1
|
Song BH, Yun SI, Goldhardt JL, Kim J, Lee YM. Key virulence factors responsible for differences in pathogenicity between clinically proven live-attenuated Japanese encephalitis vaccine SA14-14-2 and its pre-attenuated highly virulent parent SA14. PLoS Pathog 2025; 21:e1012844. [PMID: 39775684 PMCID: PMC11741592 DOI: 10.1371/journal.ppat.1012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/17/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice. Our findings revealed the following: (i) The single envelope (E) protein of SA14-14-2, which contains nine mutations (eight in the ectodomain and one in the stem region), is both necessary and sufficient to render SA14 non-neuroinvasive and non-neurovirulent. (ii) Conversely, the E protein of SA14 alone is necessary for SA14-14-2 to become highly neurovirulent, but it is not sufficient to make it highly neuroinvasive. (iii) The limited neuroinvasiveness of an SA14-14-2 derivative that contains the E gene of SA14 significantly increases (approaching that of the wild-type strain) when two viral nonstructural proteins are replaced by their counterparts from SA14: (a) NS1/1', which has four mutations on the external surface of the core β-ladder domain; and (b) NS2A, which has two mutations in the N-terminal region, including two non-transmembrane α-helices. In line with their roles in viral pathogenicity, the E, NS1/1', and NS2A genes all contribute to the enhanced spread of the virus in cell culture. Collectively, our data reveal for the first time that the E protein of JEV has a dual function: It is the master regulator of viral neurovirulence and also the primary initiator of viral neuroinvasion. After the initial E-mediated neuroinvasion, the NS1/1' and NS2A proteins act as secondary promoters, further amplifying viral neuroinvasiveness.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Joseph L. Goldhardt
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
2
|
da S Santos FR, Valadão DF, Bambirra JL, Moreira TP, de Souza CDF, Passos IBS, Queiroz-Junior CM, Fagundes CT, Teixeira MM, Costa VV, Souza DG. Targeting PI3Kγ Pathway for Treating Dengue virus Infection. Microb Pathog 2024; 197:107060. [PMID: 39490942 DOI: 10.1016/j.micpath.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Dengue disease is a major problem worldwide, impacting millions of people annually with no specific approved treatments. The pathogenesis of dengue is a complex interplay of viral and host factors, driven in particular by an excessive inflammatory response triggered by the infection. While it has been observed that various viruses can modulate the PI3K/Akt signaling pathway to aid replication and theunderlying mechanisms remainunclear. The study aims to explore the impact of PI3Kγ inhibition during Dengue virus (DENV) infection in vivo. Experiments were performed using both wild-type (WT) and PI3Kγ knockout mice inoculated with DENV. Parameters, including survival rates, hematologic, virologic, histopathologic, and inflammatory analyzes, were evaluated. Additionally, the therapeutic potential of a selective PI3Kγ inhibitor (AS605240) was investigated in DENV-infected A129 mice. PI3Kγ deficiency resulted in lower lethality and provided protection against DENV-induced thrombocytopenia, decreased hemoconcentration, vascular permeability, and liver damage compared to DENV-infected WT littermates. In addition, PI3Kγ deficiency correlated with reduced viral replication in the blood, spleen and liver alongside decreased production of inflammatory mediators in plasma and spleen. Pharmacologic inhibition of PI3Kγ not only ameliorated DENV-induced thrombocytopenia and liver injury, but also reduced DENV replication in target organs. Treatment with AS605240 reduced the concentration of IL-6 in the spleen and plasma.This study sheds light on the significant pro-viral effects of the PI3Kγ signaling pathway during DENV infection and its central role in pathogenesis by curbing excessive DENV-induced inflammation. Inhibition of PI3Kγ shows promising host-directed target for developing novel Dengue disease therapies, offering substantial benefits to hosts.
Collapse
Affiliation(s)
- Felipe R da S Santos
- Departament of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departament of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Deborah F Valadão
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jordana L Bambirra
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaiane P Moreira
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carla D F de Souza
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ingredy B S Passos
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso M Queiroz-Junior
- Departament of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caio T Fagundes
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Departament of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian V Costa
- Departament of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Daniele G Souza
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
4
|
Tyagi K, Rai P, Gautam A, Kaur H, Kapoor S, Suttee A, Jaiswal PK, Sharma A, Singh G, Barnwal RP. Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. Eur J Med Res 2023; 28:307. [PMID: 37649125 PMCID: PMC10469568 DOI: 10.1186/s40001-023-01293-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Coronaviruses such as Severe Acute Respiratory Syndrome coronavirus (SARS), Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are associated with critical illnesses, including severe respiratory disorders. SARS-CoV-2 is the causative agent of the deadly COVID-19 illness, which has spread globally as a pandemic. SARS-CoV-2 may enter the human body through olfactory lobes and interact with the angiotensin-converting enzyme2 (ACE2) receptor, further facilitating cell binding and entry into the cells. Reports have shown that the virus can pass through the blood-brain barrier (BBB) and enter the central nervous system (CNS), resulting in various disorders. Cell entry by SARS-CoV-2 largely relies on TMPRSS2 and cathepsin L, which activate S protein. TMPRSS2 is found on the cell surface of respiratory, gastrointestinal and urogenital epithelium, while cathepsin-L is a part of endosomes. AIM The current review aims to provide information on how SARS-CoV-2 infection affects brain function.. Furthermore, CNS disorders associated with SARS-CoV-2 infection, including ischemic stroke, cerebral venous thrombosis, Guillain-Barré syndrome, multiple sclerosis, meningitis, and encephalitis, are discussed. The many probable mechanisms and paths involved in developing cerebrovascular problems in COVID patients are thoroughly detailed. MAIN BODY There have been reports that the SARS-CoV-2 virus can cross the blood-brain barrier (BBB) and enter the central nervous system (CNS), where it could cause a various illnesses. Patients suffering from COVID-19 experience a range of neurological complications, including sleep disorders, viral encephalitis, headaches, dysgeusia, and cognitive impairment. The presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of COVID-19 patients has been reported. Health experts also reported its presence in cortical neurons and human brain organoids. The possible mechanism of virus infiltration into the brain can be neurotropic, direct infiltration and cytokine storm-based pathways. The olfactory lobes could also be the primary pathway for the entrance of SARS-CoV-2 into the brain. CONCLUSIONS SARS-CoV-2 can lead to neurological complications, such as cerebrovascular manifestations, motor movement complications, and cognitive decline. COVID-19 infection can result in cerebrovascular symptoms and diseases, such as strokes and thrombosis. The virus can affect the neural system, disrupt cognitive function and cause neurological disorders. To combat the epidemic, it is crucial to repurpose drugs currently in use quickly and develop novel therapeutics.
Collapse
Affiliation(s)
- Kritika Tyagi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Prachi Rai
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Anuj Gautam
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Harjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|
5
|
Srichawla BS, Kipkorir V, Manan MR, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Stealth invaders: unraveling the mystery of neurotropic viruses and their elusive presence in cerebrospinal fluid - a comprehensive review. Ann Med Surg (Lond) 2023; 85:2761-2766. [PMID: 37363567 PMCID: PMC10289609 DOI: 10.1097/ms9.0000000000000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/16/2023] [Indexed: 06/28/2023] Open
Abstract
Neurotropic viruses are a threat to human populations due to ongoing zoonosis. A wide array of neurological manifestations can occur most often including parkinsonism, encephalitis/encephalopathy, flaccid myelitis, and Guillain-Barré syndrome. Neuroinvasion occurs through: transneural transmission, blood brain barrier (BBB) dysfunction, and 'trojan horse' mechanism or infected immune cell trafficking into the central nervous system (CNS). Transneural transmission occurs through virus mediated hijacking of intracellular transport proteins allowing retrograde viral transport. BBB dysfunction occurs through cytokine storm increasing membrane permissibility. Increased chemokine expression allows leukocyte trafficking to the BBB. Virally infected leukocytes may successfully pass through the BBB allowing the pathogen to infect microglia and other CNS cell types. We define cerebrospinal fluid (CSF) nondetection as a virus' ability to evade direct CSF detection but still causing significant neurological symptoms and disease. Mechanisms of CSF nondetection include: transneuronal propagation through trans-synaptic transmission, and synaptic microfusion, as well as intrathecal antibody synthesis and virus neutralization. Direct virus detection in CSF is associated with an increased neurological disease burden. However, the lack of CSF detection does not exclude CNS involvement due to possible neuroevasive mechanisms.
