1
|
Zhong Y, Gao B, Tong K, Li L, Wei Q, Hu Y. Constructing a prognostic model for osteosarcoma based on centrosome-related genes and identifying potential therapeutic targets of paclitaxel. Sci Rep 2025; 15:16859. [PMID: 40374892 PMCID: PMC12081908 DOI: 10.1038/s41598-025-99419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
The centrosome, a vital component in mitosis in eukaryotes, plays a pivotal role in cancer progression by influencing the proliferation and differentiation of malignant cells, making it a significant therapeutic target. We collected genes associated with centrosomes from existing literature and established a prognostic model for 85 osteosarcoma patients from the TARGET database. Genes associated with prognosis were identified through univariate Cox regression. We then mitigated overfitting by addressing collinearity using LASSO regression. Ultimately, a set of five genes was selected for the model through multivariable Cox regression. Model performance was assessed using ROC curves, which yielded a training set AUC of 0.965 and a validation set AUC of 0.770, indicating satisfactory model performance. We further identified genes with differential expression in high and low-risk groups and conducted functional enrichment analysis using KEGG, GO, Progeny, GSVA, and GSEA. Results revealed significant variances in various immune-related pathways between high and low-risk cohorts. Analysis of the immune microenvironment using ssGSEA and ESTIMATE indicated that individuals with unfavorable prognoses had lower immune scores, stromal scores, and ESTIMATE scores, coupled with higher tumor purity. This suggests that high-risk individuals have compromised immune microenvironments, potentially contributing to their unfavorable prognoses. Additionally, drug sensitivity and molecular docking analysis revealed increased responsiveness to paclitaxel in high-risk individuals, implying its prognostic value. The JTB-encoded protein exhibited a negative binding energy of - 5.5 kcal/mol when interacting with paclitaxel, indicating its potential to enhance the patient's immune microenvironment. This framework enables patient prognosis prediction and sheds light on paclitaxel's mechanism in osteosarcoma treatment, facilitating personalized treatment approaches.
Collapse
Affiliation(s)
- Yujian Zhong
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Bohua Gao
- Department of Orthopedics Trauma, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kai Tong
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Lan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Qingjun Wei
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
2
|
She RL, Liang XY, Hu L, Ma CY, Mu LY, Feng JH, Song JY, Jiang ZY, Li ZX, Qu XQ, Peng BQ, Wu KN, Kong LQ. Effect of chemotherapy and different chemotherapeutic regimens on electrocardiographic parameters in breast cancer women: a retrospective and within-subject longitudinal study. Support Care Cancer 2025; 33:452. [PMID: 40327163 DOI: 10.1007/s00520-025-09499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Descriptions of the effect of chemotherapy on all the electrocardiographic parameters in breast cancer women during chemotherapy are limited. METHODS A retrospective and within-subject longitudinal study of the effect of chemotherapeutics and different chemotherapeutic regimens on electrocardiographic parameters was conducted in 948 breast cancer women who had completed chemotherapy with ECG recording at initial diagnosis and before each cycle of chemotherpy. Heart rate (HR), QRS interval, P-R interval, QRS axis, QT interval, QTc interval, and the incidence of QTc interval prolongation were analyzed. Age, body mass index (BMI), history of hypertension, diabetes, and coronary heart disease were also collected for further stratified study. RESULTS Compared to initial diagnosis, changes in HR [74 (67, 82) bpm vs. 79 (73, 87)bpm], P-R interval [148 (136, 160) ms vs. 150 (138, 162) ms], QRS axis [41° (19.25°°, 60°) vs. 33° (15°, 53.75°)], QT interval [376 (358, 394) ms vs. 372 (354, 386) ms], QTc interval [417 (404, 431) ms vs. 426 (414, 436) ms], and incidence of QTc interval prolongation (9.6% vs. 15.8%) were all significant after chemotherapy, P < 0.001. There were statistically differences in HR, QRS axis, QTc interval, and the incidence of QTc interval prolongation between initial diagnosis and prechemotherapy of the last cycle under different age strata (≤ 45 years, 45 ~ 55 years, ≥ 55 years), different BMI range groups (18.5-22.9 kg/m2, 23-24.9 kg/m2, and 25-29.9 kg/m2), and even in patients without history of hypertension, diabetes, or coronary heart disease, respectively, P < 0.05. Resting HR, QRS axis, and QTc interval between each cycle of TEC regimen were different, P < 0.001. Resting HR and QTc interval between different cycles of EC-T(H) regimen were different, P < 0.05. Compared to initial diagnosis, a longer QTc interval occurred from the third to the last cycle of TEC regimen, P < 0.05. Only QTc interval before the fifth cycle of EC-T(H) regimen was statistically different from that at initial diagnosis, P = 0.012. CONCLUSION Chemotherapy affects the ECG parameters of HR, P-R interval, QRS axis, QT interval, QTc interval, and QTc interval prolongation in early-stage breast cancer women during chemotherapy. Electrocardiographic parameters may be affected significantly by TEC regimen than by EC-T(H) or TC regimen. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Rui-Ling She
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin-Yu Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Hu
- Information Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chen-Yu Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li-Yuan Mu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Han Feng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing-Yu Song
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Yu Jiang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao-Xing Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiu-Quan Qu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bai-Qing Peng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai-Nan Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ling-Quan Kong
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Tong J, Tan Y, Ouyang W, Chang H. Targeting immune checkpoints in hepatocellular carcinoma therapy: toward combination strategies with curative potential. Exp Hematol Oncol 2025; 14:65. [PMID: 40317077 PMCID: PMC12046748 DOI: 10.1186/s40164-025-00636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 05/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by poor immune cell infiltration and a strongly immunosuppressive microenvironment. Traditional treatments have often yielded unsatisfactory outcomes due to the insidious onset of the disease. Encouragingly, the introduction of immune checkpoint inhibitors (ICIs) has significantly transformed the approach to HCC treatment. Moreover, combining ICIs with other therapies or novel materials is considered the most promising opportunity in HCC, with some of these combinations already being evaluated in large-scale clinical trials. Unfortunately, most clinical trials fail to meet their endpoints, and the few successful ones also face challenges. This indicates that the potential of ICIs in HCC treatment remains underutilized, prompting a reevaluation of this promising therapy. Therefore, this article provides a review of the role of immune checkpoints in cancer treatment, the research progress of ICIs and their combination application in the treatment of HCC, aiming to open up avenues for the development of safer and more efficient immune checkpoint-related strategies for HCC treatment.
