1
|
Bharadwaj N, Sharma R, Subramanian M, Ragini G, Nagarajan SA, Rahi M. Omics Approaches in Understanding Insecticide Resistance in Mosquito Vectors. Int J Mol Sci 2025; 26:1854. [PMID: 40076478 PMCID: PMC11899280 DOI: 10.3390/ijms26051854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, the emergence of insecticide resistance has been a major challenge to global public health. Understanding the molecular mechanisms of this phenomenon in mosquito vectors is paramount for the formulation of effective vector control strategies. This review explores the current knowledge of insecticide resistance mechanisms through omics approaches. Genomic, transcriptomic, proteomic, and metabolomics approaches have proven crucial to understand these resilient vectors. Genomic studies have identified multiple genes associated with insecticide resistance, while transcriptomics has revealed dynamic gene expression patterns in response to insecticide exposure and other environmental stimuli. Proteomics and metabolomics offer insights into protein expression and metabolic pathways involved in detoxification and resistance. Integrating omics data holds immense potential to expand our knowledge on the molecular basis of insecticide resistance in mosquitoes via information obtained from different omics platforms to understand regulatory mechanisms and differential expression of genes and protein, and to identify the transcription factors and novel molecules involved in the detoxification of insecticides. Eventually, these data will help construct predictive models, identify novel strategies, and develop targeted interventions to control vector-borne diseases.
Collapse
Affiliation(s)
- Nikhil Bharadwaj
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | - Rohit Sharma
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | | | | | | | | |
Collapse
|
2
|
Anselmo S, Bonaccorso E, Gangemi C, Sancataldo G, Conti Nibali V, D’Angelo G. Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques? MEMBRANES 2025; 15:6. [PMID: 39852247 PMCID: PMC11766618 DOI: 10.3390/membranes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025]
Abstract
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes. Moreover, these non-invasive approaches allow for the study of live cells, facilitating the collection of quantitative data under physiologically relevant conditions. This review synthesizes the latest insights into the role of lipid rafts in biological and pathological processes and underscores how fluorescence techniques have advanced our understanding of these critical microdomains. The findings emphasize the pivotal role of lipid rafts in health and disease, providing a foundation for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara Anselmo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Elisa Bonaccorso
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Chiara Gangemi
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Valeria Conti Nibali
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giovanna D’Angelo
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| |
Collapse
|
3
|
Mugenzi LMJ, Tekoh TA, Ntadoun ST, Chi AD, Gadji M, Menze BD, Tchouakui M, Irving H, Wondji MJ, Weedall GD, Hearn J, Wondji CS. Association of a rapidly selected 4.3kb transposon-containing structural variation with a P450-based resistance to pyrethroids in the African malaria vector Anopheles funestus. PLoS Genet 2024; 20:e1011344. [PMID: 39074161 PMCID: PMC11309504 DOI: 10.1371/journal.pgen.1011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/08/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Stevia T. Ntadoun
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Achille D. Chi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Mahamat Gadji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Benjamin D. Menze
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
4
|
Matowo J, Weetman D, Pignatelli P, Wright A, Charlwood JD, Kaaya R, Shirima B, Moshi O, Lukole E, Mosha J, Manjurano A, Mosha F, Rowland M, Protopopoff N. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS One 2022; 17:e0249440. [PMID: 35073324 PMCID: PMC8786186 DOI: 10.1371/journal.pone.0249440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A previous study that was conducted in Muleba district, Tanzania indicated possible involvement of cytochrome P450 monooxygenases in a pyrethroid resistance in An. gambiae population where pre-exposure to piperonyl butoxide (PBO) followed by permethrin exposure in CDC bottle bioassays led to partial restoration of susceptibility. PBO is a synergist that can block pyrethroid-metabolizing enzymes in a mosquito. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during a cluster randomized trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z1 in An. funestus. Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.
Collapse
Affiliation(s)
- Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Wright
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacques D. Charlwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Kaaya
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Boniface Shirima
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oliva Moshi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Eliud Lukole
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Jacklin Mosha
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alphaxard Manjurano
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Kefi M, Charamis J, Balabanidou V, Ioannidis P, Ranson H, Ingham VA, Vontas J. Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs. BMC Genomics 2021; 22:891. [PMID: 34903168 PMCID: PMC8667434 DOI: 10.1186/s12864-021-08205-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insecticide-treated bed nets and indoor residual spraying comprise the major control measures against Anopheles gambiae sl, the dominant vector in sub-Saharan Africa. The primary site of contact with insecticide is through the mosquitoes' legs, which represents the first barrier insecticides have to bypass to reach their neuronal targets. Proteomic changes and leg cuticle modifications have been associated with insecticide resistance that may reduce the rate of penetration of insecticides. Here, we performed a multiple transcriptomic analyses focusing on An. coluzzii legs. RESULTS Firstly, leg-specific enrichment analysis identified 359 genes including the pyrethroid-binder SAP2 and 2 other chemosensory proteins, along with 4 ABCG transporters previously shown to be leg enriched. Enrichment of gene families included those involved in detecting chemical stimuli, including gustatory and ionotropic receptors and genes implicated in hydrocarbon-synthesis. Subsequently, we compared transcript expression in the legs of a highly resistant strain (VK7-HR) to both a strain with very similar genetic background which has reverted to susceptibility after several generations without insecticide pressure (VK7-LR) and a lab susceptible population (NG). Two hundred thirty-two differentially expressed genes (73 up-regulated and 159 down-regulated) were identified in the resistant strain when compared to the two susceptible counterparts, indicating an over-expression of phase I detoxification enzymes and cuticular proteins, with decrease in hormone-related metabolic processes in legs from the insecticide resistant population. Finally, we analysed the short-term effect of pyrethroid exposure on An. coluzzii legs, comparing legs of 1 h-deltamethrin-exposed An. coluzzii (VK7-IN) to those of unexposed mosquitoes (VK7-HR) and identified 348 up-regulated genes including those encoding for GPCRs, ABC transporters, odorant-binding proteins and members of the divergent salivary gland protein family. CONCLUSIONS The data on An. coluzzii leg-specific transcriptome provides valuable insights into the first line of defense in pyrethroid resistant and short-term deltamethrin-exposed mosquitoes. Our results suggest that xenobiotic detoxification is likely occurring in legs, while the enrichment of sensory proteins, ABCG transporters and cuticular genes is also evident. Constitutive resistance is primarily associated with elevated levels of detoxification and cuticular genes, while short-term insecticide-induced tolerance is linked with overexpression of transporters, GPCRs and GPCR-related genes, sensory/binding and salivary gland proteins.
Collapse
Affiliation(s)
- M Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - J Charamis
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - V Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - P Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Parasitology Unit, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
6
|
Susceptibility of Field-Collected Nyssorhynchus darlingi to Plasmodium spp. in Western Amazonian Brazil. Genes (Basel) 2021; 12:genes12111693. [PMID: 34828299 PMCID: PMC8623036 DOI: 10.3390/genes12111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Mosquito susceptibility to Plasmodium spp. infection is of paramount importance for malaria occurrence and sustainable transmission. Therefore, understanding the genetic features underlying the mechanisms of susceptibility traits is pivotal to assessing malaria transmission dynamics in endemic areas. The aim of this study was to investigate the susceptibility of Nyssorhynchus darlingi-the dominant malaria vector in Brazil-to Plasmodium spp. using a reduced representation genome-sequencing protocol. The investigation was performed using a genome-wide association study (GWAS) to identify mosquito genes that are predicted to modulate the susceptibility of natural populations of the mosquito to Plasmodium infection. After applying the sequence alignment protocol, we generated the variant panel and filtered variants; leading to the detection of 202,837 SNPs in all specimens analyzed. The resulting panel was used to perform GWAS by comparing the pool of SNP variants present in Ny. darlingi infected with Plasmodium spp. with the pool obtained in field-collected mosquitoes with no evidence of infection by the parasite (all mosquitoes were tested separately using RT-PCR). The GWAS results for infection status showed two statistically significant variants adjacent to important genes that can be associated with susceptibility to Plasmodium infection: Cytochrome P450 (cyp450) and chitinase. This study provides relevant knowledge on malaria transmission dynamics by using a genomic approach to identify mosquito genes associated with susceptibility to Plasmodium infection in Ny. darlingi in western Amazonian Brazil.
Collapse
|
7
|
Wagah MG, Korlević P, Clarkson C, Miles A, Lawniczak MKN, Makunin A. Genetic variation at the Cyp6m2 putative insecticide resistance locus in Anopheles gambiae and Anopheles coluzzii. Malar J 2021; 20:234. [PMID: 34034756 PMCID: PMC8146665 DOI: 10.1186/s12936-021-03757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background The emergence of insecticide resistance is a major threat to malaria control programmes in Africa, with many different factors contributing to insecticide resistance in its vectors, Anopheles mosquitoes. CYP6M2 has previously been recognized as an important candidate in cytochrome P450-mediated detoxification in Anopheles. As it has been implicated in resistance against pyrethroids, organochlorines and carbamates, its broad metabolic activity makes it a potential agent in insecticide cross-resistance. Currently, allelic variation within the Cyp6m2 gene remains unknown. Methods Here, Illumina whole-genome sequence data from Phase 2 of the Anopheles gambiae 1000 Genomes Project (Ag1000G) was used to examine genetic variation in the Cyp6m2 gene across 16 populations in 13 countries comprising Anopheles gambiae and Anopheles coluzzii mosquitoes. To identify whether these alleles show evidence of selection either through potentially modified enzymatic function or by being linked to variants that change the transcriptional profile of the gene, hierarchical clustering of haplotypes, linkage disequilibrium, median joining networks and extended haplotype homozygosity analyses were performed. Results Fifteen missense biallelic substitutions at high frequency (defined as > 5% frequency in one or more populations) are found, which fall into five distinct haplotype groups that carry the main high frequency variants: A13T, D65A, E328Q, Y347F, I359V and A468S. Despite consistent reports of Cyp6m2 upregulation and metabolic activity in insecticide resistant Anophelines, no evidence of directional selection is found occurring on these variants or on the haplotype clusters in which they are found. Conclusion These results imply that emerging resistance associated with Cyp6m2 is potentially driven by distant regulatory loci such as transcriptional factors rather than by its missense variants, or that other genes are playing a more significant role in conferring metabolic resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03757-4.