Collapse
Affiliation(s)
| | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, University Way, Nairobi, Kenya
| | | | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St. Jude’s Highway, St. Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts, Chan Medical School, Massachusetts, USA
| | - Diego Carrion-Alvarez
- Departmento de Medicina Interna, ISSSTE Regional de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Richard C. Suteja
- Faculty of Medicine, Udayana University, Kampus BukitKabupaten Badung, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, University Way, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucuresti, Romania
- Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Soseaua Fundeni 258, Bucuresti, Romania
| |
Collapse
|
6
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
7
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
8
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
9
|
Chen H, Qin Y, Wang Z, Wang L, Pang D, Zhao D, Liu S. An Activatable and Reversible Virus‐Mimicking NIR‐II Nanoprobe for Monitoring the Progression of Viral Encephalitis. Angew Chem Int Ed Engl 2022; 61:e202210285. [DOI: 10.1002/anie.202210285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hua‐Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Ying Qin
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Zhi‐Gang Wang
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Dongbing Zhao
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Shu‐Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Gao S, Liu XZ, Wu LY, Peng Z, Chen XX, Wang H, Lu Y, Zhuang Z, Tan Q, Hang CH, Li W. Long-Term Elevated Siglec-10 in Cerebral Spinal Fluid Heralds Better Prognosis for Patients with Aneurysmal Subarachnoid Hemorrhage. DISEASE MARKERS 2022; 2022:5382100. [PMID: 36188429 PMCID: PMC9519311 DOI: 10.1155/2022/5382100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
The presence of aneurysmal subarachnoid hemorrhage (aSAH) is usually accompanied by excessive inflammatory response leading to damage of the central nervous system, and the sialic acid-binding Ig-like lectin 10 (Siglec-10) is a recognized factor being able to modify the inflammatory reaction. To investigate the potential role of Siglec-10 in aSAH, we collected the cerebrospinal fluid (CSF) of control (n = 11) and aSAH (n = 14) patients at separate times and measured the Siglec-10 concentration utilizing the enzyme-linked immunosorbent assay (ELISA) and evaluated the alterations of GOS and GCS during the disease process. In accordance with the STROBE statement, results showed that Siglec-10 in CSF rose quickly in response aSAH attack and then fell back to a slightly higher range above baseline, while it remained at relative high concentration and last longer in several severely injured patients. In general, higher Siglec-10 expression over a longer period usually indicated a better clinical prognosis. This prospective cohort study suggested that Siglec-10 could possibly be used as a biomarker for predicting prognosis of aSAH due to its ability to balance aSAH-induced nonsterile inflammation. Additionally, these findings might provide novel therapeutic perspectives for aSAH and other inflammation-related diseases.
Collapse
Affiliation(s)
- Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Marshall EM, Koopmans MPG, Rockx B. A Journey to the Central Nervous System: Routes of Flaviviral Neuroinvasion in Human Disease. Viruses 2022; 14:2096. [PMID: 36298652 PMCID: PMC9611789 DOI: 10.3390/v14102096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Many arboviruses, including viruses of the Flavivirus genera, are known to cause severe neurological disease in humans, often with long-lasting, debilitating sequalae in surviving patients. These emerging pathogens impact millions of people worldwide, yet still relatively little is known about the exact mechanisms by which they gain access to the human central nervous system. This review focusses on potential haematogenous and transneural routes of neuroinvasion employed by flaviviruses and identifies numerous gaps in knowledge, especially regarding lesser-studied interfaces of possible invasion such as the blood-cerebrospinal fluid barrier, and novel routes such as the gut-brain axis. The complex balance of pro-inflammatory and antiviral immune responses to viral neuroinvasion and pathology is also discussed, especially in the context of the hypothesised Trojan horse mechanism of neuroinvasion. A greater understanding of the routes and mechanisms of arboviral neuroinvasion, and how they differ between viruses, will aid in predictive assessments of the neuroinvasive potential of new and emerging arboviruses, and may provide opportunity for attenuation, development of novel intervention strategies and rational vaccine design for highly neurovirulent arboviruses.
Collapse
Affiliation(s)
| | | | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Chen H, Qin Y, Wang Z, Wang L, Pang D, Zhao D, Liu S. An Activatable and Reversible Virus‐Mimicking NIR‐II Nanoprobe for Monitoring the Progression of Viral Encephalitis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hua‐Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Ying Qin
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Zhi‐Gang Wang
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Dongbing Zhao
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| | - Shu‐Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
- State Key Laboratory of Medicinal Chemical Biology Frontiers Science Centre for New Organic Matter Tianjin Key Laboratory of Biosensing and Molecular Recognition Research Centre for Analytical Sciences College of Chemistry and School of Medicine Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
13
|
Basova LV, Vien W, Bortell N, Najera JA, Marcondes MCG. Methamphetamine signals transcription of IL1β and TNFα in a reactive oxygen species-dependent manner and interacts with HIV-1 Tat to decrease antioxidant defense mechanisms. Front Cell Neurosci 2022; 16:911060. [PMID: 36060276 PMCID: PMC9434488 DOI: 10.3389/fncel.2022.911060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (Meth) abuse is a common HIV co-morbidity that is linked to aggravated Central Nervous System (CNS) inflammation, which accentuates HIV- associated neurological disorders, triggered both directly or indirectly by the drug. We used the well-established human innate immune macrophage cell line system (THP1) to demonstrate that Reactive Oxygen Species (ROS) immediately induced by Meth play a role in the increased transcription of inflammatory genes, in interaction with HIV-1 Tat peptide. Meth and Tat, alone and together, affect early events of transcriptional activity, as indicated by changes in RNA polymerase (RNAPol) recruitment patterns throughout the genome, via ROS-dependent and -independent mechanisms. IL1β (IL1β) and TNF α (TNFα), two genes with defining roles in the inflammatory response, were both activated in a ROS-dependent manner. We found that this effect occurred via the activation of the activator protein 1 (AP-1) comprising cFOS and cJUN transcription factors and regulated by the SRC kinase. HIV-1 Tat, which was also able to induce the production of ROS, did not further impact the effects of ROS in the context of Meth, but promoted gene activity independently from ROS, via additional transcription factors. For instance, HIV-1 Tat increased NFkB activation and activated gene clusters regulated by Tata box binding peptide, ING4 and IRF2. Importantly, HIV-1 Tat decreased the expression of anti-oxidant genes, where its suppression of the detoxifying machinery may contribute to the aggravation of oxidative stress induced by ROS in the context of Meth. Our results provide evidence of effects of Meth via ROS and interactions with HIV Tat that promote the transcription of inflammatory genes such as IL1β and TNFα.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
| | - Whitney Vien
- The Scripps Research Institute, La Jolla, CA, United States
- University of California San Diego, La Jolla, CA, United States
| | - Nikki Bortell
- The Scripps Research Institute, La Jolla, CA, United States
| | | | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Maria Cecilia Garibaldi Marcondes,
| |
Collapse
|
14
|
Zhang J, Han W, Xie C, Gao M, Wang X, Hu X, Zhang W, Cao S, Liu X, Cheng G, Gu C. Autophagy inhibitors alleviate Japanese encephalitis virus-induced cerebral inflammation in mice. Arch Virol 2022; 167:849-859. [PMID: 35119507 PMCID: PMC8814803 DOI: 10.1007/s00705-021-05283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Japanese encephalitis (JE) is a zoonotic epidemic disease caused by Japanese encephalitis virus (JEV), and currently, no medicines are available to treat this disease. Autophagy modulators play an important role in the treatment of tumors, heart disease, and some viral diseases. The aim of this study was to investigate the effects of autophagy modulators on JEV infection and the host response in mice. The experimental mice were grouped as follows: DMEM (control), JEV, JEV+rapamycin (JEV+Rapa), JEV+wortmannin (JEV+Wort), JEV+chloroquine (JEV+CQ), Rapa, Wort, and CQ. The control group was treated with DMEM. The mice in other groups were infected with 105 PFU of JEV, and Rapa, Wort, and CQ were administered 2 h prior to JEV challenge and then administered daily for 10 consecutive days. All mice were monitored for neurological signs and survival. The damage of subcellular structures in the mouse brain was evaluated by transmission electron microscopy. The distribution of virus in the mouse brain was determined by RNAScope staining and immunohistochemical staining. The neuroinflammatory responses in the brain were examined via quantitative real-time PCR, and the signal pathways involved in neuroinflammation were identified by Western blot. The mice in the JEV+Wort and JEV+CQ groups showed milder neurological symptoms, less damage to the mitochondria in the brain tissue, and a higher survival rate than those in the JEV+Rapa and JEV groups. Compared with the JEV+Rapa and JEV groups, the distribution of JEV in the brain of mice in the JEV+Wort and JEV+CQ groups was lower, and the inflammatory response was weaker. No significant difference was observed in the expression of the PI3K/AKT/NF-κB pathway in mouse brain among the different groups. Our study suggests that the autophagy inhibitors Wort and CQ reduce JEV infection and weaken the inflammatory response, which does not depend on the PI3K/AKT/NF-κB pathway in mouse brain.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changqing Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mingxing Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changqin Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Deval H, Alagarasu K, Srivastava N, Bachal R, Mittal M, Agrawal A, Bote M, Gondhalekar A, Bondre VP, Kant R. Association of single nucleotide polymorphisms in the CD209, MMP9, TNFA and IFNG genes with susceptibility to Japanese encephalitis in children from North India. Gene 2022; 808:145962. [PMID: 34530082 DOI: 10.1016/j.gene.2021.145962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis (JE), an acute encephalitis syndrome disease caused by infection with JE virus (JEV), is an important mosquito borne disease in developing countries. The clinical outcomes of JEV infection show inter individual differences. Only in a minor percent of the infected subjects, the disease progresses into acute encephalitis syndrome. Single nucleotide polymorphisms in the host immune response related genes are known to affect susceptibility to JE. In the present study, 238 JE cases and 405 healthy controls (HCs) without any known history of encephalitis were investigated for SNPs in the CD209 MX1, TLR3, MMP9, TNFA and IFNG genes which are important in the immune response against JEV by PCR based methods. The results revealed higher frequencies of heterozygous genotypes of CD209 rs4804803, MMP9 rs17576, TNFA rs1800629 and IFNG rs2430561 in JE cases compared to HCs. These SNPs were associated with JE in an over-dominant genetic model (Odds ratio with 95% CI 1.51 (1.09-2.10) for CD209 rs4804803, 1.52 (1.09-2.11) for MMP9 rs17576, and 1.55 (1.12-2.15) for IFNG rs2430561). The association of G/A genotype of TNFA rs1800629 with JE was confirmed in a larger sample size. The results suggest the association of CD209 rs4804803, MMP9 rs17576, IFNG rs2430561 and TNFA rs1800629 polymorphisms with susceptibility to JE.