Collapse
Affiliation(s)
- Jing Tong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yongci Tan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Wenwen Ouyang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Mvingu BK, Nsiama T, Kanga ON, Taba KM, Kilembe JT, Mputu JNK, Garifo S, Henoumont C, Dibwe DF, Mbala BM, Laurent S. Rapid Dereplication of Trunk Bark Constituents of Croton sylvaticus and Molecular Docking of Terpenoids from Three Congolese Croton Species. Int J Mol Sci 2025; 26:4305. [PMID: 40362546 PMCID: PMC12072447 DOI: 10.3390/ijms26094305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Phytochemical investigation and bioactivity evaluation of terpenoids from the Croton species were conducted. The chemical composition of C. sylvaticus was explored using chemical phytochemical screening techniques and dereplication of 13C NMR data using MixONat software (v. 1.0.1). Natural products with diverse structural features were identified in the dichloromethane extract of trunk bark. These include monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, along with other minor metabolites, such as steroids, saponins, and fatty acids. Further purification of this extract led to the isolation of three major secondary metabolites, acetyl aleuritolic acid, caryophyllene oxide, and phytol. These secondary metabolites were reported for the first time in C. sylvaticus. The isolated compounds were structurally compared to known anticancer terpenoids previously identified in two other Congolese Croton species. Through molecular docking studies, the predicted binding affinities of the identified compounds were assessed, and possible structure-activity relationships (SAR) were proposed. Two structurally characterized receptors-the human androgen receptor (HAR, PDB ID: 1E3G) and hypoxia-inducible factor 1-alpha (HIF-1α, PDB ID: 3KCX), known for their involvement in cancer-related pathways, were used for molecular docking investigations. Among the tested compounds, 1, 2, 3, and 12 were identified as having strong-to-moderate predicted binding affinities to both protein targets, along with favorable drug-like properties according to the ADMET analysis. This investigation could justify the use of Croton plants in traditional medicine. In addition, our study highlights the potential of the Congolese Croton species as sources of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Bienvenu Kamalandua Mvingu
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
| | - Tienabe Nsiama
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
| | - Obed Nsemi Kanga
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
| | - Kalulu Muzele Taba
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
| | - Jason Thambwe Kilembe
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
| | - Jean-Noël Kanyinda Mputu
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (S.G.); (C.H.); (S.L.)
| | - Sarah Garifo
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (S.G.); (C.H.); (S.L.)
| | - Céline Henoumont
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (S.G.); (C.H.); (S.L.)
| | - Dya Fita Dibwe
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Blaise Mavinga Mbala
- Mention Chimie et Industrie, Faculté des Sciences et Technologies, Université de Kinshasa, Kin XI, Kinshasa P.O. Box 190, Democratic Republic of the Congo; (B.K.M.); (T.N.); (O.N.K.); (J.T.K.); (J.-N.K.M.); (B.M.M.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (S.G.); (C.H.); (S.L.)
| |
Collapse
|
5
|
El-Berawey DY. Phytochemical and phylogenetic perspective of medicinal plants used for cancer treatment in Egypt. Nat Prod Res 2025; 39:2944-2962. [PMID: 39297732 DOI: 10.1080/14786419.2024.2405012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 05/17/2025]
Abstract
With a global increase in mortality, particularly in low-income countries, cancer remains one of the most devastating diseases. Medicinal plants rich in phytochemicals have shown promise as chemoprotective and anticancer agents. As a result, in this study, we compiled a list of medicinal plant species that have been used to treat cancer in the last decade. The results of our review show that 170 plant species from 53 plant families have been used to treat various types of cancer. Plant species are categorised based on their taxonomic position and level of cytotoxicity (very strong, strong, cytotoxic, moderate, and weak). The phylogenetic relationships between these plant species were also reconstructed. The most frequently mentioned plant families were Fabaceae, Asteraceae, Solanaceae, Brassicaceae and Polygonaceae. Phytochemicals such as flavonoids, alkaloids, betalains, saponins and polyphenols are found in highly therapeutic plants. The species Solanum, Khaya, Eichhornia, Coccoloba, Annona, Withania, Salicornia, Beta, Persicaria, Persea, Hyphaene and Kalanchoe showed high potency against a range of cancer cells.
Collapse
Affiliation(s)
- Dalia Youssef El-Berawey
- Faculty of Education, Biology and Geology Sciences Department, Alexandria University, El-Shatby, Alexandria, Egypt
| |
Collapse
|
6
|
Xiao Y, Xia W, Yang Z, Zhou J, Luo J. Advances in the analysis and application of metabolites from tropical plants. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102728. [PMID: 40279843 DOI: 10.1016/j.pbi.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Tropical regions are characterized by a rich diversity of plant species and unique growth environments, resulting in the production of numerous important medicinal metabolites. This review summarizes the recent progress in the analysis of metabolites from tropical plants. These plants have developed specific metabolites that aid their adaptation to challenging environments, and these compounds hold significant medicinal value. The review further examines the genetic biosynthetic pathways that contribute to the production of these compounds, providing insights into the mechanisms of their synthesis. Additionally, it discusses future prospects for the utilization of these metabolites, exploring potential advancements in biotechnological approaches to enhance their production and application. By emphasizing the significance of tropical plants as reservoirs of bioactive substances, this review aims to encourage further exploration and sustainable use of these important natural resources in the field of medicine and beyond.
Collapse
Affiliation(s)
- Yong Xiao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Wei Xia
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Zhuang Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Junjie Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya Hainan 572025, China.
| |
Collapse
|
7
|
Alsaafeen BH, Ali BR, Elkord E. Combinational therapeutic strategies to overcome resistance to immune checkpoint inhibitors. Front Immunol 2025; 16:1546717. [PMID: 40342408 PMCID: PMC12058545 DOI: 10.3389/fimmu.2025.1546717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Over the past few years, immune checkpoint inhibitors resulted in magnificent and durable successes in treating cancer; however, only a minority of patients respond favorably to the treatment due to a broad-spectrum of tumor-intrinsic and tumor-extrinsic factors. With the recent insights gained into the mechanisms of resistance, combination treatment strategies to overcome the resistance and enhance the therapeutic potential of immune checkpoint inhibitors are emerging and showing promising results in both pre-clinical and clinical settings. This has been derived through multiple interconnected mechanisms such as enhancing tumor immunogenicity, improving neoantigen processing and presentation in addition to augmenting T cell infiltration and cytotoxic potentials. In the clinical settings, several avenues of combination treatments involving immune checkpoint inhibitors were associated with considerable improvement in the therapeutic outcome in terms of patient's survival and tumor growth control. This, in turn, increased the spectrum of cancer patients benefiting from the unprecedented and durable effects of immune checkpoint inhibitors leading to their adoption as a first-line treatment for certain cancers. Moreover, the significance of precision medicine in cancer immunotherapy and the unmet demand to develop more personalized predictive biomarkers and treatment strategies are also highlighted in this review.
