM. RNA-Seq analysis of knocking out the neuroprotective proton-sensitive GPR68 on basal and acute ischemia-induced transcriptome changes and signaling in mouse brain. FASEB J 2021; 35:e21461. [PMID: 33724568 PMCID: PMC7970445 DOI: 10.1096/fj.202002511r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
32
|
Lovat F, Gasparini P, Nigita G, Larkin K, Byrd JC, Minden MD, Andreeff M, Carter BZ, Croce CM. Loss of expression of both miR-15/16 loci in CML transition to blast crisis. Proc Natl Acad Sci U S A 2021; 118:e2101566118. [PMID: 33836616 PMCID: PMC7980455 DOI: 10.1073/pnas.2101566118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite advances that have improved the treatment of chronic myeloid leukemia (CML) patients in chronic phase, the mechanisms of the transition from chronic phase CML to blast crisis (BC) are not fully understood. Considering the key role of miR-15/16 loci in the pathogenesis of myeloid and lymphocytic leukemia, here we aimed to correlate the expression of miR-15a/16 and miR-15b/16 to progression of CML from chronic phase to BC. We analyzed the expression of the two miR-15/16 clusters in 17 CML patients in chronic phase and 22 patients in BC and in 11 paired chronic phase and BC CML patients. BC CMLs show a significant reduction of the expression of miR-15a/-15b/16 compared to CMLs in chronic phase. Moreover, BC CMLs showed an overexpression of miR-15/16 direct targets such as Bmi-1, ROR1, and Bcl-2 compared to CMLs in chronic phase. This study highlights the loss of both miR-15/16 clusters as a potential oncogenic driver in the transition from chronic phase to BC in CML patients.
Collapse
Affiliation(s)
- Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, 2308 NSW, Australia
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Karilyn Larkin
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
Fish Hydrolysate Supplementation Containing n-3 Long Chain Polyunsaturated Fatty Acids and Peptides Prevents LPS-Induced Neuroinflammation. Nutrients 2021; 13:nu13030824. [PMID: 33801489 PMCID: PMC7998148 DOI: 10.3390/nu13030824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation constitutes a normal part of the brain immune response orchestrated by microglial cells. However, a sustained and uncontrolled production of proinflammatory factors together with microglial activation contribute to the onset of a chronic low-grade inflammation, leading to neuronal damage and cognitive as well as behavioral impairments. Hence, limiting brain inflammatory response and improving the resolution of inflammation could be particularly of interest to prevent these alterations. Dietary n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides are good candidates because of their immunomodulatory and proresolutive properties. These compounds are present in a fish hydrolysate derived from marine-derived byproducts. In this study, we compared the effect of an 18-day supplementation with this fish hydrolysate to a supplementation with docosahexaenoic acid (DHA) on lipopolysaccharide (LPS)-induced inflammation in mice. In response to peripherally injected LPS, the fish hydrolysate supplementation decreased the hippocampal mRNA expression of the proinflammatory cytokines IL-6 (p < 0.001), IL-1β (p = 0.0008) and TNF-α (p < 0.0001), whereas the DHA supplementation reduced only the expression of IL-6 (p = 0.004). This decline in proinflammatory cytokine expressions was associated with an increase in the protein expression of IκB (p = 0.014 and p = 0.0054 as compared to the DHA supplementation and control groups, respectively) and to a modulation of microglial activation markers in the hippocampus. The beneficial effects of the fish hydrolysate could be due in part to the switch of the hippocampal oxylipin profile towards a more anti-inflammatory profile as compared to the DHA supplementation. Thus, the valorization of fish byproducts seems very attractive to prevent and counteract neuroinflammation.