Collapse
Affiliation(s)
- Martin G Wagah
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Petra Korlević
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | - Alistair Miles
- University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK
| | | | | | - Alex Makunin
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
8
|
Assessing cross-resistance within the pyrethroids in terms of their interactions with key cytochrome P450 enzymes and resistance in vector populations. Parasit Vectors 2021; 14:115. [PMID: 33602297 PMCID: PMC7893915 DOI: 10.1186/s13071-021-04609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023] Open
Abstract
Background It is important to understand whether the potential impact of pyrethroid resistance on malaria control can be mitigated by switching between different pyrethroids or whether cross-resistance within this insecticide class precludes this approach. Methods Here we assess the relationships among pyrethroids in terms of their binding affinity to, and depletion by, key cytochrome P450 enzymes (hereafter P450s) that are known to confer metabolic pyrethroid resistance in Anopheles gambiae (s.l.) and An. funestus, in order to identify which pyrethroids may diverge from the others in their vulnerability to resistance. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. Results We found that the type I and II pyrethroids permethrin and deltamethrin, respectively, are closely related in terms of binding affinity to key P450s, depletion by P450s and resistance within vector populations. Bifenthrin, which lacks the common structural moiety of most pyrethroids, diverged from the other pyrethroids tested in terms of both binding affinity to key P450s and depletion by P450s, but resistance to bifenthrin has rarely been tested in vector populations and was not analysed here. Etofenprox, which also lacks the common structural moiety of most pyrethroids, diverged from the more commonly deployed pyrethroids in terms of binding affinity to key P450s and resistance in vector populations, but did not diverge from these pyrethroids in terms of depletion by the P450s. The analysis of depletion by the P450s indicated that etofenprox may be more vulnerable to metabolic resistance mechanisms in vector populations. In addition, greater resistance to etofenprox was found across Aedes aegypti populations, but greater resistance to this compound was not found in any of the malaria vector species analysed. The results for pyrethroid depletion by anopheline P450s in the laboratory were largely not repeated in the findings for resistance in malaria vector populations. Conclusion Importantly, the prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin and permethrin was correlated across malaria vector populations, and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.![]()
Collapse
|
9
|
Wu J, Li J, Zhang C, Yu X, Cuthbertson AGS, Ali S. Biological Impact and Enzyme Activities of Spodoptera litura (Lepidoptera: Noctuidae) in Response to Synergistic Action of Matrine and Beauveria brongniartii. Front Physiol 2020; 11:584405. [PMID: 33224038 PMCID: PMC7667252 DOI: 10.3389/fphys.2020.584405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Matrine, a naturally occurring heterocyclic compound, has been shown to enhance the pathogenicity of the entomopathogenic fungus Beauveria brongniartii against Spodoptera litura. In the current study, the biological impacts and synergism activities of these two agents on nutritional efficiency and antioxidant enzymes in S. litura were explored. Our results showed a high antifeedant activity of B. brongniartii and matrine on S. litura. The S. litura larvae were unable to pupate and emerge when treated with combinations of matrine and B. brongniartii. Following on, we measured the activities of five important antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), and glutathione-S-transferase (GST)] when treated with B. brongniartii SB010 (1 × 109 spores/ml), matrine (0.5 mg/ml), and B. brongniartii SB010 (1 × 109 spores/ml) + matrine (0.5 mg/ml). The results indicated the detoxification activity of the five enzymes in the fat body and hemolymph of S. litura when facing a combined B. brongniartii and matrine challenge. The activities of the enzymes were significantly lower than that of the control group 7 days post-treatment, indicating the inhibitory effect of the two xenobiotics. Matrine had better inhibition effects than B. brongniartii in a majority of the trials. The improved detoxification activity of the five enzymes may be the internal mechanism of synergism of matrine on B. brongniartii.
Collapse
Affiliation(s)
- Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| | - Jiaying Li
- Yongzhou Tobacco Company, Yongzhou, Hunan, China
| | - Can Zhang
- Department of Eco-Engineering, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Xintong Yu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| | | | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Lien NTK, Ngoc NTH, Lan NN, Hien NT, Tung NV, Ngan NTT, Hoang NH, Binh NTH. Transcriptome Sequencing and Analysis of Changes Associated with Insecticide Resistance in the Dengue Mosquito ( Aedes aegypti) in Vietnam. Am J Trop Med Hyg 2020; 100:1240-1248. [PMID: 30834881 DOI: 10.4269/ajtmh.18-0607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mosquito Aedes aegypti is a transmission vector for dangerous epidemic diseases in humans. Insecticides have been used as the most general vector control method in the world. However, Ae. aegypti have developed many resistant mechanisms such as reduced neuronal sensitivity to insecticides (target-site resistance), enhanced insecticide metabolism (metabolic resistance), altered transport, sequestration, and other mechanisms. It has become a major problem for vector control programs. Transcriptome sequencing and bioinformatic analysis were used to compare transcription levels between a susceptible strain (Bora7) and a resistant strain (KhanhHoa7) collected from the field. A total of 161 million Illumina reads, including 66,076,678 reads from the Bora7 strain and 69,606,654 reads from the KhanhHoa7 strain, were generated and assembled into 11,174 genes. A comparison of the KhanhHoa7 transcriptome to that of Bora7 showed 672 upregulated genes and 488 downregulated genes. We identified the highly upregulated genes: cytochrome P450 4C1, 4C3, 4C21, 4D1, 4D1 isoform X2, 4D2, 4D2 isoform X2, 4G15, 6A2, 6A8, 6D3, and 9E2; Glutathione S transferase (GST1), UGT1-3, 1-7, 2B15, and 2B37; binding cassette transporter (ABC) transporter F family member 4 and ABC transporter G family member 20. Interestingly, there was a significant increase in the expression of the genes such as CYP9E2 (8.3-fold), CYP6A8 (5.9-fold), CYP6D3 (5.4-fold), CYP4C21 (5.4-fold), CYP4G15 (5.2-fold), GST1 (3.5-fold), and ABC transporter 4 (2.1-fold). Our results suggested a potential relationship between the expression of the genes in metabolic processes and insecticide resistance in the studied strain. These results may contribute to the understanding of the mechanisms of insecticide resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thu Hien
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | |
Collapse
|
11
|
Ant T, Foley E, Tytheridge S, Johnston C, Goncalves A, Ceesay S, Ndiath MO, Affara M, Martinez J, Pretorius E, Grundy C, Rodrigues A, Djata P, d'Alessandro U, Bailey R, Mabey D, Last A, Logan JG. A survey of Anopheles species composition and insecticide resistance on the island of Bubaque, Bijagos Archipelago, Guinea-Bissau. Malar J 2020; 19:27. [PMID: 31941507 PMCID: PMC6964033 DOI: 10.1186/s12936-020-3115-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Bubaque is the most populous island of the Bijagos archipelago, a group of malaria-endemic islands situated off the coast of Guinea-Bissau, West Africa. Malaria vector control on Bubaque relies almost exclusively on the use of long-lasting insecticidal nets (LLINs). However, there is little information on local vector bionomics and insecticide resistance. Methods A survey of mosquito species composition was performed at the onset of the wet season (June/July) and the beginning of the dry season (November/December). Sampling was performed using indoor adult light-traps and larval dipping. Anopheles mosquitoes were identified to species level and assessed for kdr allele frequency by TaqMan PCR. Females were analysed for sporozoite positivity by CSP-ELISA. Resistance to permethrin and α-cypermethrin was measured using the CDC-bottle bioassay incorporating the synergist piperonyl-butoxide. Results Several Anopheles species were found on the island, all belonging to the Anopheles gambiae sensu lato (s.l.) complex, including An. gambiae sensu stricto, Anopheles coluzzii, Anopheles melas, and An. gambiae/An. coluzzii hybrids. Endophagic Anopheles species composition and abundance showed strong seasonal variation, with a majority of An. gambiae (50% of adults collected) caught in June/July, while An. melas was dominant in November/December (83.9% of adults collected). Anopheles gambiae had the highest sporozoite rate in both seasons, with infection rates of 13.9% and 20% in June/July and November/December, respectively. Moderate frequencies of the West African kdr allele were found in An. gambiae (36%), An. coluzzii (35%), An. gambiae/An. coluzzii hybrids (42%). Bioassays suggest moderate resistance to α-cypermethrin, but full susceptibility to permethrin. Conclusions The island of Bubaque maintained an An. gambiae s.l. population in both June/July and November/December. Anopheles gambiae was the primary vector at the onset of the wet season, while An. melas is likely to be responsible for most dry season transmission. There was moderate kdr allele frequency and synergist assays suggest likely metabolic resistance, which could reduce the efficacy of LLINs. Future control of malaria on the islands should consider the seasonal shift in mosquito species, and should employ continuous monitoring for insecticide resistance.
Collapse
Affiliation(s)
- Thomas Ant
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Erin Foley
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Scott Tytheridge
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Colin Johnston
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Adriana Goncalves
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sainey Ceesay
- Disease Control & Elimination Theme, Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mamadou Ousmane Ndiath
- Disease Control & Elimination Theme, Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Muna Affara
- Disease Control & Elimination Theme, Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Julien Martinez
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Elizabeth Pretorius
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Chris Grundy
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Paulo Djata
- Ministério da saude chez Ministério da saude de Guinea-Bissau, Bissau, Guinea-Bissau
| | - Umberto d'Alessandro
- MRC The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - Robin Bailey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - David Mabey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Anna Last
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - James G Logan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK. .,ARCTEC, Chariot Innovations Ltd, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
12
|
Jiang W, Peng Y, Ye J, Wen Y, Liu G, Xie J. Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Mortality and Immune Response of Locusta migratoria. INSECTS 2019; 11:insects11010036. [PMID: 31906210 PMCID: PMC7022458 DOI: 10.3390/insects11010036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Entomopathogenic fungi are the key regulators of insect populations and some of them are important biological agents used in integrated pest management strategies. Compared with their ability to become resistant to insecticides, insect pests do not easily become resistant to the infection by entomopathogenic fungi. In this study, we evaluated the mortality and immune response of the serious crop pest Locusta migratoria manilensis after exposure to a new entomopathogenic fungus strain, Metarhizium anisopliae CQMa421. M. anisopliae CQMa421 could effectively infect and kill the L. migratoria adults and nymphs. The locust LT50 under 1 × 108 conidia/mL concentration of M. anisopliae was much lower than that under conidial concentration 1 × 105 conidia/mL (i.e., 6.0 vs. 11.2 and 5.0 vs. 13.8 for adults and nymphs, respectively). The LC50 (log10) of M. anisopliae against locust adults and nymphs after 10 days was 5.2 and 5.6, respectively. Although the number of hemocytes in L. migratoria after exposure to M. anisopliae did not differ with that in the controls, the enzymatic activity of superoxide dismutase (SOD) and prophenoloxidase (ProPO) did differ between the two treatments. The activities of both SOD and ProPO under the M. anisopliae treatment were lower than that in the controls, except for the ProPO activity at 72 h and the SOD activity at 96 h. Further, the expression of the L. migratoria immune-related genes defensin, spaetzle, and attacin differed after exposure to M. anisopliae for 24 h to 96 h. Taken together, this study indicated that infection with M. anisopliae CQMa421 could cause the death of L. migratoria by interacting with the immune responses of the host, demonstrating that this fungal strain of M. anisopliae can be an efficient biocontrol agent against L. migratoria.