Collapse
Affiliation(s)
- Besan H. Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
8
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
9
|
Kang JH, Cho YJ, Hwang JY, Park SY, Choi JJ, Paik ES, Kim HS, Lee JW, Shin US. Temperature-Controlled pNIB/PTX Micelles for Improved Paclitaxel Delivery in Ovarian Cancer Treatment. ACS Biomater Sci Eng 2025; 11:2167-2179. [PMID: 40094480 DOI: 10.1021/acsbiomaterials.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Paclitaxel (PTX) is a widely used anticancer drug for ovarian cancer treatment, but its clinical application is limited by poor water solubility and dose-limiting toxicities. To overcome these challenges, we developed a thermoresponsive, multistep drug delivery system, pNIB/PTX, designed to improve PTX solubility and provide controlled drug release. The pNIB/PTX-3 complex exhibited an initial rapid drug release phase followed by sustained slow release, optimizing both short-term and long-term therapeutic efficacy. At physiological temperatures, the complex demonstrated a precisely controlled drug release mechanism driven by changes in the polymeric micelle structure. In vitro studies showed that pNIB/PTX-3 significantly enhanced therapeutic effects in human ovarian cancer cell lines HeyA8 and SKOV3ip1, compared to PTX alone. In orthotopic ovarian cancer mouse models, a single intraperitoneal injection of pNIB/PTX-3 led to a substantial reduction in tumor size and prolonged survival. This multistep, thermoresponsive delivery system shows strong potential as a promising therapeutic option for dose-dense ovarian cancer treatments, providing improved drug stability, controlled release, and minimized side effects.
Collapse
Affiliation(s)
- Ji-Hye Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ji-Young Hwang
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Ballyong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Sang-Yu Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
- Department of Nano-biomedical Science BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - E Sun Paik
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea
| | - Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
- Department of Nano-biomedical Science BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| |
Collapse
|
10
|
Ding Z, Lu Y, Zhao J, Zhang D, Gao B. Network Pharmacology and Molecular Dynamics Identified Potential Androgen Receptor-Targeted Metabolites in Crocus alatavicus. Int J Mol Sci 2025; 26:3533. [PMID: 40331986 PMCID: PMC12027412 DOI: 10.3390/ijms26083533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The objective of this study is to identify the active components of Crocus alatavicus and potential targets through a combination of network pharmacology, molecular docking technology combined with molecular dynamics simulation, and binding free energy analyses. A total of 253 active ingredients from C. alatavicus were screened, and 1360 associated targets were predicted through systematic searches conducted using TCMSP, SwissDrugDesign, and SymMap, which were integrated to construct a pharmacological network to dissect the relationships among active components, targets, diseases, and pathways; we found prostate cancer-related genes were significantly enriched among the targets. Subsequently, the core prostate cancer-related targets were identified in the network, and the binding interactions between protein targets and active components were evaluated using molecular docking technology. Furthermore, molecular dynamics simulation and binding free energy analyses were performed to verify the binding stability of the most promising complex. Then, protein-protein interaction network analysis was conducted to evaluate the core target sites, leading to the identification of nine target proteins with significant correlations, providing potential targets for cancer treatment. Furthermore, these targets were found to be associated with 20 signaling pathways, including neuroactive ligand-receptor interactions, prostate cancer, lipid metabolism and atherosclerosis, as well as calcium signaling pathways. The active component-target-disease-pathway network diagram suggests that Capillarisin, Eugenol, 1-(4-Methoxyphenyl)-1-propanol, 2,4,2',4'-tetrahydroxy-3'-prenylchalcone, and 4-Hydroxymandelonitrile may serve as key components targeting prostate cancer. Molecular docking analyses demonstrated that Capillarisin has a high affinity for the androgen receptor (AR), and molecular dynamics simulation was performed to further verify the binding stability, indicating that Capillarisin may exert its pharmacological effects in prostate cancer. Based on the integrated strategies of network pharmacology, molecular docking, molecular dynamics simulation, and binding free energy analysis, this study generated novel insights into the active components of C. alatavicus and potential targets related to prostate cancer, thus providing valuable biological resources for future drug research and development.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Yuanfeng Lu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210008, China
| | - Jichen Zhao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Daoyuan Zhang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bei Gao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.D.); (Y.L.); (J.Z.)
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
11
|
Li C, Cheng S, Yu J, Zheng Q, Yu G, Xu M, Meng X, Zeng X, Liu K, Xu B, Luo H, Xu G. Hit to lead optimization of the 4-trifluoromethylquinoline derivatives as novel SGK1 inhibitors with potent anti-prostate cancer activity. Eur J Med Chem 2025; 287:117336. [PMID: 39908792 DOI: 10.1016/j.ejmech.2025.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Prostate cancer (PCa) remains a significant health concern for males, and serum/glucocorticoid-regulated kinase-1 (SGK1) plays a crucial role in its pathogenesis. This provides a promising target for the development of novel therapies against PCa. Herein, we reported the structural optimization of the hit compound H1, which was discovered in our previous work as an SGK1 inhibitor. Based on docking research for the active binding conformation of compound H1, a series of novel 4-trifluoromethyl quinoline derivatives were developed by replacing the 6-methoxy group in the quinoline skeleton of compound H1 with a larger aryl ring to occupy the hinge region of SGK1. Among them, compound 12f showed the strongest SGK1 inhibitory potency, with an IC50 value of 0.39 μM, representing a 7.8-fold improvement over compound H1. Molecular docking studies revealed that the 6-methoxyphenylamine moiety of compound 12f effectively extends into the hinge region of SGK1, establishing a crucial hydrogen bonding interaction with Glu183 that enhances its biological potency. In vivo, compound 12f effectively suppressed tumor growth in the PC3 xenograft model in BALB/c nude mice without inducing any observable toxicity. Moreover, mechanistic studies showed that compound 12f hindered PC3 cell migration and invasion, improved the thermal stability of SGK1 protein in PC3 cells, decreased SGK1 protein levels in tumor tissues, and effectively inhibited the phosphorylation of SGK1 and its substrates in PC3 cells in a dose- and time-dependent manner. In summary, the results of this study highlight the potential of 12f as a lead compound for further optimization in the development of new therapies against PCa targeting SGK1.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China; Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qian Zheng
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Mei Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaoping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
12
|
Ma M, Wang J, Tan Z, Liang X, Fan B, Li L, Liang H, An T, Wang G. Overexpression of tRNA m 7G modification methyltransferase complex promotes the biosynthesis of triterpene in yeast. Front Microbiol 2025; 16:1557443. [PMID: 40231236 PMCID: PMC11996079 DOI: 10.3389/fmicb.2025.1557443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background The sustainable production of valuable compounds using microbial cell factories is an effective approach, yet further metabolic engineering strategies are needed to enhance their biosynthetic potential. Recent studies suggest that RNA modifications can influence cellular metabolism, but their role in metabolic engineering remains largely unexplored. Methods The production of squalene and lupeol in different yeast strains was detected by gas chromatography-mass spectrometry (GC-MS) equipment. Transcriptomic analysis was performed to identify metabolic changes associated with the epigenetic modification. The transcriptional and translational expression of targeted genes were determined by real-time quantitative polymerase chain reaction and western blotting, respectively. The mRNA stability of targeted genes was measured by mRNA decay assay. Results In this study, the overexpression of Trm8 and Trm82 complex, mediating the tRNA 7-methylguanosine (m7G) modification in yeast, significantly increased the production of squalene in CEN.PK2-1C. Transcriptome analysis indicated that Trm8/Trm82 overexpression upregulated the expression levels of genes involved in amino acid synthesis, glycolysis, and tricarboxylic acid cycle, and the enhanced glycolysis, upstream of acetyl-CoA biosynthesis, might be responsible for the promoted biosynthesis of squalene. Further investigation demonstrated that Trm8/Trm82 complex could increase the production of squalene and lupeol in engineered yeast. Conclusion These findings indicate that tRNA m7G modification can regulate central metabolism and enhance terpenoid biosynthesis. This study provides new insights into RNA modifications as a potential metabolic engineering strategy for improving the production of high-value compounds.
