1
|
Zhao Y, Ma Y, Qiu H, Zhou L, He K, Ye Y. Wake up: the regulation of dormancy release and bud break in perennial plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1553953. [PMID: 40115948 PMCID: PMC11924409 DOI: 10.3389/fpls.2025.1553953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
In order to survive harsh winter conditions, perennial trees in the temperate and frigid regions enter a dormant state and cease growth in late summer after vigorous growth in spring and summer. After experiencing prolonged cold temperature and short days in winter, trees release their dormancy, and they resume growth to produce new buds in the following spring, a process known as bud break. The establishment/release of bud dormancy and bud break are crucial for the adaptations of woody plants and their survival in the natural environment. Photoperiod and temperature are key regulators in the bud dormancy and break cycle. In recent years, significant progress has been made in understanding the molecular mechanism for how photoperiod and temperature regulate seasonal growth and dormancy. Here, we summarized the regulatory network and mechanisms underlying the seasonal growth of perennial woody plants in the temperate and frigid regions, focusing on several molecular modules including the photoperiod, circadian clock, EARLY BUD BREAK 1 (EBB1) - SHORT VEGETATIVE PHASE Like (SVL) - EARLY BUD BREAK 3 (EBB3) module and hormone regulation. Through these modules, we will summarize how perennial trees release dormancy and bud break in order to better understand their differences and connections. By elucidating the interactions among these factors, we also point out the questions and challenges need to be addressed in understanding the bud dormancy and break cycle of perennial plants.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yahui Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Hanruo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Sahoo P, Ullah I, Sahoo D, Bose C, Zia MA, Lodhi SS, Seleiman MF, Ali N, Kumar G, Asad S, Nanda S. Analysis of the CRK expressions in bottle gourd (Lagenaria siceraria) under Fusarium oxysporum f. sp. lagenariae stress by using genome-wide identification strategy. BMC Genomics 2025; 26:213. [PMID: 40033183 DOI: 10.1186/s12864-025-11349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The cysteine-rich receptor-like kinases (CRKs) family in plants have been reported to perform multiple functions against various stresses. However, the CRK family in bottle gourd (Lagenaria siceraria) has not been well-explored. Herein, a comprehensive genome-wide identification and characterization of the CRK gene family has been carried out in bottle gourd under Genome-wide characterization of CRK genes in bottle gourds under Fusarium oxysporum f. sp. lagenariae infection. RESULTS A stringent set of bioinformatic analyses identified 18 LsCRKs in the bottle gourd genome. Chromosomal mapping of the identified LsCRKs revealed that the LsCRKs were distributed in 4 chromosomes in the bottle gourd genome. The phylogenetic analysis of LsCRKs divided them into two subgroups on the tree. The synteny and collinearity analysis of the LsCRKs among themselves and other plant CRKs provided insights into their conservancy and expansion. Gene ontology analysis of the identified LsCRKs suggested their possible roles in regulating different physiological processes and stress responses in bottle gourd. To assess the involvement of the LsCRKs under F. oxysporum f. sp. lagenariae infection, bottle gourd seedlings were transplanted into the pots with F. oxysporum-infected soil. The expression analysis revealed that multiple LsCRKs exhibited induced expression, suggesting their involvement in bottle gourd-F. oxysporum interactions. Additionally, the protein-protein interaction analysis suggested some important interacting partners of LsCRKs crucial to different physiological processes in bottle gourd. CONCLUSIONS The present work explored and analyzed the LsCRKs in bottle gourd. Functional predictions and interaction network analysis suggested the roles of LsCRKs in modulating multiple physiological processes in bottle gourd. The expression dynamics of LsCKRs under fungal pathogen infection suggest their involvement in stress response in bottle gourds. Overall, the results of the study provide basic information about the CRK family in bottle gourds and their involvement in fungal pathogen response.
Collapse
Affiliation(s)
- Preetinanda Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Ikram Ullah
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Debarpita Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Chirasmita Bose
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | | | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Nawab Ali
- Department of Biosystems and Agricultural Engineering (BAE), College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Gagan Kumar
- Department of Plant Pathology, College of Agriculture, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, 224229, Uttar Pradesh, India
| | - Suhail Asad
- School of Tea and Coffee, Pu'er University, Pu'er, 665000, China.
| | - Satyabrata Nanda
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
3
|
Rieseberg TP, Dadras A, Darienko T, Post S, Herrfurth C, Fürst-Jansen JMR, Hohnhorst N, Petroll R, Rensing SA, Pröschold T, de Vries S, Irisarri I, Feussner I, de Vries J. Time-resolved oxidative signal convergence across the algae-embryophyte divide. Nat Commun 2025; 16:1780. [PMID: 39971942 PMCID: PMC11840003 DOI: 10.1038/s41467-025-56939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses, their concerted action is little understood. Here, we combine time-course stress profiling using photophysiology, transcriptomics on 2.7 Tbp of data, and metabolite profiling analyses on 270 distinct samples, to study stress kinetics across three 600-million-year-divergent streptophytes. Through co-expression analysis and Granger causal inference we predict a gene regulatory network that retraces a web of ancient signal convergences at ethylene signaling components, osmosensors, and chains of major kinases. These kinase hubs already integrated diverse environmental inputs since before the dawn of plants on land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| | - Armin Dadras
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tatyana Darienko
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Albrecht Haller Institute of Plant Science, Experimental Phycology and Culture Collection of Algae at Göttingen University (EPSAG), Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Sina Post
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Janine M R Fürst-Jansen
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Nils Hohnhorst
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stefan A Rensing
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Thomas Pröschold
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Innsbruck, Research Department for Limnology, 5310, Mondsee, Austria
| | - Sophie de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Iker Irisarri
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Department of Biodiversity and Evolutionary Biology, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ivo Feussner
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Justus- von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Sheng H, Zhang H, Deng H, Zhang Z, Qiu F, Yang F. Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting. THE PLANT CELL 2025; 37:koaf029. [PMID: 39928526 PMCID: PMC11879032 DOI: 10.1093/plcell/koaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Compact plant architecture allows more efficient light capture under higher planting density. Thus, it is a crucial strategy for improving crop yield, particularly in maize (Zea mays L.). Here, we isolated a maize gene, COMPACT PLANT 3 (CT3), regulating plant architecture, using map-based cloning. CT3, encoding a GRAS protein, interacts with an AP2 transcription factor (TF), DWARF AND IRREGULAR LEAF 1 (DIL1). The genetic analysis showed that CT3 and DIL1 regulate leaf angle and plant height via the same pathway, supporting the biological role of their interaction by forming a complex. Transcriptome and DNA profiling analyses revealed that these 2 TFs share many common target genes. We further observed that CT3 functions as a co-regulator to enhance the DNA affinity and transcriptional activity of DIL1. This finding was further supported by the direct binding of DIL1 to 2 cell wall-related genes, ZmEXO1 and ZmXTH14, which were downregulated in the ct3 mutant. Furthermore, ZmEXO1 regulated plant architecture in a manner similar to CT3- and DIL1-mediated regulation. Zmexo1, ct3, and dil1 mutants showed defective cell wall integrity and had reduced cell wall-related components. The introduction of the ct3 or dil1 mutant allele into elite maize hybrids led to a more compact architecture and increased yield under high planting density. Our findings reveal a regulatory pathway of maize plant architecture and provide targets to increase yield under high planting density.
Collapse
Affiliation(s)
- Huangjun Sheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Pring S, Kato H, Taniuchi K, Camagna M, Saito M, Tanaka A, Merritt BA, Argüello-Miranda O, Sato I, Chiba S, Takemoto D. Mixed DAMP/MAMP oligosaccharides promote both growth and defense against fungal pathogens of cucumber. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630494. [PMID: 39763901 PMCID: PMC11703256 DOI: 10.1101/2024.12.27.630494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber. Treatment of cucumber with Oligo-Mix promoted root germination and plant growth, along with increased chlorophyll contents in the leaves. Oligo-Mix treatment also induced typical defense responses such as MAP kinase activation and callose deposition in leaves. Pretreatment of Oligo-Mix enhanced disease resistance of cucumber leaves against pathogenic fungi Podosphaera xanthii (powdery mildew) and Colletotrichum orbiculare (anthracnose). Oligo-Mix treatment increased the induction of hypersensitive cell death around the infection site of pathogens, which inhibited further infection and the conidial formation of pathogens on the cucumber leaves. RNA-seq analysis revealed that Oligo-Mix treatment upregulated genes associated with plant structural reinforcement, responses to abiotic stresses and plant defense. These results suggested that Oligo-Mix has beneficial effects on growth and disease resistance in cucumber, making it a promising biostimulant for agricultural application.