Collapse
Affiliation(s)
- Hirawati Deval
- ICMR-Regional Research Medical Centre, Gorakhpur, Uttar Pradesh, India.
| | | | - Neha Srivastava
- ICMR-Regional Research Medical Centre, Gorakhpur, Uttar Pradesh, India
| | - Rupali Bachal
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Mahima Mittal
- All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Apoorv Agrawal
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Minal Bote
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Vijay P Bondre
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Rajni Kant
- ICMR-Regional Research Medical Centre, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
16
|
Peng Y, Lin H, Tian S, Liu S, Li J, Lv X, Chen S, Zhao L, Pu F, Chen X, Shu H, Qing X, Shao Z. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med 2021; 177:247-259. [PMID: 34737144 DOI: 10.1016/j.freeradbiomed.2021.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Disruption of the intervertebral disc extracellular matrix (ECM) is a hallmark of intervertebral disc degeneration (IDD), which is largely attributed to excessive oxidative stress. However, there is a lack of clinically feasible approaches to promote the reconstruction of the disc ECM. Glucagon-like peptide-1 (GLP-1), a safe polypeptide hormone adopted to treat type 2 diabetes mellitus, has shown great potential for relieving oxidative stress-related damage. To our knowledge, this is the first study to reveal that exenatide, a GLP-1 receptor (GLP-1R) agonist, can upregulate disc ECM synthesis and attenuate oxidative stress-induced ECM degradation and IDD. Mechanistically, we found that exenatide inhibited the activation of mitogen-activated protein kinases (MAPK) signaling pathway and the formation of BATF/JUNs heterodimers (an index of activator protein-1 (AP-1) activity). The restoration of MAPK signaling activation reversed the protective effects of exenatide and enhanced downstream BATF/JUNs binding. BATF overexpression was also found to aggravate disc ECM damage, even in the presence of exenatide. In summary, exenatide is an effective agent that regulates ECM anabolic balance and restores disc degeneration by inhibiting MAPK activation and its downstream AP-1 activity. The present study provides a therapeutic rationale for activating the GLP-1 receptor against IDD and establishes the important role of AP-1 activity in the pathogenesis of IDD.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Ashraf U, Ding Z, Deng S, Ye J, Cao S, Chen Z. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 2021; 12:968-980. [PMID: 33724154 PMCID: PMC7971234 DOI: 10.1080/21505594.2021.1899674] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Thousands of human deaths occur annually due to Japanese encephalitis (JE), caused by Japanese encephalitis virus. During the virus infection of the central nervous system, reactive gliosis, uncontrolled inflammatory response, and neuronal cell death are considered as the characteristic features of JE. To date, no specific treatment has been approved to overcome JE, indicating a need for the development of novel therapies. In this article, we focused on basic biological mechanisms in glial (microglia and astrocytes) and neuronal cells that contribute to the onset of neuroinflammation and neuronal cell damage during Japanese encephalitis virus infection. We also provided comprehensive knowledge about anti-JE therapies tested in clinical or pre-clinical settings, and discussed recent therapeutic strategies that could be employed for JE treatment. The improved understanding of JE pathogenesis might lay a foundation for the development of novel therapies to halt JE.Abbreviations AKT: a serine/threonine-specific protein kinase; AP1: activator protein 1; ASC: apoptosis-associated speck-like protein containing a CARD; ASK1: apoptosis signal-regulated kinase 1; ATF3/4/6: activating transcription factor 3/4/6; ATG5/7: autophagy-related 5/7; BBB: blood-brain barrier; Bcl-3/6: B-cell lymphoma 3/6 protein; CCL: C-C motif chemokine ligand; CCR2: C-C motif chemokine receptor 2; CHOP: C/EBP homologous protein; circRNA: circular RNA; CNS: central nervous system; CXCL: C-X-C motif chemokine ligand; dsRNA: double-stranded RNA; EDEM1: endoplasmic reticulum degradation enhancer mannosidase alpha-like 1; eIF2-ɑ: eukaryotic initiation factor 2 alpha; ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; GRP78: 78-kDa glucose-regulated protein; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; IRAK1/2: interleukin-1 receptor-associated kinase 1/2; IRE-1: inositol-requiring enzyme 1; IRF: interferon regulatory factor; ISG15: interferon-stimulated gene 15; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; JNK: c-Jun N-terminal kinase; LAMP2: lysosome-associated membrane protein type 2; LC3-I/II: microtubule-associated protein 1 light chain 3-I/II; lncRNA: long non-coding RNA; MAPK: mitogen-activated protein kinase; miR/miRNA: microRNA; MK2: mitogen-activated protein kinase-activated protein kinase 2; MKK4: mitogen-activated protein kinase kinase 4; MLKL: mixed-linage kinase domain-like protein; MMP: matrix metalloproteinase; MyD88: myeloid differentiation factor 88; Nedd4: neural precursor cell-expressed developmentally downregulated 4; NF-κB: nuclear factor kappa B; NKRF: nuclear factor kappa B repressing factor; NLRP3: NLR family pyrin domain containing 3; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; NS2B/3/4: JEV non-structural protein 2B/3/4; P: phosphorylation. p38: mitogen-activated protein kinase p38; PKA: protein kinase A; PAK4: p21-activated kinase 4; PDFGR: platelet-derived growth factor receptor; PERK: protein kinase R-like endoplasmic reticulum kinase; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; Rab7: Ras-related GTPase 7; Raf: proto-oncogene tyrosine-protein kinase Raf; Ras: a GTPase; RIDD: regulated IRE-1-dependent decay; RIG-I: retinoic acid-inducible gene I; RIPK1/3: receptor-interacting protein kinase 1/3; RNF11/125: RING finger protein 11/125; ROS: reactive oxygen species; SHIP1: SH2-containing inositol 5' phosphatase 1; SOCS5: suppressor of cytokine signaling 5; Src: proto-oncogene tyrosine-protein kinase Src; ssRNA = single-stranded RNA; STAT: signal transducer and activator of transcription; TLR: toll-like receptor; TNFAIP3: tumor necrosis factor alpha-induced protein 3; TNFAR: tumor necrosis factor alpha receptor; TNF-α: tumor necrosis factor-alpha; TRAF6: tumor necrosis factor receptor-associated factor 6; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRIM25: tripartite motif-containing 25; VCAM: vascular cell adhesion molecule; ZO-1: zonula occludens-1.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Shunzhou Deng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
18
|
Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021; 22:10118. [PMID: 34576281 PMCID: PMC8465340 DOI: 10.3390/ijms221810118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Jisu Song
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Jin Zhang
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| |
Collapse
|
19
|
RNA Interference Screening Reveals Requirement for Platelet-Derived Growth Factor Receptor Beta in Japanese Encephalitis Virus Infection. Antimicrob Agents Chemother 2021; 65:AAC.00113-21. [PMID: 33753340 PMCID: PMC8316074 DOI: 10.1128/aac.00113-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Mosquito-borne Japanese encephalitis virus (JEV) causes serious illness worldwide and is associated with high morbidity and mortality. To identify potential host therapeutic targets, a high-throughput receptor tyrosine kinase small interfering RNA library screening was performed with recombinant JEV particles. Platelet-derived growth factor receptor beta (PDGFRβ) was identified as a hit after two rounds of screening. Knockdown of PDGFRβ blocked JEV infection and transcomplementation of PDGFRβ could partly restore its infectivity. The PDGFRβ inhibitor imatinib, which has been approved for the treatment of malignant metastatic cancer, protected mice against JEV-induced lethality by decreasing the viral load in the brain while abrogating the histopathological changes associated with JEV infection. These findings demonstrated that PDGFRβ is important in viral infection and provided evidence for the potential to develop imatinib as a therapeutic intervention against JEV infection.