Collapse
Affiliation(s)
- Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jun Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhengwei Tan
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Lei Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huizhen Liang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
Chiodelli P, Bonassi Signoroni P, Scalvini E, Farigu S, Giuzzi E, Paini A, Papait A, Stefani FR, Silini AR, Parolini O. Synergistic Effect of Conditioned Medium from Amniotic Membrane Mesenchymal Stromal Cells Combined with Paclitaxel on Ovarian Cancer Cell Viability and Migration in 2D and 3D In Vitro Models. Pharmaceutics 2025; 17:420. [PMID: 40284415 PMCID: PMC12030038 DOI: 10.3390/pharmaceutics17040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Despite standard care, recurrence due to tumor spread and chemoresistance is common, highlighting the need for novel therapies. Mesenchymal stromal cells from the human amniotic membrane (hAMSC) and the intact amniotic membrane (hAM) are promising due to their secretion of tumor-modulating bioactive factors, accessibility from biological waste, and ethical favorability. Furthermore, unlike isolated cells, hAM provides an easier, clinically translatable product. We previously demonstrated that hAMSC can inhibit tumor cell proliferation, both in contact and transwell settings, suggesting that hAMSC secrete bioactive factors able to target tumor cells. This study evaluates the anti-tumor effects of bioactive factors from hAMSC and hAM conditioned medium (CM) on ovarian cancer cells in 2D and 3D models, alone or with paclitaxel. Methods: The impact of CM, alone or with paclitaxel, was tested on ovarian cancer cell proliferation, migration, invasion, and on angiogenesis. Results: hAMSC-CM and hAM-CM inhibited the proliferation and migration in 2D cultures and reduced spheroid growth and invasion in 3D models. Combining CM with paclitaxel enhanced anti-tumor effects in both settings. Conclusions: hAMSC-CM and hAM-CM show therapeutic potential against ovarian cancer, with synergistic benefits when combined with paclitaxel.
Collapse
Affiliation(s)
- Paola Chiodelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (O.P.)
| | - Patrizia Bonassi Signoroni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Elisa Scalvini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Serafina Farigu
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Elisabetta Giuzzi
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Alice Paini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (O.P.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (P.B.S.); (E.S.); (S.F.); (E.G.); (A.P.); (F.R.S.); (A.R.S.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (O.P.)
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
14
|
Yang RY, Wang JH, Yu ZW, Chen YT, Wu MJ, Huang PF, Liu MM. A smartphone-based portable electrochemical sensor enabled ultrasensitive detection of paclitaxel in serum and injection samples. Mikrochim Acta 2025; 192:229. [PMID: 40080158 DOI: 10.1007/s00604-025-07085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
A point-of-care testing platform, consisting of smartphone, miniature electrochemical workstation, and screen-printed carbon electrode (SPCE) modified by gold nanoparticle (AuNPs) and multi-walled carbon nanotubes (MWCNTs), is fabricated for the ultrasensitive detection of paclitaxel (PTX) in human serum and injection solution. To enhance conductivity of the sensing system, MWCNTs concentration and AuNPs electrodeposition time were optimized. The AuNPs/MWCNTs effectively increase the working electrode area of SPCE by a factor of 1.46, contributing to improved electrochemical performance. The steps of electrode surface modification and the characterization of AuNPs/MWCNTs/SPCE were investigated by differential pulse voltammetry, impedance spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The sensor shows good linearity between current response and PTX concentration in 0.2 M phosphate buffer at pH = 7.4 (0.05-10 μM, with a limit of detection (LOD) of 1.7 nM) and human serum (0.5-30 μM and a LOD of 3.6 nM). The recoveries range from 89.91 to 103.36% and 91.42 to 103.73% in human serum and injection solution, respectively, with satisfactory relative standard deviation. Moreover, the sensor has excellent stability during 8 weeks and exhibits outstanding specificity and reproducibility towards PTX detection, providing a possible option for PTX determination in practical application such as therapeutic drug monitoring and drug quality control.
Collapse
Affiliation(s)
- Ruo-Yu Yang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jin-Hua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zi-Wei Yu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yun-Ting Chen
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Mei-Juan Wu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Pin-Fang Huang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Meng-Meng Liu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
15
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
16
|
Devinat M, Thevenard-Devy J, Ghilane F, Devy J, Chazee L, Terryn C, Duca L, Devarenne-Charpentier E, El Btaouri H. Xanthohumol Sensitizes Melanoma Cells to Vemurafenib by Lowering Membrane Cholesterol and Increasing Membrane Fluidity. Int J Mol Sci 2025; 26:2290. [PMID: 40076912 PMCID: PMC11901044 DOI: 10.3390/ijms26052290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Chemoresistance remains one of the major obstacles to cancer treatment. The search for specific molecules that could improve cancer treatment has become one of the objectives of biomedical research. Identifying new natural molecules to enhance chemotherapy treatment or improve sensitization to conventional therapies has become a key objective. Here, we evaluated the effect of Xanthohumol (XN) extracted from hop on SKMEL-28 melanoma cells and their sensitization to vemurafenib (VEM) treatment. We measured the XN effect on cell viability and apoptosis. We also assessed the effect of XN on membrane fluidity and membrane cholesterol levels. Finally, we studied the impact of XN on cell sensitization to VEM. Here, we showed that XN reduced SKMEL-28 cell viability through an apoptotic mechanism. Our results demonstrated the potential role of XN in sensitizing cancer cells to VEM with a less toxic effect on non-tumor cells. A study of XN's molecular mechanism showed that XN was able to induce cholesterol depletion and increased fluidity in SKMEL-28 cancer cells. This leads to an increase in VEM incorporation. Here, we describe the importance of the strategy to modulate membrane fluidity by XN in order to significantly improve anticancer therapy.