Collapse
Affiliation(s)
- Wuji Jiang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yifan Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Jiayi Ye
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yiyi Wen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Gexin Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaqin Xie
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence:
| |
Collapse
|
13
|
Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN, Kwiatkowski DP, Weetman D, Donnelly MJ. Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Res 2019; 29:1250-1261. [PMID: 31345938 PMCID: PMC6673711 DOI: 10.1101/gr.245795.118] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
Abstract
Polymorphisms in genetic copy number can influence gene expression, coding sequence, and zygosity, making them powerful actors in the evolutionary process. Copy number variants (CNVs) are however understudied, being more difficult to detect than single-nucleotide polymorphisms. We take advantage of the intense selective pressures on the major malaria vector Anopheles gambiae, caused by the widespread use of insecticides for malaria control, to investigate the role of CNVs in the evolution of insecticide resistance. Using the whole-genome sequencing data from 1142 samples in the An. gambiae 1000 genomes project, we identified 250 gene-containing CNVs, encompassing a total of 267 genes of which 28 were in gene families linked to metabolic insecticide resistance, representing significant enrichment of these families. The five major gene clusters for metabolic resistance all contained CNVs, with 44 different CNVs being found across these clusters and multiple CNVs frequently covering the same genes. These 44 CNVs are widespread (45% of individuals carry at least one of them) and have been spreading through positive selection, indicated by their high local frequencies and extended haplotype homozygosity. Our results demonstrate the importance of CNVs in the response to selection, highlighting the urgent need to identify the contribution of each CNV to insecticide resistance and to track their spread as the use of insecticides in malaria endemic countries intensifies and as the operational deployment of next-generation bed nets targeting metabolic resistance gathers pace. Our detailed descriptions of CNVs found across the species range provide the tools to do so.
Collapse
Affiliation(s)
- Eric R Lucas
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Nicholas J Harding
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
14
|
Abro NA, Wang G, Ullah H, Long GL, Hao K, Nong X, Cai N, Tu X, Zhang Z. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17797-17808. [PMID: 31037535 DOI: 10.1007/s11356-019-05158-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Efficacy of Metarhizium anisopliae strain (IMI330189) and Mad1 protein alone or in combination by feeding method to overcome immune-related enzymes and Toll-like pathway genes was investigated in migratory locust. M. anisopliae (IMI330189) is a potent and entomopathogenic fungal strain could be effectively used against insect pests. Similarly, Mad1 protein adheres to insect cuticle, causing virulence to insects. We confirmed maximum 55% of mortality when M. anisopliae (IMI330189) and Mad1 was applied in combination. Similarly, increased PO activity was observed in locust with combined dose of Mad1 + IMI330189 whereas PO, POD, and SOD activities reduced using Mad1 independently. Four Toll-like signaling pathway genes (MyD88, Cactus, Pelle, and CaN) were investigated from midgut and body of the migratory locust after 72 h of treatments. Subsequently, the expression of MyD88 in the midgut and body significantly decreased with the application of Mad1 and Mad1 + IMI330189. Performance of these treatments was absolutely non-consistent in both parts of insects. Meanwhile, IMI330189 significantly raised the expression of Cactus in both midgut and body. However, the combined treatment (Mad1 + IMI330189) significantly reduced the Cactus expression in both body parts. Pelle expression was significantly increased in the midgut with the application of independent treatment of Mad1 and IMI330189 whereas the combined treatment (Mad1 + IMI330189) suppressed the Pelle expression in midgut. Its expression level was absolutely higher in body with the application of IMI330189 and Mad1 + IMI330189 only. On the other hand, Mad1 significantly increased the expression of CaN in midgut. However, all three treatments significantly affected and suppressed the expression of CaN gene in body of locust. This shows that the applications of M. anisopliae and Mad1 protein significantly affected Toll signaling pathway genes, which ultimately increased level of susceptibility of locust. However, their effect was significantly different in both parts of locust which recommends that the Toll-related genes are conserved in midgut instead of locust body.
Collapse
Affiliation(s)
- Nazir Ahmed Abro
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, People's Republic of China
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- Department of Agriculture, The University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Guo Long Long
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ni Cai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Machani MG, Ochomo E, Sang D, Bonizzoni M, Zhou G, Githeko AK, Yan G, Afrane YA. Influence of blood meal and age of mosquitoes on susceptibility to pyrethroids in Anopheles gambiae from Western Kenya. Malar J 2019; 18:112. [PMID: 30940139 PMCID: PMC6444593 DOI: 10.1186/s12936-019-2746-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Physiological characteristics (age and blood feeding status) of malaria vectors can influence their susceptibility to the current vector control tools that target their feeding and resting behaviour. To ensure the sustainability of the current and future vector control tools an understanding of how physiological characteristics may contribute to insecticide tolerance in the field is fundamental for shaping resistance management strategies and vector control tools. The aim of this study was to determine whether blood meal and mosquito age affect pyrethroid tolerance in field-collected Anopheles gambiae from western Kenya. METHODS Wild mosquito larvae were reared to adulthood alongside the pyrethroid-susceptible Kisumu strain. Adult females from the two populations were monitored for deltamethrin resistance when they were young at 2-5 days old and older 14-16 days old and whether fed or unfed for each age group. Metabolic assays were also performed to determine the level of detoxification enzymes. Mosquito specimens were further identified to species level using the polymerase chain reaction (PCR) method. RESULTS Anopheles gambiae sensu stricto was the predominant species comprising 96% of specimens and 2.75% Anopheles arabiensis. Bioassay results showed reduced pyrethroid induced mortality with younger mosquitoes compared to older ones (mortality rates 83% vs. 98%), independently of their feeding status. Reduced mortality was recorded with younger females of which were fed compared to their unfed counterparts of the same age with a mortality rate of 35.5% vs. 83%. Older blood-fed females showed reduced susceptibility after exposure when compared to unfed females of the same age (mortality rates 86% vs. 98%). For the Kisumu susceptible population, mortality was straight 100% regardless of age and blood feeding status. Blood feeding status and mosquito age had an effect on enzyme levels in both populations, with blood fed individuals showing higher enzyme elevations compared to their unfed counterparts (P < 0.0001). The interaction between mosquito age and blood fed status had significant effect on mosquito mortality. CONCLUSION The results showed that mosquito age and blood feeding status confers increased tolerance to insecticides as blood feeding may be playing an important role in the toxicity of deltamethrin, allowing mosquitoes to rest on insecticide-treated materials despite treatment. These may have implications for the sustained efficacy of indoor residual spraying and insecticide-treated nets based control programmes that target indoor resting female mosquitoes of various gonotrophic status.
Collapse
Affiliation(s)
- Maxwell G Machani
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - David Sang
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Andrew K Githeko
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
16
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
17
|
Mohanty AK, Nina PB, Ballav S, Vernekar S, Parkar S, D'souza M, Zuo W, Gomes E, Chery L, Tuljapurkar S, Valecha N, Rathod PK, Kumar A. Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection. Malar J 2018; 17:225. [PMID: 29871629 PMCID: PMC5989471 DOI: 10.1186/s12936-018-2343-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/07/2018] [Indexed: 11/16/2022] Open
Abstract
Background As much as 80% of global Plasmodium vivax infections occur in South Asia and there is a shortage of direct studies on infectivity of P. vivax in Anopheles stephensi, the most common urban mosquito carrying human malaria. In this quest, the possible effects of laboratory colonization of mosquitoes on infectivity and development of P. vivax is of interest given that colonized mosquitoes can be genetically less divergent than the field population from which they originated. Methods Patient-derived P. vivax infected blood was fed to age-matched wild and colonized An. stephensi. Such a comparison requires coordinated availability of same-age wild and colonized mosquito populations. Here, P. vivax infection are studied in colonized An. stephensi in their 66th–86th generation and fresh field-caught An. stephensi. Wild mosquitoes were caught as larvae and pupae and allowed to develop into adult mosquitoes in the insectary. Parasite development to oocyst and sporozoite stages were assessed on days 7/8 and 12/13, respectively. Results While there were batch to batch variations in infectivity of individual patient-derived P. vivax samples, both wild and colonized An. stephensi were roughly equally susceptible to oocyst stage Plasmodium infection. At the level of sporozoite development, significantly more mosquitoes with sporozoite load of 4+ were seen in wild than in colonized populations.
Collapse
Affiliation(s)
- Ajeet Kumar Mohanty
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Praveen Balabaskaran Nina
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA.,Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Shuvankar Ballav
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Smita Vernekar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Sushma Parkar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Maria D'souza
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Wenyun Zuo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Laura Chery
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | | | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Ashwani Kumar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India.
| |
Collapse
|
18
|
Main BJ, Everitt A, Cornel AJ, Hormozdiari F, Lanzaro GC. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii. Parasit Vectors 2018; 11:225. [PMID: 29618373 PMCID: PMC5885317 DOI: 10.1186/s13071-018-2817-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. RESULTS We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. CONCLUSIONS The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase COEAE5G in the resistant An. coluzzii colony suggests resistance to other insecticides like organophosphates. Additional gene expression studies involving other tissues (e.g. fat body) would provide a more comprehensive view of genes underlying metabolic insecticide resistance in An. coluzzii from Mali. Identifying genetic markers linked to these regulatory alleles is an important next step that would substantially improve insecticide resistance surveillance and population genetic studies in this important vector species.