Collapse
|
34
|
Gopal V, Nilsson-Payant BE, French H, Siegers JY, Yung WS, Hardwick M, Te Velthuis AJW. Zinc-embedded fabrics inactivate SARS-CoV-2 and influenza A virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33173872 PMCID: PMC7654868 DOI: 10.1101/2020.11.02.365833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Infections with respiratory viruses can spread via liquid droplets and aerosols, and cause diseases such as influenza and COVID-19. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of respiratory droplets containing these viruses. However, influenza A viruses and coronaviruses are stable for hours on various materials, which makes frequent and correct disposal of these PPE important. Metal ions embedded into PPE may inactivate respiratory viruses, but confounding factors such as absorption of viruses make measuring and optimizing the inactivation characteristics difficult. Here we used polyamide 6.6 (PA66) fibers that had zinc ions embedded during the polymerisation process and systematically investigated if these fibers can absorb and inactivate pandemic SARS-CoV-2 and influenza A virus H1N1. We find that these viruses are readily absorbed by PA66 fabrics and inactivated by zinc ions embedded into this fabric. The inactivation rate (pfu·gram−1·min−1) exceeds the number of active virus particles expelled by a cough and supports a wide range of viral loads. Moreover, we found that the zinc content and the virus inactivating property of the fabric remain stable over 50 standardized washes. Overall, these results provide new insight into the development of “pathogen-free” PPE and better protection against RNA virus spread.
Collapse
Affiliation(s)
- Vikram Gopal
- Ascend Performance Materials, 1010 Travis Street, Suite 900, Houston, TX 77002, USA
| | | | - Hollie French
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 2QQ, United Kingdom
| | - Jurre Y Siegers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Wai-Shing Yung
- Ascend Performance Materials, 1010 Travis Street, Suite 900, Houston, TX 77002, USA
| | - Matthew Hardwick
- ResInnova Laboratories, 8807 Colesville Rd, 3rd Floor, Silver Spring, MD 20910, USA
| | - Aartjan J W Te Velthuis
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, CB2 2QQ, United Kingdom
| |
Collapse
|
35
|
High-purity DNA extraction from animal tissue using picking in the TRIzol-based method. Biotechniques 2020; 70:186-190. [PMID: 33337248 DOI: 10.2144/btn-2020-0142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TRIzol is used for the extraction of RNA, DNA and proteins from tissues or cells. Here, we present a simple picking method to extract DNA from tissues using TRIzol. Spectrophotometric analysis showed that the 260/280 and 260/230 nm optical density ratio of the picking method's DNA is ideal and better than that obtained by the classic TRIzol method. Gel electrophoresis showed that there was no RNA contamination, and the DNA had not degraded. DNA extracted by the picking method had the same performance in restriction enzyme digestion and quantitative PCR as that obtained by the traditional method. Viral DNA in the infected tissue was also obtained. This modified method facilitates various molecular biology assays.
Collapse
|
36
|
Abstract
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate used for the extraction of RNA, DNA and proteins from tissues or cells. However, few studies have described its application to DNA extraction due to its time-consuming procedure. We present a TRIzol-modified method of extracting DNA from tissues using the TRIzol reagent and a silica column, which requires only one-third of the time required for the classic extraction procedure. Spectrophotometric analysis showed that the 260/280 and 260/230 nm optical density ratio of the DNA extracted using the TRIzol-modified method is ideal and equal to that obtained by the classic method and commercial DNAiso methods. The DNA extracted by the TRIzol-modified method had the same performance in a restriction enzyme digestion and quantitative PCR as that extracted using the classic method. Using the TRIzol-modified method saves time, simplifies the DNA extraction procedure, and facilitates various molecular biology assays.