Collapse
|
20
|
Geddes VEV, Brustolini OJB, Cavalcante LTDF, Moreira FRR, de Castro FL, Guimarães APDC, Gerber AL, Figueiredo CM, Diniz LP, Neto EDA, Tanuri A, Souza RP, Assunção-Miranda I, Alves-Leon SV, Romão LF, de Souza JPBM, de Vasconcelos ATR, de Aguiar RS. Common Dysregulation of Innate Immunity Pathways in Human Primary Astrocytes Infected With Chikungunya, Mayaro, Oropouche, and Zika Viruses. Front Cell Infect Microbiol 2021; 11:641261. [PMID: 33791243 PMCID: PMC8006316 DOI: 10.3389/fcimb.2021.641261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Arboviruses pose a major threat throughout the world and represent a great burden in tropical countries of South America. Although generally associated with moderate febrile illness, in more severe cases they can lead to neurological outcomes, such as encephalitis, Guillain-Barré syndrome, and Congenital Syndromes. In this context astrocytes play a central role in production of inflammatory cytokines, regulation of extracellular matrix, and control of glutamate driven neurotoxicity in the central nervous system. Here, we presented a comprehensive genome-wide transcriptome analysis of human primary astrocytes infected with Chikungunya, Mayaro, Oropouche, or Zika viruses. Analyses of differentially expressed genes (DEGs), pathway enrichment, and interactomes have shown that Alphaviruses up-regulated genes related to elastic fiber formation and N-glycosylation of glycoproteins, with down-regulation of cell cycle and DNA stability and chromosome maintenance genes. In contrast, Oropouche virus up-regulated cell cycle and DNA maintenance and condensation pathways while down-regulated extracellular matrix, collagen metabolism, glutamate and ion transporters pathways. Zika virus infection only up-regulated eukaryotic translation machinery while down-regulated interferon pathways. Reactome and integration analysis revealed a common signature in down-regulation of innate immune response, antiviral response, and inflammatory cytokines associated to interferon pathway for all arboviruses tested. Validation of interferon stimulated genes by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) corroborated our transcriptome findings. Altogether, our results showed a co-evolution in the mechanisms involved in the escape of arboviruses to antiviral immune response mediated by the interferon (IFN) pathway.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Liliane Tavares de Faria Cavalcante
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Luz de Castro
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Camila Menezes Figueiredo
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico de Arruda Neto
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Pedra Souza
- Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Tereza Ribeiro de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Renato Santana de Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Eustaquio Do Imperio G, Lye P, Bloise E, Matthews SG. Function of Multidrug Resistance Transporters is Disrupted by Infection Mimics in Human Brain Endothelial Cells. Tissue Barriers 2021; 9:1860616. [PMID: 33427563 PMCID: PMC8078541 DOI: 10.1080/21688370.2020.1860616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) modulate the distribution of drugs and toxins across the blood-brain barrier (BBB). Animal studies reported that infection-induced disruption of these transporters in the developing BBB impairs fetal brain protection. However, the impact of infection mimics on P-gp/BCRP function in human brain endothelium is less well understood. We hypothesized that Toll-like receptor ligands mimicking bacterial and viral infection would modify the expression and function of P-gp and BCRP in human brain endothelial cells (BECs). Human cerebral microvascular endothelial cells (hCMEC/D3) were challenged with bacterial [Lipopolysaccharide (LPS)] and viral-mimics [polyinosinic:polycytidylic acid (PolyI:C) or single-stranded RNA (ssRNA)], or pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon gamma (IFN)-ɣ. P-gp and BCRP function was assessed after 4 or 24 h, using Calcein-AM and Chlorin-6 assays, respectively. Western blot and qPCR quantified P-gp/ABCB1 and BCRP/ABCG2 expression following treatments. Infection mimics are potent modulators of drug transporters in human BECs in vitro. LPS and PolyI:C increased, while ssRNA exposure reduced P-gp activity. In contrast, LPS and PolyI:C decreased, while ssRNA increased BCRP activity (P < .05). There was little correlation between drug transporter function, gene expression and total protein level. Altered plasma membrane BCRP may suggest modified intracellular trafficking induced by infection in human BECs. Bacterial and viral infection mimics modify P-gp and BCRP transport function in human BECs, in vitro. This knowledge may contribute and have important implications for human brain protection and possible altered biodistribution of drugs and xenobiotics in the brain following exposure to TLR agonists.
Collapse
Affiliation(s)
| | - Phetcharawan Lye
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Vanden Oever M, Muldoon D, Mathews W, Tolar J. Fludarabine modulates expression of type VII collagen during haematopoietic stem cell transplantation for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2020; 185:380-390. [PMID: 33368156 DOI: 10.1111/bjd.19757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe, complicated inherited blistering skin disease with few treatment options currently available. Recently, haematopoietic stem cell transplantation (HCT) has been used as an alternative therapy that can improve skin integrity, but it is not known if the preparative HCT regimen also contributes to the therapeutic response. OBJECTIVES To determine whether chemotherapy drugs used in the HCT preparative regimen influence type VII collagen (C7) expression, which is inherently reduced or absent in RDEB skin, and to explore the pathomechanisms of such responses, if present. METHODS Drugs from the HCT preparative regimen (busulfan, cyclophosphamide, ciclosporin A, fludarabine and mycophenolate) with inhibitors (PD98059, U0126, LY294002, SR11302, SIS3 and N-acetyl-l-cysteine) were added to normal human dermal and human RDEB fibroblasts. C7 expression was measured using reversetranscription polymerase chain reaction and immunoblotting. RESULTS We uncovered a previously unknown consequence of fludarabine whereby dermal fibroblasts exposed to fludarabine upregulate C7. This effect is mediated, in part, through activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase/protein kinase B and transforming growth factor-β pathways. Activation of these pathways leads to activation of downstream transcription factors, including activator protein 1 (AP-1) and SMAD. Subsequently, both AP-1 and SMAD bind the COL7A1 promoter and increase COL7A1 expression. CONCLUSIONS Fludarabine influences the production of type VII collagen in RDEB fibroblasts.
Collapse
Affiliation(s)
- M Vanden Oever
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - D Muldoon
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - W Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - J Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Kumar S, Maurya VK, Kabir R, Nayak D, Khurana A, Manchanda RK, Gadugu S, Shanker K, Saxena SK. Antiviral Activity of Belladonna During Japanese Encephalitis Virus Infection via Inhibition of Microglia Activation and Inflammation Leading to Neuronal Cell Survival. ACS Chem Neurosci 2020; 11:3683-3696. [PMID: 33054164 DOI: 10.1021/acschemneuro.0c00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the main cause of viral encephalitis resulting in more than 68 000 clinical cases every year with case fatality rate as high as 30-40% for which no specific treatments are available. We have recently exhibited belladonna may be widely applicable for the treatment of various neurological disorders. Therefore, we developed a hydroalcoholic formulation of belladonna (B200) consisting of atropine and scopolamine and showed its antiviral efficacy against JEV infection. B200 treatment increases neuronal cell survival by reducing JEV induced cytopathic effects which were evident from significant reduction in necrotic cell population by flow-cytometry analysis and caspase 3 and 8 enzymatic activities. B200 treatment was found to reduce the intracellular JEV level observed by significant reduction in JEV-fluorescein isothiocyanate (FITC) expression in both neurons and microglia. Because microglia plays a crucial role in JEV pathogenesis, we further investigated the anti-JEV effects of B200 on human microglia cells and elucidated the mechanism of action by performing whole-transcriptome sequencing. Gene expression analysis revealed that B200 reduces the pro-apoptotic and inflammatory gene expression observed by significant reduction in BAD, BAX, CASP3, CASP8, IL1B, and CXCL10 and increase in IL10 responsive gene expression. Interestingly, our molecular docking analysis revealed that atropine and scopolamine interact with the His288 residue of NS3 protein, a crucial residue for RNA unwinding and ATPase activity that was further confirmed by degradation of NS3 protein. Drug likeness, ADME (absorption, distribution, metabolism, and excretion), and toxicity analysis further suggests that atropine and scopolamine both cross the blood-brain barrier, which is crucial for effective treatment of Japanese encephalitis (JE).
Collapse
Affiliation(s)
- Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Russell Kabir
- School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford CM1 1SQ, United Kingdom
| | | | - Anil Khurana
- CCRH, Ministry of Ayush, Janakpuri, New Delhi 110058, India
| | | | - Srinivasulu Gadugu
- Department of Medicine, JSPS Government Medical College, Hyderabad 500013, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| |
Collapse
|
24
|
Li Z, Jia X, Peng X, Gao F. The Interaction Between Spinal PDGFRβ and μ Opioid Receptor in the Activation of Microglia in Morphine-Tolerant Rats. J Pain Res 2020; 13:1803-1810. [PMID: 32765055 PMCID: PMC7381827 DOI: 10.2147/jpr.s255221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Opioid tolerance remains a challenging problem, which limits prolonged drug usage in clinics. Previous studies have shown a fundamental role of platelet-derived growth factor receptor β submit (PDGFRβ) in morphine tolerance. The aim of this study was to investigate the mechanisms of spinal PDGFRβ activation in morphine tolerance. Methods Rats were treated with morphine for 7 days and the effect of drug was evaluated by tail-flick latency test. By using Western blot and real-time PCR, the interaction between μ opioid receptor (MOR) and PDGFRβ in microglia activation, as well as related signaling pathways during morphine tolerance were investigated. Results Chronic PDGFRβ agonist could induce microglia activation in spinal cord and decrease the analgesic effect of morphine. PDGFRβ inhibitor suppressed microglia activation during the development of morphine tolerance. Furthermore, antagonizing MOR could effectively inhibit the phosphorylations of PDGFRβ and JNK. Blocking PDGFRβ had no influence on JNK signaling, while JNK inhibitor could decrease the phosphorylation of PDGFRβ. Conclusion These results provide direct evidence that repeatedly activating MOR by morphine could induce the transactivation of PDGFRβ via JNK MAPK in spinal cord, which leads to microglia activation during the development of morphine tolerance.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
25
|
KARAKURT HU, PİR P. Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks. Turk J Biol 2020; 44:168-177. [PMID: 32595353 PMCID: PMC7314513 DOI: 10.3906/biy-2005-115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2, formerly known as nCoV-2019) that causes an acute respiratory disease has emerged in Wuhan, China and spread globally in early 2020. On January the 30th, the World Health Organization (WHO) declared spread of this virus as an epidemic and a public health emergency. With its highly contagious characteristic and long incubation time, confinement of SARS-CoV-2 requires drastic lock-down measures to be taken and therefore early diagnosis is crucial. We analysed transcriptome of SARS-CoV-2 infected human lung epithelial cells, compared it with mock-infected cells, used network-based reporter metabolite approach and integrated the transcriptome data with protein-protein interaction network to elucidate the early cellular response. Significantly affected metabolites have the potential to be used in diagnostics while pathways of protein clusters have the potential to be used as targets for supportive or novel therapeutic approaches. Our results are in accordance with the literature on response of IL6 family of cytokines and their importance, in addition, we find that matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) with keratan sulfate synthesis pathway may play a key role in the infection. We hypothesize that MMP9 inhibitors have potential to prevent "cytokine storm" in severely affected patients.