Collapse
Affiliation(s)
- Marine Devinat
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Jessica Thevenard-Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Fatiha Ghilane
- Laboratoire de Biologie des Pathologies Humaines, Université Mohammed V de Rabat, 4 Avenue Ibn Battouta, Rabat B.P. 1014 RP, Morocco;
| | - Jerome Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Lise Chazee
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Christine Terryn
- Plateau Technique en Imagerie Cellulaire et Tissulaire (PICT) Pôle Santé, UFR Pharmacie, Université de Reims Champagne Ardenne, 51 Rue Cognacq Jay, 51096 Reims, France;
| | - Laurent Duca
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Emmanuelle Devarenne-Charpentier
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Hassan El Btaouri
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| |
Collapse
|
17
|
Barranco-Palma CI, González-Trujano ME, Martínez-Vargas D, Narváez-González HF, Conde-Martínez V, Vibrans H, López-Upton J, Soto-Hernández M. Phytochemical profile of Taxus globosa Schltdl. and its anxiolytic, antinociceptive, and toxicological evaluation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119383. [PMID: 39864605 DOI: 10.1016/j.jep.2025.119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taxus globosa Schltdl. (Taxaceae) is commonly named "Tejo mexicano". It's a Mexican plant known in folk medicine as a remedy for pain such as stomachache and headache, arthritis, gout, and other inflammatory conditions. It belongs to the Taxus genus and contains one of the most successful natural anticancer drugs, paclitaxel, among other bioactive compounds. OBJECTIVE OF THE STUDY To provide preclinical evidence of its phytochemical, toxicological, and pharmacological properties at central and peripheral levels for analgesia, as well as anxiolytic, due to its central nervous system (CNS) depressant properties. MATERIAL AND METHODS Initially, the median lethal dose (LD50) of a polar extract of T. globosa was calculated to determine the doses for evaluating anxiolytic and antinociceptive activities, where the possible participation of endogenous opioids and serotonin 5-HT1A inhibitory receptors was explored, including electrocorticographic analysis. Phytochemical screening was also included using different chromatographic techniques to compare samples from wild and cultivated sources. RESULTS The acute toxicity was estimated to be greater than 316.23 mg/kg, i.p. in mice. The T. globosa extract produced a significant anxiolytic effect at 30 mg/kg, i.p., and an antinociceptive effect at a dosage of 56.2 mg/kg, i.p., mainly as anti-inflammatory, where both endogenous opioids and 5-HT1A serotonin receptors participated due to the presence of several known bioactive metabolites. No evidence of gastric, hepatic, renal, or cerebral damage was observed at therapeutic doses. CONCLUSION Our results provide preclinical evidence for the pharmacological medicinal properties of T. globosa in producing CNS depressant activity, useful as a remedy for anxiety and pain therapy in folk medicine.
Collapse
Affiliation(s)
- Claudia Isabel Barranco-Palma
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz". Calz, México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, C.P. 14370, Ciudad de México, Mexico.
| | - David Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, Ciudad de México, Mexico.
| | - Hugo Fernando Narváez-González
- Hospital de Especialidades Dr. Belisario Domínguez, Av. Tláhuac 4866, San Lorenzo Tezonco, Iztapalapa, Ciudad de México, C.P. 09930, Mexico; Centro Médico Nacional 20 de Noviembre, Félix Cuevas 540, Col. Del Valle Sur, Benito Juárez, C.P. 03104, Ciudad de México, Mexico.
| | - Víctor Conde-Martínez
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - Heike Vibrans
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - Javier López-Upton
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| | - Marcos Soto-Hernández
- Posgrado en Botánica, Colegio Postgraduados Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo, C.P. 56264, Texcoco Estado de México, Mexico.
| |
Collapse
|
18
|
Elahi A, Qamar M, Khan FM, Babar R, Zahid MJ, Ahmad MO, Wali S, Afzal S, Ikram M, Shah SAA, Rehman MEU, Cheema HA, Anwar U, Tahir MM, Bellos I. Efficacy of drug-coated balloon versus uncoated balloon for dysfunctional dialysis access: a systematic review and meta-analysis. Clin Exp Nephrol 2025:10.1007/s10157-025-02642-7. [PMID: 39992495 DOI: 10.1007/s10157-025-02642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Dysfunctional vascular access is a major cause of morbidity and mortality in patients undergoing hemodialysis, affecting both arteriovenous fistulas and grafts. The most optimal strategy to restore long-term patency has not been established. This meta-analysis compares drug-coated balloon (DCB) versus uncoated balloon (UCB) angioplasty for dysfunctional vascular access. METHODS We performed a systematic literature search across multiple databases from inception to June 2024. Randomized-controlled trials (RCTs) comparing DCB and UCB in dialysis patients with dysfunctional vascular access were included. Risk ratios were pooled using a random-effects model. RESULTS Twenty-seven RCTs (2645 patients) were included. Target lesion patency (TLP) at 6 months was significantly superior in the DCB group (RR 1.22, 95% CI 1.07-1.39, p = 0.003). The two regimens were comparable for TLP at 3 months (RR 1.14, p = 0.24) and 12 months (RR 1.14, p = 0.10). The two regimens were comparable in terms of circuit patency rate, target-lesion revascularization, and all-cause mortality. CONCLUSION DCB has significantly superior TLP and a comparable risk of mortality to UCB. Further research is warranted to identify factors affecting outcomes following DCB angioplasty for dysfunctional dialysis access.