Collapse
Affiliation(s)
- Bo-Han Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University
| |
Collapse
|
37
|
Ribeiro MF, Santos AA, Afonso MB, Rodrigues PM, Sá Santos S, Castro RE, Rodrigues CMP, Solá S. Diet-dependent gut microbiota impacts on adult neurogenesis through mitochondrial stress modulation. Brain Commun 2020; 2:fcaa165. [PMID: 33426525 PMCID: PMC7780462 DOI: 10.1093/braincomms/fcaa165] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
The influence of dietary factors on brain health and mental function is becoming increasingly recognized. Similarly, mounting evidence supports a role for gut microbiota in modulating central nervous system function and behaviour. Still, the molecular mechanisms responsible for the impact of diet and associated microbiome in adult neurodegeneration are still largely unclear. In this study, we aimed to investigate whether and how changes in diet-associated microbiome and its metabolites impact on adult neurogenesis. Mice were fed a high-fat, choline-deficient diet, developing obesity and several features of the metabolic syndrome, including non-alcoholic steatohepatitis. Strikingly, our results showed, for the first time, that animals fed with this specific diet display premature increased neurogenesis, possibly exhausting the available neural stem cell pool for long-term neurogenesis processes. The high-fat, choline-deficient diet further induced neuroinflammation, oxidative stress, synaptic loss and cell death in different regions of the brain. Notably, this diet-favoured gut dysbiosis in the small intestine and cecum, up-regulating metabolic pathways of short-chain fatty acids, such as propionate and butyrate and significantly increasing propionate levels in the liver. By dissecting the effect of these two specific short-chain fatty acids in vitro, we were able to show that propionate and butyrate enhance mitochondrial biogenesis and promote early neurogenic differentiation of neural stem cells through reactive oxygen species- and extracellular signal-regulated kinases 1/2-dependent mechanism. More importantly, neurogenic niches of high-fat, choline-deficient-fed mice showed increased expression of mitochondrial biogenesis markers, and decreased mitochondrial reactive oxygen species scavengers, corroborating the involvement of this mitochondrial stress-dependent pathway in mediating changes of adult neurogenesis by diet. Altogether, our results highlight a mitochondria-dependent pathway as a novel mediator of the gut microbiota–brain axis upon dietary influences.
Collapse
Affiliation(s)
- Maria F Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André A Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
38
|
Extraction of Small RNAs by Titanium Dioxide Nanofibers. Methods Mol Biol 2020. [PMID: 32797454 DOI: 10.1007/978-1-0716-0743-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
MicroRNAs (miRNAs) are small RNAs, that bind to mRNA targets and regulate their translation. Functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ either silica columns or TRIzol reagent, but these approaches afford low recovery for small RNAs, possibly due to their short strand lengths. Here, we describe the fabrication of titanium dioxide nanofibers and the optimal extraction conditions to improve miRNA recovery from biological buffers, cell lysate, and serum.
Collapse
|
39
|
Abstract
Extraction of DNA, RNA and protein from the same sample would allow for direct comparison of genomic, transcriptomic and proteomic information. Commercially available kits exhibit poor protein yield and the TRIzol® reagent produces a protein pellet that is extremely difficult to solubilize. In response to these limitations, this study presents an optimized method for the extraction of protein from the organic phase of TRIzol that allows for higher yield recovery of skeletal muscle protein compared with direct homogenization in a common protein lysis buffer. The presented method is inexpensive, simple and fast, requires no additional treatment of the protein pellet for dissolution, and is compatible with downstream western blot applications. Scientists analyze DNA, RNA and protein using separate kits and techniques that do not allow for effective analysis of all three macromolecules from the same sample. Simultaneous extraction kits and techniques are limited by poor protein yield after nucleic acid isolation. We present a fast, effective, inexpensive and high-yield method of recovering protein (including large proteins such as titin) from tissue using the TRIzol reagent after RNA and DNA recovery. The method of high-yield protein extraction from TRIzol after RNA and DNA isolation involves replacing chloroform with bromochloropropane. Instead of producing a tightly packed protein pellet using isopropanol, the protein in the organic phase is precipitated using ethanol and water. Complete dissolution of the resulting protein pellet is achieved using a sodium dodecyl sulfate-urea buffer that allows solubilization of large protein species.