Collapse
Affiliation(s)
- Hamza Umut KARAKURT
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, KocaeliTurkey
- Idea Technology Solutions, İstanbulTurkey
| | - Pınar PİR
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, KocaeliTurkey
| |
Collapse
|
26
|
Sun J, Wang J, Li L, Wu Z, Chen X, Yuan J. ROS induced by spring viraemia of carp virus activate the inflammatory response via the MAPK/AP-1 and PI3K signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 101:216-224. [PMID: 32224280 DOI: 10.1016/j.fsi.2020.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/10/2023]
Abstract
Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio), and its main pathological processes include the inflammatory response. However, the detailed mechanism is still unclear. Reactive oxygen species (ROS) have been shown to play critical roles in the immune response, including inflammation, in different models. Our previous studies have demonstrated that SVCV infection results in the accumulation of ROS, including H2O2, in epithelioma papulosum cyprini (EPC) cells. In this study, we aimed to explore the relationship between H2O2 accumulation and inflammation during SVCV infection. After EPC cells were infected with SVCV, the expression levels of the inflammatory factors tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and interleukin (IL)-8 were up-regulated, while the expression of the anti-inflammatory factor interleukin (IL)-10 was down-regulated, compared with that in mock-infected EPC cells. The antioxidant N-acetyl-l-cysteine (NAC) could dampen the increased TNF-ɑ and COX-2 expression induced by SVCV and H2O2, suggesting a relationship between ROS accumulation and inflammation during SVCV infection. Dual luciferase reporter assays demonstrated that SVCV could not activate the NF-κB pathway. In addition, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) treatment had no effect on the expression of inflammatory factors. Furthermore, inhibition of the ERK, JNK, and p38MAPK signaling pathways by U0126, SP600125, and SB203580, respectively, reduced the expression of TNF-ɑ, COX-2, and IL-8, indicating that these three signaling pathways were all involved in the inflammatory response after SVCV infection. In addition, the PI3K signaling pathway was involved in the expression of the chemokine IL-8 in the SVCV-induced inflammatory response. We also showed that inhibition of the MAPK or PI3K signaling pathway facilitated the expression of SVCV-G as well as increased the SVCV viral titer. Altogether these results reveal the mechanism of the SVCV-mediated inflammatory response. Thus, targeting these signaling pathways may provide novel treatment strategies for SVCV-mediated diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jingwen Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
27
|
Lipopolysaccharide-Induced Matrix Metalloproteinase-9 Expression Associated with Cell Migration in Rat Brain Astrocytes. Int J Mol Sci 2019; 21:ijms21010259. [PMID: 31905967 PMCID: PMC6982104 DOI: 10.3390/ijms21010259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is a landmark of neuroinflammatory and neurodegenerative diseases. Matrix metalloproteinase (MMP)-9, one member of MMPs, has been shown to contribute to the pathology of these brain diseases. Several experimental models have demonstrated that lipopolysaccharide (LPS) exerts a pathological role through Toll-like receptors (TLRs) in neuroinflammation and neurodegeneration. However, the mechanisms underlying LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1) are not completely understood. Here, we applied pharmacological inhibitors and siRNA transfection to assess the levels of MMP-9 protein, mRNA, and promoter activity, as well as protein kinase phosphorylation in RBA-1 cells triggered by LPS. We found that LPS-induced expression of pro-form MMP-9 and cell migration were mediated through TLR4, proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), p38 mitogen-activated protein kinase (MAPK), and Jun amino-terminal kinase (JNK)1/2 signaling molecules in RBA-1 cells. In addition, LPS-stimulated binding of c-Jun to the MMP-9 promoter was confirmed by chromatin immunoprecipitation (ChIP) assay, which was blocked by pretreatment with c-Src inhibitor II, PF431396, AG1296, LY294002, Akt inhibitor VIII, p38 MAP kinase inhibitor VIII, SP600125, and tanshinone IIA. These results suggest that in RBA-1 cells, LPS activates a TLR4/c-Src/Pyk2/PDGFR/PI3K/Akt/p38 MAPK and JNK1/2 pathway, which in turn triggers activator protein 1 (AP-1) activation and ultimately induces MMP-9 expression and cell migration.
Collapse
|
28
|
Abstract
Japanese encephalitis (JE) is a clinical manifestation of the brain inflammation caused by JE virus (JEV). This virus imparts permanent neurological damage, thus imposing a heavy burden on public health and society. Neuro-inflammation is the hallmark of JEV infection. The prolonged pro-inflammatory response is due primarily to microglial activation, which eventually leads to severe encephalitis. A continual effort is going on in the scientific community toward an understanding of cellular and molecular factors that are involved in JEV neuro-invasion and inflammatory processes. This review not only gives a comprehensive update on the recent advances on understanding virus structure and mechanisms of pathogenesis but also briefly discusses crucial unresolved issues. We also highlight challenging areas of research that might open new avenues for controlling virus-induced neuro-inflammation.
Collapse
Affiliation(s)
- Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
29
|
Park HS, Ashour D, Elsharoud A, Chugh RM, Ismail N, El Andaloussi A, Al-Hendy A. Towards Cell free Therapy of Premature Ovarian Insufficiency: Human Bone Marrow Mesenchymal Stem Cells Secretome Enhances Angiogenesis in Human Ovarian Microvascular Endothelial Cells. ACTA ACUST UNITED AC 2019; 5. [PMID: 32494757 PMCID: PMC7269190 DOI: 10.24966/srdt-2060/100019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Primary Ovarian Insufficiency (POI) refers to an ovarian loss of function in women under the age of 40. Unfortunately, currently, there is no effective treatment available for POI-related infertility. Alternatives such as the use of egg donations are culturally and ethically unacceptable to many couples. Human Bone marrow-derived Mesenchymal Stem Cells (MSCs) are known for their ability to differentiate into other cell types, once primed by the organ microenvironment. Importantly MSCs produce a vast array of bioactive factors many of them have been shown to enhance neovascularization in various tissues. Recently, preliminary data from our ongoing clinical trial revealed encouraging preliminary data after autologous MSC engraftment into the ovaries of 2 POI patients with durable elevation in serum estrogen levels and increase in size of treated ovaries sustained up to one-year post cell therapy. In this study, we investigated the action of the mechanisms of MSCs treatment on a POI ovary. We designed an in vitro study using MSC secretome and Human Ovarian Endothelial Cells (HOVECs) to understand the molecular mechanisms by which MSC mediates their angiogenic properties and regenerative effects. Human primary HOVECs were treatment with MSC secretome and examined by FACS for the expression of angiogenesis markers such as Endoglin, Tie-2, and VEGF. The formation of vessels was evaluated by using a 3D Matrigel tubulogenesis assay. We observed that the expression of proliferation marker Ki67 was significantly increased under treatment with MSC secretome in HOVEC cells (P4). MSCs secretome treatment also induced significantly higher expression of several angiogenic markers such as VEGFR2, Tie2/Tek, VE-Cadherin, Endoglin, and VEGF compared to matched control (P4). Furthermore, MSC secretome significantly increased the number of branching points in tubulogenesis assay (P4). Our study suggests that MSC secretome likely contains bioactive factors that can enhance ovarian angiogenesis. Further characterization of these factors can lead to novel therapeutic options for women with premature ovarian insufficiency and other related causes of female infertility.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Dalia Ashour
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA.,Department of Pathology, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Amro Elsharoud
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Rishi Man Chugh
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| | - Nahed Ismail
- Department of Pathology, University at Illinois at Chicago, Medical College, Chicago, USA
| | | | - Ayman Al-Hendy
- Department of Surgery, University at Illinois at Chicago, Medical College, Chicago, USA
| |
Collapse
|
30
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
31
|
Liu H, Huang CX, He Q, Li D, Luo MH, Zhao F, Lu W. Proteomics analysis of HSV-1-induced alterations in mouse brain microvascular endothelial cells. J Neurovirol 2019; 25:525-539. [PMID: 31144288 DOI: 10.1007/s13365-019-00752-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus 1 (HSV-1) is a predominant cause of herpes simplex encephalitis (HSE), leading to a high mortality rate and severe neurological sequelae worldwide. HSE is typically accompanied by the blood-brain barrier (BBB) disruption, but the underlying mechanisms are unclear. To explore the disruption mechanisms of the BBB, quantitative analysis of the cellular proteome was carried out to investigate the proteomic changes that occur after infection. In this study, bEnd.3 cells were infected with HSV-1, followed by liquid chromatography-tandem mass spectrometry. A total of 6761 proteins were identified in three independent mass spectrometry analyses. Compared to the uninfected cells, 386 and 293 differentially expressed proteins were markedly upregulated or downregulated, respectively. Bioinformatic analysis showed that the activator protein-1 factor, including Fos, Jun, and ATF family proteins and cell adhesion molecules were significantly changed. Further validation of the changes observed for these proteins was carried out by western blotting and quantitative real-time PCR. Transendothelial electrical resistance (TEER) studies were performed to explore the effects of ATF3, Fra1, or JunB overexpression on the function of bEnd.3 cells. Characterization of the differential expression of these proteins in bEnd.3 cells will facilitate further exploration of BBB disruption upon HSV-1 infection.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chu-Xin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China.