Collapse
Affiliation(s)
- Bradley J Main
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA.
| | - Amanda Everitt
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Anthony J Cornel
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, MIND Institute and UC-Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Department of Pathology, Microbiology, and Immunology, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Liao CY, Feng YC, Li G, Shen XM, Liu SH, Dou W, Wang JJ. Antioxidant Role of PcGSTd1 in Fenpropathrin Resistant Population of the Citrus Red Mite, Panonychus citri (McGregor). Front Physiol 2018; 9:314. [PMID: 29651254 PMCID: PMC5884870 DOI: 10.3389/fphys.2018.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
The citrus red mite, Panonychus citri, a major citrus pest distributed worldwide, has evolved severe resistance to various classes of chemical acaricides/insecticides including pyrethroids. It is well known that the resistance to pyrethroids is mainly caused by point mutations of voltage-gated sodium channel gene in a wide range of pests. However, increasing number of evidences support that pyrethroids resistance might also be resulted from the integrated mechanisms including metabolic mechanisms. In this study, firstly, comparative analysis of RNA-seq data showed that multiple detoxification genes, including a GSTs gene PcGSTd1, were up-regulated in a fenpropathrin-resistant population compared with the susceptible strain (SS). Quantitative real time-PCR results showed that the exposure of fenpropathrin had an induction effect on the transcription of PcGSTd1 in a time-dependent manner. In vitro inhibition and metabolic assay of recombinant PcGSTd1 found that fenpropathrin might not be metabolized directly by this protein. However, its antioxidant role in alleviating the oxidative stress caused by fenpropathrin was demonstrated via the reversely genetic experiment. Our results provide a list of candidate genes which may contribute to a multiple metabolic mechanisms implicated in the evolution of fenpropathrin resistance in the field population of P. citri. Furthermore, during the detoxification process, PcGSTd1 plays an antioxidant role by detoxifying lipid peroxidation products induced by fenpropathrin.
Collapse
Affiliation(s)
- Chong-Yu Liao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiao-Min Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Nardini L, Hunt RH, Dahan-Moss YL, Christie N, Christian RN, Coetzee M, Koekemoer LL. Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malar J 2017; 16:448. [PMID: 29115954 PMCID: PMC5678590 DOI: 10.1186/s12936-017-2099-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022] Open
Abstract
Background The Democratic Republic of the Congo (DRC) is characterized as a holoendemic malaria area with the main vectors being Anopheles funestus and members of the Anopheles gambiae complex. Due to political instability and socio-economic challenges in the region, knowledge of insecticide resistance status and resistance mechanisms in these vectors is limited. Mosquitoes were collected from a mining site in the north-eastern part of the country and, following identification, were subjected to extensive testing for the target-site and biochemical basis of resistance. Quantitative real-time PCR was used to assess a suite of 10 genes frequently involved in pyrethroid and dichlorodiphenyltrichloroethane (DDT) resistance in An. gambiae females and males. In An. funestus, gene expression microarray analysis was carried out on female mosquitoes. Results In both species, deltamethrin resistance was recorded along with high resistance and suspected resistance to DDT in An. gambiae and An. funestus, respectively. A total of 85% of An. gambiae carried the kdr mutations as either homozygous resistant (RR) (L1014S, L1014F or both) or heterozygous (RS), however only 3% carried the rdl mutant allele (RS) and no ace-1 mutations were recorded. Synergist assays indicated a strong role for P450s in deltamethrin resistance in both species. In An. gambiae, analysis of transcription levels showed that the glutathione-S-transferase, GSTS1-2, produced the highest fold change in expression (7.6-fold in females and 31-fold in males) followed by GSTE2, thioredoxin peroxidase (TPX2), and cytochrome oxidases (CYP6M2 and CYP6P1). All other genes tested produced fold change values below 2. Microarray analysis revealed significant over-transcription of cuticular proteins as well as CYP6M7, CYP6P9a and CYP6P9b in insecticide resistant An. funestus. Conclusions These data show that high levels of deltamethrin resistance in the main malaria vector species, conferred by enzymatic detoxification, are present in the DRC. Electronic supplementary material The online version of this article (10.1186/s12936-017-2099-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luisa Nardini
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Riann N Christian
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa.
| |
Collapse
|
21
|
Xu W, Liu S, Zhang Y, Gao J, Yang M, Liu X, Tao L. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:77-82. [PMID: 29107250 DOI: 10.1016/j.pestbp.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate the molecular mechanisms of cypermethrin resistance in Culex pipiens pallens Coq, the susceptible strain (SS strain) and cypermethrin resistant strain (CR strain) of Cx. p. pallens were investigated in this paper. The cypermethrin resistance ratio of CR strain to SS strain was measured by biological assays method, the cDNA sequence of sodium channel was cloned and analyzed. Real-time quantitative RT-PCR was used to detect the expression levels of the detoxification-related genes across between CR strain and SS strain of Cx. p. pallens. Bioassays indicated that CR strain was 283.06 and 80.68-fold resistance to cypermethrin and permethrin as compared to the susceptible strain, respectively. The sequence variability analysis of sodium channel gene between SS strain and CR strain shows that 4 point mutations (R954Q, L1023F, S1775G and A1989E) appear on the amino acid sequence of sodium channel of CR strain. The transcriptional levels of CYP6Z10, CYP9M10, CPGSTd1 and CPGSTd2 in the resistant strain are significantly higher than it is in the susceptible. The transcripts of CYP4H34 and E4 esterase have no significant difference between the CR strain and SS strain. The results indicated that sodium channel mutations, combined with elevated levels of P450s and GSTs, are associated with cypermethrin resistance in CR strain.
Collapse
Affiliation(s)
- Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Songlin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Liu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA, Pigeon O, Vontas J, Cornelie S. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep 2017; 7:11091. [PMID: 28894186 PMCID: PMC5593880 DOI: 10.1038/s41598-017-11357-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
To tackle the problem of insecticide resistance, all resistance mechanisms need to be studied. This study investigated the involvement of the cuticle in pyrethroid resistance in a strain of Anopheles gambiae, MRS, free of kdr mutations. Bioassays revealed MRS to be resistant to pyrethroids and DDT, indicated by increasing knockdown times and resistance ratios. Moreover, biochemical analysis indicated that metabolic resistance based on enhanced CYP450 activity may also play a role. Insecticide penetration assays showed that there were significantly lower amounts of insecticide in the MRS strain than in the susceptible control. Analysis of the levels of the selected transcripts by qPCR showed that CYP6M2, a major pyrethroid metaboliser, CYP4G16, a gene implicated in resistance via its contribution to the biosynthesis of elevated epicuticular hydrocarbons that delay insecticide uptake, and the cuticle genes CPAP3-E and CPLCX1 were upregulated after insecticide exposure. Other metabolic (CYP6P3, GSTe2) and cuticle (CPLCG3, CPRs) genes were also constitutively upregulated. Microscopic analysis showed that the cuticle layers of the MRS strain were significantly thicker than those of the susceptible strain. This study allowed us to assess the contribution made by the cuticle and metabolic mechanisms to pyrethroid resistance in Anopheles gambiae without target-site mutations.
Collapse
Affiliation(s)
- Gildas A Yahouédo
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France.
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Marie Rossignol
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Carole Ginibre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Natacha Garcia Albeniz Mendez
- Walloon Agricultural Research Centre (CRA-W), Agriculture and Natural Environment Department (D3), Plant Protection Products and Biocides, Physico-chemistry and Residues Unit (U10), B-5030, Gembloux, Belgium
| | - Olivier Pigeon
- Walloon Agricultural Research Centre (CRA-W), Agriculture and Natural Environment Department (D3), Plant Protection Products and Biocides, Physico-chemistry and Residues Unit (U10), B-5030, Gembloux, Belgium
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Sylvie Cornelie
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| |
Collapse
|
23
|
Domingos A, Pinheiro-Silva R, Couto J, do Rosário V, de la Fuente J. The Anopheles gambiae transcriptome - a turning point for malaria control. INSECT MOLECULAR BIOLOGY 2017; 26:140-151. [PMID: 28067439 DOI: 10.1111/imb.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence.
Collapse
Affiliation(s)
- A Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
- Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - R Pinheiro-Silva
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J Couto
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - V do Rosário
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
24
|
Wei X, Yan G, Zhou G, Zhong D, Fang Q, Yang X, Hu D, Chang X. A neural network prediction of environmental determinants of Anopheles sinensis knockdown resistance mutation to pyrethroids in China. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:295-302. [PMID: 27860007 DOI: 10.1111/jvec.12226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Selection pressure caused by long-term intensive use of insecticides is the key driving force in resistance development. Additional parameters such as environmental conditions may affect both the mosquito response to insecticides and the selection of resistance mechanisms. In this context, we analyzed the environmental determinants of kdr prevalence in Anopheles sinensis across China. We collected kdr frequency from 48 sites across central and southern China, together with key environmental factors including long-term climatic data, topographic features, main crops, and land cover types. Trend surface analysis found that the distribution of kdr frequency can be partitioned into three regions, namely central China (kdr frequency >80%), western China (kdr frequency varies from 0% to 60%), and southern China (kdr frequency <10%). Seven predictor variables were selected based on a radial basis function neural network model. A multilayer perceptron (MLP) network model revealed that the number of crops in a year was the most important predictor for the kdr mutation rate. Topography, long-term mean climate and land cover all contributed to the kdr mutation rate. The observed mean kdr frequency was 53.0% and the MLP network model-predicted mean was 52.6%, a 0.1% relative error. Predicted kdr frequencies closely matched the observed values. The model explained 92% of the total variance in kdr frequency. The results indicated that kdr was associated with the intensity of pesticide usage. Crop cultivation information, together with environmental factors, may well predict the spatial heterogeneity of kdr mutations in An. sinensis in China.