Collapse
|
40
|
Gomes C, Sequeira C, Barbosa M, Cunha C, Vaz AR, Brites D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp Cell Res 2020; 395:112209. [PMID: 32739211 DOI: 10.1016/j.yexcr.2020.112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Astrocytes are major contributors of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). We investigated whether regional and cell maturation differences influence ALS astrocyte malfunction. Spinal and cortical astrocytes from SOD1G93A (mSOD1) 7-day-old mice were cultured for 5 and 13 days in vitro (DIV). Astrocyte aberrancies predominated in 13DIV cells with region specificity. 13DIV cortical mSOD1 astrocytes showed early morphological changes and a predominant reactive and inflammatory phenotype, while repressed proteins and genes were found in spinal cells. Inflammatory-associated miRNAs, e.g. miR-155/miR-21/miR-146a, were downregulated in the first and upregulated in the later ones. Interestingly, depleted miR-155/miR-21/miR-146a in small extracellular vesicles (sEVs/exosomes) was a common pathological feature. Cortical mSOD1 astrocytes induced late apoptosis and kinesin-1 downregulation in mSOD1 NSC-34 MNs, whereas spinal cells upregulated dynein, while decreased nNOS and synaptic-related genes. Both regional-distinct mSOD1 astrocytes enhanced iNOS gene expression in mSOD1 MNs. We provide information on the potential contribution of astrocytes to ALS bulbar-vs. spinal-onset pathology, local influence on neuronal dysfunction and their shared miRNA-depleted exosome trafficking. These causal and common features may have potential therapeutic implications in ALS. Future studies should clarify if astrocyte-derived sEVs are active players in ALS-related neuroinflammation and glial activation.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Marta Barbosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
41
|
Moshkovskii SA, Lobas AA, Gorshkov MV. Single Cell Proteogenomics - Immediate Prospects. BIOCHEMISTRY (MOSCOW) 2020; 85:140-146. [PMID: 32093591 DOI: 10.1134/s0006297920020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent technical advances in genomic technology have led to the explosive growth of transcriptome-wide studies at the level of single cells. The review describes the first steps of the single cell proteomics that has originated soon after development of transcriptomics methods. The first studies on the shotgun proteomics of single cells that used liquid chromatography/mass spectrometry have been already published. In these works, the cells were separated by the methods used in transcriptomics studies (e.g., cell sorting) and analyzed by modified mass spectrometry with tandem mass tags. The new proteogenomics approach involving integration of single cell transcriptomics and proteomics data will provide better understanding of the mechanisms of cell interactions in normal development and disease.
Collapse
Affiliation(s)
- S A Moshkovskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - A A Lobas
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M V Gorshkov
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
42
|
Meng Y, Liu Y, Dakou E, Gutierrez GJ, Leyns L. Polycomb group RING finger protein 5 influences several developmental signaling pathways during the in vitro differentiation of mouse embryonic stem cells. Dev Growth Differ 2020; 62:232-242. [PMID: 32130724 DOI: 10.1111/dgd.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
Polycomb group (PcG) RING finger protein 5 (PCGF5) is a core component of the so-called Polycomb repressive complex 1.5 (PRC1.5), which is involved in epigenetic transcriptional repression. To explore the developmental function of Pcgf5, we generated Pcgf5 knockout (Pcgf5-/- ) mouse embryonic stem cell (mESC) lines with the help of CRISPR/Cas9 technology. We subjected the Pcgf5-/- and wild-type (WT) mESCs to a differentiation protocol toward mesodermal-cardiac cell types as aggregated embryoid bodies (EBs) and we found that knockout of Pcgf5 delayed the generation of the three germ layers, especially the ectoderm. Further, disruption of Pcgf5 impacted the epithelial-mesenchymal transition during EB morphogenesis and differentially affected the gene expression of essential developmental signaling pathways such as Nodal and Wnt. Finally, we also unveiled that loss of Pcgf5 induced the repression of genes involved in the Notch pathway, which may explain the enhancement of cardiomyocyte maturation and the dampening of ectodermal-neural differentiation observed in the Pcgf5-/- EBs.