Collapse
Affiliation(s)
- Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Hiroaki Kato
- Graduate School of Agriculture, Kyoto University, Muko, Kyoto, 617-0001, Japan
| | - Keiko Taniuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Makoto Saito
- Resonac Corporation (Showa Denko K.K.), Tokyo, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Bryn A. Merritt
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612 USA
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612 USA
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
6
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Zhang C, Liu Z, Shu S, Li X, Li Y, Liu L, Liu L, Wang X, Li F, Qanmber G, Yang Z. GhEXL3 participates in brassinosteroids regulation of fiber elongation in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:491-504. [PMID: 39172024 DOI: 10.1111/tpj.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Cotton fiber (Gossypium hirsutum) serves as an ideal model for investigating the molecular mechanisms of plant cell elongation at the single-cell level. Brassinosteroids (BRs) play a crucial role in regulating plant growth and development. However, the mechanism by which BR influences cotton fiber elongation remains incompletely understood. In this study, we identified EXORDIUM-like (GhEXL3) through transcriptome analysis of fibers from BR-deficient cotton mutant pagoda 1 (pag1) and BRI1-EMS-SUPPRESSOR 1 (GhBES1.4, encoding a central transcription factor of BR signaling) overexpression cotton lines. Knockout of GhEXL3 using CRISPR/Cas9 was found to impede cotton fiber elongation, while its overexpression promoted fiber elongation, suggesting a positive regulatory function for GhEXL3 in fiber elongation. Furthermore, in vitro ovule culture experiments revealed that the overexpression of GhEXL3 partially counteracted the inhibitory effects of brassinazole (BRZ) on cotton fiber elongation, providing additional evidence of GhEXL3 involvement in BR signaling pathways. Moreover, our findings demonstrate that GhBES1.4 directly binds to the E-box (CACGTG) motif in the GhEXL3 promoter region and enhances its transcription. RNA-seq analysis revealed that overexpression of GhEXL3 upregulated the expression of EXPs, XTHs, and other genes associated with fiber cell elongation. Overall, our study contributes to understanding the mechanism by which BR regulates the elongation of cotton fibers through the direct modulation of GhEXL3 expression by GhBES1.4.
Collapse
Affiliation(s)
- Changsheng Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Sheng Shu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinyang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujun Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Le Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Liu
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi, China
| | - Xuwen Wang
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
8
|
Hu Z, Wu Z, Zhu Q, Ma M, Li Y, Dai X, Han S, Xiang S, Yang S, Luo J, Kong Q, Ding J. Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:3181-3197. [PMID: 38712996 DOI: 10.1111/pce.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For trees originating from boreal and temperate regions, the dormancy-to-active transition, also known as bud dormancy release and bud break, are crucial processes that allow trees to reactive growth in the spring. The molecular mechanisms underlying these two processes remain poorly understood. Here, through integrative multiomics analysis of the transcriptome, DNA methylome, and proteome, we gained insights into the reprogrammed cellular processes associated with bud dormancy release and bud break. Our findings revealed multilayer regulatory landscapes governing bud dormancy release and bud break regulation, providing a valuable reference framework for future functional studies. Based on the multiomics analysis, we have determined a novel long intergenic noncoding RNA named Phenology Responsive Intergenic lncRNA 1 (PRIR1) plays a role in the activation of bud break. that the molecular mechanism of PRIR1 has been preliminary explored, and it may partially promote bud break by activating its neighbouring gene, EXORDIUM LIKE 5 (PtEXL5), which has also been genetically confirmed as an activator for bud break. This study has revealed a lncRNA-mediated regulatory mechanism for the control of bud break in Populus, operating independently of known regulatory pathways.
Collapse
Affiliation(s)
- Zhenzhu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Mingru Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Shaopeng Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Siting Yang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Jie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Amalraj A, Baumann U, Hayes JE, Sutton T. Using RNA sequencing to unravel molecular changes underlying the defense response in chickpea induced by Phytophthora medicaginis. PHYSIOLOGIA PLANTARUM 2024; 176:e14412. [PMID: 38952339 DOI: 10.1111/ppl.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Phytophthora root rot (PRR), caused by Phytophthora medicaginis, is a major soil-borne disease of chickpea in Australia. Breeding for PRR resistance is an effective approach to avoid significant yield loss. Genetic resistance has been identified in cultivated chickpea (Cicer arietinum) and in the wild relative C. echinospermum, with previous studies identifying independent genetic loci associated with each of these sources. However, the molecular mechanisms associated with PRR resistance are not known. RNA sequencing analysis employed in this study identified changes in gene expression in roots of three chickpea genotypes grown hydroponically, early post-infection with P. medicaginis zoospores. Analyses of differentially expressed genes (DEG) identified the activation of a higher number of non-specific R-genes in a PRR-susceptible variety than in the resistant genotypes, suggesting a whole plant resistance response occurring in chickpea against the pathogen. Contrasting molecular changes in signaling profiles, proteolysis and transcription factor pathways were observed in the cultivated and wild Cicer-derived resistant genotypes. DEG patterns supported a hypothesis that increased root elongation and reduced adventitious root formation limit the pathogen entry points in the genotype containing the wild Cicer source of PRR resistance. Candidate resistance genes, including an aquaporin and a maltose transporter in the wild Cicer source and GDSL esterases/lipases in the cultivated source of resistance, were oppositely regulated. Increased knowledge of these genes and pathways will improve our understanding of molecular mechanisms controlling PRR resistance in chickpea, and support the development of elite chickpea varieties through molecular breeding approaches.
Collapse
Affiliation(s)
- Amritha Amalraj
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
| | - Ute Baumann
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
| | - Julie E Hayes
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
| | - Tim Sutton
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), SA, Australia
| |
Collapse
|
10
|
Mansoor S, Tripathi P, Ghimire A, Hamid S, Abd El-Moniem D, Chung YS, Kim Y. Comparative transcriptomic analysis of the nodulation-competent zone and inference of transcription regulatory network in silicon applied Glycine max [L.]-Merr. Roots. PLANT CELL REPORTS 2024; 43:169. [PMID: 38864921 PMCID: PMC11169057 DOI: 10.1007/s00299-024-03250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
KEY MESSAGE The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Pooja Tripathi
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamia University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Diaa Abd El-Moniem
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Hao Y, Chu L, He X, Zhao S, Tang F. PagEXPA1 combines with PagCDKB2;1 to regulate plant growth and the elongation of fibers in Populus alba × Populus glandulosa. Int J Biol Macromol 2024; 268:131559. [PMID: 38631576 DOI: 10.1016/j.ijbiomac.2024.131559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.
Collapse
Affiliation(s)
- Yuanyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; College of Life and Health, Dalian University, Dalian, Liaoning 116622, China.