Collapse
Affiliation(s)
| | | | - Fasih Mand Khan
- Fatima Memorial College of Medicine and Dentistry, Lahore, Pakistan
| | | | | | | | - Shah Wali
- Mohtarma Shaheed Benazir Bhutto General Hospital, Quetta, Pakistan
| | | | - Moeen Ikram
- Frontier Medical and Dental College, Abbottabad, Pakistan
| | | | | | | | - Usama Anwar
- Department of Interventional Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Muhammad Mohid Tahir
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, NY, USA
| | - Ioannis Bellos
- Department of Nephrology and Renal Transplantation, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Yang Y, Fang Y, Du X, Ying Z, Lu X, Zhou J. Application of nanoparticles with activating STING pathway function in tumor synergistic therapy. Int Immunopharmacol 2025; 148:114013. [PMID: 39823790 DOI: 10.1016/j.intimp.2025.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
Although immunotherapy is currently one of the most promising methods for cancer treatment, its clinical application is limited due to issues such as excessive autoimmune responses and lack of specificity. Therefore, there is a need to improve immunotherapy by integrating emerging medical technologies with traditional treatments. The activation of the cGAS-STING pathway plays a crucial role in innate immunity and antiviral defense, making it highly promising for immunotherapy and attracting significant attention. In recent years, research on nanomaterials and immunotherapy has achieved groundbreaking progress in the medical field. Due to their unique size, shape, stiffness, surface effects, and quantum size effects, nanomaterials can either carry STING activators or directly activate the STING pathway, offering new opportunities for tumor-specific immunotherapy. These unique advantages of nanomaterials have opened up broader prospects for nanoparticle-based therapies targeting the STING pathway. This paper summarizes the current research on utilizing nanomaterials to activate the STING pathway, detailing the characteristics, classifications, and different approaches for targeting tumor cells. Additionally, it focuses on the latest advancements in combined nanotherapies based on cGAS-STING pathway activation, including the integration of nanomaterial-mediated STING pathway activation with immunotherapy, radiotherapy, chemotherapy, targeted therapy, and photodynamic therapy. This provides new ideas for nanoparticle-based combination therapies involving the STING pathway.
Collapse
Affiliation(s)
- Yi Yang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Yaning Fang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xinyu Du
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Zheye Ying
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xiwen Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
| | - Jing Zhou
- Department of Chemoradiotherapy, Ningbo NO.2 Hospital, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
20
|
Deng R, Zong GF, Wang X, Yue BJ, Cheng P, Tao RZ, Li X, Wei ZH, Lu Y. Promises of natural products as clinical applications for cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189241. [PMID: 39674416 DOI: 10.1016/j.bbcan.2024.189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Cancer represents a substantial threat to human health and mortality, necessitating the development of novel pharmacological agents with innovative mechanisms of action. Consequently, extensive research has been directed toward discovering new anticancer compounds derived from natural sources, including plants, microbes, and marine organisms. This review offers a comprehensive analysis of natural anticancer agents that are either currently undergoing clinical trials or have been integrated into clinical practice. A comprehensive understanding of the historical origins of natural anticancer agents, alongside traditional targets for tumor treatment and the distinct characteristics of cancer, can significantly facilitate researchers in the discovery and development of innovative anticancer drugs for clinical use. Furthermore, the exploration of microbial and marine sources is currently a prominent area of focus in the clinical application and advancement of new anticancer therapies. Detailed classification and elucidation of the functions and antitumor properties of these natural products are essential. It is imperative to comprehensively summarize and comprehend the natural anticancer drugs that have been and continue to be utilized in clinical settings.
Collapse
Affiliation(s)
- Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Nanjing Integrated Traditional Chinese And Western Medicine Hospital, Nanjing 210018. China
| | - Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Bing-Jie Yue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Rui-Zhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Han Y, Sun Z. Anticancer potential of osthole: targeting gynecological tumors and breast cancer. Pharmacol Rep 2025; 77:87-102. [PMID: 39617816 DOI: 10.1007/s43440-024-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/21/2025]
Abstract
Gynecological tumors, such as ovarian, endometrial, and cervical cancers, alongside breast cancer, represent significant malignancies that pose serious threats to women's health worldwide. Standard treatments, including surgery, chemotherapy, radiotherapy, and targeted therapies, are commonly utilized in clinical practice. However, challenges such as high recurrence rates, drug resistance, and adverse side effects underscore the urgent need for more effective therapeutic options. Osthole, a natural coumarin compound derived from Chinese herbal medicine, has demonstrated remarkable antitumor activity against various cancers. Emerging evidence indicates that osthole can inhibit the proliferation, invasion, and metastasis of gynecological and breast cancer cells through various mechanisms, including inducing apoptosis and autophagy, regulating the tumor microenvironment, inhibiting tumor angiogenesis, and enhancing the sensitivity of cancer cells to chemotherapy and radiotherapy. This review highlights the recent advancements in osthole research within the context of gynecological and breast cancers, focusing on its molecular mechanisms, and offers a theoretical foundation for its potential development as an anticancer agent.
Collapse
Affiliation(s)
- Yingqi Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, Shangdong Province, 250014, China
| | - Zhengao Sun
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Wenhua West Road, Lixia District, Jinan, Shangdong Province, 250014, China.
| |
Collapse
|
22
|
Liu G, Yang D, Meng J, He Q, Wu D. The combination of gemcitabine and albumin-bound paclitaxel effectively inhibits de novo lipogenesis in pancreatic cancer cells by targeting the AMPK/SREBP1 pathway. Biochem Pharmacol 2025; 232:116721. [PMID: 39694195 DOI: 10.1016/j.bcp.2024.116721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Abnormal de novo lipogenesis and reprogramming of lipid metabolism have been associated with the development and progression of various cancers, including pancreatic cancer. Gemcitabine (GEM) combined with albumin-bound paclitaxel (nab-PTX) is the first-line chemotherapeutic agent for pancreatic cancer. There have been many studies on the molecular mechanisms of gemcitabine and paclitaxel in cancer treatment. Still, the effects of the combination on lipid metabolism and the specific mechanisms have not been explored. This study found that GEM combined with nab-PTX inhibited pancreatic cancer cell proliferation and de novo lipogenesis. The exact mechanism is that GEM combined with nab-PTX induces adenosine triphosphate (ATP) depletion and activates AMP-activated protein kinase (AMPK) in pancreatic cancer cells, which in turn inhibits sterol regulatory element-binding protein 1 (SREBP1) expression and nuclear translocation, and ultimately inhibits de novo lipogenesis in pancreatic cancer cells. In addition, we found that the novel lipid-lowering drug bempedoic acid (ETC-1002) significantly enhanced the inhibitory effect of GEM combined with nab-PTX on de novo lipogenesis in pancreatic cancer cells. These findings establish a link between GEM combined with nab-PTX and lipid metabolism, and the discovery of the novel lipid-lowering drug ETC-1002 provides a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Dongxue Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jiao Meng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Qihui He
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Dongyuan Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China.
| |
Collapse
|
23
|
Dong L, Dong C, Yu Y, Jiao X, Zhang X, Zhang X, Li Z. Transcriptomic analysis of Paraoxonase 1 expression in hepatocellular carcinoma and its potential impact on tumor immunity. Clin Transl Oncol 2025; 27:612-629. [PMID: 39031295 DOI: 10.1007/s12094-024-03598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.