Collapse
Affiliation(s)
- Ying Meng
- Laboratory of Cell Genetics (CEGE), Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yang Liu
- Laboratory of Cell Genetics (CEGE), Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Eleni Dakou
- Laboratory of Cell Genetics (CEGE), Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gustavo J Gutierrez
- Laboratory of Pathophysiological Cell Signaling (PACS), Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Luc Leyns
- Laboratory of Cell Genetics (CEGE), Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
43
|
Ghadge GD, Sonobe Y, Camarena A, Drigotas C, Rigo F, Ling KK, Roos RP. Knockdown of GADD34 in neonatal mutant SOD1 mice ameliorates ALS. Neurobiol Dis 2020; 136:104702. [PMID: 31837419 DOI: 10.1016/j.nbd.2019.104702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 11/19/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase (SOD1) cause ~20% of familial ALS (FALS), which comprises 10% of total ALS cases. In mutant SOD1- (mtSOD1-) induced ALS, misfolded aggregates of SOD1 lead to activation of the unfolded protein response/integrated stress response (UPR/ISR). Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a kinase that phosphorylates eukaryotic translation initiator factor 2α (p-eIF2α), coordinates the response by causing a global suppression of protein synthesis. Growth arrest and DNA damage 34 (GADD34) dephosphorylates p-eIF2α, allowing protein synthesis to return to normal. If the UPR/ISR is overwhelmed by the amount of misfolded protein, CCAAT/enhancer-binding homologous protein (CHOP) is activated leading to apoptosis. In the current study we investigated the effect of knocking down CHOP and GADD34 on disease of G93A and G85R mtSOD1 mice. Although a CHOP antisense oligonucleotide had no effect on survival, an intravenous injection of GADD34 shRNA encoded in adeno-associated virus 9 (AAV9) into neonatal G93A as well as neonatal G85R mtSOD1 mice led to a significantly increased survival. G85R mtSOD1 mice had a reduction in SOD1 aggregates/load, astrocytosis, and microgliosis. In contrast, there was no change in disease phenotype when GADD34 shRNA was delivered to older G93A mtSOD1 mice. Our current study shows that GADD34 shRNA is effective in ameliorating disease when administered to neonatal mtSOD1 mice. Targeting the UPR/ISR may be beneficial in mtSOD1-induced ALS as well as other neurodegenerative diseases in which misfolded proteins and ER stress have been implicated.
Collapse
Affiliation(s)
- Ghanashyam D Ghadge
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Yoshifumi Sonobe
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Adrian Camarena
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Claire Drigotas
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 90201, United States of America
| | - Karen K Ling
- Ionis Pharmaceuticals, Carlsbad, CA 90201, United States of America
| | - Raymond P Roos
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, United States of America.
| |
Collapse
|
44
|
Khatib T, Chisholm DR, Whiting A, Platt B, McCaffery P. Decay in Retinoic Acid Signaling in Varied Models of Alzheimer's Disease and In-Vitro Test of Novel Retinoic Acid Receptor Ligands (RAR-Ms) to Regulate Protective Genes. J Alzheimers Dis 2020; 73:935-954. [PMID: 31884477 PMCID: PMC7081102 DOI: 10.3233/jad-190931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Retinoic acid has been previously proposed in the treatment of Alzheimer's disease (AD). Here, five transgenic mouse models expressing AD and frontotemporal dementia risk genes (i.e., PLB2APP, PLB2TAU, PLB1Double, PLB1Triple, and PLB4) were used to investigate if consistent alterations exist in multiple elements of the retinoic acid signaling pathway in these models. Many steps of the retinoic acid signaling pathway including binding proteins and metabolic enzymes decline, while the previously reported increase in RBP4 was only consistent at late (6 months) but not early (3 month) ages. The retinoic acid receptors were exceptional in their consistent decline in mRNA and protein with transcript decline of retinoic acid receptors β and γ by 3 months, before significant pathology, suggesting involvement in early stages of disease. Decline in RBP1 transcript may also be an early but not late marker of disease. The decline in the retinoic acid signaling system may therefore be a therapeutic target for AD and frontotemporal dementia. Thus, novel stable retinoic acid receptor modulators (RAR-Ms) activating multiple genomic and non-genomic pathways were probed for therapeutic control of gene expression in rat primary hippocampal and cortical cultures. RAR-Ms promoted the non-amyloidogenic pathway, repressed lipopolysaccharide induced inflammatory genes and induced genes with neurotrophic action. RAR-Ms had diverse effects on gene expression allowing particular RAR-Ms to be selected for maximal therapeutic effect. Overall the results demonstrated the early decline of retinoic acid signaling in AD and frontotemporal dementia models and the activity of stable and potent alternatives to retinoic acid as potential therapeutics.