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Liu H, Duan L, Ma J, Jin J, Huang R, Liu Y, Chen S, Xu X, Chen J, Yao M, Chen L. CsEXL3 regulate mechanical harvest-related droopy leaves under the transcriptional activation of CsBES1.2 in tea plant. HORTICULTURE RESEARCH 2024; 11:uhae074. [PMID: 38738211 PMCID: PMC11088715 DOI: 10.1093/hr/uhae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
Due to a labor shortage, the mechanical harvesting of tea plantations has become a focal point. However, mechanical harvest efficiency was hampered by droopy leaves, leading to a high rate of broken tea shoots and leaves. Here, we dissected the genetic structure of leaf droopiness in tea plants using genome-wide association studies (GWAS) on 146 accessions, combined with transcriptome from two accessions with contrasting droopy leaf phenotypes. A set of 16 quantitative trait loci (QTLs) containing 54 SNPs and 34 corresponding candidate genes associated with droopiness were then identified. Among these, CsEXL3 (EXORDIUM-LIKE 3) from Chromosome 1 emerged as a candidate gene. Further investigations revealed that silencing CsEXL3 in tea plants resulted in weaker vascular cell malformation and brassinosteroid-induced leaf droopiness. Additionally, brassinosteroid signal factor CsBES1.2 was proved to participate in CsEXL3-induced droopiness and vascular cell malformation via using the CsBES1.2-silencing tea plant. Notably, CsBES1.2 bound on the E-box of CsEXL3 promoter to transcriptionally activate CsEXL3 expression as CUT&TAG based ChIP-qPCR and ChIP-seq suggested in vivo as well as EMSA and Y1H indicated in vitro. Furthermore, CsEXL3 instead of CsBES1.2 decreased lignin content and the expressing levels of lignin biosynthesis genes. Overall, our findings suggest that CsEXL3 regulates droopy leaves, partially through the transcriptional activation of CsBES1.2, with the potential to improve mechanical harvest efficiency in tea plantations.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingxiao Duan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiqiang Jin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoying Xu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
13
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
14
|
Zhang T, Zhang R, Zeng XY, Lee S, Ye LH, Tian SL, Zhang YJ, Busch W, Zhou WB, Zhu XG, Wang P. GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light-induced seedling development in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:2400-2421. [PMID: 38180123 DOI: 10.1093/plphys/kiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Xi-Yu Zeng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Sanghwa Lee
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Lu-Huan Ye
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Shi-Long Tian
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi-Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wen-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin-Guang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| |
Collapse
|
15
|
Cai Z, Dai Y, Jin X, Xu H, Huang Z, Xie Z, Yu X, Luo J. Ambient temperature regulates root circumnutation in rice through the ethylene pathway: transcriptome analysis reveals key genes involved. FRONTIERS IN PLANT SCIENCE 2024; 15:1348295. [PMID: 38525142 PMCID: PMC10957643 DOI: 10.3389/fpls.2024.1348295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Plant roots are constantly prepared to adjust their growth trajectories to avoid unfavorable environments, and their ability to reorient is particularly crucial for survival. Under laboratory conditions, this continuous reorientation of the root tip is manifested as coiling or waving, which we refer to as root circumnutation. However, the effect of ambient temperature (AT) on root circumnutation remains unexplored. In this study, rice seedlings were employed to assess the impact of varying ATs on root circumnutation. The role of ethylene in mediating root circumnutation under elevated AT was examined using the ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) and the ethylene perception antagonist silver thiosulfate (STS). Furthermore, transcriptome sequencing, weighted gene co-expression network analysis, and real-time quantitative PCR were utilized to analyze gene expressions in rice root tips under four distinct treatments: 25°C, 35°C, 35°C+STS, and 35°C+AOA. As a result, genes associated with ethylene synthesis and signaling (OsACOs and OsERFs), auxin synthesis and transport (OsYUCCA6, OsABCB15, and OsNPFs), cell elongation (OsEXPAs, OsXTHs, OsEGL1, and OsEXORDIUMs), as well as the inhibition of root curling (OsRMC) were identified. Notably, the expression levels of these genes increased with rising temperatures above 25°C. This study is the first to demonstrate that elevated AT can induce root circumnutation in rice via the ethylene pathway and proposes a potential molecular model through the identification of key genes. These findings offer valuable insights into the growth regulation mechanism of plant roots under elevated AT conditions.
Collapse
Affiliation(s)
- Zeping Cai
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Yinuo Dai
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Xia Jin
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Hui Xu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Zhen Huang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Zhenyu Xie
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Xudong Yu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Jiajia Luo
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
16
|
Muino JM, Großmann C, Kleine T, Kaufmann K. Natural genetic variation in GLK1-mediated photosynthetic acclimation in response to light. BMC PLANT BIOLOGY 2024; 24:87. [PMID: 38311744 PMCID: PMC10840168 DOI: 10.1186/s12870-024-04741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Current Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Christopher Großmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Munich, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
17
|
Urbancsok J, Donev EN, Sivan P, van Zalen E, Barbut FR, Derba-Maceluch M, Šimura J, Yassin Z, Gandla ML, Karady M, Ljung K, Winestrand S, Jönsson LJ, Scheepers G, Delhomme N, Street NR, Mellerowicz EJ. Flexure wood formation via growth reprogramming in hybrid aspen involves jasmonates and polyamines and transcriptional changes resembling tension wood development. THE NEW PHYTOLOGIST 2023; 240:2312-2334. [PMID: 37857351 DOI: 10.1111/nph.19307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques. Shaking increased primary and secondary growth and altered wood differentiation by stimulating gelatinous-fiber formation, reducing secondary wall thickness, changing matrix polysaccharides and increasing cellulose, G- and H-lignin contents, cell wall porosity and saccharification yields. Wood-forming tissues exhibited elevated jasmonate, polyamine, ethylene and brassinosteroids and reduced abscisic acid and gibberellin signaling. Transcriptional responses resembled those during tension wood formation but not opposite wood formation and revealed several thigmomorphogenesis-related genes as well as novel gene networks including FLA and XTH genes encoding plasma membrane-bound proteins. Low-intensity stem flexing stimulates growth and induces wood having improved biorefinery properties through molecular and hormonal pathways similar to thigmomorphogenesis in herbaceous plants and largely overlapping with the tension wood program of hardwoods.
Collapse
Affiliation(s)
- János Urbancsok
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Evgeniy N Donev
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Pramod Sivan
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Elena van Zalen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Félix R Barbut
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Zakiya Yassin
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | | | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, 78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Gerhard Scheepers
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
- SciLifeLab, Umeå University, 90187, Umeå, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
18
|
Dadras A, Fürst-Jansen JMR, Darienko T, Krone D, Scholz P, Sun S, Herrfurth C, Rieseberg TP, Irisarri I, Steinkamp R, Hansen M, Buschmann H, Valerius O, Braus GH, Hoecker U, Feussner I, Mutwil M, Ischebeck T, de Vries S, Lorenz M, de Vries J. Environmental gradients reveal stress hubs pre-dating plant terrestrialization. NATURE PLANTS 2023; 9:1419-1438. [PMID: 37640935 PMCID: PMC10505561 DOI: 10.1038/s41477-023-01491-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.
Collapse
Affiliation(s)
- Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Denis Krone
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Siqi Sun
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Rasmus Steinkamp
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Henrik Buschmann
- Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Oliver Valerius
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Gerhard H Braus
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Lorenz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and SAG Culture Collection of Algae, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- Goettingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
| |
Collapse
|
19
|
Veremeichik GN, Bulgakov DV, Konnova YA, Brodovskaya EV, Grigorchuk VP, Bulgakov VP. Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca 2+-Independent Form of the Arabidopsis AtCPK1 Gene. Int J Mol Sci 2023; 24:13184. [PMID: 37685990 PMCID: PMC10487732 DOI: 10.3390/ijms241713184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are one of the main Ca2+ decoders in plants. Among them, Arabidopsis thaliana AtCPK1 is one of the most studied CDPK genes as a positive regulator of plant responses to biotic and abiotic stress. The mutated form of AtCPK1, in which the autoinhibitory domain is inactivated (AtCPK1-Ca), provides constitutive kinase activity by mimicking a stress-induced increase in the Ca2+ flux. In the present study, we performed a proteomic analysis of Vitis amurensis calli overexpressing the AtCPK1-Ca form using untransformed calli as a control. In our previous studies, we have shown that the overexpression of this mutant form leads to the activation of secondary metabolism in plant cell cultures, including an increase in resveratrol biosynthesis in V. amurensis cell cultures. We analyzed upregulated and downregulated proteins in control and transgenic callus cultures using two-dimensional gel electrophoresis, and Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF). In calli transformed with AtCPK1-Ca, an increased amounts of pathogenesis-related proteins were found. A quantitative real-time PCR analysis confirmed this result.
Collapse
Affiliation(s)
- Galina N. Veremeichik
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.V.B.); (V.P.G.); (V.P.B.)
| | | | | | | | | | | |
Collapse
|
20
|
Xu N, Chen B, Cheng Y, Su Y, Song M, Guo R, Wang M, Deng K, Lan T, Bao S, Wang G, Guo Z, Yu L. Integration of GWAS and RNA-Seq Analysis to Identify SNPs and Candidate Genes Associated with Alkali Stress Tolerance at the Germination Stage in Mung Bean. Genes (Basel) 2023; 14:1294. [PMID: 37372474 DOI: 10.3390/genes14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Soil salt-alkalization seriously impacts crop growth and productivity worldwide. Breeding and applying tolerant varieties is the most economical and effective way to address soil alkalization. However, genetic resources for breeders to improve alkali tolerance are limited in mung bean. Here, a genome-wide association study (GWAS) was performed to detect alkali-tolerant genetic loci and candidate genes in 277 mung bean accessions during germination. Using the relative values of two germination traits, 19 QTLs containing 32 SNPs significantly associated with alkali tolerance on nine chromosomes were identified, and they explained 3.6 to 14.6% of the phenotypic variance. Moreover, 691 candidate genes were mined within the LD intervals containing significant trait-associated SNPs. Transcriptome sequencing of alkali-tolerant accession 132-346 under alkali and control conditions after 24 h of treatment was conducted, and 2565 DEGs were identified. An integrated analysis of the GWAS and DEGs revealed six hub genes involved in alkali tolerance responses. Moreover, the expression of hub genes was further validated by qRT-PCR. These findings improve our understanding of the molecular mechanism of alkali stress tolerance and provide potential resources (SNPs and genes) for the genetic improvement of alkali tolerance in mung bean.
