1
|
Kaur R, Sharma A, Wijekoon N. Breast cancer preclinical models: a vital resource for comprehending disease mechanisms and therapeutic development. EXCLI JOURNAL 2025; 24:267-285. [PMID: 40071025 PMCID: PMC11895054 DOI: 10.17179/excli2024-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 03/14/2025]
Abstract
A significant obstacle in translating innovative breast cancer treatments from bench to bed side is demonstrating efficacy in preclinical settings prior to clinical trials, as the heterogeneity of breast cancer can be challenging to replicate in the laboratory. A significant number of potential medicines have not progressed to clinical trials because preclinical models inadequately replicate the complexities of the varied tumor microenvironment. Consequently, the variety of breast cancer models is extensive, and the selection of a model frequently depends on the specific inquiry presented. This review aims to present an overview of the existing breast cancer models, highlighting their advantages, limitations, and challenges in the context of innovative drug discovery, thereby offering insights that may be advantageous to future translational studies. Conventional monolayer cultures are critical for elucidating the different breast cancer types and their behavior, have limitations in adequately replicating tumor environments. The 3D models such as patient-derived xenografts, cell-derived xenografts and genetically engineered models offer better insights by maintaining tumor microenvironments and cellular heterogeneity. Results can be further enhanced when compared with breast epithelial cells, a negative control to determine early stages by investigating differences between healthy and cancerous mammary cells. While cell lines such as MCF-7, MDA-MB-231 etc are useful in vitro models, they exhibit genetic variations that may affect drug responses over time. Additionally, animal models, particularly rodents, are instrumental in breast cancer research due to their biological resemblances to humans and the relative ease of genetic modification, however, witness a low occurrence of tumors. This review thus concludes that different preclinical models have their associated benefits and pitfalls. Therefore, specific preclinical models can be created by altering the gene expression at the genetic level or could be selected as per specific experimental needs which will enable successful translation of preclinical findings into clinical trials can be possible. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Ravneet Kaur
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab-144411, India
| | - Anuradha Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab-144411, India
| | - Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| |
Collapse
|
2
|
Balcioglu O, Gates BL, Freeman DW, Hagos BM, Mehrabad EM, Ayala-Talavera D, Spike BT. Mcam stabilizes a luminal progenitor-like breast cancer cell state via Ck2 control and Src/Akt/Stat3 attenuation. NPJ Breast Cancer 2024; 10:80. [PMID: 39277578 PMCID: PMC11401886 DOI: 10.1038/s41523-024-00687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
Cell state control is crucial for normal tissue development and cancer cell mimicry of stem/progenitor states, contributing to tumor heterogeneity, therapy resistance, and progression. Here, we demonstrate that the cell surface glycoprotein Mcam maintains the tumorigenic luminal progenitor (LP)-like epithelial cell state, leading to Basal-like mammary cancers. In the Py230 mouse mammary carcinoma model, Mcam knockdown (KD) destabilized the LP state by deregulating the Ck2/Stat3 axis, causing a switch to alveolar and basal states, loss of an estrogen-sensing subpopulation, and resistance to tamoxifen-an effect reversed by Ck2 and Stat3 inhibitors. In vivo, Mcam KD blocked generation of Basal-like tumors and Sox10+Krt14+ cells. In human tumors, MCAM loss was largely exclusive of the Basal-like subtype, linked instead to proliferative Luminal subtypes, including often endocrine-resistant Luminal B cancers. This study has implications for developing therapies targeting MCAM, CK2, and STAT3 and their likely effective contexts.
Collapse
Affiliation(s)
- Ozlen Balcioglu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brooke L Gates
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - David W Freeman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Berhane M Hagos
- Emergency Medicine, Oregon Health & Science University School of Medicine, Portland, OR, 97239, USA
| | | | - David Ayala-Talavera
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Benjamin T Spike
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Pedroza DA, Gao Y, Zhang XHF, Rosen JM. Leveraging preclinical models of metastatic breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189163. [PMID: 39084494 PMCID: PMC11390310 DOI: 10.1016/j.bbcan.2024.189163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Women that present to the clinic with established breast cancer metastases have limited treatment options. Yet, the majority of preclinical studies are actually not directed at developing treatment regimens for established metastatic disease. In this review we will discuss the current state of preclinical macro-metastatic breast cancer models, including, but not limited to syngeneic GEMM, PDX and xenografts. Challenges within these models which are often overlooked include fluorophore-immunogenic neoantigens, differences in experimental vs spontaneous metastasis and tumor heterogeneity. Furthermore, due to cell plasticity in the tumor immune microenvironment (TIME) of the metastatic landscape, the treatment efficacy of newly approved immune checkpoint blockade (ICB) may differ in metastatic sites as compared to primary localized tumors.
Collapse
Affiliation(s)
- Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
4
|
Vinod N, Hwang D, Fussell SC, Owens TC, Tofade OC, Benefield TS, Copling S, Ramsey JD, Rädler PD, Atkins HM, Livingston EE, Ezzell JA, Sokolsky‐Papkov M, Yuan H, Perou CM, Kabanov AV. Combination of polymeric micelle formulation of TGFβ receptor inhibitors and paclitaxel produces consistent response across different mouse models of Triple-negative breast cancer. Bioeng Transl Med 2024; 9:e10681. [PMID: 39553439 PMCID: PMC11561794 DOI: 10.1002/btm2.10681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 11/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor beta (TGFβ) family of proteins and their receptors (TGFRs) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here, we evaluated combination treatments using experimental TGFR inhibitors (TGFβi), SB525334 (SB), and LY2109761 (LY) with paclitaxel (PTX) chemotherapy. These TGFβi target TGFR-I (SB) or both TGFR-I and TGFR-II (LY). Due to the poor water solubility of these drugs, we incorporated each of them in poly(2-oxazoline) (POx) high-capacity polymeric micelles (SB-POx and LY-POx). We assessed their anticancer effect as single agents and in combination with micellar PTX (PTX-POx) using multiple immunocompetent TNBC mouse models that mimic human subtypes (4T1, T11-Apobec and T11-UV). While either TGFβi or PTX showed a differential effect in each model as single agents, the combinations were consistently effective against all three models. Genetic profiling of the tumors revealed differences in the expression levels of genes associated with TGFβ, epithelial to mesenchymal transition (EMT), TLR-4, and Bcl2 signaling, alluding to the susceptibility to specific gene signatures to the treatment. Taken together, our study suggests that TGFβi and PTX combination therapy using high-capacity POx micelle delivery provides a robust antitumor response in multiple TNBC subtype mouse models.
Collapse
Affiliation(s)
- Natasha Vinod
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Joint UNC/NC State Department of Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Present address:
National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Duhyeong Hwang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- College of PharmacyKeimyung UniversityDaeguRepublic of Korea
| | - Sloane Christian Fussell
- Department of Biology, Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Present address:
Vaccine Research Center, National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - Tyler Cannon Owens
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Olaoluwa Christopher Tofade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Thad S. Benefield
- Department of RadiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sage Copling
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jacob D. Ramsey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Patrick D. Rädler
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Hannah M. Atkins
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Pathology and Laboratory Medicine, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of Pathology and Laboratory Medicine, Division of Comparative MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Eric E. Livingston
- Department of Radiology, Biomedical Research Imaging Center, UNC Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - J. Ashley Ezzell
- Histology Research CoreUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Marina Sokolsky‐Papkov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, UNC Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Alexander V. Kabanov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Carson MS, Rädler PD, Albright J, VerHague M, Rezeli ET, Roth D, French JE, Perou CM, Hursting SD, Coleman MF. Development and Characterization of Syngeneic Orthotopic Transplant Models of Obesity-Responsive Triple-Negative Breast Cancer in C57BL/6J Mice. Cancers (Basel) 2024; 16:2803. [PMID: 39199576 PMCID: PMC11352691 DOI: 10.3390/cancers16162803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is an established risk and progression factor for triple-negative breast cancer (TNBC), but preclinical studies to delineate the mechanisms underlying the obesity-TNBC link as well as strategies to break that link are constrained by the lack of tumor models syngeneic to obesity-prone mouse strains. C3(1)/SV40 T-antigen (C3-TAg) transgenic mice on an FVB genetic background develop tumors with molecular and pathologic features that closely resemble human TNBC, but FVB mice are resistant to diet-induced obesity (DIO). Herein, we sought to develop transplantable C3-TAg cell lines syngeneic to C57BL/6 mice, an inbred mouse strain that is sensitive to DIO. We backcrossed FVB-Tg(C3-1-TAg)cJeg/JegJ to C57BL/6 mice for ten generations, and spontaneous tumors from those mice were excised and used to generate four clonal cell lines (B6TAg1.02, B6TAg2.03, B6TAg2.10, and B6TAg2.51). We characterized the growth of the four cell lines in both lean and DIO C57BL/6J female mice and performed transcriptomic profiling. Each cell line was readily tumorigenic and had transcriptional profiles that clustered as claudin-low, yet markedly differed from each other in their rate of tumor progression and transcriptomic signatures for key metabolic, immune, and oncogenic signaling pathways. DIO accelerated tumor growth of orthotopically transplanted B6TAg1.02, B6TAg2.03, and B6TAg2.51 cells. Thus, the B6TAg cell lines described herein offer promising and diverse new models to augment the study of DIO-associated TNBC.