Collapse
Affiliation(s)
- Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - David R. Chisholm
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
45
|
Zhang C, Sun G, Senapati S, Chang HC. A bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput nucleic acid extraction and purification. LAB ON A CHIP 2019; 19:3853-3861. [PMID: 31621762 PMCID: PMC6982425 DOI: 10.1039/c9lc00818g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput (20 min) extraction of nucleic acids from physiological samples. The design uses a membrane ionic transistor to sustain low-ionic strength in a localized region at a junction, such that the resulting high field can selectively isolate high-charge density nucleic acids from the main flow channel and insert them into a standardized buffer in a side channel that bifurcates from the junction. The high local electric field and the bifurcated field-flow design facilitate concentration reduction of both divalent cation (Ca2+) and molecular PCR inhibitors by more than two orders of magnitude, even with high-throughput continuous loading. The unique design with a large (>20 mM mm-1) on-chip ionic-strength gradient allows miniaturization into a high-throughput field-flow fractionation chip that can be integrated with upstream lysing and downstream PCR/sensor modules for various nucleic acid detection/quantification applications. A concentration-independent 85% yield for extraction and an overall post-PCR yield exceeding 60% are demonstrated for a 111 bp dsDNA in 10 μL of human plasma, compared to no amplification with the raw sample. A net yield four times larger than a commercial extraction kit is demonstrated for miR-39 in human plasma.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
46
|
Wu S, Tan H, Hao X, Xie Z, Wang X, Li D, Tian L. Profiling miRNA expression in photo-thermo-sensitive male genic sterility line (PTGMS) PA64S under high and low temperature. PLANT SIGNALING & BEHAVIOR 2019; 14:1679015. [PMID: 31610741 PMCID: PMC6866692 DOI: 10.1080/15592324.2019.1679015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Peiai64S (PA64S) is a photo-thermo-sensitive genic male sterile line (PTGMS), with wide application in hybrid seed production in rice (Oryza sativa L.). Micro-RNAs are 21-24 nt, endogenously expressed small RNAs that have been characterized in various developmental stages of rice, but none have been studied with respect to the regulation of TGMS in rice. Here, we employed high-throughput sequencing to identify expression profiles of miRNAs in the anthers of PA64S at high (PA64S-H) and low temperature (PA64S-L). Two small RNA libraries from PA64S-H and PA64-L anthers were sequenced, and 263 known and 321 novel candidate miRNAs were identified. Based on the number of sequencing reads, a total of 133 known miRNAs were found to be differentially expressed between PA64S-H and PA64S-L. Target prediction showed that the target genes encode MYB and TCP transcription factors, and bHLH proteins. These target genes are related to pollen development and male sterility, suggesting that miRNA/targets may play roles in regulating TGMS in rice. Further, starch and sucrose metabolism pathways, sphingolipid metabolism, arginine and proline metabolism, and plant hormone signal transduction pathways were enriched by KEGG pathway annotation. These findings contribute to our understanding of the role of miRNAs during anther development and TGMS occurrence in rice.