Collapse
Affiliation(s)
- Ning Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yuxin Cheng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yufei Su
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Mengyuan Song
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Rongqiu Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Minghai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Kunpeng Deng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianjiao Lan
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Shuying Bao
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Guifang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhongxiao Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
21
|
Riekötter J, Oklestkova J, Muth J, Twyman RM, Epping J. Transcriptomic analysis of Chinese yam ( Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development. Front Nutr 2023; 10:1112793. [PMID: 37215221 PMCID: PMC10196131 DOI: 10.3389/fnut.2023.1112793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.
Collapse
Affiliation(s)
- Jenny Riekötter
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jana Oklestkova
- Laboratory of Growth Regulators, The Czech Academy of Science, Institute of Experimental Botany and Palacký University, Faculty of Science, Olomouc, Czechia
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | | | - Janina Epping
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
22
|
Gombos S, Miras M, Howe V, Xi L, Pottier M, Kazemein Jasemi NS, Schladt M, Ejike JO, Neumann U, Hänsch S, Kuttig F, Zhang Z, Dickmanns M, Xu P, Stefan T, Baumeister W, Frommer WB, Simon R, Schulze WX. A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. THE NEW PHYTOLOGIST 2023; 238:637-653. [PMID: 36636779 DOI: 10.1111/nph.18730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.
Collapse
Affiliation(s)
- Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Manuel Miras
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Vicky Howe
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mathieu Pottier
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Moritz Schladt
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - J Obinna Ejike
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Franziska Kuttig
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marcel Dickmanns
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Peng Xu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Wolf B Frommer
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Institute for Transformative Biomolecules, Nagoya University, Nagoya, 464-0813, Japan
| | - Rüdiger Simon
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
23
|
Novikova SV, Sharov VV, Oreshkova NV, Simonov EP, Krutovsky KV. Genetic Adaptation of Siberian Larch ( Larix sibirica Ledeb.) to High Altitudes. Int J Mol Sci 2023; 24:ijms24054530. [PMID: 36901960 PMCID: PMC10003562 DOI: 10.3390/ijms24054530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001).
Collapse
Affiliation(s)
- Serafima V. Novikova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vadim V. Sharov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Department of High-Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3498838, Israel
| | - Natalia V. Oreshkova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Evgeniy P. Simonov
- Laboratory of Evolutionary Trophology, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin V. Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-339-3537
| |
Collapse
|
24
|
Carey S, Zenchyzen B, Deneka AJ, Hall JC. Nectary development in Cleome violacea. FRONTIERS IN PLANT SCIENCE 2023; 13:1085900. [PMID: 36844906 PMCID: PMC9949531 DOI: 10.3389/fpls.2022.1085900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Nectaries are a promising frontier for plant evo-devo research, and are particularly fascinating given their diversity in form, position, and secretion methods across angiosperms. Emerging model systems permit investigations of the molecular basis for nectary development and nectar secretion across a range of taxa, which addresses fundamental questions about underlying parallelisms and convergence. Herein, we explore nectary development and nectar secretion in the emerging model taxa, Cleome violacea (Cleomaceae), which exhibits a prominent adaxial nectary. First, we characterized nectary anatomy and quantified nectar secretion to establish a foundation for quantitative and functional gene experiments. Next, we leveraged RNA-seq to establish gene expression profiles of nectaries across three key stages of development: pre-anthesis, anthesis, and post-fertilization. We then performed functional studies on five genes that were putatively involved in nectary and nectar formation: CvCRABSCLAW (CvCRC), CvAGAMOUS (CvAG), CvSHATTERPROOF (CvSHP), CvSWEET9, and a highly expressed but uncharacterized transcript. These experiments revealed a high degree of functional convergence to homologues from other core Eudicots, especially Arabidopsis. CvCRC, redundantly with CvAG and CvSHP, are required for nectary initiation. Concordantly, CvSWEET9 is essential for nectar formation and secretion, which indicates that the process is eccrine based in C. violacea. While demonstration of conservation is informative to our understanding of nectary evolution, questions remain. For example, it is unknown which genes are downstream of the developmental initiators CvCRC, CvAG, and CvSHP, or what role the TCP gene family plays in nectary initiation in this family. Further to this, we have initiated a characterization of associations between nectaries, yeast, and bacteria, but more research is required beyond establishing their presence. Cleome violacea is an excellent model for continued research into nectary development because of its conspicuous nectaries, short generation time, and close taxonomic distance to Arabidopsis.
Collapse
|
25
|
Li S, Xing K, Qanmber G, Chen G, Liu L, Guo M, Hou Y, Lu L, Qu L, Liu Z, Yang Z. GhBES1 mediates brassinosteroid regulation of leaf size by activating expression of GhEXO2 in cotton (Gossypium hirsutum). PLANT MOLECULAR BIOLOGY 2023; 111:89-106. [PMID: 36271986 DOI: 10.1007/s11103-022-01313-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region. Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.
Collapse
Affiliation(s)
- Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Kun Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Biology (Hebei Base), Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
26
|
Le Provost G, Brachi B, Lesur I, Lalanne C, Labadie K, Aury JM, Da Silva C, Postolache D, Leroy T, Plomion C. Gene expression and genetic divergence in oak species highlight adaptive genes to soil water constraints. PLANT PHYSIOLOGY 2022; 190:2466-2483. [PMID: 36066428 PMCID: PMC9706432 DOI: 10.1093/plphys/kiac420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Drought and waterlogging impede tree growth and may even lead to tree death. Oaks, an emblematic group of tree species, have evolved a range of adaptations to cope with these constraints. The two most widely distributed European species, pedunculate (PO; Quercus robur L.) and sessile oak (SO; Quercus petraea Matt. Lieb), have overlapping ranges, but their respective distribution are highly constrained by local soil conditions. These contrasting ecological preferences between two closely related and frequently hybridizing species constitute a powerful model to explore the functional bases of the adaptive responses in oak. We exposed oak seedlings to waterlogging and drought, conditions typically encountered by the two species in their respective habitats, and studied changes in gene expression in roots using RNA-seq. We identified genes that change in expression between treatments differentially depending on species. These "species × environment"-responsive genes revealed adaptive molecular strategies involving adventitious and lateral root formation, aerenchyma formation in PO, and osmoregulation and ABA regulation in SO. With this experimental design, we also identified genes with different expression between species independently of water conditions imposed. Surprisingly, this category included genes with functions consistent with a role in intrinsic reproductive barriers. Finally, we compared our findings with those for a genome scan of species divergence and found that the expressional candidate genes included numerous highly differentiated genetic markers between the two species. By combining transcriptomic analysis, gene annotation, pathway analyses, as well as genome scan for genetic differentiation among species, we were able to highlight loci likely involved in adaptation of the two species to their respective ecological niches.
Collapse
Affiliation(s)
| | | | - Isabelle Lesur
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, F-33610, France
- Helix Venture, Mérignac, F-33700, France
| | | | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Dragos Postolache
- National Institute for Research and Development in Forestry “Marin Drăcea”, Cluj Napoca Research Station, Cluj-Napoca, 400202, Romania
| | - Thibault Leroy
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, F-33610, France
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, Beaucouzé, 49071, France
| | | |
Collapse
|
27
|
Deng J, Sun W, Zhang B, Sun S, Xia L, Miao Y, He L, Lindsey K, Yang X, Zhang X. GhTCE1-GhTCEE1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton. THE PLANT CELL 2022; 34:4554-4568. [PMID: 35972347 PMCID: PMC9614502 DOI: 10.1093/plcell/koac252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.
Collapse
Affiliation(s)
| | | | - Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangrong He
- Authors for correspondence: (X.Y.), (L.K.), (L.H.)
| | | | - Xiyan Yang
- Authors for correspondence: (X.Y.), (L.K.), (L.H.)