Collapse
Affiliation(s)
- Meredith S. Carson
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick D. Rädler
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
| | - Melissa VerHague
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel Roth
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John E. French
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
| | - Charles M. Perou
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Adebayo AK, Bhat-Nakshatri P, Davis C, Angus SP, Erdogan C, Gao H, Green N, Kumar B, Liu Y, Nakshatri H. Oxygen tension-dependent variability in the cancer cell kinome impacts signaling pathways and response to targeted therapies. iScience 2024; 27:110068. [PMID: 38872973 PMCID: PMC11170190 DOI: 10.1016/j.isci.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Most cells in solid tumors are exposed to oxygen levels between 0.5% and 5%. We developed an approach that allows collection, processing, and evaluation of cancer and non-cancer cells under physioxia, while preventing exposure to ambient air. This aided comparison of baseline and drug-induced changes in signaling pathways under physioxia and ambient oxygen. Using tumor cells from transgenic models of breast cancer and cells from breast tissues of clinically breast cancer-free women, we demonstrate oxygen-dependent differences in cell preference for epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor beta (PDGFRβ) signaling. Physioxia caused PDGFRβ-mediated activation of AKT and extracellular regulated kinase (ERK) that reduced sensitivity to EGFR and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) inhibition and maintained PDGFRβ+ epithelial-mesenchymal hybrid cells with potential cancer stem cell (CSC) properties. Cells in ambient air displayed differential EGFR activation and were more sensitive to targeted therapies. Our data emphasize the importance of oxygen considerations in preclinical cancer research to identify effective drug targets and develop combination therapy regimens.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven P. Angus
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cihat Erdogan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nick Green
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
McGinnis CS, Miao Z, Superville D, Yao W, Goga A, Reticker-Flynn NE, Winkler J, Satpathy AT. The temporal progression of lung immune remodeling during breast cancer metastasis. Cancer Cell 2024; 42:1018-1031.e6. [PMID: 38821060 PMCID: PMC11255555 DOI: 10.1016/j.ccell.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Tumor metastasis requires systemic remodeling of distant organ microenvironments that impacts immune cell phenotypes, population structure, and intercellular communication. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune transcriptional profiles in the polyomavirus middle T antigen (PyMT) and 4T1 metastatic breast cancer models from primary tumorigenesis, through pre-metastatic niche formation, to the final stages of metastatic outgrowth at single-cell resolution. Computational analyses of these data revealed a TLR-NFκB inflammatory program enacted by both peripherally derived and tissue-resident myeloid cells that correlated with pre-metastatic niche formation and mirrored CD14+ "activated" myeloid cells in the primary tumor. Moreover, we observed that primary tumor and metastatic niche natural killer (NK) cells are differentially regulated in mice and human patient samples, with the metastatic niche featuring elevated cytotoxic NK cell proportions. Finally, we identified cell-type-specific dynamic regulation of IGF1 and CCL6 signaling during metastatic progression that represents anti-metastatic immunotherapy candidate pathways.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Zhuang Miao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Daphne Superville
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Andrei Goga
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | | | - Juliane Winkler
- Center for Cancer Research, Medical University of Vienna, Vienna 1090, Austria.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
9
|
Perrone MC, Lerner MG, Dunworth M, Ewald AJ, Bader JS. Prioritizing drug targets by perturbing biological network response functions. PLoS Comput Biol 2024; 20:e1012195. [PMID: 38935814 PMCID: PMC11236158 DOI: 10.1371/journal.pcbi.1012195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Therapeutic interventions are designed to perturb the function of a biological system. However, there are many types of proteins that cannot be targeted with conventional small molecule drugs. Accordingly, many identified gene-regulatory drivers and downstream effectors are currently undruggable. Drivers and effectors are often connected by druggable signaling and regulatory intermediates. Methods to identify druggable intermediates therefore have general value in expanding the set of targets available for hypothesis-driven validation. Here we identify and prioritize potential druggable intermediates by developing a network perturbation theory, termed NetPert, for response functions of biological networks. Dynamics are defined by a network structure in which vertices represent genes and proteins, and edges represent gene-regulatory interactions and protein-protein interactions. Perturbation theory for network dynamics prioritizes targets that interfere with signaling from driver to response genes. Applications to organoid models for metastatic breast cancer demonstrate the ability of this mathematical framework to identify and prioritize druggable intermediates. While the short-time limit of the perturbation theory resembles betweenness centrality, NetPert is superior in generating target rankings that correlate with previous wet-lab assays and are more robust to incomplete or noisy network data. NetPert also performs better than a related graph diffusion approach. Wet-lab assays demonstrate that drugs for targets identified by NetPert, including targets that are not themselves differentially expressed, are active in suppressing additional metastatic phenotypes.
Collapse
Affiliation(s)
- Matthew C. Perrone
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michael G. Lerner
- Department of Physics, Engineering and Astronomy, Earlham College, Richmond, Indiana, United States of America
| | - Matthew Dunworth
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew J. Ewald
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States of America
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joel S. Bader
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States of America
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Wang R, Khatpe AS, Kumar B, Mang HE, Batic K, Adebayo AK, Nakshatri H. Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1282-1295. [PMID: 38651826 PMCID: PMC11094532 DOI: 10.1158/2767-9764.crc-24-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Cancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. SIGNIFICANCE Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Elmer Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
11
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Le Chapelain O, Jadoui S, Gros A, Barbaria S, Benmeziane K, Ollivier V, Dupont S, Solo Nomenjanahary M, Mavouna S, Rogozarski J, Mawhin MA, Caligiuri G, Delbosc S, Porteu F, Nieswandt B, Mangin PH, Boulaftali Y, Ho-Tin-Noé B. The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent. J Exp Clin Cancer Res 2024; 43:84. [PMID: 38493157 PMCID: PMC10944607 DOI: 10.1186/s13046-024-03001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Collapse
Affiliation(s)
- Ophélie Le Chapelain
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Soumaya Jadoui
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Angèle Gros
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Samir Barbaria
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Véronique Ollivier
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Sébastien Dupont
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Mialitiana Solo Nomenjanahary
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Sabrina Mavouna
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Marie-Anne Mawhin
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Sandrine Delbosc
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, F-67065, France
| | - Yacine Boulaftali
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Benoit Ho-Tin-Noé
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
13
|
Kozak A, Vasiljeva O, Mikhaylov G. Isolating Primary Tumor Cells from the MMTV-PyMT Mouse Model and Their Use in Developing an Orthotopic Mouse Model of Breast Cancer. Methods Mol Biol 2024; 2773:59-65. [PMID: 38236536 DOI: 10.1007/978-1-0716-3714-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To study the effect of the immunologically unimpaired microenvironment on tumor progression as well as the efficacy of therapies requiring a functioning immune system, xenograft models are not suitable due to the use of immunodeficient mice. With orthotopic congenic transplantation of tumor cells into mammary tissue, we gain more control and reproducibility regarding tumor growth, while retaining a functioning immune response. Here, we provide a protocol for isolating primary tumor cells from the MMTV-PyMT mouse model and their use in developing an orthotopic mouse model of breast cancer.
Collapse
Affiliation(s)
- Andreja Kozak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- The Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
- OV: CytomX Therapeutics, Inc., South San Francisco, CA, USA
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.
- SwissLumix SARL, Lausanne, Switzerland.