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
32
|
Zhao H, Zheng T, Yang X, Fan M, Zhu L, Liu S, Wu L, Sun C. Cryptotanshinone Attenuates Oxygen-Glucose Deprivation/ Recovery-Induced Injury in an in vitro Model of Neurovascular Unit. Front Neurol 2019; 10:381. [PMID: 31057477 PMCID: PMC6482155 DOI: 10.3389/fneur.2019.00381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Cryptotanshinone (CTs), an active component isolated from the root of Salvia miltiorrhiza (SM), has been shown to exert potent neuroprotective property. We here established an oxygen-glucose deprivation/recovery (OGD/R)-injured Neurovascular Unit (NVU) model in vitro to observe the neuroprotective effects of CTs on cerebral ischemia/reperfusion injury (CIRI), and explore the underlying mechanisms. CTs was observed to significantly inhibit the OGD/R-induced neuronal apoptosis, and decease the activation of Caspase-3 and the degradation of poly-ADP-ribose polymerase (PARP), as well as the increase of Bax/Bcl-2 ratio in neurons under OGD/R condition. The inhibitory effects of CTs on neuron apoptosis were associated with the blocking of mitogen-activated protein kinase (MAPK) signaling pathway. CTs also remarkably ameliorated OGD/R-induced reduction of transepithelial electrical resistance (TEER) values and the increase of transendothelial permeability coefficient (Pe) of sodium fluorescein (SF) by upregulating the expression of ZO-1, Claudin-5, and Occludin in brain microvascular endothelial cells (BMECs), which might be related to the down-regulation of matrix metalloproteinase (MMP)-9 expression. Based on these findings, CTs may play a neuroprotective role in OGD/R injure in NVU models in vitro by inhibiting cell apoptosis and alleviating the damage of blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Hongye Zhao
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Physiology, School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar, China
| | - Tiezheng Zheng
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaohan Yang
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Shuhong Liu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Liying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Changkai Sun
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering & Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
33
|
Zhang Y, Zhu L, Cao G, Sahib Zar M, Hu X, Wei Y, Xue R, Gong C. Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 2018; 121:1-7. [PMID: 30554639 DOI: 10.1016/j.enzmictec.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 11/15/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a non-enveloped dsRNA virus, which specifically infect the midgut epithelium of B. mori. BmCPV enters permissive cells via clathrin-dependent endocytosis employing β1 integrin mediated internalization. Until now, the cell entry mechanism of BmCPV has not been known clearly. Here, we investigated whether tyrosine-protein kinase Src64B-like is involved in the cell entry of BmCPV. The Src64B-like gene was cloned and expressed in Escherichia coli (E. coli), and the recombinant protein Src64B-like was used to immunize mouse for preparation of anti-Src64B-like polyclonal antibody (pAb). After Src64B-like gene was silenced by RNAi, the infection of BmCPV was reduced by 59.48% ± 2.18% and 92.22% ± 1.12% in vitro and in vivo autonomously. Contrary to it, BmCPV infection could be enhanced by increasing the expression of Src64B-like. In addition, immunofluorescence assay showed that Src64B-like protein did not co-localize with BmCPV in the cultured BmN cells during viral infection. These results indicate that Src64B-like protein participates and plays an important role in the cell entry of BmCPV, but not contacting directly with BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; Institute of Synthetic Biology (iSynBio), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xuevuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
34
|
Soung A, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med 2018; 24:950-962. [PMID: 30314877 DOI: 10.1016/j.molmed.2018.09.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Neurotropic RNA virus infections cause a major neurological disease burden. Due to the morbidity and mortality rates of viral encephalitides worldwide, there is a need to develop clinical treatments. Features of the central nervous system (CNS), including interconnected cell types and limited regeneration, provide unique challenges. Viral encephalitis and antiviral immunity can disrupt the CNS environment, leaving patients with poor neurological outcomes despite virologic control. The cellular mechanism(s) underlying neurological recovery are not fully understood, but involve neuroimmune interactions that, until recently, primarily focused on microglia. With increasing evidence that astrocytes also have significant roles in inflammatory responses to viruses, here we summarize recent astrocyte contributions to acute virologic control and neurological impairments during recovery from viral infection.
Collapse
Affiliation(s)
- Allison Soung
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
35
|
Resveratrol Attenuates Staphylococcus Aureus-Induced Monocyte Adhesion through Downregulating PDGFR/AP-1 Activation in Human Lung Epithelial Cells. Int J Mol Sci 2018; 19:ijms19103058. [PMID: 30301269 PMCID: PMC6213130 DOI: 10.3390/ijms19103058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a very common Gram-positive bacterium. It is widely distributed in air, soil, and water. S. aureus often causes septicemia and pneumonia in patients. In addition, it is considered to play a key role in mediating cell adhesion molecules upregulation. Resveratrol is a natural antioxidant with diverse biological effects, including the modulation of immune function, anti-inflammation, and cancer chemoprevention. In this study, we proved that S. aureus-upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in human lung epithelial cells (HPAEpiCs) was inhibited by resveratrol. We also observed that resveratrol downregulated S. aureus-enhanced leukocyte count in bronchoalveolar lavage (BAL) fluid in mice. In HPAEpiCs, S. aureus stimulated c-Src, PDGFR, p38 MAPK, or JNK1/2 phosphorylation, which was inhibited by resveratrol. S. aureus induced the adhesion of THP-1 cells (a human monocytic cell line) to HPAEpiCs, which was also reduced by resveratrol. Finally, we found that S. aureus induced c-Src/PDGFR/p38 MAPK and JNK1/2-dependent c-Jun and ATF2 activation and in vivo binding of c-Jun and ATF2 to the VCAM-1 promoter, which were inhibited by resveratrol. Thus, resveratrol functions as a suppressor of S. aureus-induced inflammatory signaling, not only by inhibiting VCAM-1 expression but also by diminishing c-Src, PDGFR, JNK1/2, p38 MAPK, and AP-1 activation in HPAEpiCs.
Collapse
|
36
|
Jiang J, Shen S, Dong N, Liu J, Xu Q, Sun L, Yuan Y. Correlation between negative expression of pepsinogen C and a series of phenotypic markers of gastric cancer in different gastric diseases. Cancer Med 2018; 7:4068-4076. [PMID: 29963765 PMCID: PMC6089156 DOI: 10.1002/cam4.1615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric tumorigenesis is a multistep process initiated by chronic superficial gastritis (SG), followed by atrophic gastritis (AG), then intestinal metaplasia (IM), and finally by dysplasia and adenocarcinoma according to the Correa model. Pepsinogen C (PGC) decreases gradually during progression of cancer, which makes PGC an ideal negative marker for GC. To explore the correlation between PGC and other positive tumor markers in different gastric diseases, we observed the expression of PGC, MG7‐Ag, MMP9, NM23, Ki‐67, and E‐cadherin by immunohistochemistry, quantitative RT‐PCR, and immunoblot analysis. Our results showed that in SG, PGC was highly expressed while malignant phenotype markers were rarely expressed. In contrast with SG, malignant phenotype markers were highly expressed while the positive rate of PGC reached only 1.44% in GC. So there was no coexpression of PGC and malignant phenotype markers in SG or GC tissues. Only in the AG group, which is well‐known to be gastric precancerous disease, coexpression of PGC and malignant phenotype markers was detected. Our results suggested that the expression of PGC in AG was negatively correlated with that of MG7‐Ag and MMP9. Of all AG, those with low expression of PGC and high expression of MG7‐Ag and MMP9 may possess a greater potential of malignant transformation. Combined detection of negative marker PGC and positive markers MG7‐Ag and MMP9 could be used as a potential follow‐up panel for monitoring dynamical progression of AG and improving the detection efficiency of high‐risk individuals of gastric cancer, and then taking necessary interventions on the target population.