Collapse
Affiliation(s)
- Xing Wei
- Institute of Information Security and Big Data, Central South University, Changsha 410083, Hunan, China
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California 92697, U.S.A
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California 92697, U.S.A
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California 92697, U.S.A
| | - Qiang Fang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Xiaodi Yang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Dehua Hu
- Institute of Information Security and Big Data, Central South University, Changsha 410083, Hunan, China
| | - Xuelian Chang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| |
Collapse
|
25
|
Antonio-Nkondjio C, Poupardin R, Tene BF, Kopya E, Costantini C, Awono-Ambene P, Wondji CS. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar J 2016; 15:424. [PMID: 27549778 PMCID: PMC4994282 DOI: 10.1186/s12936-016-1483-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to the carbamate insecticide bendiocarb is emerging in Anopheles gambiae populations from the city of Yaoundé in Cameroon. However, the molecular basis of this resistance remains uncharacterized. The present study objective is to investigate mechanisms promoting resistance to bendiocarb in An. gambiae populations from Yaoundé. Methods The level of susceptibility of An. gambiae s.l. to bendiocarb 0.1 % was assessed from 2010 to 2013 using bioassays. Mosquitoes resistant to bendiocarb, unexposed and susceptible mosquitoes were screened for the presence of the Ace-1R mutation using TaqMan assays. Microarray analyses were performed to assess the pattern of genes differentially expressed between resistant, unexposed and susceptible. Results Bendiocarb resistance was more prevalent in mosquitoes originating from cultivated sites compared to those from polluted and unpolluted sites. Both An. gambiae and Anopheles coluzzii were found to display resistance to bendiocarb. No G119S mutation was detected suggesting that resistance was mainly metabolic. Microarray analysis revealed the over-expression of several cytochrome P450 s genes including cyp6z3, cyp6z1, cyp12f2, cyp6m3 and cyp6p4. Gene ontology (GO) enrichment analysis supported the detoxification role of cytochrome P450 s with several GO terms associated with P450 activity significantly enriched in resistant samples. Other detoxification genes included UDP-glucosyl transferases, glutathione-S transferases and ABC transporters. Conclusion The study highlights the probable implication of metabolic mechanisms in bendiocarb resistance in An. gambiae populations from Yaoundé and stresses the need for further studies leading to functional validation of detoxification genes involved in this resistance.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| | - Rodolphe Poupardin
- Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| | - Billy Fossog Tene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Carlo Costantini
- Institut de Recherche pour le Développement (IRD), UR 016, 911, Avenue Agropolis, P.O. Box 64501, 34394, Montpellier Cedex 5, France
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
26
|
Jia M, Cao G, Li Y, Tu X, Wang G, Nong X, Whitman DW, Zhang Z. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Sci Rep 2016; 6:28424. [PMID: 27328936 PMCID: PMC4916465 DOI: 10.1038/srep28424] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/06/2016] [Indexed: 11/15/2022] Open
Abstract
We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca2+ disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control.
Collapse
Affiliation(s)
- Miao Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.,Scientific Observation and Experimental Station of Pests, in Xilingol Rangeland, Ministry of Agriculture, xilin Gol League, Inner Mongolia, P. R. China
| | - Guangchun Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.,Scientific Observation and Experimental Station of Pests, in Xilingol Rangeland, Ministry of Agriculture, xilin Gol League, Inner Mongolia, P. R. China
| | - Yibo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.,Scientific Observation and Experimental Station of Pests, in Xilingol Rangeland, Ministry of Agriculture, xilin Gol League, Inner Mongolia, P. R. China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.,Scientific Observation and Experimental Station of Pests, in Xilingol Rangeland, Ministry of Agriculture, xilin Gol League, Inner Mongolia, P. R. China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.,Scientific Observation and Experimental Station of Pests, in Xilingol Rangeland, Ministry of Agriculture, xilin Gol League, Inner Mongolia, P. R. China
| | - Douglas W Whitman
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.,Scientific Observation and Experimental Station of Pests, in Xilingol Rangeland, Ministry of Agriculture, xilin Gol League, Inner Mongolia, P. R. China
| |
Collapse
|
27
|
Cao G, Jia M, Zhao X, Wang L, Tu X, Wang G, Nong X, Zhang Z. Different Effects of Metarhizium anisopliae Strains IMI330189 and IBC200614 on Enzymes Activities and Hemocytes of Locusta migratoria L. PLoS One 2016; 11:e0155257. [PMID: 27227835 PMCID: PMC4881918 DOI: 10.1371/journal.pone.0155257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/26/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Metarhizium is an important class of entomopathogenic fungi in the biocontrol of insects, but its virulence is affected by insect immunity. To clarify the mechanism in virulence of Metarhizium, we compared the immunological differences in Locusta migratoria L. when exposed to two strains of Metarhizium anisopliae (Ma). RESULTS The virulence of Ma IMI330189 was significantly higher than that of Ma IBC200614 to locust, and IMI330189 overcame the hemocytes and began destroying the hemocytes of locust at 72 h after spray, while locust is immune to IBC200614. IMI330189 could overcome the humoral immunity of locust by inhibiting the activities of phenol oxidase (PO), esterases, multi-function oxidases (MFOs) and acetylcholinesterases in locust while increasing the activities of glutathione-S-transferases (GSTs), catalase and aryl-acylamidase (AA). However IBC200614 inhibit the activities of GSTs and AA in locust and increase the activities of MFOs, PO, superoxide dismutase, peroxidase and chitinase in locust. The changes of enzymes activities in period of infection showed that the time period between the 2nd and the 5th day after spray is critical in the pathogenic process. CONCLUSION These results found the phenomenon that Ma initiatively broke host hemocytes, revealed the correlation between the virulence of Ma and the changes of enzymes activities in host induced by Ma, and clarified the critical period in the infection of Ma. So, these results should provide guidance for the construction of efficient biocontrol Ma strains.
Collapse
Affiliation(s)
- Guangchun Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Miao Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xia Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
28
|
Chabi J, Baidoo PK, Datsomor AK, Okyere D, Ablorde A, Iddrisu A, Wilson MD, Dadzie SK, Jamet HP, Diclaro JW. Insecticide susceptibility of natural populations of Anopheles coluzzii and Anopheles gambiae (sensu stricto) from Okyereko irrigation site, Ghana, West Africa. Parasit Vectors 2016; 9:182. [PMID: 27030033 PMCID: PMC4815066 DOI: 10.1186/s13071-016-1462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing spread of insecticide resistance in malaria vectors has been well documented across sub-Saharan Africa countries. The influence of irrigation on increasing vector resistance is poorly understood, and is critical to successful and ethical implementation of food security policies. This study investigated the insecticide resistance status of An. gambiae (s.l.) mosquitoes collected from the irrigated rice area of Okyereko, a village containing about 42 hectares of irrigated field within an irrigation project plan in the Central Region of Ghana. Large amounts of insecticides, herbicides and fertilizers are commonly used in the area to boost the annual production of the rice. METHODS Mosquito larvae were collected and adults were assayed from the F1 progeny. The resistance status, allele and genotype were characterized using WHO susceptibility testing and PCR methods respectively. RESULTS The An. gambiae (s.l.) populations from Okyereko are highly resistant to DDT and pyrethroid insecticides, with possible involvement of metabolic mechanisms including the elevation of P450 and GST enzyme as well as P-gp activity. The population was mostly composed of An. coluzzii specimens (more than 96 %) with kdr and ace-1 frequencies of 0.9 and 0.2 %, respectively. CONCLUSION This study brings additional information on insecticide resistance and the characterization of An. gambiae (s.l.) mosquitoes from Okyereko, which can be helpful in decision making for vector control programmes in the region.
Collapse
Affiliation(s)
- Joseph Chabi
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana. .,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | - Philip K Baidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex K Datsomor
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Dora Okyere
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Aikins Ablorde
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Alidu Iddrisu
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Michael D Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | | | - Joseph W Diclaro
- Vector Biology Research Program, U.S. Naval Medical Research Unit No 3, Cairo, Egypt
| |
Collapse
|
29
|
Donnelly MJ, Isaacs AT, Weetman D. Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol 2015; 32:197-206. [PMID: 26750864 DOI: 10.1016/j.pt.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
Abstract
Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to discover resistance genes and DNA markers have been dominated by candidate gene and quantitative trait locus studies of laboratory strains, but with greater availability of genome sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening of which can give high predictive value. With a shift toward prospective analyses, identification and screening of resistance marker panels will boost monitoring and programmatic decision making.
Collapse
Affiliation(s)
- Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Alison T Isaacs
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
30
|
Wang W, Lv Y, Fang F, Hong S, Guo Q, Hu S, Zou F, Shi L, Lei Z, Ma K, Zhou D, Zhang D, Sun Y, Ma L, Shen B, Zhu C. Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens. Parasit Vectors 2015; 8:95. [PMID: 25880395 PMCID: PMC4337324 DOI: 10.1186/s13071-015-0709-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Mosquito control based on chemical insecticides is considered as an important element in the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of pyrethroid resistance in important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. To date, the mechanisms of pyrethroid resistance are still unclear. Recent advances in proteomic techniques can facilitate to identify pyrethroid resistance-associated proteins at a large-scale for improving our understanding of resistance mechanisms, and more importantly, for seeking some genetic markers used for monitoring and predicting the development of resistance. Methods We performed a quantitative proteomic analysis between a deltamethrin-susceptible strain and a deltamethrin-resistant strain of laboratory population of Culex pipiens pallens using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Gene Ontology (GO) analysis was used to find the relative processes that these differentially expressed proteins were involved in. One differentially expressed protein was chosen to confirm by Western blot in the laboratory and field populations of Cx. pipiens pallens. Results We identified 30 differentially expressed proteins assigned into 10 different categories, including oxidoreductase activity, transporter activity, catalytic activity, structural constituent of cuticle and hypothetical proteins. GO analysis revealed that 25 proteins were sub-categorized into 35 hierarchically-structured GO classifications. Western blot results showed that CYP6AA9 as one of the up-regulated proteins was confirmed to be overexpressed in the deltamethrin-resistant strains compared with the deltamethrin-susceptible strains both in the laboratory and field populations. Conclusions This is the first study to use modern proteomic tools for identifying pyrethroid resistance-related proteins in Cx. pipiens. The present study brought to light many proteins that were not previously thought to be associated with pyrethroid resistance, which further expands our understanding of pyrethroid resistance mechanisms. CYP6AA9 was overexpressed in the deltamethrin-resistant strains, indicating that CYP6AA9 may be involved in pyrethroid resistance and may be used as a potential genetic marker to monitor and predict the pyrethroid resistance level of field populations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0709-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.
| | - Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Fujin Fang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Feifei Zou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Linna Shi
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Kai Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE. Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 2015; 31:72-81. [DOI: 10.1016/j.pt.2014.12.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023]
|
32
|
Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). Int J Mol Sci 2015; 16:2078-98. [PMID: 25607733 PMCID: PMC4307350 DOI: 10.3390/ijms16012078] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.