| |
Collapse
|
14
|
Zhao N, Kabotyanski EB, Saltzman AB, Malovannaya A, Yuan X, Reineke LC, Lieu N, Gao Y, Pedroza DA, Calderon SJ, Smith AJ, Hamor C, Safari K, Savage S, Zhang B, Zhou J, Solis LM, Hilsenbeck SG, Fan C, Perou CM, Rosen JM. Targeting eIF4A triggers an interferon response to synergize with chemotherapy and suppress triple-negative breast cancer. J Clin Invest 2023; 133:e172503. [PMID: 37874652 PMCID: PMC10721161 DOI: 10.1172/jci172503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Protein synthesis is frequently dysregulated in cancer and selective inhibition of mRNA translation represents an attractive cancer therapy. Here, we show that therapeutically targeting the RNA helicase eIF4A with zotatifin, the first-in-class eIF4A inhibitor, exerts pleiotropic effects on both tumor cells and the tumor immune microenvironment in a diverse cohort of syngeneic triple-negative breast cancer (TNBC) mouse models. Zotatifin not only suppresses tumor cell proliferation but also directly repolarizes macrophages toward an M1-like phenotype and inhibits neutrophil infiltration, which sensitizes tumors to immune checkpoint blockade. Mechanistic studies revealed that zotatifin reprograms the tumor translational landscape, inhibits the translation of Sox4 and Fgfr1, and induces an interferon (IFN) response uniformly across models. The induction of an IFN response is partially due to the inhibition of Sox4 translation by zotatifin. A similar induction of IFN-stimulated genes was observed in breast cancer patient biopsies following zotatifin treatment. Surprisingly, zotatifin significantly synergizes with carboplatin to trigger DNA damage and an even heightened IFN response, resulting in T cell-dependent tumor suppression. These studies identified a vulnerability of eIF4A in TNBC, potential pharmacodynamic biomarkers for zotatifin, and provide a rationale for new combination regimens consisting of zotatifin and chemotherapy or immunotherapy as treatments for TNBC.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology
| | | | | | - Anna Malovannaya
- Mass Spectrometry Proteomics Core
- Department of Biochemistry and Molecular Pharmacology, and
| | | | - Lucas C. Reineke
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Nadia Lieu
- Department of Molecular and Cellular Biology
| | - Yang Gao
- Department of Molecular and Cellular Biology
| | | | | | | | - Clark Hamor
- Department of Molecular and Cellular Biology
| | - Kazem Safari
- Texas A&M Health Science Center, Houston, Texas, USA
| | - Sara Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
15
|
Liu Y, John P, Nishitani K, Cui J, Nishimura CD, Christin JR, Couturier N, Ren X, Wei Y, Pulanco MC, Galbo PM, Zhang X, Fu W, Cui W, Bartholdy BA, Zheng D, Lauvau G, Fineberg SA, Oktay MH, Zang X, Guo W. A SOX9-B7x axis safeguards dedifferentiated tumor cells from immune surveillance to drive breast cancer progression. Dev Cell 2023; 58:2700-2717.e12. [PMID: 37963469 PMCID: PMC10842074 DOI: 10.1016/j.devcel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter John
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kenta Nishitani
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher D Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nicole Couturier
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenyan Fu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Cui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan A Fineberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Podmore L, Poloz Y, Iorio C, Mouaaz S, Nixon K, Smirnov P, McDonnell B, Lam S, Zhang B, Tharmapalan P, Sarkar S, Vyas F, Ennis M, Dowling R, Stambolic V. Insulin receptor loss impairs mammary tumorigenesis in mice. Cell Rep 2023; 42:113251. [PMID: 37913774 DOI: 10.1016/j.celrep.2023.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Breast cancer (BC) prognosis and outcome are adversely affected by obesity. Hyperinsulinemia, common in the obese state, is associated with higher risk of death and recurrence in BC. Up to 80% of BCs overexpress the insulin receptor (INSR), which correlates with worse prognosis. INSR's role in mammary tumorigenesis was tested by generating MMTV-driven polyoma middle T (PyMT) and ErbB2/Her2 BC mouse models, respectively, with coordinate mammary epithelium-restricted deletion of INSR. In both models, deletion of either one or both copies of INSR leads to a marked delay in tumor onset and burden. Longitudinal phenotypic characterization of mouse tumors and cells reveals that INSR deletion affects tumor initiation, not progression and metastasis. INSR upholds a bioenergetic phenotype in non-transformed mammary epithelial cells, independent of its kinase activity. Similarity of phenotypes elicited by deletion of one or both copies of INSR suggest a dose-dependent threshold for INSR impact on mammary tumorigenesis.
Collapse
Affiliation(s)
- Lauren Podmore
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Yekaterina Poloz
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Catherine Iorio
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Samar Mouaaz
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Kevin Nixon
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Petr Smirnov
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Brianna McDonnell
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Sonya Lam
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Bowen Zhang
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Pirashaanthy Tharmapalan
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Soumili Sarkar
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Foram Vyas
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | | | - Ryan Dowling
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada
| | - Vuk Stambolic
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
17
|
Wicker MN, Wagner KU. Cellular Plasticity in Mammary Gland Development and Breast Cancer. Cancers (Basel) 2023; 15:5605. [PMID: 38067308 PMCID: PMC10705338 DOI: 10.3390/cancers15235605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Cellular plasticity is a phenomenon where cells adopt different identities during development and tissue homeostasis as a response to physiological and pathological conditions. This review provides a general introduction to processes by which cells change their identity as well as the current definition of cellular plasticity in the field of mammary gland biology. Following a synopsis of the evolving model of the hierarchical development of mammary epithelial cell lineages, we discuss changes in cell identity during normal mammary gland development with particular emphasis on the effect of the gestation cycle on the emergence of new cellular states. Next, we summarize known mechanisms that promote the plasticity of epithelial lineages in the normal mammary gland and highlight the importance of the microenvironment and extracellular matrix. A discourse of cellular reprogramming during the early stages of mammary tumorigenesis that follows focuses on the origin of basal-like breast cancers from luminal progenitors and oncogenic signaling networks that orchestrate diverse developmental trajectories of transforming epithelial cells. In addition to the epithelial-to-mesenchymal transition, we highlight events of cellular reprogramming during breast cancer progression in the context of intrinsic molecular subtype switching and the genesis of the claudin-low breast cancer subtype, which represents the far end of the spectrum of epithelial cell plasticity. In the final section, we will discuss recent advances in the design of genetically engineered models to gain insight into the dynamic processes that promote cellular plasticity during mammary gland development and tumorigenesis in vivo.
Collapse
Affiliation(s)
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI 48201, USA
| |
Collapse
|
18
|
He A, Tian S, Kopper O, Horan DJ, Chen P, Bronson RT, Sheng R, Wu H, Sui L, Zhou K, Tao L, Wu Q, Huang Y, Shen Z, Han S, Chen X, Chen H, He X, Robling AG, Jin R, Clevers H, Xiang D, Li Z, Dong M. Targeted inhibition of Wnt signaling with a Clostridioides difficile toxin B fragment suppresses breast cancer tumor growth. PLoS Biol 2023; 21:e3002353. [PMID: 37943878 PMCID: PMC10635564 DOI: 10.1371/journal.pbio.3002353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel J. Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Roderick T. Bronson
- Rodent Histopathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ren Sheng
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Wu
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lufei Sui
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kun Zhou
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Wu
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Zan Shen
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Sen Han
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xueqing Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Chen
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Xi He
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Broeker CD, Ortiz MMO, Murillo MS, Andrechek ER. Integrative multi-omic sequencing reveals the MMTV-Myc mouse model mimics human breast cancer heterogeneity. Breast Cancer Res 2023; 25:120. [PMID: 37805590 PMCID: PMC10559619 DOI: 10.1186/s13058-023-01723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Breast cancer is a complex and heterogeneous disease with distinct subtypes and molecular profiles corresponding to different clinical outcomes. Mouse models of breast cancer are widely used, but their relevance in capturing the heterogeneity of human disease is unclear. Previous studies have shown the heterogeneity at the gene expression level for the MMTV-Myc model, but have only speculated on the underlying genetics. METHODS Tumors from the microacinar, squamous, and EMT histological subtypes of the MMTV-Myc mouse model of breast cancer underwent whole genome sequencing. The genomic data obtained were then integrated with previously obtained matched sample gene expression data and extended to additional samples of each histological subtype, totaling 42 gene expression samples. High correlation was observed between genetic copy number events and resulting gene expression by both Spearman's rank correlation coefficient and the Kendall rank correlation coefficient. These same genetic events are conserved in humans and are indicative of poor overall survival by Kaplan-Meier analysis. A supervised machine learning algorithm trained on METABRIC gene expression data was used to predict the analogous human breast cancer intrinsic subtype from mouse gene expression data. RESULTS Herein, we examine three common histological subtypes of the MMTV-Myc model through whole genome sequencing and have integrated these results with gene expression data. Significantly, key genomic alterations driving cell signaling pathways were well conserved within histological subtypes. Genomic changes included frequent, co-occurring mutations in KIT and RARA in the microacinar histological subtype as well as SCRIB mutations in the EMT subtype. EMT tumors additionally displayed strong KRAS activation signatures downstream of genetic activating events primarily ascribed to KRAS activating mutations, but also FGFR2 amplification. Analogous genetic events in human breast cancer showed stark decreases in overall survival. In further analyzing transcriptional heterogeneity of the MMTV-Myc model, we report a supervised machine learning model that classifies MMTV-Myc histological subtypes and other mouse models as being representative of different human intrinsic breast cancer subtypes. CONCLUSIONS We conclude the well-established MMTV-Myc mouse model presents further opportunities for investigation of human breast cancer heterogeneity.
Collapse
Affiliation(s)
- Carson D Broeker
- Department of Biochemistry and Molecular Biology, Michigan State University, 567 Wilson Road, BPS Room 2120, East Lansing, MI, 48824, USA
| | - Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, 567 Wilson Road, BPS Room 2120, East Lansing, MI, 48824, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 South Shaw Lane, Engineering Building Room 1508C, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 South Shaw Lane, Engineering Building Room 1508C, East Lansing, MI, 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 567 Wilson Road, BPS Room 2194, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Miller KD, O'Connor S, Pniewski KA, Kannan T, Acosta R, Mirji G, Papp S, Hulse M, Mukha D, Hlavaty SI, Salcido KN, Bertolazzi F, Srikanth YVV, Zhao S, Wellen KE, Shinde RS, Claiborne DT, Kossenkov A, Salvino JM, Schug ZT. Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer. NATURE CANCER 2023; 4:1491-1507. [PMID: 37723305 PMCID: PMC10615731 DOI: 10.1038/s43018-023-00636-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.