Collapse
Affiliation(s)
- Jingyi Jiang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China.,Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China
| | - Nannan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Provincial Education Department, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, China
| |
Collapse
|
37
|
Lin CC, Yang CC, Hsiao LD, Chen SY, Yang CM. Heme Oxygenase-1 Induction by Carbon Monoxide Releasing Molecule-3 Suppresses Interleukin-1β-Mediated Neuroinflammation. Front Mol Neurosci 2017; 10:387. [PMID: 29209167 PMCID: PMC5701945 DOI: 10.3389/fnmol.2017.00387] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders and brain damage are initiated by excessive production of reactive oxygen species (ROS), which leads to tissue injury, cellular death and inflammation. In cellular anti-oxidant systems, heme oxygenase-1 (HO-1) is an oxidative-sensor protein induced by ROS generation or carbon monoxide (CO) release. CO releasing molecules (CORMs), including CORM-3, exert anti-oxidant and anti-inflammatory effects. However, the molecular mechanisms of CORM-3-induced HO-1 expression and protection against interleukin (IL)-1β-induced inflammatory responses have not been fully elucidated in rat brain astrocytes (RBA-1). To study the regulation of CORM-3-induced HO-1 expression, signaling pathways, promoter activity, mRNA and protein expression were assessed following treatment with pharmacological inhibitors and gene-specific siRNA knockdown. We found that CORM-3 mediated HO-1 induction via transcritional and translational processes. Furthermore, CORM-3-induced HO-1 expression was mediated by phosphorylation of several protein kinases, such as c-Src, Pyk2, protein kinase Cα (PKCα) and p42/p44 mitogen-activated protein kinase (MAPK), which were inhibited by respective pharmacological inhibitors or by gene-specific knockdown with siRNA transfections. Next, we found that CORM-3 sequentially activated the c-Src/Pyk2/PKCα/p42/p44 MAPK pathway, thereby up-regulating mRNA for the activator protein (AP)-1 components c-Jun and c-Fos; these effects were attenuated by an AP-1 inhibitor (Tanshinone IIA; TSIIA) and other relevant inhibitors. Moreover, CORM-3-induced upregulation of HO-1 attenuated the IL-1β-induced cell migration and matrix metallopeptidase-9 mRNA expression in RBA-1 cells. These effects were reversed by an matrix metalloproteinase (MMP)2/9 inhibitor or by transfection with HO-1 siRNA.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ssu-Yu Chen
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
38
|
Srivastava K, Pickard A, McDade S, McCance DJ. p63 drives invasion in keratinocytes expressing HPV16 E6/E7 genes through regulation of Src-FAK signalling. Oncotarget 2017; 8:16202-16219. [PMID: 26001294 PMCID: PMC5369957 DOI: 10.18632/oncotarget.3892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023] Open
Abstract
Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Simon McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dennis J McCance
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK.,Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
39
|
Monsanto-Hearne V, Asad S, Asgari S, Johnson KN. Drosophila microRNA modulates viral replication by targeting a homologue of mammalian cJun. J Gen Virol 2017; 98:1904-1912. [DOI: 10.1099/jgv.0.000831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Verna Monsanto-Hearne
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sultan Asad
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
40
|
Cumberworth SL, Barrie JA, Cunningham ME, de Figueiredo DPG, Schultz V, Wilder-Smith AJ, Brennan B, Pena LJ, Freitas de Oliveira França R, Linington C, Barnett SC, Willison HJ, Kohl A, Edgar JM. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathol Commun 2017; 5:50. [PMID: 28645311 PMCID: PMC5481922 DOI: 10.1186/s40478-017-0450-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/02/2022] Open
Abstract
The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences.
Collapse
Affiliation(s)
| | - Jennifer A Barrie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Madeleine E Cunningham
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Daniely Paulino Gomes de Figueiredo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Verena Schultz
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Adrian J Wilder-Smith
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, Scotland, UK
| | - Lindomar J Pena
- Oswaldo Cruz Foundation/Aggeu Magalhães Institute, Department of Virology, UFPE Campus-Cidade Universitária, Recife/PE, Brazil
| | | | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, Scotland, UK.
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK.
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Goettingen, Germany.
| |
Collapse
|
41
|
Lin CC, Yang CC, Chen YW, Hsiao LD, Yang CM. Arachidonic Acid Induces ARE/Nrf2-Dependent Heme Oxygenase-1 Transcription in Rat Brain Astrocytes. Mol Neurobiol 2017; 55:3328-3343. [PMID: 28497199 DOI: 10.1007/s12035-017-0590-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Arachidonic acid (AA) is a major product of phospholipid hydrolysis catalyzed by phospholipase A2 during neurodegenerative diseases. AA exerts as a second messenger to regulate various signaling components which may be involved in different pathophysiological processes. Astrocytes are the main types of CNS resident cells which maintain and support the physiological function of brain. AA has been shown to induce ROS generation through activation of NADPH oxidases (Noxs) which may play a key role in the expression of heme oxygenase-1 (HO-1). Therefore, this study was designed to investigate the mechanisms underlying AA-induced HO-1 expression in rat brain astrocytes (RBA-1). We found that AA induced HO-1 protein and mRNA expression and promoter activity in RBA-1, which was mediated through the synthesis of 15-deoxy-Δ12,14-prostaglandin D2-activated peroxisome proliferator-activated receptor-γ (PPARγ) receptors. This note was confirmed by transfection with PPARγ small interfering RNAs (siRNA) which attenuated the AA-mediated responses. AA-induced HO-1 expression was mediated through Nox/ROS generation, which was inhibited by Nox inhibitors (diphenyleneiodonium and apocynin) and ROS scavengers (N-acetyl cysteine). Moreover, AA-induced HO-1 expression was mediated through phosphorylation of Src, Pyk2, platelet-derived growth factor, PI3K/Akt, and ERK1/2 which were inhibited by the pharmacological inhibitors including PP1, PF431396, AG1296, LY294002, and U0126 or by transfection with respective siRNAs. AA-enhanced Nrf2 expression and HO-1 promoter activity was inhibited by transfection with Nrf2 siRNA or by these pharmacological inhibitors. Furthermore, chromatin immunoprecipitation assay confirmed that Nrf2 and PPARγ were associated with the proximal antioxidant response element (ARE)-binding site on HO-1 promoter, suggesting that Nrf2/PPARγ are key transcription factors modulating HO-1 expression. AA-induced ARE promoter activity was also reduced by these pharmacological inhibitors. These findings suggested that AA increases formation of Nrf2 and PPARγ complex and binding with ARE1 binding site through Src, Pyk2, PI3K/Akt, and ERK1/2, which further induced HO-1 expression in RBA-1 cells.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou, Kwei-San, Tao-Yuan, Taiwan.,Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yu-Wen Chen
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. .,Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
42
|
Liu F, Wang Z, Qiu Y, Wei M, Li C, Xie Y, Shen L, Huang Y, Ma C. Suppression of MyD88-dependent signaling alleviates neuropathic pain induced by peripheral nerve injury in the rat. J Neuroinflammation 2017; 14:70. [PMID: 28359290 PMCID: PMC5374701 DOI: 10.1186/s12974-017-0822-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MyD88 is the adaptor protein of MyD88-dependent signaling pathway of TLRs and IL-1 receptor and regulates innate immune response. However, it was not clear whether and how MyD88 and related signaling pathways in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) are involved in neuropathic pain. METHODS Chronic constriction injury (CCI) was used to induce neuropathic pain in the rat. The expression of MyD88, TRIF, IBA1, and GFAP was detected with immunofluorescent staining and Western blot. The expression of interleukin-1 beta (IL-1β), high mobility group box 1 (HMGB1), NF-κB-p65, phosphorylated NF-κB-p65, ERK, phosphorylated ERK, and tumor necrosis factor-alpha (TNF-α) was detected with Western blot. Pain-related behavioral effects of MyD88 homodimerization inhibitory peptide (MIP) were accessed up to 3 weeks after intrathecal administration. RESULTS Peripheral nerve injury significantly increased the protein level of MyD88 in the DRG and SDH, but had no effect on TRIF. MyD88 was found partly distributed in the nociceptive neurons in the DRGs and the astrocytes and microglia in the SDH. HMGB1 and IL-1β were also found upregulated in nociceptive pathways of CCI rats. Intrathecal application of MIP significantly alleviated mechanical and thermal hyperalgesia in the CCI rats and also reversed CCI-induced upregulation of MyD88 in both DRG and SDH. Further investigation revealed that suppression of MyD88 protein reduced the release of TNF-α and glial activation in the SDH in the CCI rats. CONCLUSIONS MyD88-dependent TIR pathway in the DRG and SDH may play a role in CCI-induced neuropathic pain. MyD88 might serve as a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Fan Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| | - Zhiyao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| | - Yue Qiu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China
| | - Min Wei
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China
| | - Chunyan Li
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| | - Yikuan Xie
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| |
Collapse
|
43
|
Ariyoshi W, Okinaga T, Chaweewannakorn W, Akifusa S, Nisihara T. Mechanisms involved in enhancement of matrix metalloproteinase-9 expression in macrophages by interleukin-33. J Cell Physiol 2017; 232:3481-3495. [PMID: 28105703 DOI: 10.1002/jcp.25809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
Endothelial transmigration of macrophages is accomplished by matrix metalloproteinase (MMP)-induced degradation of the basement membrane and extracellular matrix components. Macrophages upregulate MMP-9 expression and secretion upon immunological challenges and require its activity for migration during inflammatory responses. Interleukin (IL)-33 is a recently discovered pro-inflammatory cytokine that belongs to the IL-1 family. The aim of this study was to elucidate the mechanisms underlying IL-33-induced MMP-9 expression in the mouse monocyte/macrophage line RAW264.7. IL-33 increased MMP-9 mRNA and protein expression in RAW264.7 cells. Blockage of IL-33-IL-33 receptor (ST2L) binding suppressed IL-33-mediated induction of MMP-9. IL-33 induced phosphorylation and nuclear translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-kappa B (NF-κB). Chromatin immunoprecipitation indicated that IL-33 increased c-fos recruitment to the MMP-9 promoter. Reporter assay findings also revealed that IL-33 stimulated the transcriptional activity of activator protein 1 (AP-1). Pre-treatment of the cells with a specific inhibitor of ERK1/2 and NF-κB attenuated the IL-33-induced activation of AP-1 subunits, transcriptional activity of AP-1, and expression of MMP-9. We also demonstrated that ERK-dependent activation of cAMP response element binding protein (CREB) is a key step for AP-1 activation by IL-33. These results indicate an essential role of ERK/CREB and NF-κB cascades in the induction of MMP-9 in monocytes/macrophages through AP-1 activation.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Wichida Chaweewannakorn