Collapse
Affiliation(s)
- Sha Wu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Hang Tan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Xiaohui Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
47
|
Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T. Calcium signaling and salt tolerance are diversely entwined in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1665455. [PMID: 31564206 PMCID: PMC6804723 DOI: 10.1080/15592324.2019.1665455] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/11/2023]
Abstract
In plants dehydration imposed by salinity can invoke physical changes at the interface of the plasma membrane and cell wall. Changes in hydrostatic pressure activate ion channels and cause depolarization of the plasma membrane due to disturbance in ion transport. During the initial phases of salinity stress, the relatively high osmotic potential of the rhizosphere enforces the plant to use a diverse spectrum of strategies to optimize water and nutrient uptake. Signals of salt stress are recognized by specific root receptors that activate an osmosensing network. Plant response to hyperosmotic tension is closely linked to the calcium (Ca2+) channels and interacting proteins such as calmodulin. A rapid rise in cytosolic Ca2+ levels occurs within seconds of exposure to salt stress. Plants employ multiple sensors and signaling components to sense and respond to salinity stress, of which most are closely related to Ca2+ sensing and signaling. Several tolerance strategies such as osmoprotectant accumulation, antioxidant boosting, polyaminses and nitric oxide (NO) machineries are also coordinated by Ca2+ signaling. Substantial research has been done to discover the salt stress pathway and tolerance mechanism in plants, resulting in new insights into the perception of salt stress and the downstream signaling that happens in response. Nevertheless, the role of multifunctional components such as Ca2+ has not been sufficiently addressed in the context of salt stress. In this review, we elaborate that the salt tolerance signaling pathway converges with Ca2+ signaling in diverse pathways. We summarize knowledge related to different dimensions of salt stress signaling pathways in the cell by emphasizing the administrative role of Ca2+ signaling on salt perception, signaling, gene expression, ion homeostasis and adaptive responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Aida Shomali
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nikoo Azad
- Department of Plant Biology, College of Science, University of Tehran, Tehran, Iran
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Oksana Lastochkina
- Ufa Federal Research Centre, Russian Academy of Sciences, Bashkir Research Institute of Agriculture, Ufa, Russia
- Ufa Federal Research Centre, Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
| | - Tao Li
- Chinese Academy of Agricultural Science, Institute of Environment and Sustainable Development in Agriculture, Beijing, China
| |
Collapse
|
48
|
Forero DA, González-Giraldo Y. Convergent functional genomics of cocaine misuse in humans and animal models. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 46:22-30. [DOI: 10.1080/00952990.2019.1636384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Diego A. Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
- Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
49
|
Wang L, Cheng B, Li H, Wang Y. Proteomics analysis of preadipocytes between fat and lean broilers. Br Poult Sci 2019; 60:522-529. [PMID: 31132862 DOI: 10.1080/00071668.2019.1621989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Reducing excessive chicken body fat deposition is a main goal of the poultry industry. Preadipocytes are important in adipose tissue growth and development. 2. To discover proteins related to chicken fat deposition, two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) was used to identify differentially expressed proteins in preadipocytes derived from Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). 3. A total of 46 differentially expressed protein spots were found in the preadipocytes between fat and lean broilers. Matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed the protein spots corresponded to 33 different proteins. The proteins were mainly related to biological oxidation, cell proliferation, cytoskeleton, lipid metabolism, molecular chaperone, protein synthesis and signal transduction. 4. From the perspective of protein expression, these results lay a foundation for further study of the genetic mechanism of broiler adipose tissue growth and development.
Collapse
Affiliation(s)
- L Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - B Cheng
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - H Li
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - Y Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| |
Collapse
|
50
|
Abstract
Selective serotonin reuptake inhibitors are among the most prescribed antidepressants. Fluoxetine is the lead molecule which exerts its therapeutic effects, at least in part, by promoting neuroplasticity through increased brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) signalling. It is unclear however, to which extent the neuroplastic effects of fluoxetine are solely mediated by the inhibition of the serotonin transporter (5-HTT). To answer this question, the effects of fluoxetine on neuroplasticity were analysed in both wild type (WT) and 5-Htt knock-out (KO) mice. Using Western blotting and RT-qPCR approaches, we showed that fluoxetine 10 µM activated BDNF/TrkB signalling pathways in both CD1 and C57BL/6J mouse primary cortical neurons. Interestingly, effects on BDNF signalling were observed in primary cortical neurons from both 5-Htt WT and KO mice. In addition, a 3-week in vivo fluoxetine treatment (15 mg/kg/d; i.p.) increased the expression of plasticity genes in brains of both 5-Htt WT and KO mice, and tended to equally enhance hippocampal cell proliferation in both genotypes, without reaching significance. Our results further suggest that fluoxetine-induced neuroplasticity does not solely depend on 5-HTT blockade, but might rely, at least in part, on 5-HTT-independent direct activation of TrkB.
Collapse
|