Collapse
Affiliation(s)
- Katelyn D Miller
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Seamus O'Connor
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Katherine A Pniewski
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Toshitha Kannan
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Reyes Acosta
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Gauri Mirji
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Sara Papp
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Michael Hulse
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Dzmitry Mukha
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Sabina I Hlavaty
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Kelsey N Salcido
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Fabrizio Bertolazzi
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
- Cellular and Molecular Biology Program, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yellamelli V V Srikanth
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul S Shinde
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Daniel T Claiborne
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Andrew Kossenkov
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Joseph M Salvino
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Zachary T Schug
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Zhao N, Kabotyanski EB, Saltzman AB, Malovannaya A, Yuan X, Reineke LC, Lieu N, Gao Y, Pedroza DA, Calderon SJ, Smith AJ, Hamor C, Safari K, Savage S, Zhang B, Zhou J, Solis LM, Hilsenbeck SG, Fan C, Perou CM, Rosen JM. Targeting EIF4A triggers an interferon response to synergize with chemotherapy and suppress triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559973. [PMID: 37808840 PMCID: PMC10557675 DOI: 10.1101/2023.09.28.559973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein synthesis is frequently dysregulated in cancer and selective inhibition of mRNA translation represents an attractive cancer therapy. Here, we show that therapeutically targeting the RNA helicase eIF4A by Zotatifin, the first-in-class eIF4A inhibitor, exerts pleiotropic effects on both tumor cells and the tumor immune microenvironment in a diverse cohort of syngeneic triple-negative breast cancer (TNBC) mouse models. Zotatifin not only suppresses tumor cell proliferation but also directly repolarizes macrophages towards an M1-like phenotype and inhibits neutrophil infiltration, which sensitizes tumors to immune checkpoint blockade. Mechanistic studies revealed that Zotatifin reprograms the tumor translational landscape, inhibits the translation of Sox4 and Fgfr1, and induces an interferon response uniformly across models. The induction of an interferon response is partially due to the inhibition of Sox4 translation by Zotatifin. A similar induction of interferon-stimulated genes was observed in breast cancer patient biopsies following Zotatifin treatment. Surprisingly, Zotatifin significantly synergizes with carboplatin to trigger DNA damage and an even heightened interferon response resulting in T cell-dependent tumor suppression. These studies identified a vulnerability of eIF4A in TNBC, potential pharmacodynamic biomarkers for Zotatifin, and provide a rationale for new combination regimens comprising Zotatifin and chemotherapy or immunotherapy as treatments for TNBC.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Elena B. Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lucas C. Reineke
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Nadia Lieu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sebastian J Calderon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Alex J Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Clark Hamor
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kazem Safari
- Texas A&M Health Science Center, Houston, Texas, USA
| | - Sara Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
23
|
Doha ZO, Wang X, Calistri NL, Eng J, Daniel CJ, Ternes L, Kim EN, Pelz C, Munks M, Betts C, Kwon S, Bucher E, Li X, Waugh T, Tatarova Z, Blumberg D, Ko A, Kirchberger N, Pietenpol JA, Sanders ME, Langer EM, Dai MS, Mills G, Chin K, Chang YH, Coussens LM, Gray JW, Heiser LM, Sears RC. MYC Deregulation and PTEN Loss Model Tumor and Stromal Heterogeneity of Aggressive Triple-Negative Breast Cancer. Nat Commun 2023; 14:5665. [PMID: 37704631 PMCID: PMC10499828 DOI: 10.1038/s41467-023-40841-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.
Collapse
Affiliation(s)
- Zinab O Doha
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Department of medical laboratory technology, Taibah University, Al-Madinah al-Munawwarah, Saudi Arabia
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nicholas L Calistri
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Eng
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Luke Ternes
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Eun Na Kim
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - Michael Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Courtney Betts
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sunjong Kwon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Xi Li
- Division of Oncologic Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Trent Waugh
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Zuzana Tatarova
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Dylan Blumberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Ko
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Nell Kirchberger
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon Mills
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Division of Oncologic Sciences, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
24
|
Liu L, Xiao B, Hirukawa A, Smith HW, Zuo D, Sanguin-Gendreau V, McCaffrey L, Nam AJ, Muller WJ. Ezh2 promotes mammary tumor initiation through epigenetic regulation of the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci U S A 2023; 120:e2303010120. [PMID: 37549258 PMCID: PMC10438390 DOI: 10.1073/pnas.2303010120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.
Collapse
Affiliation(s)
- Linshan Liu
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Bin Xiao
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Alison Hirukawa
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Harvey W. Smith
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Luke McCaffrey
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Oncology, McGill University, Montreal, QCH3A0G4, Canada
| | - Alice Jisoo Nam
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
25
|
Lim C, Hwang D, Yazdimamaghani M, Atkins HM, Hyun H, Shin Y, Ramsey JD, Rädler PD, Mott KR, Perou CM, Sokolsky-Papkov M, Kabanov AV. High-Dose Paclitaxel and its Combination with CSF1R Inhibitor in Polymeric Micelles for Chemoimmunotherapy of Triple Negative Breast Cancer. NANO TODAY 2023; 51:101884. [PMID: 37484164 PMCID: PMC10357922 DOI: 10.1016/j.nantod.2023.101884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mostafa Yazdimamaghani
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah Marie Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyesun Hyun
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuseon Shin
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, South Korea
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick D Rädler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
van Amerongen R, Bentires-Alj M, van Boxtel AL, Clarke RB, Fre S, Suarez EG, Iggo R, Jechlinger M, Jonkers J, Mikkola ML, Koledova ZS, Sørlie T, Vivanco MDM. Imagine beyond: recent breakthroughs and next challenges in mammary gland biology and breast cancer research. J Mammary Gland Biol Neoplasia 2023; 28:17. [PMID: 37450065 PMCID: PMC10349020 DOI: 10.1007/s10911-023-09544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward.
Collapse
Affiliation(s)
- Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Silvia Fre
- Institut Curie, Genetics and Developmental Biology Department, PSL Research University, CNRS UMR3215, U93475248, InsermParis, France
| | - Eva Gonzalez Suarez
- Transformation and Metastasis Laboratory, Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard Iggo
- INSERM U1312, University of Bordeaux, 33076, Bordeaux, France
| | - Martin Jechlinger
- Cell Biology and Biophysics Department, EMBL, Heidelberg, Germany
- Molit Institute of Personalized Medicine, Heilbronn, Germany
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marja L Mikkola
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, P.O.B. 56, 00014, Helsinki, Finland
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Technological Park Bizkaia, 48160, Derio, Spain
| |
Collapse
|
27
|
Zboril EK, Grible JM, Boyd DC, Hairr NS, Leftwich TJ, Esquivel MF, Duong AK, Turner SA, Ferreira-Gonzalez A, Olex AL, Sartorius CA, Dozmorov MG, Harrell JC. Stratification of Tamoxifen Synergistic Combinations for the Treatment of ER+ Breast Cancer. Cancers (Basel) 2023; 15:3179. [PMID: 37370789 PMCID: PMC10296623 DOI: 10.3390/cancers15123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer alone accounts for the majority of cancer deaths among women, with the most commonly diagnosed subtype being estrogen receptor positive (ER+). Survival has greatly improved for patients with ER+ breast cancer, due in part to the development of antiestrogen compounds, such as tamoxifen. While treatment of the primary disease is often successful, as many as 30% of patients will experience recurrence and metastasis, mainly due to developed endocrine therapy resistance. In this study, we discovered two tamoxifen combination therapies, with simeprevir and VX-680, that reduce the tumor burden in animal models of ER+ breast cancer more than either compound or tamoxifen alone. Additionally, these tamoxifen combinations reduced the expression of HER2, a hallmark of tamoxifen treatment, which can facilitate acquisition of a treatment-resistant phenotype. These combinations could provide clinical benefit by potentiating tamoxifen treatment in ER+ breast cancer.
Collapse
Affiliation(s)
- Emily K. Zboril
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jacqueline M. Grible
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - David C. Boyd
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole S. Hairr
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Tess J. Leftwich
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Madelyn F. Esquivel
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Alex K. Duong
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Scott A. Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | | | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
28
|
Ortiz MMO, Andrechek ER. Molecular Characterization and Landscape of Breast cancer Models from a multi-omics Perspective. J Mammary Gland Biol Neoplasia 2023; 28:12. [PMID: 37269418 DOI: 10.1007/s10911-023-09540-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is well-known to be a highly heterogenous disease. This facet of cancer makes finding a research model that mirrors the disparate intrinsic features challenging. With advances in multi-omics technologies, establishing parallels between the various models and human tumors is increasingly intricate. Here we review the various model systems and their relation to primary breast tumors using available omics data platforms. Among the research models reviewed here, breast cancer cell lines have the least resemblance to human tumors since they have accumulated many mutations and copy number alterations during their long use. Moreover, individual proteomic and metabolomic profiles do not overlap with the molecular landscape of breast cancer. Interestingly, omics analysis revealed that the initial subtype classification of some breast cancer cell lines was inappropriate. In cell lines the major subtypes are all well represented and share some features with primary tumors. In contrast, patient-derived xenografts (PDX) and patient-derived organoids (PDO) are superior in mirroring human breast cancers at many levels, making them suitable models for drug screening and molecular analysis. While patient derived organoids are spread across luminal, basal- and normal-like subtypes, the PDX samples were initially largely basal but other subtypes have been increasingly described. Murine models offer heterogenous tumor landscapes, inter and intra-model heterogeneity, and give rise to tumors of different phenotypes and histology. Murine models have a reduced mutational burden compared to human breast cancer but share some transcriptomic resemblance, and representation of many breast cancer subtypes can be found among the variety subtypes. To date, while mammospheres and three- dimensional cultures lack comprehensive omics data, these are excellent models for the study of stem cells, cell fate decision and differentiation, and have also been used for drug screening. Therefore, this review explores the molecular landscapes and characterization of breast cancer research models by comparing recent published multi-omics data and analysis.