Collapse
Affiliation(s)
- Linhuan Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Changjun Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Yunlin Yu
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xin Jiao
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xiangwei Zhang
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xianlin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
| | - Zheng Li
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
24
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
26
|
Liu CY, Li Z, Cheng FE, Nan Y, Li WQ. Radix Codonopsis: a review of anticancer pharmacological activities. Front Pharmacol 2025; 15:1498707. [PMID: 39840099 PMCID: PMC11747557 DOI: 10.3389/fphar.2024.1498707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance. Additionally, it is commonly used in dietary applications like soups, teas, and porridges to nourish qi, enrich blood, and promote overall vitality. In recent years, increasing attention has been given to the anti-cancer potential of Radix Codonopsis. Studies have identified key active components such as luteolin, stigmasterol, polyacetylenes, lobetyolin, and glycitein, which exhibit anti-tumor properties through mechanisms like inhibiting cancer cell growth and proliferation, suppressing epithelial-mesenchymal transition (EMT), and inducing apoptosis. This review highlights the research progress on Radix Codonopsis, including its active constituents, anti-cancer mechanisms, and its role in the convergence of medicine and food in modern life. By doing so, it aims to provide valuable insights and references for future scientific studies and clinical applications of Radix Codonopsis.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Zheng Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Fan-E. Cheng
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Yi Nan
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Wei-Qiang Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
27
|
Huang X, Hyuga S, Ito M, Goda Y, Kobayashi Y. Preventive and therapeutic effects of ephedrine alkaloids-free Ephedra Herb extract on paclitaxel-induced neuropathic pain. J Nat Med 2025; 79:107-121. [PMID: 39470960 DOI: 10.1007/s11418-024-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Currently, there are no effective prophylactic or therapeutic drugs for the treatment of paclitaxel (PTX)-induced peripheral neuropathic pain (PTX-PNP), highlighting the urgent need for the development of effective prophylactic and therapeutic drugs. In this study, we initially compared the efficacy of Ephedra Herb extract (EHE) with that of ephedrine alkaloids-free Ephedra Herb extract (EFE), which lacked ephedrine alkaloids (EAs)-associated side effects, against the onset of PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia in mice. EHE and EFE demonstrated comparable preventive effects on the PTX-PNP in a dose-dependent manner. These results indicated that the preventive properties of EHE were independent of the EAs. Since elderly people are overwhelmingly more susceptible to developing cancer, we considered that EFE has greater benefits than EHE, so we conducted a study focused on the effects of EFE. EFE showed dose-dependent preventive effects on the onset of PTX-PNP. As a result of detailed investigation, coadministration of PTX and EFE (Co-EFE) was more effective than preadministration of EFE alone (Pre-EFE). And the effects of Co-EFE was same with the effect of preadministration of EFE and then coadministration of PTX and EFE (P&C-EFE). Additionally, Co-EFE after the onset of PTX-PNP improved PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia, confirming the therapeutic efficacy of EFE on PTX-PNP. In contrast, goshajinkigan, a Kampo medicine, and diclofenac, a non-steroidal anti-inflammatory drug, showed minimal therapeutic effects on PTX-PNP. These findings demonstrate the significant potential of EFE as a novel, safe prophylactic and therapeutic agent against PTX-PNP.
Collapse
Affiliation(s)
- Xuedan Huang
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Sumiko Hyuga
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Tokyo, Japan.
| | - Michiho Ito
- National Institute of Health Sciences, Kawasaki, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshinori Kobayashi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
28
|
Gareev I, Jiang J, Beylerli O, Beilerli A, Ilyasova T, Shumadalova A, Bai Y, Du W, Yang B. Adjuvant Anti-tumor Therapy with Polyphenolic Compounds: A Review. Curr Med Chem 2025; 32:1934-1967. [PMID: 40351076 DOI: 10.2174/0109298673284605240301035057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 05/14/2025]
Abstract
The search for effective methods of treatment and prevention of oncological diseases, despite the successes achieved in recent decades, remains one of the most urgent issues in modern medicine. It is known that chemotherapy and radiation therapy are based on the induction of cell death by increasing the intracellular concentration of reactive oxygen species (ROS). To increase the effectiveness of chemo- and radiotherapy, inducing and increasing oxidative stress in tumor cells has been proposed. A new class of promising adjuvants in combination with anticancer therapy, which has already been shown to be effective in preclinical and clinical studies, includes natural and synthetic polyphenols. Polyphenolic compounds not only exhibit antitumor activity but also significantly reduce the resistance of tumor cells to chemo- and radiotherapy. However, almost all chemotherapeutic drugs and regimens of radiation treatment have a damaging toxic effect on normal tissues, which significantly affects the quality of life of patients, and treatment options for managing these side effects are limited. In this regard, some of the most promising agents for the management of toxic side effects are natural polyphenols. This study discusses the possible molecular mechanisms and prospects for the clinical use of natural and synthetic polyphenolic compounds in chemo- and radiotherapy. In addition, the protective role/effect of polyphenols on the effects of chemoand radiotherapy in tumor patients is discussed.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Department of Pharmacology, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Jianhao Jiang
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Ozal Beylerli
- Central Research Laboratory, Department of Pharmacology, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Yunlong Bai
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Weijie Du
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Baofeng Yang
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| |
Collapse
|
29
|
Yapar EA, Ozdemir MN, Durgun ME, Dagıstan OA, Cavalu S, Ozsoy Y, Kartal M. Nanodelivery Approaches of Phytoactives for Skin Cancers: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:631-653. [PMID: 38616742 DOI: 10.2174/0113892010300081240329033208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Türkiye
| | - Ozlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul, Türkiye
- Phytotheraphy Research Center, Bezmialem vakıf University, Istanbul, Türkiye
| |
Collapse
|
30
|
Sun L, Zuo C, Ma B, Liu X, Guo Y, Wang X, Han M. Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer. CHINESE HERBAL MEDICINES 2025; 17:156-165. [PMID: 39949814 PMCID: PMC11814247 DOI: 10.1016/j.chmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 02/16/2025] Open
Abstract
Objective In order to enhance the efficacy of anti-breast cancer, paclitaxel nanoparticles (PTX NPs) and polypyrrole nanoparticles (PPy NPs) were combined with photothermal therapy and chemotherapy. At the same time, the two dosage forms of PTX NPs and PTX NPs gel were compared. Methods PTX NPs were prepared by self-assembly method, and then the cytotoxicity in vitro was investigated by Methyl thiazolyl tetrazolium (MTT) and other methods, and the efficacy and side effects in vivo were further investigated. Results The average hydrated diameter, PDI and electric potential of PTX NPs were (210.20 ± 1.57) nm, (0.081 ± 0.003) mV and (15.80 ± 0.35) mV, respectively. MTT results showed that the IC50 value of PTX NPs on 4 T1 cells was 0.490 μg/mL, while that of PTX injection was 1.737 μg/mL. The cell inhibitory effect of PTX NPs was about 3.5 times higher than that of PTX injection. The tumor inhibition rates of PTX NPs and gel were 48.64% and 56.79%, respectively. Together with local photothermal stimulation, the tumor inhibition rate of the PTX NPs reached 91.05%, surpassing that of the gel under the same conditions (48.98%), moreover, the organ index and H&E staining results of PTX NPs showed a decrease in toxicity. Conclusion This combination therapy can significantly enhance the effect of anti-breast cancer, and the synergistic effect of chemotherapy and light and heat provides a feasible and effective strategy for the treatment of tumor.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Baonan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Heilongjiang 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