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Developmental Stomatognathic Function Science, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Sumio Akifusa
- Units of Education on Healthcare Team, School of Oral Health Science, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuji Nisihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
44
|
Chi OZ, Mellender SJ, Kiss GK, Liu X, Weiss HR. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia. Brain Res Bull 2017; 131:1-6. [PMID: 28238830 DOI: 10.1016/j.brainresbull.2017.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the Ki both in the isoflurane and pentobarbital anesthetized rats. However, the value of Ki was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The Ki of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the Ki (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Scott J Mellender
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Geza K Kiss
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Xia Liu
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
45
|
Infectious Bursal Disease Virus Activates c-Src To Promote α4β1 Integrin-Dependent Viral Entry by Modulating the Downstream Akt-RhoA GTPase-Actin Rearrangement Cascade. J Virol 2017; 91:JVI.01891-16. [PMID: 27881656 DOI: 10.1128/jvi.01891-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
While the entry of infectious bursal disease virus (IBDV) is initiated by the binding of the virus to the two major receptors integrin and HSP90, the signaling events after receptor binding and how they contribute to virus entry remain elusive. We show here that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src both in DF-1 chicken fibroblasts and in vivo in the bursa of Fabricius from specific-pathogen-free (SPF) chickens. Importantly, inactivated IBDV fails to stimulate c-Src Y416 phosphorylation, and a very virulent IBDV strain induces a much higher level of c-Src Y416 phosphorylation than does an attenuated strain. Inhibition of c-Src activation by an Src kinase inhibitor or expression of a c-Src dominant negative mutant results in a significant decrease in the internalization of IBDV but has little effect on virus adhesion. Furthermore, short hairpin RNA (shRNA) downregulation of integrin, either the α4 or β1 subunit, but not HSP90 remarkably attenuates IBDV-induced c-Src Y416 phosphorylation, resulting in a decrease in IBDV internalization but not virus adhesion. Moreover, interestingly, inhibition of either c-Src downstream of the phosphatidylinositol 3-kinase (PI3K)/Akt-RhoA signaling cascade or actin rearrangement leads to a significant decrease in IBDV internalization irrespective of the IBDV-induced high levels of c-Src phosphorylation. Cumulatively, our results suggest a novel feed-forward model whereby IBDV activates c-Src for benefiting its cell entry via an integrin-mediated pathway by the activation of downstream PI3K/Akt-RhoA signaling and cytoskeleton actin rearrangement. IMPORTANCE While IBDV-caused immunosuppression is highly related to viral invasion, the molecular basis of the cellular entry of IBDV remains elusive. In this study, we demonstrate that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src to promote virus internalization but not virus adhesion. The ability to induce the level of c-Src Y416 phosphorylation correlates with the pathogenicity of an IBDV strain. IBDV-induced c-Src Y416 activation is α4β1 integrin but not HSP90 dependent and involves the activation of the downstream PI3K/Akt-RhoA GTPase-actin rearrangement cascade. Thus, our findings provide new insights into the IBDV infection process and the potential for c-Src as a candidate target for the development of IBDV therapeutic drugs.
Collapse
|
46
|
Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Sci Signal 2016; 9:ra98. [DOI: 10.1126/scisignal.aaf5132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Yang CC, Hsiao LD, Yang CM, Lin CC. Thrombin Enhanced Matrix Metalloproteinase-9 Expression and Migration of SK-N-SH Cells via PAR-1, c-Src, PYK2, EGFR, Erk1/2 and AP-1. Mol Neurobiol 2016; 54:3476-3491. [PMID: 27181591 DOI: 10.1007/s12035-016-9916-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/03/2016] [Indexed: 01/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders in the central nerve system (CNS). Thrombin has been known as one of the factors in pathological processes including migration, blood-brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. Thrombin has been shown to be a regulator of matrix metalloproteinase (MMPs) expression leading to cell migration. Among MMPs, the elevated expression of MMP-9 has been observed in patients with brain diseases, which may contribute to the pathology of neuroinflammatory and neurodegenerative diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells were not completely understood. Here, we used gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay to demonstrate that thrombin induced the expression of pro-form MMP-9 protein and messenger RNA (mRNA), and promoter activity in SK-N-SH cells, which were attenuated by pretreatment with the pharmacological inhibitor of protease-activated receptor-1 (PAR-1, SCH79797), Gi-coupled receptor (GPA2), c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), or AP-1 (TanshinoneIIA) and transfection with small interfering RNA (siRNA) of PAR-1, Gi, c-Src, Pyk2, EGFR, Akt, p44, p42, or c-Jun. Moreover, thrombin-stimulated c-Src, Pyk2, EGFR, Akt, p42/p44 MAPK, or c-Jun phosphorylation was attenuated by their respective inhibitor of PP1, PF431396, AG1478, SH-5, U0126, or TanshinoneIIA. Finally, pretreatment with these inhibitors also blocked thrombin-induced SK-N-SH cell migration. Our results concluded that thrombin binding to PAR-1 receptor activated Gi-protein/c-Src/Pyk2/EGFR/PI3K/Akt/p42/p44 MAPK cascade, which in turn elicited AP-1 activation and ultimately evoked MMP-9 expression and cell migration in SK-N-SH cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. .,Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou, 5 Fu-Hsin Street, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
48
|
Cho RL, Yang CC, Lee IT, Lin CC, Chi PL, Hsiao LD, Yang CM. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L639-57. [DOI: 10.1152/ajplung.00109.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
Upregulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via adhesion molecule induction and then causes lung injury. However, the mechanisms underlying LPS-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. We showed that LPS induced ICAM-1 expression in HPAEpiCs, revealed by Western blotting, RT-PCR, real-time PCR, and promoter assay. Pretreatment with the inhibitor of c-Src (protein phosphatase-1, PP1), reactive oxygen species (ROS) (Edaravone), NADPH oxidase (apocynin and diphenyleneiodonium chloride), EGFR (AG1478), PDGFR (AG1296), phosphatidylinositol-3-kinase (PI3K) (LY294002), MEK1/2 (U0126), or NF-κB (Bay11-7082) and transfection with siRNAs of c-Src, EGFR, PDGFR, Akt, p47 phox, Nox2, Nox4, p42, and p65 markedly reduced LPS-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with LPS. In addition, we established that LPS stimulated phosphorylation of c-Src, EGFR, PDGFR, Akt, or p65, which was inhibited by pretreatment with their respective inhibitors. LPS induced Toll-like receptor 4 (TLR4), MyD88, TNF receptor-associated factor 6 (TRAF6), c-Src, p47 phox, and Rac1 complex formation 2, which was attenuated by transfection with c-Src or TRAF6 siRNA. Furthermore, LPS markedly enhanced NADPH oxidase activation and intracellular ROS generation, which were inhibited by PP1. We established that LPS induced p42/p44 MAPK activation via a c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt-dependent pathway in these cells. Finally, we observed that LPS significantly enhanced NF-κB and IκBα phosphorylation, NF-κB translocation, and NF-κB promoter activity, which were inhibited by PP1, Edaravone, apocynin, diphenyleneiodonium chloride, AG1478, AG1296, LY294002 , or U0126. These results demonstrated that LPS induces p42/p44 MAPK activation mediated through the TLR4/MyD88/TRAF6/c-Src/NADPH oxidase/ROS/EGFR, PDGFR/PI3K/Akt pathway, which in turn initiates the activation of NF-κB and ultimately induces ICAM-1 expression in HPAEpiCs.
Collapse
Affiliation(s)
- Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
49
|
Hou J, Baker LA, Zhou L, Klein RS. Viral interactions with the blood-brain barrier: old dog, new tricks. Tissue Barriers 2016; 4:e1142492. [PMID: 27141421 DOI: 10.1080/21688370.2016.1142492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023] Open
Abstract
Brain endothelial cells form a unique cellular structure known as the tight junction to regulate the exchanges between the blood and the parenchyma by limiting the paracellular diffusion of blood-borne substance. Together with the restricted pathway of transcytosis, the tight junction in the brain endothelial cells provides the central nervous system (CNS) with effective protection against both the foreign pathogens and the host immune cells, which is also termed the "blood-brain barrier." The blood-brain barrier is particularly important for defending against neurotropic viral infections that have become a major source of diseases worldwide. Many neurotropic viruses are able to cross the BBB and infect the CNS through very poorly understood processes. This review focuses upon the structural and functional changes of the brain endothelial tight junction in response to viral infections in the CNS and how the tight junction changes may be studied with advanced imaging and recording approaches to reveal novel processes used by the viruses to cross the barrier system. Additional emphasis is placed upon new countermeasures that can act directly upon the tight junction to improve the pathogen clearance and minimize the inflammatory damage.
Collapse
Affiliation(s)
- Jianghui Hou
- Internal Medicine, Washington University in St Louis; St. Louis, MO USA; Center for Investigation of Membrane Excitability Diseases, Washington University in St Louis; St. Louis, MO USA
| | - Lane A Baker
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Lushan Zhou
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Robyn S Klein
- Internal Medicine, Washington University in St Louis; St. Louis, MO USA; Anatomy and Neurobiology, Washington University in St Louis; St. Louis, MO USA; Pathology and Immunology, Washington University in St Louis; St. Louis, MO USA
| |
Collapse
|
50
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|