Collapse
|
33
|
Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:537-59. [PMID: 25564745 DOI: 10.1146/annurev-ento-010814-020828] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mosquito-borne diseases, the most well known of which is malaria, are among the leading causes of human deaths worldwide. Vector control is a very important part of the global strategy for management of mosquito-associated diseases, and insecticide application is the most important component in this effort. However, mosquito-borne diseases are now resurgent, largely because of the insecticide resistance that has developed in mosquito vectors and the drug resistance of pathogens. A large number of studies have shown that multiple, complex resistance mechanisms-in particular, increased metabolic detoxification of insecticides and decreased sensitivity of the target proteins-or genes are likely responsible for insecticide resistance. Gene overexpression and amplification, and mutations in protein-coding-gene regions, have frequently been implicated as well. However, no comprehensive understanding of the resistance mechanisms or regulation involved has yet been developed. This article reviews current knowledge of the molecular mechanisms, genes, gene interactions, and gene regulation governing the development of insecticide resistance in mosquitoes and discusses the potential impact of the latest research findings on the basic and practical aspects of mosquito resistance research.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Insect Molecular Toxicology and Physiology Program, Auburn University, Auburn, Alabama 36849;
| |
Collapse
|
34
|
An LH, Zheng BH, Liu RZ, Fan Q, Wang QK, Luo YF. Transcriptomic response to estrogen exposure in the male Zhikong scallop, Chlamys farreri. MARINE POLLUTION BULLETIN 2014; 89:59-66. [PMID: 25455372 DOI: 10.1016/j.marpolbul.2014.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
The transcriptomes of Zhikong scallop exposed to 17β-estradiol were determined using the Roche/454. A total of 51,997 unigenes, representing 45,030 contigs and 6967 singlets were obtained. And 14,028, 19,798 and 14,981 of these unigenes were annotated from the non-redundant nucleic acid database, non-redundant protein database and Swiss protein database, respectively. A total of 10,699 unigenes were further annotated to biological processes (9080), molecular functions (8692) and cellular components (7829) using the GO, and 8945 unigenes were mapped to biological pathways including the metabolism (2862) and genetic information processing (2263). Most importantly, 16,692 unigenes and 18,686 unigenes in testis, and 10,492 unigenes and 13,186 unigenes in digestive gland were up-regulated significantly after exposure to 50 and 500 ng E2/L; while 10,212 unigenes and 9409 unigenes in testis and 10,629 unigenes and 9463 unigenes in digestive gland were down-regulated. These valuable information provides insights into the mechanisms in invertebrate exposure to EDCs.
Collapse
Affiliation(s)
- Li-Hui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bing-Hui Zheng
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui-Zhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiang Fan
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Tianjin Agricultural College, Tianjin 300384, China
| | | | - Ying-Feng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
35
|
Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. arabiensis. Mol Genet Genomics 2014; 290:201-15. [PMID: 25213601 DOI: 10.1007/s00438-014-0910-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Insecticide resistance is a major impediment to the control of vectors and pests of public health importance and is a strongly selected trait capable of rapid spread, sometimes even between closely related species. Elucidating the mechanisms generating insecticide resistance in mosquito vectors of disease, and understanding the spread of resistance within and between populations and species are vital for the development of robust resistance management strategies. Here, we studied the mechanisms of resistance in two sympatric members of the Anopheles gambiae species complex-the major vector of malaria in sub-Saharan Africa-to understand how resistance has developed and spread in eastern Uganda, a region with some of the highest levels of malaria. In eastern Uganda, where the mosquitoes Anopheles arabiensis and An. gambiae can be found sympatrically, low levels of hybrids (0.4 %) occur, offering a route for introgression of adaptively important variants between species. In independent microarray studies of insecticide resistance, Gste4, an insect-specific glutathione S-transferase, was among the most significantly up-regulated genes in both species. To test the hypothesis of interspecific introgression, we sequenced 2.3 kbp encompassing Gste4. Whilst this detailed sequencing ruled out introgression, we detected strong positive selection acting on Gste4. However, these sequences, followed by haplotype-specific qPCR, showed that the apparent up-regulation in An. arabiensis is a result of allelic variation across the microarray probe binding sites which artefactually elevates the gene expression signal. Thus, face-value acceptance of microarray data can be misleading and it is advisable to conduct a more detailed investigation of the causes and nature of such signal. The identification of positive selection acting on this locus led us to functionally express and characterise allelic variants of GSTE4. Although the in vitro data do not support a direct role for GSTE4 in metabolism, they do support a role for this enzyme in insecticide sequestration. Thus, the demonstration of a role for an up-regulated gene in metabolic resistance to insecticides should not be limited to simply whether it can metabolise insecticide; such a strict criterion would argue against the involvement of GSTE4 despite the weight of evidence to the contrary.
Collapse
|
36
|
Matowo J, Jones CM, Kabula B, Ranson H, Steen K, Mosha F, Rowland M, Weetman D. Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania. Parasit Vectors 2014; 7:274. [PMID: 24946780 PMCID: PMC4082164 DOI: 10.1186/1756-3305-7-274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population. METHODS Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR). RESULTS Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC '2060'), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC '2060'and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC '2060' was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC '2060' was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC '2060' are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. CONCLUSIONS Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC 2060) are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Our study provides replication of CYP4G16 as a candidate gene for pyrethroid resistance in An. arabiensis, although its role may not be in detoxification, and requires further investigation.
Collapse
Affiliation(s)
- Johnson Matowo
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, Kamuliwo M, Phiri FN, Muzia L, Chanda J, Kandyata A, Chirwa B, Poer K, Hemingway J, Wondji CS, Ranson H, Coleman M. Underpinning sustainable vector control through informed insecticide resistance management. PLoS One 2014; 9:e99822. [PMID: 24932861 PMCID: PMC4059741 DOI: 10.1371/journal.pone.0099822] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/19/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. METHODOLOGY/PRINCIPAL FINDINGS A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. CONCLUSIONS/SIGNIFICANCE Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan.
Collapse
Affiliation(s)
- Edward K. Thomsen
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clare Strode
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kay Hemmings
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela J. Hughes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Mulenga Musapa
- Zambia Integrated Systems Strengthening Program, Abt Associates, Lusaka, Zambia
| | | | | | - Lucy Muzia
- Zambia Integrated Systems Strengthening Program, Abt Associates, Lusaka, Zambia
| | | | | | - Brian Chirwa
- Zambia Integrated Systems Strengthening Program, Abt Associates, Lusaka, Zambia
| | - Kathleen Poer
- Zambia Integrated Systems Strengthening Program, Abt Associates, Lusaka, Zambia
| | - Janet Hemingway
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Coleman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
38
|
Zhu G, Zhong D, Cao J, Zhou H, Li J, Liu Y, Bai L, Xu S, Wang MH, Zhou G, Chang X, Gao Q, Yan G. Transcriptome profiling of pyrethroid resistant and susceptible mosquitoes in the malaria vector, Anopheles sinensis. BMC Genomics 2014; 15:448. [PMID: 24909924 PMCID: PMC4070547 DOI: 10.1186/1471-2164-15-448] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/28/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anopheles sinensis is a major malaria vector in China and other Southeast Asian countries, and it is becoming increasingly resistant to the insecticides used for agriculture, net impregnation, and indoor residual spray. Very limited genomic information on this species is available, which has hindered the development of new tools for resistance surveillance and vector control. We used the 454 GS FLX system and generated expressed sequence tag (EST) databases of various life stages of An. sinensis, and we determined the transcriptional differences between deltamethrin resistant and susceptible mosquitoes. RESULTS The 454 GS FLX transcriptome sequencing yielded a total of 624,559 reads (average length of 290 bp) with the pooled An. sinensis mosquitoes across various development stages. The de novo assembly generated 33,411 contigs with average length of 493 bp. A total of 8,057 ESTs were generated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. A total of 2,131 ESTs were differentially expressed between deltamethrin resistant and susceptible mosquitoes collected from the same field site in Jiangsu, China. Among these differentially expressed ESTs, a total of 294 pathways were mapped to the KEGG database, with the predominant ESTs belonging to metabolic pathways. Furthermore, a total of 2,408 microsatellites and 15,496 single nucleotide polymorphisms (SNPs) were identified. CONCLUSIONS The annotated EST and transcriptome databases provide a valuable genomic resource for further genetic studies of this important malaria vector species. The differentially expressed ESTs associated with insecticide resistance identified in this study lay an important foundation for further functional analysis. The identified microsatellite and SNP markers will provide useful tools for future population genetic and comparative genomic analyses of malaria vectors.
Collapse
Affiliation(s)
- Guoding Zhu
- />Department of Parasitology, Medical College of Soochow University, Suzhou, 215123 PR China
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
- />Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Daibin Zhong
- />Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Jun Cao
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Huayun Zhou
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Julin Li
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Yaobao Liu
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Liang Bai
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Sui Xu
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Mei-Hui Wang
- />Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guofa Zhou
- />Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Xuelian Chang
- />Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Qi Gao
- />Department of Parasitology, Medical College of Soochow University, Suzhou, 215123 PR China
- />Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu Province 214064 PR China
| | - Guiyun Yan
- />Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
39
|
Balmert NJ, Rund SSC, Ghazi JP, Zhou P, Duffield GE. Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:30-39. [PMID: 24631684 DOI: 10.1016/j.jinsphys.2014.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/12/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
Mosquitoes exhibit ∼24 h rhythms in physiology and behavior, regulated by the cooperative action of an endogenous circadian clock and the environmental light:dark cycle. Here, we characterize diel (observed under light:dark conditions) time-of-day changes in metabolic detoxification and resistance to insecticide challenge in Anopheles gambiae mosquitoes. A better understanding of mosquito chronobiology will yield insights into developing novel control strategies for this important disease vector. We have previously identified >2000 rhythmically expressed An. gambiae genes. These include metabolic detoxification enzymes peaking at various times throughout the day. Especially interesting was the identification of rhythmic genes encoding enzymes capable of pyrethroid and/or DDT metabolism (CYP6M2, CYP6P3, CYP6Z1, and GSTE2). We hypothesized that these temporal changes in gene expression would confer time-of-day specific changes in metabolic detoxification and responses to insecticide challenge. An. gambiae mosquitoes (adult female Pimperena and Mali-NIH strains) were tested by gene expression analysis for diel rhythms in key genes associated with insecticidal resistance. Biochemical assays for total GST, esterase, and oxidase enzymatic activities were undertaken on time-specific mosquito head and body protein lysates. To determine for rhythmic susceptibility to insecticides by survivorship, mosquitoes were exposed to DDT or deltamethrin across the diel cycle. We report the occurrence of temporal changes in GST activity in samples extracted from the body and head with a single peak at late-night to dawn, but no rhythms were detected in oxidase or esterase activity. The Pimperena strain was found to be resistant to insecticidal challenge, and subsequent genomic analysis revealed the presence of the resistance-conferring kdr mutation. We observed diel rhythmicity in key insecticide detoxification genes in the Mali-NIH strain, with peak phases as previously reported in the Pimperena strain. The insecticide sensitive Mali-NIH strain mosquitoes exhibited a diel rhythm in survivorship to DDT exposure and a bimodal variation to deltamethrin challenge. Our results demonstrate rhythms in detoxification and pesticide susceptibility in An. gambiae mosquitoes; this knowledge could be incorporated into mosquito control and experimental design strategies, and contributes to our basic understanding of mosquito biology.