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Cheah BH, Liao PC, Lo JC, Wang YT, Tang IC, Yeh KC, Lee DY, Lin YF. Insight into the mechanism of indium toxicity in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128265. [PMID: 35077975 DOI: 10.1016/j.jhazmat.2022.128265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Indium is widely used in the technology industry and is an emerging form of environmental pollution. The presence of indium in soil and groundwater inhibits shoot and root growth in crops, thus reducing yields. However, the underlying mechanisms are unknown, making it difficult to design effective countermeasures. We explored the spatiotemporal effects of excess indium on the morphological, physiological and biochemical properties of rice (Oryza sativa L.). Indium accumulated mainly in the roots, severely restricting their growth and causing the acute perturbation of phosphorus, magnesium and iron homeostasis. Other effects included leaf necrosis and anatomical changes in the roots (thinned sclerenchyma and enlarged epidermal and exodermal layers). Whole-transcriptome sequencing revealed that rice immediately responded to indium stress by activating genes involved in heavy metal tolerance and phosphate starvation responses, including the expression of genes encoding phosphate-regulated transcription factors and transporters in the roots. Direct indium toxicity rather than phosphate deficiency was identified as the major factor affecting the growth of rice plants, resulting in the profound phenotypic changes we observed. The application of exogenous phosphate alleviated indium toxicity by reducing indium uptake. Our results suggest that indium immobilization could be used to prevent indium toxicity in the field.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Chu Liao
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Jing-Chi Lo
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Tsen Wang
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - I-Chien Tang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Dar-Yuan Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
29
|
WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles. Biochem J 2022; 479:641-659. [PMID: 35212355 PMCID: PMC9022988 DOI: 10.1042/bcj20210810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1–1 and W1–7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1–1 and W1–7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1–1 and W1–7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development.
Collapse
|
30
|
Genome Wide Association Study Identifies Candidate Genes Related to the Earlywood Tracheid Properties in Picea crassifolia Kom. FORESTS 2022. [DOI: 10.3390/f13020332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Picea crassifolia Kom. is one of the timber and ecological conifers in China and its wood tracheid traits directly affect wood formation and adaptability under harsh environment. Molecular studies on P. crassifolia remain inadequate because relatively few genes have been associated with these traits. To identify markers and candidate genes that can potentially be used for genetic improvement of wood tracheid traits, we examined 106 clones of P. crassifolia, and investigated phenotypic data for 14 wood tracheid traits before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome wide association study (GWAS). Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the studied traits. We developed 4,058,883 SLAF-tags and 12,275,765 SNP loci, and our analyses identified a total of 96 SNP loci that showed significant correlations with three earlywood tracheid traits using a mixed linear model (MLM). Next, candidate genes were screened in the 100 kb zone (50 kb upstream, 50 kb downstream) of each of the SNP loci, whereby 67 candidate genes were obtained in earlywood tracheid traits, including 34 genes of known function and 33 genes of unknown function. We provide the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in wood traits improvement and candidate genes for the development of earlywood tracheid in P. crassifolia.
Collapse
|
31
|
Abramson BW, Novotny M, Hartwick NT, Colt K, Aevermann BD, Scheuermann RH, Michael TP. The genome and preliminary single-nuclei transcriptome of Lemna minuta reveals mechanisms of invasiveness. PLANT PHYSIOLOGY 2022; 188:879-897. [PMID: 34893913 PMCID: PMC8825320 DOI: 10.1093/plphys/kiab564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/16/2021] [Indexed: 05/13/2023]
Abstract
The ability to trace every cell in some model organisms has led to the fundamental understanding of development and cellular function. However, in plants the complexity of cell number, organ size, and developmental time makes this a challenge even in the diminutive model plant Arabidopsis (Arabidopsis thaliana). Duckweed, basal nongrass aquatic monocots, provide an opportunity to follow every cell of an entire plant due to their small size, reduced body plan, and fast clonal growth habit. Here we present a chromosome-resolved genome for the highly invasive Lesser Duckweed (Lemna minuta) and generate a preliminary cell atlas leveraging low cell coverage single-nuclei sequencing. We resolved the 360 megabase genome into 21 chromosomes, revealing a core nonredundant gene set with only the ancient tau whole-genome duplication shared with all monocots, and paralog expansion as a result of tandem duplications related to phytoremediation. Leveraging SMARTseq2 single-nuclei sequencing, which provided higher gene coverage yet lower cell count, we profiled 269 nuclei covering 36.9% (8,457) of the L. minuta transcriptome. Since molecular validation was not possible in this nonmodel plant, we leveraged gene orthology with model organism single-cell expression datasets, gene ontology, and cell trajectory analysis to define putative cell types. We found that the tissue that we computationally defined as mesophyll expressed high levels of elemental transport genes consistent with this tissue playing a role in L. minuta wastewater detoxification. The L. minuta genome and preliminary cell map provide a paradigm to decipher developmental genes and pathways for an entire plant.
Collapse
Affiliation(s)
- Bradley W Abramson
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mark Novotny
- Department of Informatics, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Nolan T Hartwick
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kelly Colt
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Brian D Aevermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, California 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
32
|
Webster C, Figueroa‐Corona L, Méndez‐González ID, Álvarez‐Soto L, Neale DB, Jaramillo‐Correa JP, Wegrzyn JL, Vázquez‐Lobo A. Comparative analysis of differential gene expression indicates divergence in ontogenetic strategies of leaves in two conifer genera. Ecol Evol 2022; 12:e8611. [PMID: 35222971 PMCID: PMC8848466 DOI: 10.1002/ece3.8611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/23/2022] [Indexed: 11/09/2022] Open
Abstract
In land plants, heteroblasty broadly refers to a drastic change in morphology during growth through ontogeny. Juniperus flaccida and Pinus cembroides are conifers of independent lineages known to exhibit leaf heteroblasty between the juvenile and adult life stage of development. Juvenile leaves of P. cembroides develop spirally on the main stem and appear decurrent, flattened, and needle-like; whereas adult photosynthetic leaves are triangular or semi-circular needle-like, and grow in whorls on secondary or tertiary compact dwarf shoots. By comparison, J. flaccida juvenile leaves are decurrent and needle-like, and adult leaves are compact, short, and scale-like. Comparative analyses were performed to evaluate differences in anatomy and gene expression patterns between developmental phases in both species. RNA from 12 samples was sequenced and analyzed with available software. They were assembled de novo from the RNA-Seq reads. Following assembly, 63,741 high-quality transcripts were functionally annotated in P. cembroides and 69,448 in J. flaccida. Evaluation of the orthologous groups yielded 4140 shared gene families among the four references (adult and juvenile from each species). Activities related to cell division and development were more abundant in juveniles than adults in P. cembroides, and more abundant in adults than juveniles in J. flaccida. Overall, there were 509 up-regulated and 81 down-regulated genes in the juvenile condition of P. cembroides and 14 up-regulated and 22 down-regulated genes in J. flaccida. Gene interaction network analysis showed evidence of co-expression and co-localization of up-regulated genes involved in cell wall and cuticle formation, development, and phenylpropanoid pathway, in juvenile P. cembroides leaves. Whereas in J. flaccida, differential expression and gene interaction patterns were detected in genes involved in photosynthesis and chloroplast biogenesis. Although J. flaccida and P. cembroides both exhibit leaf heteroblastic development, little overlap was detected, and unique genes and pathways were highlighted in this study.
Collapse
Affiliation(s)
- Cynthia Webster
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Laura Figueroa‐Corona
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Iván David Méndez‐González
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lluvia Álvarez‐Soto
- Facultad de Ciencias BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| | - David B. Neale
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Juan Pablo Jaramillo‐Correa
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| |
Collapse
|
33
|
Pathak AK, Singh SP, Sharma R, Nath V, Tuli R. Transcriptome analysis at mid-stage seed development in litchi with contrasting seed size. 3 Biotech 2022; 12:47. [PMID: 35127302 PMCID: PMC8783947 DOI: 10.1007/s13205-021-03098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/18/2021] [Indexed: 02/03/2023] Open
Abstract
Litchi is a sub-tropical fruit crop with genotypes that bear fruits with variable seed size. Small seed size is a desirable trait in litchi, as it improves consumers' preference and facilitates fruit processing. Seed specific transcriptome analysis was performed in two litchi genotypes with contrasting seed size to identify the genes associated with seed development. The transcriptomic sequence data from seeds at mid-development stages (16-28 days after anthesis) were de-novo assembled into 1,39,608 Trinity transcripts. Out of these, 6325 transcripts expressed differentially between the two contrasting genotypes. Several putative genes for salicylic acid, jasmonic acid and brassinosteriod pathways were down-regulated in seeds of the small-seeded litchi. The putative regulators of seed maturation and seed storage were down-regulated in the small-seeded genotype. Embryogenesis, cell expansion, seed size and stress related Trinity transcripts exhibited differential expression. Further studies on gene characterization will reveal the early regulators of seed size in litchi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03098-8.