Collapse
Affiliation(s)
- Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Shi Z, Chen B, Han X, Gu W, Liang S, Wu L. Genomic and molecular landscape of homologous recombination deficiency across multiple cancer types. Sci Rep 2023; 13:8899. [PMID: 37264024 DOI: 10.1038/s41598-023-35092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Homologous recombination deficiency (HRD) causes faulty double-strand break repair and is a prevalent cause of tumorigenesis. However, the incidence of HRD and its clinical significance in pan-cancer patients remain unknown. Using computational analysis of Single-nucleotide polymorphism array data from 10,619 cancer patients, we demonstrate that HRD frequently occurs across multiple cancer types. Analysis of the pan-cancer cohort revealed that HRD is not only a biomarker for ovarian cancer and triple-negative breast cancer, but also has clinical prognostic value in numerous cancer types, including adrenocortical cancer and thymoma. We discovered that homologous recombination-related genes have a high mutation or deletion frequency. Pathway analysis shows HRD is positively correlated with the DNA damage response and the immune-related signaling pathways. Single cell RNA sequencing of tumor-infiltrating lymphocytes reveals a significantly higher proportion of exhausted T cells in HRD patients, indicating pre-existing immunity. Finally, HRD could be utilized to predict pan-cancer patients' responses to Programmed cell death protein 1 immunotherapy. In summary, our work establishes a comprehensive map of HRD in pan-cancer. The findings have significant implications for expanding the scope of Poly ADP-ribose polymerase inhibitor therapy and, possibly, immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Shi
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Bolin Chen
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Xiao Han
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Weiyue Gu
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Shuzhi Liang
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Lin Wu
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
| |
Collapse
|
30
|
Liu CL, Huang WC, Cheng SP, Chen MJ, Lin CH, Chang SC, Chang YC. Characterization of Mammary Tumors Arising from MMTV-PyVT Transgenic Mice. Curr Issues Mol Biol 2023; 45:4518-4528. [PMID: 37367035 PMCID: PMC10297447 DOI: 10.3390/cimb45060286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Among genetically engineered mouse models of breast cancer, MMTV-PyVT is a mouse strain in which the oncogenic polyoma virus middle T antigen is driven by the mouse mammary tumor virus promoter. The aim of the present study was to perform morphologic and genetic analyses of mammary tumors arising from MMTV-PyVT mice. To this end, mammary tumors were obtained at 6, 9, 12, and 16 weeks of age for histology and whole-mount analyses. We conducted whole-exome sequencing to identify constitutional and tumor-specific mutations, and genetic variants were identified using the GRCm38/mm10 mouse reference genome. Using hematoxylin and eosin analysis and whole-mount carmine alum staining, we demonstrated the progressive proliferation and invasion of mammary tumors. Frameshift insertions/deletions (indels) were noted in the Muc4. Mammary tumors showed small indels and nonsynonymous single-nucleotide variants but no somatic structural alterations or copy number variations. In summary, we validated MMTV-PyVT transgenic mice as a multistage model for mammary carcinoma development and progression. Our characterization may be used as a reference for guidance in future research.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-H.L.); (S.-C.C.)
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-H.L.); (S.-C.C.)
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104217, Taiwan; (C.-L.L.); (W.-C.H.); (S.-P.C.); (M.-J.C.)
| |
Collapse
|
31
|
Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P, Morellato A, Ala U, Taverna D, Turco E, Defilippi P. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol 2023; 13:1170264. [PMID: 37265795 PMCID: PMC10229846 DOI: 10.3389/fonc.2023.1170264] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| |
Collapse
|
32
|
McGinnis CS, Miao Z, Reticker-Flynn NE, Winker J, Satpathy AT. The temporal progression of immune remodeling during metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539153. [PMID: 37205523 PMCID: PMC10187284 DOI: 10.1101/2023.05.04.539153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tumor metastasis requires systemic remodeling of distant organ microenvironments which impacts immune cell phenotypes, population structure, and intercellular communication networks. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune cell gene expression profiles in mice bearing PyMT-driven metastatic breast tumors from the onset of primary tumorigenesis, through formation of the pre-metastatic niche, to the final stages of metastatic outgrowth. Computational analysis of these data revealed an ordered series of immunological changes that correspond to metastatic progression. Specifically, we uncovered a TLR-NFκB myeloid inflammatory program which correlates with pre-metastatic niche formation and mirrors described signatures of CD14+ 'activated' MDSCs in the primary tumor. Moreover, we observed that cytotoxic NK cell proportions increased over time which illustrates how the PyMT lung metastatic niche is both inflammatory and immunosuppressive. Finally, we predicted metastasis-associated immune intercellular signaling interactions involving Igf1 and Ccl6 which may organize the metastatic niche. In summary, this work identifies novel immunological signatures of metastasis and discovers new details about established mechanisms that drive metastatic progression. Graphical abstract In brief McGinnis et al. report a longitudinal scRNA-seq atlas of lung immune cells in mice bearing PyMT-driven metastatic breast tumors and identify immune cell transcriptional states, shifts in population structure, and rewiring of cell-cell signaling networks which correlate with metastatic progression. Highlights Longitudinal scRNA-seq reveals distinct stages of immune remodeling before, during, and after metastatic colonization in the lungs of PyMT mice.TLR-NFκB inflammation correlates with pre-metastatic niche formation and involves both tissue-resident and bone marrow-derived myeloid cell populations. Inflammatory lung myeloid cells mirror 'activated' primary tumor MDSCs, suggesting that primary tumor-derived cues induce Cd14 expression and TLR-NFκB inflammation in the lung. Lymphocytes contribute to the inflammatory and immunosuppressive lung metastatic microenvironment, highlighted by enrichment of cytotoxic NK cells in the lung over time. Cell-cell signaling network modeling predicts cell type-specific Ccl6 regulation and IGF1-IGF1R signaling between neutrophils and interstitial macrophages.
Collapse
|
33
|
Ahmad W, Panicker NG, Akhlaq S, Gull B, Baby J, Khader TA, Rizvi TA, Mustafa F. Global Down-regulation of Gene Expression Induced by Mouse Mammary Tumor Virus (MMTV) in Normal Mammary Epithelial Cells. Viruses 2023; 15:v15051110. [PMID: 37243196 DOI: 10.3390/v15051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE University, Al Ain 15551, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
34
|
Henriet E, Knutsdottir H, Grasset EM, Dunworth M, Haynes M, Bader JS, Ewald AJ. Triple negative breast tumors contain heterogeneous cancer cells expressing distinct KRAS-dependent collective and disseminative invasion programs. Oncogene 2023; 42:737-747. [PMID: 36604566 PMCID: PMC10760065 DOI: 10.1038/s41388-022-02586-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Inter-patient and intra-tumoral heterogeneity complicate the identification of predictive biomarkers and effective treatments for basal triple negative breast cancer (b-TNBC). Invasion is the initiating event in metastasis and can occur by both collective and single-cell mechanisms. We cultured primary organoids from a b-TNBC genetically engineered mouse model in 3D collagen gels to characterize their invasive behavior. We observed that organoids from the same tumor presented different phenotypes that we classified as non-invasive, collective and disseminative. To identify molecular regulators driving these invasive phenotypes, we developed a workflow to isolate individual organoids from the collagen gels based on invasive morphology and perform RNA sequencing. We next tested the requirement of differentially regulated genes for invasion using shRNA knock-down. Strikingly, KRAS was required for both collective and disseminative phenotypes. We then performed a drug screen targeting signaling nodes upstream and downstream of KRAS. We found that inhibition of EGFR, MAPK/ERK, or PI3K/AKT signaling reduced invasion. Of these, ERK inhibition was striking for its ability to potently inhibit collective invasion and dissemination. We conclude that different cancer cells in the same b-TNBC tumor can express different metastatic molecular programs and identified KRAS and ERK as essential regulators of collective and single cell dissemination.
Collapse
Affiliation(s)
- Elodie Henriet
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Eloise M Grasset
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew Dunworth
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Meagan Haynes
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer. Nat Commun 2023; 14:1157. [PMID: 36859416 PMCID: PMC9977734 DOI: 10.1038/s41467-023-36801-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Liquid biopsy has proven valuable in identifying individual genetic alterations; however, the ability of plasma ctDNA to capture complex tumor phenotypes with clinical value is unknown. To address this question, we have performed 0.5X shallow whole-genome sequencing in plasma from 459 patients with metastatic breast cancer, including 245 patients treated with endocrine therapy and a CDK4/6 inhibitor (ET + CDK4/6i) from 2 independent cohorts. We demonstrate that machine learning multi-gene signatures, obtained from ctDNA, identify complex biological features, including measures of tumor proliferation and estrogen receptor signaling, similar to what is accomplished using direct tumor tissue DNA or RNA profiling. More importantly, 4 DNA-based subtypes, and a ctDNA-based genomic signature tracking retinoblastoma loss-of-heterozygosity, are significantly associated with poor response and survival outcome following ET + CDK4/6i, independently of plasma tumor fraction. Our approach opens opportunities for the discovery of additional multi-feature genomic predictors coming from ctDNA in breast cancer and other cancer-types.