Collapse
Affiliation(s)
- Nathaniel J Balmert
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Samuel S C Rund
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John P Ghazi
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
40
|
Saavedra-Rodriguez K, Strode C, Flores AE, Garcia-Luna S, Reyes-Solis G, Ranson H, Hemingway J, Black WC. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. INSECT MOLECULAR BIOLOGY 2014; 23:199-215. [PMID: 24299217 PMCID: PMC4091897 DOI: 10.1111/imb.12073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.
Collapse
Affiliation(s)
| | - Clare Strode
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adriana E. Flores
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - Selene Garcia-Luna
- Department of Microbiology, Colorado State University, Fort Collins, Colorado
| | | | - Hilary Ranson
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Janet Hemingway
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - William C. Black
- Department of Microbiology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
41
|
Nardini L, Blanford S, Coetzee M, Koekemoer LL. Effect of Beauveria bassiana infection on detoxification enzyme transcription in pyrethroid resistant Anopheles arabiensis: a preliminary study. Trans R Soc Trop Med Hyg 2014; 108:221-7. [PMID: 24561325 DOI: 10.1093/trstmh/tru021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fungal biopesticides are of great interest to vector control scientists as they provide a novel and environmentally friendly alternative to insecticide use. The aim of this study was to determine whether genes associated with pyrethroid resistance in Anopheles arabiensis from Sudan and South Africa are further induced following exposure to the entomopathogenic fungus, Beauveria bassiana (strain GHA). METHODS Following B. bassiana bioassays, RNA was extracted from infected mosquitoes and the transcription of four important insecticide resistance genes, CYP9L1, CYP6M2 and CYP4G16 (cytochrome P450s) and TPX4 (thioredoxin peroxidase) was investigated using quantitative real-time PCR. RESULTS Beauveria bassiana strain GHA was highly infective and virulent against An. arabiensis. In terms of changes in gene transcription, overall, the fold change (FC) values for each gene in the infected strains, were lower than 1.5. The FC values of CYP9L1, CYP6M2 and TPX4, were significantly lower than the FC values of the same genes in uninfected resistant An. arabiensis. CONCLUSION These data suggest that B. bassiana does not enhance the pyrethroid resistant phenotype on a molecular level as the two An. arabiensis strains used here, with different pyrethroid resistance mechanisms, revealed no increase in pre-existing metabolic transcripts. This supports the fact that fungal pathogens are suitable candidates for vector control, particularly with regard to the development of novel vector control strategies.
Collapse
Affiliation(s)
- Luisa Nardini
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, a Division of the National Health Laboratory Services, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | | | | | | |
Collapse
|
42
|
Kabula B, Kisinza W, Tungu P, Ndege C, Batengana B, Kollo D, Malima R, Kafuko J, Mohamed M, Magesa S. Co-occurrence and distribution of East (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania. Trop Med Int Health 2014; 19:331-341. [PMID: 24386946 PMCID: PMC4190685 DOI: 10.1111/tmi.12248] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objective Insecticide resistance molecular markers can provide sensitive indicators of resistance development in Anopheles vector populations. Assaying these makers is of paramount importance in the resistance monitoring programme. We investigated the presence and distribution of knock-down resistance (kdr) mutations in Anopheles gambiae s.l. in Tanzania. Methods Indoor-resting Anopheles mosquitoes were collected from 10 sites and tested for insecticide resistance using the standard WHO protocol. Polymerase chain reaction-based molecular diagnostics were used to genotype mosquitoes and detect kdr mutations. Results The An. gambiae tested were resistance to lambdacyhalothrin in Muheza, Arumeru and Muleba. Out of 350 An. gambiae s.l. genotyped, 35% were An. gambiae s.s. and 65% An. arabiensis. L1014S and L1014F mutations were detected in both An. gambiae s.s. and An. arabiensis. L1014S point mutation was found at the allelic frequency of 4–33%, while L1014F was at the allelic frequency 6–41%. The L1014S mutation was much associated with An. gambiae s.s. (χ2 = 23.41; P < 0.0001) and L1014F associated with An. arabiensis (χ2 = 11.21; P = 0.0008). The occurrence of the L1014S allele was significantly associated with lambdacyhalothrin resistance mosquitoes (Fisher exact P < 0.001). Conclusion The observed co-occurrence of L1014S and L1014F mutations coupled with reports of insecticide resistance in the country suggest that pyrethroid resistance is becoming a widespread phenomenon among our malaria vector populations. The presence of L1014F mutation in this East African mosquito population indicates the spreading of this gene across Africa. The potential operational implications of these findings on malaria control need further exploration. Objectif Les marqueurs moléculaires de la résistance aux insecticides peuvent fournir des indicateurs sensibles du développement de la résistance dans les populations de vecteurs Anopheles. Le test de ces indicateurs est d'une importance énorme dans le programme de surveillance de la résistance. Nous avons étudié la présence et la répartition des mutations de résistance knockdown (kdr) chez Anopheles gambiae s.l. en Tanzanie. Méthodes Des anophèles d'intérieur, au repos ont été collectées dans 10 sites et testées pour la résistance aux insecticides en utilisant le protocole standard de l'OMS. Les diagnostics moléculaires basés sur la PCR ont été utilisés pour le génotypage des moustiques et la détection des génotypes kdr. Résultats Les An. gambiae testées étaient résistantes à la lambdacyhalothrine à Muheza, Arumeru et Muleba. Sur 350 An. gambiae s.l. génotypées, 35% étaient An. gambiae s.s. et 65% étaient An. arabiensis. Les mutations L1014S et L1014F ont été détectées à la fois chez An. gambiae s.s. et An. arabiensis. La mutation ponctuelle L1014S a été trouvée à la fréquence allélique de 4 à 33%, tandis que L1014F était à la fréquence allélique de 6 à 14%. La mutation L1014S a été fortement associée à An. gambiae s.s. (Chi carré = 23,41; P<0,0001) et L1014F était associée à An. arabiensis (chi carré = 11,21; P = 0,0008). L'allèle L1014S était significativement associé aux moustiques résistants à la lambdacyhalothrine (Fisher P exact <0,001). Conclusion La cooccurrence des mutations L1014S et L1014F couplées à des rapports sur la résistance aux insecticides suggèrent que la résistance aux pyréthrinoïdes est en train de devenir un phénomène répandu dans les populations de vecteurs du paludisme en Tanzanie. La présence de la mutation L1014F dans cette population de moustiques en Afrique de l'Est indique la propagation de ce gène à travers l'Afrique. L'investigation des implications opérationnelles potentielles de ces résultats sur le contrôle du paludisme devraient être approfondie. Objetivo Los marcadores moleculares de resistencia a insecticidas pueden ser indicadores sensibles del desarrollo de resistencias en las poblaciones de los vectores Anopheles. Evaluar dichos marcadores es crucial para los programas de monitorización de resistencias. Hemos investigado la presencia y la distribución de las mutaciones de resistencia knockdown (kdr) en Anopheles gambiae s.l. en Tanzania. Métodos Se recolectaron mosquitos Anopheles intradomiciliarios de 10 lugares diferentes y se evaluaron en busca de resistencia a insecticidas utilizando el protocolo estándar de la OMS. Mediante un diagnóstico molecular basado en la PCR se genotiparon los mosquitos y se detectaron los genotipos kdr. Resultados Los An. gambiae evaluados eran resistentes a lambdacialotrina en Muheza, Arumeru y Muleba. De 350 An. gambiae s.l. genotipados, 35% eran An. gambiae s.s. y 65% eran An. arabiensis. Se detectaron mutaciones L1014S y L1014F tanto en An. gambiae s.s. como en An. arabiensis. La mutación puntual L1014S se encontró con una frecuencia alélica de 4-33%, mientras que L1014F tenía una frecuencia alélica de 6-14%. La mutación L1014S estaba ampliamente asociada a An. gambiae s.s. (Chi-Cuadrado = 23.41; P < 0.0001) y la L1014F estaba asociada con An. arabiensis (Chi-Square = 11.21; P = 0.0008). El alelo L1014S estaba significativamente asociado con mosquitos resistentes a la lambdacialotrina (P < 0.001). Conclusión La simultaneidad de mutaciones de L1014S y L1014F junto con informes de resistencia a los insecticidas sugiere que la resistencia a piretroides se está convirtiendo en un fenómeno común entre las poblaciones del vector de la malaria en Tanzania. La presencia de la mutación L1014F en estas poblaciones del Este de África indican la diseminación del gen a lo largo del continente africano. Determinar las implicaciones potenciales a nivel operativo de estos hallazgos sobre el control de la malaria requiere de más estudios.
Collapse
Affiliation(s)
- Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania.,Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Patrick Tungu
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Chacha Ndege
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, Tanzania
| | - Benard Batengana
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Douglas Kollo
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, Tanzania
| | - Robert Malima
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Jessica Kafuko
- The Presidents' Malaria Initiative, PMI/USAID Office, Dar es Salaam, Tanzania
| | - Mahdi Mohamed
- Global Health Division, RTI International, Dar es Salaam, Tanzania
| | - Stephen Magesa
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania.,Global Health Division, RTI International, Nairobi, Kenya
| |
Collapse
|
43
|
Pondeville E, David JP, Guittard E, Maria A, Jacques JC, Ranson H, Bourgouin C, Dauphin-Villemant C. Microarray and RNAi analysis of P450s in Anopheles gambiae male and female steroidogenic tissues: CYP307A1 is required for ecdysteroid synthesis. PLoS One 2013; 8:e79861. [PMID: 24324583 PMCID: PMC3851169 DOI: 10.1371/journal.pone.0079861] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/24/2013] [Indexed: 11/26/2022] Open
Abstract
In insects, the steroid hormone 20-hydroxyecdysone (20E) coordinates major developmental transitions. While the first and the final steps of 20E biosynthesis are characterized, the pathway from 7-dehydrocholesterol to 5β-ketodiol, commonly referred as the “black box”, remains hypothetical and whether there are still unidentified enzymes is unknown. The black box would include some oxidative steps, which are believed to be mediated by P450 enzymes. To identify new enzyme(s) involved in steroid synthesis, we analyzed by small-scale microarray the expression of all the genes encoding P450 enzymes of the malaria mosquito Anopheles gambiae in active steroidogenic organs of adults, ovaries from blood-fed females and male reproductive tracts, compared to inactive steroidogenic organs, ovaries from non-blood-fed females. Some genes encoding P450 enzymes were specifically overexpressed in female ovaries after a blood-meal or in male reproductive tracts but only three genes were found to be overexpressed in active steroidogenic organs of both females and males: cyp307a1, cyp4g16 and cyp6n1. Among these genes, only cyp307a1 has an expression pattern similar to other mosquito steroidogenic genes. Moreover, loss-of-function by transient RNAi targeting cyp307a1 disrupted ecdysteroid production demonstrating that this gene is required for ecdysteroid biosynthesis in Anopheles gambiae.