Collapse
Affiliation(s)
- Ashish K. Pathak
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.261674.00000 0001 2174 5640Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sudhir P. Singh
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.454774.1Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
| | - Ritika Sharma
- grid.473732.6Sardar Swaran Singh National Institute of Bioenergy, Jalandhar, India
| | - Vishal Nath
- grid.506047.0ICAR-National Research Centre of Litchi, Muzaffarpur, India
| | - Rakesh Tuli
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.261674.00000 0001 2174 5640Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
34
|
Li Z, Hu J, Wu Y, Wang J, Song H, Chai M, Cong L, Miao F, Ma L, Tang W, Yang C, Tao Q, Zhong S, Zhao Y, Liu H, Yang G, Wang Z, Sun J. Integrative analysis of the metabolome and transcriptome reveal the phosphate deficiency response pathways of alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:49-63. [PMID: 34847401 DOI: 10.1016/j.plaphy.2021.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Understanding the mechanisms underlying the responses to inorganic phosphate (Pi) deficiency in alfalfa will help enhance Pi acquisition efficiency and the sustainable use of phosphorous resources. Integrated global metabolomic and transcriptomic analyses of mid-vegetative alfalfa seedlings under 12-day Pi deficiency were conducted. Limited seedling growth were found, including 13.24%, 16.85% and 33.36% decreases in height, root length and photosynthesis, and a 24.10% increase in root-to-shoot ratio on day 12. A total of 322 and 448 differentially abundant metabolites and 1199 and 1061 differentially expressed genes were identified in roots and shoots. Increased (>3.68-fold) inorganic phosphate transporter 1;4 and SPX proteins levels in the roots (>2.15-fold) and shoots (>2.50-fold) were related to Pi absorption and translocation. The levels of phospholipids and Pi-binding carbohydrates and nucleosides were decreased, while those of phosphatases and pyrophosphatases in whole seedlings were induced under reduced Pi. In addition, nitrogen assimilation was affected by inhibiting high-affinity nitrate transporters (NRT2.1 and NRT3.1), and nitrate reductase. Increased delphinidin-3-glucoside might contribute to the gray-green leaves induced by Pi limitation. Stress-induced MYB, WRKY and ERF transcription factors were identified. The responses of alfalfa to Pi deficiency were summarized as local systemic signaling pathways, including root growth, stress-related responses consisting of enzymatic and nonenzymatic systems, and hormone signaling and systemic signaling pathways including Pi recycling and Pi sensing in the whole plant, as well as Pi recovery, and nitrate and metal absorption in the roots. This study provides important information on the molecular mechanism of the response to Pi deficiency in alfalfa.
Collapse
Affiliation(s)
- Zhenyi Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Jingyun Hu
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yao Wu
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Jixiang Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Lili Cong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Fuhong Miao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chao Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Qibo Tao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Shangzhi Zhong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yiran Zhao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hongqing Liu
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zengyu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
35
|
Yang Z, Zhang R, Zhou Z. The XTH Gene Family in Schima superba: Genome-Wide Identification, Expression Profiles, and Functional Interaction Network Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:911761. [PMID: 35783982 PMCID: PMC9243642 DOI: 10.3389/fpls.2022.911761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/31/2022] [Indexed: 05/04/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolase (XTH), belonging to glycoside hydrolase family 16, is one of the key enzymes in plant cell wall remodeling. Schima superba is an important timber and fireproof tree species in southern China. However, little is known about XTHs in S. superba. In the present study, a total of 34 SsuXTHs were obtained, which were classified into three subfamilies based on the phylogenetic relationship and unevenly distributed on 18 chromosomes. Furthermore, the intron-exon structure and conserved motif composition of them supported the classification and the members belonging to the same subfamily shared similar gene structures. Segmental and tandem duplication events did not lead to SsuXTH gene family expansion, and strong purifying selection pressures during evolution led to similar structure and function of SsuXTH gene family. The interaction network and cis-acting regulatory elements analysis revealed the SsuXTH expression might be regulated by multiple hormones, abiotic stresses and transcription factors. Finally, expression profiles and GO enrichment analysis showed most of the tandem repeat genes were mainly expressed in the phloem and xylem and they mainly participated in glycoside metabolic processes through the transfer and hydrolysis of xyloglucan in the cell wall and then regulated fiber elongation.
Collapse
Affiliation(s)
- Zhongyi Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
| | - Rui Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
- *Correspondence: Rui Zhang,
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
- Zhichun Zhou,
| |
Collapse
|
36
|
Ibrahim S, Li K, Ahmad N, Kuang L, Sadau SB, Tian Z, Huang L, Wang X, Dun X, Wang H. Genetic Dissection of Mature Root Characteristics by Genome-Wide Association Studies in Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122569. [PMID: 34961040 PMCID: PMC8705616 DOI: 10.3390/plants10122569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Roots are complicated quantitative characteristics that play an essential role in absorbing water and nutrients. To uncover the genetic variations for root-related traits in rapeseed, twelve mature root traits of a Brassica napus association panel were investigated in the field within three environments. All traits showed significant phenotypic variation among genotypes, with heritabilities ranging from 55.18% to 79.68%. Genome-wide association studies (GWAS) using 20,131 SNPs discovered 172 marker-trait associations, including 103 significant SNPs (-log10 (p) > 4.30) that explained 5.24-20.31% of the phenotypic variance. With the linkage disequilibrium r2 > 0.2, these significant associations were binned into 40 quantitative trait loci (QTL) clusters. Among them, 14 important QTL clusters were discovered in two environments and/or with phenotypic contributions greater than 10%. By analyzing the genomic regions within 100 kb upstream and downstream of the peak SNPs within the 14 loci, 334 annotated genes were found. Among these, 32 genes were potentially associated with root development according to their expression analysis. Furthermore, the protein interaction network using the 334 annotated genes gave nine genes involved in a substantial number of interactions, including a key gene associated with root development, BnaC09g36350D. This research provides the groundwork for deciphering B. napus' genetic variations and improving its root system architecture.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, Kano, P.M.B. 3011, Kano 700006, Nigeria
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Lintao Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| |
Collapse
|
37
|
Kohlhase DR, McCabe CE, Singh AK, O’Rourke JA, Graham MA. Comparing Early Transcriptomic Responses of 18 Soybean ( Glycine max) Genotypes to Iron Stress. Int J Mol Sci 2021; 22:11643. [PMID: 34769077 PMCID: PMC8583884 DOI: 10.3390/ijms222111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association studies (GWAS) performed in soybean suggest that stress response differences exist between model and crop species. Our current understanding of the molecular response to IDC in soybeans is largely derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve iron efficiency in soybeans and other crops, we need to expand gene expression studies to include the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples (18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient], three replicates) and used RNA sequencing to examine the expression differences of 18 diverse soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific differentially expressed genes, and comparisons of gene ontology terms and transcription factor families suggest the utilization of different pathways in the stress response. These initial findings suggest an untapped genetic potential within the soybean germplasm collection that could be used for the continued improvement of iron efficiency in soybean.
Collapse
Affiliation(s)
- Daniel R. Kohlhase
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Chantal E. McCabe
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Jamie A. O’Rourke
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Michelle A. Graham
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| |
Collapse
|
38
|
Morcillo F, Serret J, Beckers A, Collin M, Tisné S, George S, Poveda R, Louise C, Tranbarger TJ. A Non-Shedding Fruit Elaeis oleifera Palm Reveals Perturbations to Hormone Signaling, ROS Homeostasis, and Hemicellulose Metabolism. Genes (Basel) 2021; 12:1724. [PMID: 34828330 PMCID: PMC8621672 DOI: 10.3390/genes12111724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The developmentally programmed loss of a plant organ is called abscission. This process is characterized by the ultimate separation of adjacent cells in the abscission zone (AZ). The discovery of an American oil palm (Elaeis oleifera) variant that does not shed its has allowed for the study of the mechanisms of ripe fruit abscission in this species. A comparative transcriptome analysis was performed to compare the fruit AZs of the non-shedding E. oleifera variant to an individual of the same progeny that sheds its ripe fruit normally. The study provides evidence for widespread perturbation to gene expression in the AZ of the non-shedding variant, compared to the normal fruit-shedding control, and offers insight into abscission-related functions. Beyond the genes with known or suspected roles during organ abscission or indehiscence that were identified, a list of genes with hormone-related functions, including ethylene, jasmonic acid, abscisic acid, cytokinin and salicylic acid, in addition to reactive oxygen species (ROS) metabolism, transcriptional responses and signaling pathways, was compiled. The results also allowed a comparison between the ripe fruit abscission processes of the African and American oil palm species at the molecular level and revealed commonalities with environmental stress pathways.