Collapse
|
36
|
Amirkhah R, Gilroy K, Malla SB, Lannagan TRM, Byrne RM, Fisher NC, Corry SM, Mohamed NE, Naderi-Meshkin H, Mills ML, Campbell AD, Ridgway RA, Ahmaderaghi B, Murray R, Llergo AB, Sanz-Pamplona R, Villanueva A, Batlle E, Salazar R, Lawler M, Sansom OJ, Dunne PD. MmCMS: mouse models' consensus molecular subtypes of colorectal cancer. Br J Cancer 2023; 128:1333-1343. [PMID: 36717674 PMCID: PMC10050155 DOI: 10.1038/s41416-023-02157-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue. METHODS Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n = 577) and mouse (n = 57 across n = 8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers. RESULTS We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours. CONCLUSIONS When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package enables researchers to select suitable mouse models of human CRC subtype for their experimental testing.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Sudhir B Malla
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Ryan M Byrne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Shania M Corry
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Hojjat Naderi-Meshkin
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | | | | | - Baharak Ahmaderaghi
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK
| | - Richard Murray
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Antoni Berenguer Llergo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mark Lawler
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Philip D Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
37
|
Mohamed GA, Mahmood S, Ognjenovic NB, Lee MK, Wilkins OM, Christensen BC, Muller KE, Pattabiraman DR. Lineage plasticity enables low-ER luminal tumors to evolve and gain basal-like traits. Breast Cancer Res 2023; 25:23. [PMID: 36859337 PMCID: PMC9979432 DOI: 10.1186/s13058-023-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Stratifying breast cancer into specific molecular or histologic subtypes aids in therapeutic decision-making and predicting outcomes; however, these subtypes may not be as distinct as previously thought. Patients with luminal-like, estrogen receptor (ER)-expressing tumors have better prognosis than patients with more aggressive, triple-negative or basal-like tumors. There is, however, a subset of luminal-like tumors that express lower levels of ER, which exhibit more basal-like features. We have found that breast tumors expressing lower levels of ER, traditionally considered to be luminal-like, represent a distinct subset of breast cancer characterized by the emergence of basal-like features. Lineage tracing of low-ER tumors in the MMTV-PyMT mouse mammary tumor model revealed that basal marker-expressing cells arose from normal luminal epithelial cells, suggesting that luminal-to-basal plasticity is responsible for the evolution and emergence of basal-like characteristics. This plasticity allows tumor cells to gain a new lumino-basal phenotype, thus leading to intratumoral lumino-basal heterogeneity. Single-cell RNA sequencing revealed SOX10 as a potential driver for this plasticity, which is known among breast tumors to be almost exclusively expressed in triple-negative breast cancer (TNBC) and was also found to be highly expressed in low-ER tumors. These findings suggest that basal-like tumors may result from the evolutionary progression of luminal tumors with low ER expression.
Collapse
Affiliation(s)
- Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Sundis Mahmood
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Owen M Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Brock C Christensen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Kristen E Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| |
Collapse
|
38
|
Price BA, Marron JS, Mose LE, Perou CM, Parker JS. Translating transcriptomic findings from cancer model systems to humans through joint dimension reduction. Commun Biol 2023; 6:179. [PMID: 36797360 PMCID: PMC9935626 DOI: 10.1038/s42003-023-04529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Model systems are an essential resource in cancer research. They simulate effects that we can infer into humans, but come at a risk of inaccurately representing human biology. This inaccuracy can lead to inconclusive experiments or misleading results, urging the need for an improved process for translating model system findings into human-relevant data. We present a process for applying joint dimension reduction (jDR) to horizontally integrate gene expression data across model systems and human tumor cohorts. We then use this approach to combine human TCGA gene expression data with data from human cancer cell lines and mouse model tumors. By identifying the aspects of genomic variation joint-acting across cohorts, we demonstrate how predictive modeling and clinical biomarkers from model systems can be improved.
Collapse
Affiliation(s)
- Brandon A Price
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J S Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
39
|
McClure MB, Kogure Y, Ansari-Pour N, Saito Y, Chao HH, Shepherd J, Tabata M, Olopade OI, Wedge DC, Hoadley KA, Perou CM, Kataoka K. Landscape of Genetic Alterations Underlying Hallmark Signature Changes in Cancer Reveals TP53 Aneuploidy-driven Metabolic Reprogramming. CANCER RESEARCH COMMUNICATIONS 2023; 3:281-296. [PMID: 36860655 PMCID: PMC9973382 DOI: 10.1158/2767-9764.crc-22-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/08/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
The hallmark signatures based on gene expression capture core cancer processes. Through a pan-cancer analysis, we describe the overview of hallmark signatures across tumor types/subtypes and reveal significant relationships between these signatures and genetic alterations. TP53 mutation exerts diverse changes, including increased proliferation and glycolysis, which are closely mimicked by widespread copy-number alterations. Hallmark signature and copy-number clustering identify a cluster of squamous tumors and basal-like breast and bladder cancers with elevated proliferation signatures, frequent TP53 mutation, and high aneuploidy. In these basal-like/squamous TP53-mutated tumors, a specific and consistent spectrum of copy-number alterations is preferentially selected prior to whole-genome duplication. Within Trp53-null breast cancer mouse models, these copy-number alterations spontaneously occur and recapitulate the hallmark signature changes observed in the human condition. Together, our analysis reveals intertumor and intratumor heterogeneity of the hallmark signatures, uncovering an oncogenic program induced by TP53 mutation and select aneuploidy events to drive a worsened prognosis. Significance Our data demonstrate that TP53 mutation and a resultant selected pattern of aneuploidies cause an aggressive transcriptional program including upregulation of glycolysis signature with prognostic implications. Importantly, basal-like breast cancer demonstrates genetic and/or phenotypic changes closely related to squamous tumors including 5q deletion that reveal alterations that could offer therapeutic options across tumor types regardless of tissue of origin.
Collapse
Affiliation(s)
- Marni B. McClure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naser Ansari-Pour
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hann-Hsiang Chao
- Department of Radiation Oncology, Richmond VA Medical Center, Richmond, Virginia
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics & Global Health, University of Chicago School of Medicine, The University of Chicago, Chicago, Illinois
| | - David C. Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Zeleke TZ, Pan Q, Chiuzan C, Onishi M, Li Y, Tan H, Alvarez MJ, Honan E, Yang M, Chia PL, Mukhopadhyay P, Kelly S, Wu R, Fenn K, Trivedi MS, Accordino M, Crew KD, Hershman DL, Maurer M, Jones S, High A, Peng J, Califano A, Kalinsky K, Yu J, Silva J. Network-based assessment of HDAC6 activity predicts preclinical and clinical responses to the HDAC6 inhibitor ricolinostat in breast cancer. NATURE CANCER 2023; 4:257-275. [PMID: 36585452 PMCID: PMC9992270 DOI: 10.1038/s43018-022-00489-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 11/10/2022] [Indexed: 12/31/2022]
Abstract
Inhibiting individual histone deacetylase (HDAC) is emerging as well-tolerated anticancer strategy compared with pan-HDAC inhibitors. Through preclinical studies, we demonstrated that the sensitivity to the leading HDAC6 inhibitor (HDAC6i) ricolinstat can be predicted by a computational network-based algorithm (HDAC6 score). Analysis of ~3,000 human breast cancers (BCs) showed that ~30% of them could benefice from HDAC6i therapy. Thus, we designed a phase 1b dose-escalation clinical trial to evaluate the activity of ricolinostat plus nab-paclitaxel in patients with metastatic BC (MBC) (NCT02632071). Study results showed that the two agents can be safely combined, that clinical activity is identified in patients with HR+/HER2- disease and that the HDAC6 score has potential as predictive biomarker. Analysis of other tumor types also identified multiple cohorts with predicted sensitivity to HDAC6i's. Mechanistically, we have linked the anticancer activity of HDAC6i's to their ability to induce c-Myc hyperacetylation (ac-K148) promoting its proteasome-mediated degradation in sensitive cancer cells.
Collapse
Affiliation(s)
- Tizita Z Zeleke
- Graduate School, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Codruta Chiuzan
- Feinstein Institutes for Medical Research, Northwell Health, New York, USA
| | | | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.,DarwinHealth, Inc., New York, NY, USA
| | - Erin Honan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Min Yang
- Acetylon Pharmaceuticals, Boston, MA, USA
| | - Pei Ling Chia
- Graduate School, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Partha Mukhopadhyay
- Graduate School, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Sean Kelly
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ruby Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Kathleen Fenn
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Meghna S Trivedi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Melissa Accordino
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Katherine D Crew
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Dawn L Hershman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | - Simon Jones
- Regenacy Pharmaceuticals, Inc., Waltham, MA, USA
| | - Anthony High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin Kalinsky
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
| |
Collapse
|
41
|
Han S, Chen X, Li Z. Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers (Basel) 2023; 15:757. [PMID: 36765715 PMCID: PMC9913549 DOI: 10.3390/cancers15030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity. TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progenitor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors (LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes. Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment. Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3 and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-pathway-related genes from their cells-of-origin; the innate immune program may also represent their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy via augmenting TLR signaling).