Collapse
Affiliation(s)
- Emilie Pondeville
- Biogenèse des Stéroïdes, FRE2852, CNRS-UPMC, Paris, France
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- * E-mail:
| | - Jean-Philippe David
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Laboratoire d'Ecologie Alpine, UMR 5553, CNRS-Université de Grenoble, Grenoble, France
| | | | - Annick Maria
- Biogenèse des Stéroïdes, FRE2852, CNRS-UPMC, Paris, France
| | - Jean-Claude Jacques
- Centre de Production et d'Infection des Anophèles, Institut Pasteur, Paris, France
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Catherine Bourgouin
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Centre de Production et d'Infection des Anophèles, Institut Pasteur, Paris, France
| | - Chantal Dauphin-Villemant
- Biogenèse des Stéroïdes, FRE2852, CNRS-UPMC, Paris, France
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Suisse
| |
Collapse
|
44
|
The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 2013; 455:75-85. [PMID: 23844938 PMCID: PMC3778711 DOI: 10.1042/bj20130577] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Collapse
|
45
|
Structure and Function of Cytochrome P450S in Insect Adaptation to Natural and Synthetic Toxins: Insights Gained from Molecular Modeling. J Chem Ecol 2013; 39:1232-45. [DOI: 10.1007/s10886-013-0335-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 01/14/2023]
|
46
|
Nardini L, Christian RN, Coetzer N, Koekemoer LL. DDT and pyrethroid resistance in Anopheles arabiensis from South Africa. Parasit Vectors 2013; 6:229. [PMID: 23924547 PMCID: PMC3751093 DOI: 10.1186/1756-3305-6-229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/02/2013] [Indexed: 11/11/2022] Open
Abstract
Background Pyrethroid resistance has been well documented in Anopheles arabiensis, one of the major African malaria vectors, and the predominant malaria vector in South Africa. Methods In this study, the genetic basis of pyrethroid resistance in a selected laboratory strain of An. arabiensis from South Africa was investigated using a custom-made microarray, known as the An. gambiae detoxification chip. Results A large number of P450 genes were over-transcribed, as well as a suite of redox genes and glutathione S-transferases. The five genes that showed the highest level of gene transcription when compared with an insecticide susceptible strain were: CYP6AG2, CYPZ1, TPX2, CYPZ2 and CYP6P1. Conclusions Permethrin resistance in South African An. arabiensis is associated with increased transcription of multiple genes, and a large proportion of these genes were also previously recorded as over-transcribed in another An. arabiensis strain selected for resistance to DDT with cross-resistance to deltamethrin. The deltamethrin resistance developed de novo in the DDT-selected strain and is most likely due to increased transcription of those genes associated with DDT resistance. However, of particular interest was the fact that the strain selected for resistance to pyrethroids did not develop de novo resistance to DDT. These differences are compared and discussed.
Collapse
Affiliation(s)
- Luisa Nardini
- Division of the National Health Laboratory Services, Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Johannesburg , Sandringham, South Africa.
| | | | | | | |
Collapse
|
47
|
Marinotti O, Cerqueira GC, de Almeida LGP, Ferro MIT, Loreto ELDS, Zaha A, Teixeira SMR, Wespiser AR, Almeida E Silva A, Schlindwein AD, Pacheco ACL, Silva ALDCD, Graveley BR, Walenz BP, Lima BDA, Ribeiro CAG, Nunes-Silva CG, de Carvalho CR, Soares CMDA, de Menezes CBA, Matiolli C, Caffrey D, Araújo DAM, de Oliveira DM, Golenbock D, Grisard EC, Fantinatti-Garboggini F, de Carvalho FM, Barcellos FG, Prosdocimi F, May G, Azevedo Junior GMD, Guimarães GM, Goldman GH, Padilha IQM, Batista JDS, Ferro JA, Ribeiro JMC, Fietto JLR, Dabbas KM, Cerdeira L, Agnez-Lima LF, Brocchi M, de Carvalho MO, Teixeira MDM, Diniz Maia MDM, Goldman MHS, Cruz Schneider MP, Felipe MSS, Hungria M, Nicolás MF, Pereira M, Montes MA, Cantão ME, Vincentz M, Rafael MS, Silverman N, Stoco PH, Souza RC, Vicentini R, Gazzinelli RT, Neves RDO, Silva R, Astolfi-Filho S, Maciel TEF, Urményi TP, Tadei WP, Camargo EP, de Vasconcelos ATR. The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res 2013; 41:7387-400. [PMID: 23761445 PMCID: PMC3753621 DOI: 10.1093/nar/gkt484] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.
Collapse
Affiliation(s)
- Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA, Institute of Technology, Broad Institute of Harvard and Massachusetts, Cambridge, MA 02141, USA, Laboratório de Bioinformática do Laboratório Nacional de Computação Científica, Petrópolis, RJ 25651-075, Brasil, Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP -Universidade Estadual Paulista, SP 14884-900, Brasil, Departamento de Biologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil, Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brasil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brasil, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA, Laboratório de Entomologia Médica IPEPATRO/FIOCRUZ, Porto Velho, RO 76812-245, Brasil, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brasil, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, CE 62042-280, Brasil, Departamento de Ciências Biológicas, Campus Senador Helvídio Nunes de Barros, Universidade Federal do Piauí, Picos, PI 60740-000, Brasil, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-900, Brasil, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA, Informatics, The J. Craig Venter Institute, Medical Center Drive, Rockville, MD 20850, USA, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP 13083-862, Brasil, Departamento de Genética e Melhoramento, Universidade Federal de Viçosa, MG 36570-000, Brasil, Centro de Apoio Mul
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fossog Tene B, Poupardin R, Costantini C, Awono-Ambene P, Wondji CS, Ranson H, Antonio-Nkondjio C. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PLoS One 2013; 8:e61408. [PMID: 23626680 PMCID: PMC3634070 DOI: 10.1371/journal.pone.0061408] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the city of Yaoundé in Cameroon malaria is predominately transmitted by the M and S molecular forms of Anopheles gambiae and both are resistant to the pyrethroid insecticides and DDT. Mutations in the target site of these insecticides, present at a high frequency in malaria vectors in this city, contribute to this resistance profile. To identify additional resistance mechanisms, the expression profile of multiple DDT-resistant field populations of M and S molecular forms was compared to laboratory-susceptible populations. METHODOLOGY/PRINCIPAL FINDINGS The prevalence of DDT resistance was highest in the S form population originating from the cultivated site of Nkolondom (mortality after WHO bioassay = 4%). A high prevalence of DDT resistance was also found in two urban M form populations, Messa from a pristine unpolluted environment (DDT mortality = 54%), and Gare, where the breeding sites are heavily polluted with organic matter (DDT mortality = 38%). Microarray analysis showed that several transcripts coding for detoxification enzymes (P450s, GSTs and UDPGTs) and ABC transporters were upregulated in the three populations. Despite the presence of multiple detoxification genes over expressed in the DDT-resistant subset of these field populations, only three were commonly over expressed in resistant populations from all three environments. Two of these genes, CYP6M2 and GSTD1-6, encode enzymes that have been previously shown to metabolize DDT. CONCLUSION/SIGNIFICANCE Analogous to target site resistance, genes involved in metabolic resistance to DDT are also shared between the M and S forms of An gambiae. Alternative explanations for this occurrence are explored.
Collapse
Affiliation(s)
- Billy Fossog Tene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, Cameroon
| | - Rodolphe Poupardin
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carlo Costantini
- Institut de Recherche pour le Développement, UMR IRD 224 Centre national de la recherche scientifique 5290 Université de Montpellier 1 Université de Montpellier 2, Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, Montpellier, France
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Charles S. Wondji
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hilary Ranson
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
49
|
Rund SS, Gentile JE, Duffield GE. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics 2013; 14:218. [PMID: 23552056 PMCID: PMC3642039 DOI: 10.1186/1471-2164-14-218] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/14/2013] [Indexed: 09/08/2024] Open
Abstract
Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vector mosquito. Results In time courses from An. gambiae head and body collected under light:dark cycle (LD) and constant dark (DD) conditions, we applied three algorithms that detect sinusoidal patterns and an algorithm that detects spikes in expression. This revealed across four experimental conditions 393 probes newly scored as rhythmic. These genes correspond to functions such as metabolic detoxification, immunity and nutrient sensing. This includes glutathione S-transferase GSTE5, whose expression pattern and chromosomal location are shared with other genes, suggesting shared chromosomal regulation; and pulsatile expression of the gene encoding CYP6M2, a cytochrome P450 that metabolizes pyrethroid insecticides. We explored the interaction of light and the circadian clock and highlight the regulation of odorant binding proteins (OBPs), important components of the olfactory system. We reveal that OBPs have unique expression patterns as mosquitoes make the transition from LD to DD conditions. We compared rhythmic expression between An. gambiae and Ae. aegypti heads collected under LD conditions using a single cosine fitting algorithm, and report distinct similarities and differences in the temporal regulation of genes involved in tRNA priming, the vesicular-type ATPase, olfaction and vision between the two species. Conclusions These data build on our previous analyses of time-of-day specific regulation of the An. gambiae transcriptome to reveal additional rhythmic genes, an improved understanding of the co-regulation of rhythms in gene expression by the circadian clock and by light, and an understanding of the time-of-day specific regulation of some of these rhythmic processes in comparison with a different species of mosquito. Improved understanding of biological timing at the molecular level that underlies key physiological aspects of mosquito vectors may prove to be important to successful implementation of established and novel insect control methods.
Collapse
Affiliation(s)
- Samuel Sc Rund
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame IN 46556, USA
| | | | | |
Collapse
|
50
|
Nkya TE, Akhouayri I, Kisinza W, David JP. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:407-16. [PMID: 23123179 DOI: 10.1016/j.ibmb.2012.10.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 05/23/2023]
Abstract
By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- National Institute of Medical Research of Tanzania, Amani Medical Research Centre, Muheza, Tanga, Tanzania
| | | | | | | |
Collapse
|