Collapse
Affiliation(s)
- Fabienne Morcillo
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
- CIRAD, UMR (Unité Mixte de Recherche) DIADE, 34398 Montpellier, France
| | - Julien Serret
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Antoine Beckers
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Myriam Collin
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Sebastien Tisné
- CIRAD, UMR AGAP (Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales), 34398 Montpellier, France;
- AGAP, University of Montpellier, CIRAD, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), Institut Agro, 34398 Montpellier, France
| | - Simon George
- MGX-Montpellier GenomiX, University of Montpellier, CNRS (Centre National de la Recherche Scientifique), INSERM (Institut National de la Santé et de la Recherche Médicale), 34094 Montpellier, France;
| | - Roberto Poveda
- DANEC, Sangolqui/Rumiñahui, Sangolquí, Pichincha 171102, Ecuador;
| | | | - Timothy John Tranbarger
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| |
Collapse
|
39
|
Gutiérrez-Larruscain D, Abeyawardana OAJ, Krüger M, Belz C, Juříček M, Štorchová H. Transcriptomic study of the night break in Chenopodium rubrum reveals possible upstream regulators of the floral activator CrFTL1. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153492. [PMID: 34385120 DOI: 10.1016/j.jplph.2021.153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
Collapse
Affiliation(s)
- David Gutiérrez-Larruscain
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Oushadee A J Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic; Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic.
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Claudia Belz
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| |
Collapse
|
40
|
Li S, Liu Z, Chen G, Qanmber G, Lu L, Zhang J, Ma S, Yang Z, Li F. Identification and Analysis of GhEXO Gene Family Indicated That GhEXO7_At Promotes Plant Growth and Development Through Brassinosteroid Signaling in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:719889. [PMID: 34603349 PMCID: PMC8481617 DOI: 10.3389/fpls.2021.719889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 05/29/2023]
Abstract
Brassinosteroids (BRs), an efficient plant endogenous hormone, significantly promotes plant nutrient growth adapting to biological and abiotic adversities. BRs mainly promote plant cell elongation by regulating gene expression patterns. EXORDIUM (EXO) genes have been characterized as the indicators of BR response genes. Cotton, an ancient crop, is of great economic value and its fibers can be made into all kinds of fabrics. However, EXO gene family genes have not been full identified in cotton. 175 EXO genes were identified in nine plant species, of which 39 GhEXO genes in Gossypium hirsutum in our study. A phylogenetic analysis grouped all of the proteins encoded by the EXO genes into five major clades. Sequence identification of conserved amino acid residues among monocotyledonous and dicotyledonous species showed a high level of conservation across the N and C terminal regions. Only 25% the GhEXO genes contain introns besides conserved gene structure and protein motifs distribution. The 39 GhEXO genes were unevenly distributed on the 18 At and Dt sub-genome chromosomes. Most of the GhEXO genes were derived from gene duplication events, while only three genes showed evidence of tandem duplication. Homologous locus relationships showed that 15 GhEXO genes are located on collinear blocks and that all orthologous/paralogous gene pairs had Ka > Ks values, indicating purifying selection pressure. The GhEXO genes showed ubiquitous expression in all eight tested cotton tissues and following exposure to three phytohormones, IAA, GA, and BL. Furthermore, GhEXO7_At was mainly expressed in response to BL treatment, and was predominantly expressed in the fibers. GhEXO7_At was found to be a plasma membrane protein, and its ectopic expression in Arabidopsis mediated BR-regulated plant growth and development with altered expression of DWF4, CPD, KCS1, and EXP5. Additionally, the functions of GhEXO7_At were confirmed by virus-induced gene silencing (VIGS) in cotton. This study will provide important genetic resources for future cotton breeding programs.
Collapse
Affiliation(s)
- Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiaxin Zhang
- Saint John Paul the Great Catholic High School, Dumfries, VA, United States
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
41
|
Zou X, Du M, Liu Y, Wu L, Xu L, Long Q, Peng A, He Y, Andrade M, Chen S. CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1039-1057. [PMID: 33754403 DOI: 10.1111/tpj.15217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 05/25/2023]
Abstract
Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.
Collapse
Affiliation(s)
- Xiuping Zou
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Meixia Du
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Yunuo Liu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Liu Wu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Lanzhen Xu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Qin Long
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Aihong Peng
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Yongrui He
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Maxuel Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Shanchun Chen
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| |
Collapse
|
42
|
Perochon A, Benbow HR, Ślęczka-Brady K, Malla KB, Doohan FM. Analysis of the chromosomal clustering of Fusarium-responsive wheat genes uncovers new players in the defence against head blight disease. Sci Rep 2021; 11:7446. [PMID: 33811222 PMCID: PMC8018971 DOI: 10.1038/s41598-021-86362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harriet R Benbow
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katarzyna Ślęczka-Brady
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
43
|
Zhu QH, Stiller W, Moncuquet P, Gordon S, Yuan Y, Barnes S, Wilson I. Genetic mapping and transcriptomic characterization of a new fuzzless-tufted cottonseed mutant. G3-GENES GENOMES GENETICS 2021; 11:1-14. [PMID: 33704434 PMCID: PMC8022719 DOI: 10.1093/g3journal/jkaa042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022]
Abstract
Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0-6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | | | - Philippe Moncuquet
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | - Stuart Gordon
- CSIRO Agriculture and Food, Waurn Ponds, VIC 3216, Australia
| | - Yuman Yuan
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | - Scott Barnes
- CSIRO Manufacturing, Waurn Ponds, VIC 3216, Australia
| | - Iain Wilson
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
44
|
Madritsch S, Bomers S, Posekany A, Burg A, Birke R, Emerstorfer F, Turetschek R, Otte S, Eigner H, Sehr EM. Integrative transcriptomics reveals genotypic impact on sugar beet storability. PLANT MOLECULAR BIOLOGY 2020; 104:359-378. [PMID: 32754876 PMCID: PMC7593311 DOI: 10.1007/s11103-020-01041-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
An integrative comparative transcriptomic approach on six sugar beet varieties showing different amount of sucrose loss during storage revealed genotype-specific main driver genes and pathways characterizing storability. Sugar beet is next to sugar cane one of the most important sugar crops accounting for about 15% of the sucrose produced worldwide. Since its processing is increasingly centralized, storage of beet roots over an extended time has become necessary. Sucrose loss during storage is a major concern for the sugar industry because the accumulation of invert sugar and byproducts severely affect sucrose manufacturing. This loss is mainly due to ongoing respiration, but changes in cell wall composition and pathogen infestation also contribute. While some varieties can cope better during storage, the underlying molecular mechanisms are currently undiscovered. We applied integrative transcriptomics on six varieties exhibiting different levels of sucrose loss during storage. Already prior to storage, well storable varieties were characterized by a higher number of parenchyma cells, a smaller cell area, and a thinner periderm. Supporting these findings, transcriptomics identified changes in genes involved in cell wall modifications. After 13 weeks of storage, over 900 differentially expressed genes were detected between well and badly storable varieties, mainly in the category of defense response but also in carbohydrate metabolism and the phenylpropanoid pathway. These findings were confirmed by gene co-expression network analysis where hub genes were identified as main drivers of invert sugar accumulation and sucrose loss. Our data provide insight into transcriptional changes in sugar beet roots during storage resulting in the characterization of key pathways and hub genes that might be further used as markers to improve pathogen resistance and storage properties.
Collapse
Affiliation(s)
- Silvia Madritsch
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Svenja Bomers
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Alexandra Posekany
- University of Technology Vienna, Research Unit of Computational Statistics, Vienna, Austria
| | - Agnes Burg
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Rebekka Birke
- AGRANA Research & Innovation Center GmbH, Tulln, Austria
| | | | | | - Sandra Otte
- Strube Research GmbH & Co. KG, Söllingen, Germany
| | - Herbert Eigner
- AGRANA Research & Innovation Center GmbH, Tulln, Austria
| | - Eva M Sehr
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria.
| |
Collapse
|
45
|
Sousa AO, Camillo LR, Assis ETCM, Lima NS, Silva GO, Kirch RP, Silva DC, Ferraz A, Pasquali G, Costa MGC. EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. PLANTA 2020; 252:45. [PMID: 32880001 DOI: 10.1007/s00425-020-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/27/2020] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION EgPHI-1 is a member of PHI-1/EXO/EXL protein family. Its overexpression in tobacco resulted in changes in biomass partitioning, xylem fiber length, secondary cell wall thickening and composition, and lignification. Here, we report the functional characterization of a PHOSPHATE-INDUCED PROTEIN 1 homologue showing differential expression in xylem cells from Eucalyptus species of contrasting phenotypes for wood quality and growth traits. Our results indicated that this gene is a member of the PHI-1/EXO/EXL family. Analysis of the promoter cis-acting regulatory elements and expression responses to different treatments revealed that the Eucalyptus globulus PHI-1 (EgPHI-1) is transcriptionally regulated by auxin, cytokinin, wounding and drought. EgPHI-1 overexpression in transgenic tobacco changed the partitioning of biomass, favoring its allocation to shoots in detriment of roots. The stem of the transgenic plants showed longer xylem fibers and reduced cellulose content, while the leaf xylem had enhanced secondary cell wall thickness. UV microspectrophotometry of individual cell wall layers of fibers and vessels has shown that the transgenic plants exhibit differences in the lignification of S2 layer in both cell types. Taken together, the results suggest that EgPHI-1 mediates the elongation of secondary xylem fibers, secondary cell wall thickening and composition, and lignification, making it an attractive target for biotechnological applications in forestry and biofuel crops.