Collapse
Affiliation(s)
- Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Wang G, Romero Y, Thevarajan I, Zolkiewska A. ADAM12 abrogation alters immune cell infiltration and improves response to checkpoint blockade therapy in the T11 murine model of triple-negative breast cancer. Oncoimmunology 2022; 12:2158006. [PMID: 36545255 PMCID: PMC9762783 DOI: 10.1080/2162402x.2022.2158006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunosuppressive tumor microenvironment (TME) impedes anti-tumor immune responses and contributes to immunotherapy resistance in triple-negative breast cancer (TNBC). ADAM12, a member of cell surface metalloproteases, is selectively upregulated in mesenchymal/claudin-low TNBCs, where its expression is largely restricted to tumor cells. The role of cancer cell-expressed ADAM12 in modulating the immune TME is not known. We show that Adam12 knockout in the T11 mouse syngeneic transplantation model of claudin-low TNBC leads to decreased numbers of tumor-infiltrating neutrophils (TINs)/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and increased numbers of tumor-infiltrating B cells and T cells. ADAM12 loss in cancer cells increases chemotaxis of B cells in vitro and this effect is eliminated by inhibition of CXCR4, a receptor for CXCL12, or anti-CXCL12 blocking antibody. Importantly, ADAM12 loss in T11 cancer cells sensitizes tumors to anti-PD1/anti-CTLA4 combination therapy, although the initial responsiveness is followed by acquired therapy resistance. Depletion of B cells in mice eliminates the improved response to immune checkpoint blockade of Adam12 knockout T11 tumors. Analysis of gene expression data for claudin-low TNBCs from the METABRIC patient cohort shows significant inverse correlations between ADAM12 and gene expression signatures of several anti-tumor immune cell populations, as well as a significant positive correlation between ADAM12 and gene expression signature of TINs/PMN-MDSCs. Collectively, these results implicate ADAM12 in immunosuppression within the TME in TNBC.
Collapse
Affiliation(s)
- Guanpeng Wang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA,CONTACT Anna Zolkiewska Department of Biochemistry and molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS66506, USA
| |
Collapse
|
43
|
Rashid NS, Boyd DC, Olex AL, Grible JM, Duong AK, Alzubi MA, Altman JE, Leftwich TJ, Valentine AD, Hairr NS, Zboril EK, Smith TM, Pfefferle AD, Dozmorov MG, Harrell JC. Transcriptomic changes underlying EGFR inhibitor resistance in human and mouse models of basal-like breast cancer. Sci Rep 2022; 12:21248. [PMID: 36482068 PMCID: PMC9731984 DOI: 10.1038/s41598-022-25541-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The goals of this study were to identify transcriptomic changes that arise in basal-like breast cancer cells during the development of resistance to epidermal growth factor receptor inhibitors (EGFRi) and to identify drugs that are cytotoxic once EGFRi resistance occurs. Human patient-derived xenografts (PDXs) were grown in immunodeficient mice and treated with a set of EGFRi; the EGFRi erlotinib was selected for more expansive in vivo studies. Single-cell RNA sequencing was performed on mammary tumors from the basal-like PDX WHIM2 that was treated with vehicle or erlotinib for 9 weeks. The PDX was then subjected to long-term erlotinib treatment in vivo. Through serial passaging, an erlotinib-resistant subline of WHIM2 was generated. Bulk RNA-sequencing was performed on parental and erlotinib-resistant tumors. In vitro high-throughput drug screening with > 500 clinically used compounds was performed on parental and erlotinib-resistant cells. Previously published bulk gene expression microarray data from MMTV-Wnt1 tumors were contrasted with the WHIM2 PDX data. Erlotinib effectively inhibited WHIM2 tumor growth for approximately 4 weeks. Compared to untreated cells, single-cell RNA sequencing revealed that a greater proportion of erlotinib-treated cells were in the G1 phase of the cell cycle. Comparison of WHIM2 and MMTV-Wnt1 gene expression data revealed a set of 38 overlapping genes that were differentially expressed in the erlotinib-resistant WHIM2 and MMTV-Wnt1 tumors. Comparison of all three data types revealed five genes that were upregulated across all erlotinib-resistant samples: IL19, KLK7, LCN2, SAA1, and SAA2. Of these five genes, LCN2 was most abundantly expressed in triple-negative breast cancers, and its knockdown restored erlotinib sensitivity in vitro. Despite transcriptomic differences, parental and erlotinib-resistant WHIM2 displayed similar responses to the majority of drugs assessed for cytotoxicity in vitro. This study identified transcriptomic changes arising in erlotinib-resistant basal-like breast cancer. These data could be used to identify a biomarker or develop a gene signature predictive of patient response to EGFRi. Future studies should explore the predictive capacity of these gene signatures as well as how LCN2 contributes to the development of EGFRi resistance.
Collapse
Affiliation(s)
- Narmeen S Rashid
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Department of Biology, University of Richmond, Richmond, VA, 23173, USA
| | - David C Boyd
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Program in Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Amy L Olex
- C. Kenneth and Diane Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Jacqueline M Grible
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Alex K Duong
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Oncology Center-Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Julia E Altman
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Tess J Leftwich
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Aaron D Valentine
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Nicole S Hairr
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Emily K Zboril
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Timothy M Smith
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Adam D Pfefferle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Mikhail G Dozmorov
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23220, USA.
| |
Collapse
|
44
|
Walens A, Van Alsten SC, Olsson LT, Smith MA, Lockhart A, Gao X, Hamilton AM, Kirk EL, Love MI, Gupta GP, Perou CM, Vaziri C, Hoadley KA, Troester MA. RNA-Based Classification of Homologous Recombination Deficiency in Racially Diverse Patients with Breast Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:2136-2147. [PMID: 36129803 PMCID: PMC9720427 DOI: 10.1158/1055-9965.epi-22-0590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aberrant expression of DNA repair pathways such as homologous recombination (HR) can lead to DNA repair imbalance, genomic instability, and altered chemotherapy response. DNA repair imbalance may predict prognosis, but variation in DNA repair in diverse cohorts of breast cancer patients is understudied. METHODS To identify RNA-based patterns of DNA repair expression, we performed unsupervised clustering on 51 DNA repair-related genes in the Cancer Genome Atlas Breast Cancer [TCGA BRCA (n = 1,094)] and Carolina Breast Cancer Study [CBCS (n = 1,461)]. Using published DNA-based HR deficiency (HRD) scores (high-HRD ≥ 42) from TCGA, we trained an RNA-based supervised classifier. Unsupervised and supervised HRD classifiers were evaluated in association with demographics, tumor characteristics, and clinical outcomes. RESULTS : Unsupervised clustering on DNA repair genes identified four clusters of breast tumors, with one group having high expression of HR genes. Approximately 39.7% of CBCS and 29.3% of TCGA breast tumors had this unsupervised high-HRD (U-HRD) profile. A supervised HRD classifier (S-HRD) trained on TCGA had 84% sensitivity and 73% specificity to detect HRD-high samples. Both U-HRD and S-HRD tumors in CBCS had higher frequency of TP53 mutant-like status (45% and 41% enrichment) and basal-like subtype (63% and 58% enrichment). S-HRD high was more common among black patients. Among chemotherapy-treated participants, recurrence was associated with S-HRD high (HR: 2.38, 95% confidence interval = 1.50-3.78). CONCLUSIONS HRD is associated with poor prognosis and enriched in the tumors of black women. IMPACT RNA-level indicators of HRD are predictive of breast cancer outcomes in diverse populations.
Collapse
Affiliation(s)
- Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Sarah C. Van Alsten
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Linnea T. Olsson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Markia A. Smith
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Alex Lockhart
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiaohua Gao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Alina M. Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Erin L. Kirk
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Michael I. Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A. Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Tatarova Z, Blumberg DC, Korkola JE, Heiser LM, Muschler JL, Schedin PJ, Ahn SW, Mills GB, Coussens LM, Jonas O, Gray JW. A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nat Biotechnol 2022; 40:1823-1833. [PMID: 35788566 PMCID: PMC9750874 DOI: 10.1038/s41587-022-01379-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
Abstract
Systematically identifying synergistic combinations of targeted agents and immunotherapies for cancer treatments remains difficult. In this study, we integrated high-throughput and high-content techniques-an implantable microdevice to administer multiple drugs into different sites in tumors at nanodoses and multiplexed imaging of tumor microenvironmental states-to investigate the tumor cell and immunological response signatures to different treatment regimens. Using a mouse model of breast cancer, we identified effective combinations from among numerous agents within days. In vivo studies in three immunocompetent mammary carcinoma models demonstrated that the predicted combinations synergistically increased therapeutic efficacy. We identified at least five promising treatment strategies, of which the panobinostat, venetoclax and anti-CD40 triple therapy was the most effective in inducing complete tumor remission across models. Successful drug combinations increased spatial association of cancer stem cells with dendritic cells during immunogenic cell death, suggesting this as an important mechanism of action in long-term breast cancer control.