Collapse
Affiliation(s)
- Aurizangela O Sousa
- Centro Multidisciplinar do Campus de Luís Eduardo Magalhães, Universidade Federal do Oeste da Bahia, Luís Eduardo Magalhães, Bahia, 47850-000, Brazil
| | - Luciana R Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Elza Thaynara C M Assis
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Nathália S Lima
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Genilson O Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Rochele P Kirch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Delmira C Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo- USP, Lorena, São Paulo, 12602-810, Brazil
| | - Giancarlo Pasquali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Marcio G C Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil.
| |
Collapse
|
46
|
Zhao J, Mao Z, Sun Q, Liu Q, Jian H, Xie B. MiMIF-2 Effector of Meloidogyne incognita Exhibited Enzyme Activities and Potential Roles in Plant Salicylic Acid Synthesis. Int J Mol Sci 2020; 21:ijms21103507. [PMID: 32429304 PMCID: PMC7278917 DOI: 10.3390/ijms21103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant-parasitic nematodes secrete a series of effectors to promote parasitism by modulating host immunity, but the detailed molecular mechanism is ambiguous. Animal parasites secrete macrophage migration inhibitory factor (MIF)-like proteins for evasion of host immune systems, in which their biochemical activities play essential roles. Previous research demonstrated that MiMIF-2 effector was secreted by Meloidogyne incognita and modulated host immunity by interacting with annexins. In this study, we show that MiMIF-2 had tautomerase activity and protected nematodes against H2O2 damage. MiMIF-2 expression not only decreased the amount of H2O2 generation during nematode infection in Arabidopsis, but also suppressed Bax-induced cell death by inhibiting reactive oxygen species burst in Nicotiana benthamiana. Further, RNA-seq transcriptome analysis and RT-qPCR showed that the expression of some heat-shock proteins was down regulated in MiMIF-2 transgenic Arabidopsis. After treatment with flg22, RNA-seq transcriptome analysis indicated that the differentially expressed genes in MiMIF-2 expressing Arabidopsis were pointed to plant hormone signal transduction, compound metabolism and plant defense. RT-qPCR and metabolomic results confirmed that salicylic acid (SA) related marker genes and SA content were significantly decreased. Our results provide a comprehensive understanding of how MiMIF-2 modulates plant immunity and broaden knowledge of the intricate relationship between M. incognita and host plants.
Collapse
Affiliation(s)
- Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Qinghua Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Plant Pathology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China;
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Plant Pathology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China;
- Correspondence: (H.J.); (B.X.)
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
47
|
López CM, Pineda M, Alamillo JM. Transcriptomic Response to Water Deficit Reveals a Crucial Role of Phosphate Acquisition in a Drought-Tolerant Common Bean Landrace. PLANTS (BASEL, SWITZERLAND) 2020; 9:E445. [PMID: 32252433 PMCID: PMC7238123 DOI: 10.3390/plants9040445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Drought is one of the most critical factors limiting legume crop productivity. Understanding the molecular mechanisms of drought tolerance in the common bean is required to improve the yields of this important crop under adverse conditions. In this work, RNA-seq analysis was performed to compare the transcriptome profiles of drought-stressed and well-irrigated plants of a previously characterized drought-tolerant common bean landrace. The analysis revealed responses related with the abscisic acid signaling, including downregulation of a phosphatase 2C (PP2C) and an abscisic acid-8' hydroxylase, and upregulation of several key transcription factors and genes involved in cell wall remodeling, synthesis of osmoprotectants, protection of photosynthetic apparatus, and downregulation of genes involved in cell expansion. The results also highlighted a significant proportion of differentially expressed genes related to phosphate starvation response. In addition, the moderate detrimental effects of drought in the biomass of these tolerant plants were abolished by the addition of phosphate, thus indicating that, besides the ABA-mediated response, acquisition of phosphate could be crucial for the drought tolerance of this common bean genotype. These results provided information about the mechanisms involved in drought response of common bean response that could be useful for enhancing the drought tolerance of this important crop legume.
Collapse
Affiliation(s)
| | | | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 1407 Córdoba, Spain; (C.M.L.); (M.P.)
| |
Collapse
|
48
|
Patel P, Yadav K, Srivastava AK, Suprasanna P, Ganapathi TR. Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep 2019; 9:16434. [PMID: 31712582 PMCID: PMC6848093 DOI: 10.1038/s41598-019-52858-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Plant micro RNAs (miRNAs) control growth, development and stress tolerance but are comparatively unexplored in banana, whose cultivation is threatened by abiotic stress and nutrient deficiencies. In this study, a native Musa-miR397 precursor harboring 11 copper-responsive GTAC motifs in its promoter element was identified from banana genome. Musa-miR397 was significantly upregulated (8-10) fold in banana roots and leaves under copper deficiency, correlating with expression of root copper deficiency marker genes such as Musa-COPT and Musa-FRO2. Correspondingly, target laccases were significantly downregulated (>-2 fold), indicating miRNA-mediated silencing for Cu salvaging. No significant expression changes in the miR397-laccase module were observed under iron stress. Musa-miR397 was also significantly upregulated (>2 fold) under ABA, MV and heat treatments but downregulated under NaCl stress, indicating universal stress-responsiveness. Further, Musa-miR397 overexpression in banana significantly increased plant growth by 2-3 fold compared with wild-type but did not compromise tolerance towards Cu deficiency and NaCl stress. RNA-seq of transgenic and wild type plants revealed modulation in expression of 71 genes related to diverse aspects of growth and development, collectively promoting enhanced biomass. Summing up, our results not only portray Musa-miR397 as a candidate for enhancing plant biomass but also highlight it at the crossroads of growth-defense trade-offs.
Collapse
Affiliation(s)
- Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Thumballi Ramabhatta Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
49
|
Xiao L, Li T, Jiang G, Jiang Y, Duan X. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. J Proteomics 2019; 209:103506. [DOI: 10.1016/j.jprot.2019.103506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
50
|
McKown AD, Klápště J, Guy RD, Corea ORA, Fritsche S, Ehlting J, El-Kassaby YA, Mansfield SD. A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade-off in poplar. THE NEW PHYTOLOGIST 2019; 223:1888-1903. [PMID: 31081152 DOI: 10.1111/nph.15911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Occurrence of stomata on both leaf surfaces (amphistomaty) promotes higher stomatal conductance and photosynthesis while simultaneously increasing exposure to potential disease agents in black cottonwood (Populus trichocarpa). A genome-wide association study (GWAS) with 2.2M single nucleotide polymorphisms generated through whole-genome sequencing found 280 loci associated with variation in adaxial stomatal traits, implicating genes regulating stomatal development and behavior. Strikingly, numerous loci regulating plant growth and response to biotic and abiotic stresses were also identified. The most significant locus was a poplar homologue of SPEECHLESS (PtSPCH1). Individuals possessing PtSPCH1 alleles associated with greater adaxial stomatal density originated primarily from environments with shorter growing seasons (e.g. northern latitudes, high elevations) or with less precipitation. PtSPCH1 was expressed in developing leaves but not developing stem xylem. In developing leaves, RNA sequencing showed patterns of coordinated expression between PtSPCH1 and other GWAS-identified genes. The breadth of our GWAS results suggests that the evolution of amphistomaty is part of a larger, complex response in plants. Suites of genes underpin this response, retrieved through genetic association to adaxial stomata, and show coordinated expression during development. We propose that the occurrence of amphistomaty in P. trichocarpa involves PtSPCH1 and reflects selection for supporting rapid growth over investment in immunity.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
- Scion (New Zealand Forest Research Institute Ltd), Whakarewarewa, Rotorua, 3046, New Zealand
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Oliver R A Corea
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Steffi Fritsche
- Scion (New Zealand Forest Research Institute Ltd), Whakarewarewa, Rotorua, 3046, New Zealand
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|