Collapse
Affiliation(s)
- Zuzana Tatarova
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan C Blumberg
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - John L Muschler
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Pepper J Schedin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian W Ahn
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Oliver Jonas
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
46
|
Aylon Y, Furth N, Mallel G, Friedlander G, Nataraj NB, Dong M, Hassin O, Zoabi R, Cohen B, Drendel V, Salame TM, Mukherjee S, Harpaz N, Johnson R, Aulitzky WE, Yarden Y, Shema E, Oren M. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat Commun 2022; 13:7199. [PMID: 36443319 PMCID: PMC9705295 DOI: 10.1038/s41467-022-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
Collapse
Affiliation(s)
- Yael Aylon
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noa Furth
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gilgi Friedlander
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Meng Dong
- grid.502798.10000 0004 0561 903XDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Rawan Zoabi
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Cohen
- grid.13992.300000 0004 0604 7563Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vanessa Drendel
- grid.416008.b0000 0004 0603 4965Department of Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Tomer Meir Salame
- grid.13992.300000 0004 0604 7563Flow Cytometry Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nofar Harpaz
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Randy Johnson
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Walter E. Aulitzky
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Medicine, Robert Bosch Hospital, Stuttgart, Germany
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Efrat Shema
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Moshe Oren
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
47
|
Feng TY, Azar FN, Dreger SA, Buchta Rosean C, McGinty MT, Putelo AM, Kolli SH, Carey MA, Greenfield S, Fowler WJ, Robinson SD, Rutkowski MR. Reciprocal Interactions Between the Gut Microbiome and Mammary Tissue Mast Cells Promote Metastatic Dissemination of HR+ Breast Tumors. Cancer Immunol Res 2022; 10:1309-1325. [PMID: 36040846 PMCID: PMC9633553 DOI: 10.1158/2326-6066.cir-21-1120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Establishing commensal dysbiosis, defined as an inflammatory gut microbiome with low biodiversity, before breast tumor initiation, enhances early dissemination of hormone receptor-positive (HR+) mammary tumor cells. Here, we sought to determine whether cellular changes occurring in normal mammary tissues, before tumor initiation and in response to dysbiosis, enhanced dissemination of HR+ tumors. Commensal dysbiosis increased both the frequency and profibrogenicity of mast cells in normal, non-tumor-bearing mammary tissues, a phenotypic change that persisted after tumor implantation. Pharmacological and adoptive transfer approaches demonstrated that profibrogenic mammary tissue mast cells from dysbiotic animals were sufficient to enhance dissemination of HR+ tumor cells. Using archival HR+ patient samples, we determined that enhanced collagen levels in tumor-adjacent mammary tissue positively correlated with mast cell abundance and HR+ breast cancer recurrence. Together, these data demonstrate that mast cells programmed by commensal dysbiosis activate mammary tissue fibroblasts and orchestrate early dissemination of HR+ breast tumors.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Francesca N. Azar
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sally A. Dreger
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Claire Buchta Rosean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Mitchell T. McGinty
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Audrey M. Putelo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sree H. Kolli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Maureen A. Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, VA, USA
| | - Stephanie Greenfield
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Wesley J. Fowler
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| |
Collapse
|
48
|
Ould-Brahim F, Sau A, Carr DA, Jiang T, Pratt MC. Induction of alternative NF-κB within TAg-induced basal mammary tumors in activation-resistant inhibitor of κ-B kinase (IKKα) mutant mice. Tumour Biol 2022; 44:187-203. [DOI: 10.3233/tub-220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: The alternative NF-κB pathway is activated by the NF-κB-inducing kinase (NIK) mediated phosphorylation of the inhibitor of κ-B kinase α (IKKα). IKKα then phosphorylates p100/NFKB2 to result in its processing to the active p52 subunit. Evidence suggests that basal breast cancers originate within a subpopulation of luminal progenitor cells which is expanded by signaling to IKKα. OBJECTIVE: To determine the role of IKKα in the development of basal tumors. METHODS: Kinase dead IkkαAA/AA mice were crossed with the C3(1)-TAg mouse model of basal mammary cancer. Tumor growth and tumor numbers in WT and IkkαAA/AA mice were assessed and immunopathology, p52 expression and stem/progenitor 3D colony forming assays were performed. Nik-/- mammary glands were isolated and mammary colonies were characterized. RESULTS: While tumor growth was slower than in WT mice, IkkαAA/AA tumor numbers and pathology were indistinguishable from WT tumors. Both WT and IkkαAA/AA tumors expressed p52 except those IkkαAA/AA tumors where NIK, IKKαAA/AA and ErbB2 were undetectable. Colonies formed by WT and IkkαAA/AA mammary cells were nearly all luminal/acinar however, colony numbers and sizes derived from IkkαAA/AA cells were reduced. In contrast to IkkαAA/AA mice, virgin Nik-/- mammary glands were poorly developed and colonies were primarily derived from undifferentiated bipotent progenitor cells. CONCLUSIONS: C3(1)-TAg induced mammary tumors express p100/p52 even without functional IKKα. Therefore the development of basal-like mammary cancer does not strictly rely on IKKα activation. Signal-induced stabilization of NIK may be sufficient to mediate processing of p100NFKB2 which can then support basal-like mammary tumor formation. Lastly, in contrast to the pregnancy specific role of IKKα in lobuloalveogenesis, NIK is obligatory for normal mammary gland development.
Collapse
Affiliation(s)
- Fares Ould-Brahim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David A. Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - M.A. Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
49
|
Grasset EM, Dunworth M, Sharma G, Loth M, Tandurella J, Cimino-Mathews A, Gentz M, Bracht S, Haynes M, Fertig EJ, Ewald AJ. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci Transl Med 2022; 14:eabn7571. [PMID: 35921474 PMCID: PMC9801390 DOI: 10.1126/scitranslmed.abn7571] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype associated with early metastatic recurrence and worse patient outcomes. TNBC tumors express molecular markers of the epithelial-mesenchymal transition (EMT), but its requirement during spontaneous TNBC metastasis in vivo remains incompletely understood. We demonstrated that spontaneous TNBC tumors from a genetically engineered mouse model (GEMM), multiple patient-derived xenografts, and archival patient samples exhibited large populations in vivo of hybrid E/M cells that lead invasion ex vivo while expressing both epithelial and mesenchymal characteristics. The mesenchymal marker vimentin promoted invasion and repressed metastatic outgrowth. We next tested the requirement for five EMT transcription factors and observed distinct patterns of utilization during invasion and colony formation. These differences suggested a sequential activation of multiple EMT molecular programs during the metastatic cascade. Consistent with this model, our longitudinal single-cell RNA analysis detected three different EMT-related molecular patterns. We observed cancer cells progressing from epithelial to hybrid E/M and strongly mesenchymal patterns during invasion and from epithelial to a hybrid E/M pattern during colony formation. We next investigated the relative epithelial versus mesenchymal state of cancer cells in both GEMM and patient metastases. In both contexts, we observed heterogeneity between and within metastases in the same individual. We observed a complex spectrum of epithelial, hybrid E/M, and mesenchymal cell states within metastases, suggesting that there are multiple successful molecular strategies for distant organ colonization. Together, our results demonstrate an important and complex role for EMT programs during TNBC metastasis.
Collapse
Affiliation(s)
- Eloïse M Grasset
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Matthew Dunworth
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gaurav Sharma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Melanie Loth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Cimino-Mathews
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Melissa Gentz
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sydney Bracht
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Meagan Haynes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew J Ewald
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Thennavan A, Garcia-Recio S, Liu S, He X, Perou CM. Molecular signatures of in situ to invasive progression for basal-like breast cancers: An integrated mouse model and human DCIS study. NPJ Breast Cancer 2022; 8:83. [PMID: 35851387 PMCID: PMC9293914 DOI: 10.1038/s41523-022-00450-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of Invasive Ductal Carcinoma (IDC) and thus the identification of features that may predict DCIS progression would be of potential clinical value. Experimental mouse models can be used to address this challenge by studying DCIS-to-IDC biology. Here we utilize single cell RNA sequencing (scRNAseq) on the C3Tag genetically engineered mouse model that forms DCIS-like precursor lesions and for which many lesions progress into end-stage basal-like molecular subtype IDC. We also perform bulk RNAseq analysis on 10 human synchronous DCIS-IDC pairs comprised of estrogen receptor (ER) positive and ER-negative subsets and utilize 2 additional public human DCIS data sets for comparison to our mouse model. By identifying malignant cells using inferred DNA copy number changes from the murine C3Tag scRNAseq data, we show the existence of cancer cells within the C3Tag pre-DCIS, DCIS, and IDC-like tumor specimens. These cancer cells were further classified into proliferative, hypoxic, and inflammatory subpopulations, which change in frequency in DCIS versus IDC. The C3Tag tumor progression model was also associated with increase in Cancer-Associated Fibroblasts and decrease in activated T cells in IDC. Importantly, we translate the C3Tag murine genomic findings into human DCIS where we find common features only with human basal-like DCIS, suggesting there are intrinsic subtype unique DCIS features. This study identifies several tumor and microenvironmental features associated with DCIS progression and may also provide genomic signatures that can identify progression-prone DCIS within the context of human basal-like breast cancers.
Collapse
Affiliation(s)
- Aatish Thennavan
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|