31
|
Tavernese A, Cammalleri V, Mollace R, Antonelli G, Piscione M, Cocco N, Carpenito M, Dominici C, Federici M, Ussia GP. The Role of Advanced Cardiac Imaging in Monitoring Cardiovascular Complications in Patients with Extracardiac Tumors: A Descriptive Review. J Cardiovasc Dev Dis 2024; 12:9. [PMID: 39852287 PMCID: PMC11765722 DOI: 10.3390/jcdd12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Cardiac involvement in cancer is increasingly important in the diagnosis and follow-up of patients. A thorough cardiovascular evaluation using multimodal imaging is crucial to assess any direct cardiac involvement from oncological disease progression and to determine the cardiovascular risk of patients undergoing oncological therapies. Early detection of cardiac dysfunction, particularly due to cardiotoxicity from chemotherapy or radiotherapy, is essential to establish the disease's overall prognostic impact. Comprehensive cardiovascular imaging should be integral to the clinical management of cancer patients. Echocardiography remains highly effective for assessing cardiac function, including systolic performance and ventricular filling pressures, with speckle-tracking echocardiography offering early insights into chemotoxicity-related myocardial damage. Cardiac computed tomography (CT) provides precise anatomical detail, especially for cardiac involvement due to metastasis or adjacent mediastinal or lung tumors. Coronary assessment is also important for initial risk stratification and monitoring potential coronary artery disease progression after radiotherapy or chemotherapeutic treatment. Finally, cardiac magnetic resonance (CMR) is the gold standard for myocardial tissue characterization, aiding in the differential diagnosis of cardiac masses. CMR's mapping techniques allow for early detection of myocardial inflammation caused by cardiotoxicity. This review explores the applicability of echocardiography, cardiac CT, and CMR in cancer patients with extracardiac tumors.
Collapse
Affiliation(s)
- Annamaria Tavernese
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Valeria Cammalleri
- Operative Research Unit of Emodinamica, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Rocco Mollace
- Department of Experimental Medicine, Università degli Studi di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Cardiology Unit, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Giorgio Antonelli
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Mariagrazia Piscione
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Nino Cocco
- Operative Research Unit of Emodinamica, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Myriam Carpenito
- Operative Research Unit of Emodinamica, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Carmelo Dominici
- Operative Research Unit of Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Massimo Federici
- Department of Experimental Medicine, Università degli Studi di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gian Paolo Ussia
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
- Operative Research Unit of Emodinamica, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| |
Collapse
|
32
|
Wang C, Feng X, Li W, Chen L, Wang X, Lan Y, Tang R, Jiang T, Zheng L, Liu G. Apigenin as an emerging hepatoprotective agent: current status and future perspectives. Front Pharmacol 2024; 15:1508060. [PMID: 39749193 PMCID: PMC11693974 DOI: 10.3389/fphar.2024.1508060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Apigenin (C15H10O5, API) is a natural flavonoid widely found in vegetables, fruits, and plants such as celery, oranges, and chamomile. In recent years, API has attracted considerable attention as a dietary supplement due to its low toxicity, non-mutagenic properties and remarkable therapeutic efficacy in various diseases. In particular, evidence from a large number of preclinical studies suggests that API has promising effects in the prevention and treatment of a variety of liver diseases, including multifactorial liver injury, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, liver fibrosis and liver cancer. This paper provides a comprehensive review of the progress of research into the therapeutic applications of API in liver diseases as of August 2024, based on literature retrieved from databases such as Web of Science, PubMed, CNKI, Google Scholar and ScienceDirect. The hepatoprotective effects of API involve multiple molecular mechanisms, including inhibition of inflammation, alleviation of hepatic oxidative stress, amelioration of insulin resistance, promotion of fatty acid oxidation, inhibition of liver cancer cell proliferation and differentiation, and induction of tumour cell apoptosis. More importantly, signaling pathways such as Nrf2, NF-κB, PI3K/Akt/mTOR, NLRP3, Wnt/β-catenin, TGF-β1/Smad3, AMPK/SREBP, PPARα/γ, MAPKs, and Caspases are identified as key targets through which API exerts its beneficial effects in various liver diseases. Studies on its toxicity and pharmacokinetics indicate that API has low toxicity, is slowly metabolized and excreted in vivo, and has low oral bioavailability. In addition, the paper summarises and discusses the sources, physicochemical properties, new dosage forms, and current challenges and opportunities of API, with the aim of providing direction and rationale for the further development and clinical application of API in the food, pharmaceutical and nutraceutical fields.
Collapse
Affiliation(s)
- Cheng Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoli Feng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Li
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinming Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yimiao Lan
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Rong Tang
- College of Foreign Languages and Cultures, Sichuan University, Chengdu, China
| | - Ting Jiang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lingli Zheng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Gang Liu
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
33
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Med Oncol 2024; 42:28. [PMID: 39671022 DOI: 10.1007/s12032-024-02577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel (PTX) is widely used for treating several cancers, including breast, ovarian, lung, esophageal, gastric, pancreatic, and neck cancers. Despite its clinical utility, cancer recurrence frequently occurs in patients due to the development of resistance to PTX. Resistance mechanisms in cancer cells treated with PTX include alterations in β-tubulin, the target molecule involved in mitosis, activation of molecular pathways enabling drug efflux, and dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules longer than 200 nucleotides without protein-coding potential, serve diverse regulatory roles in cellular processes. Increasing evidence highlights the involvement of lncRNAs in cancer progression and their contribution to PTX resistance across various cancers. Consequently, lncRNAs have emerged as potential therapeutic targets for addressing drug resistance in cancer treatment. This review focuses on the current understanding of lncRNAs and their role in drug resistance mechanisms, aiming to encourage further investigation in this area. Key lncRNAs and their associated pathways linked to PTX resistance will be summarized.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
34
|
Liu Z, Yuan Y, Wang N, Yu P, Teng Y. Drug combinations of camptothecin derivatives promote the antitumor properties. Eur J Med Chem 2024; 279:116872. [PMID: 39298971 DOI: 10.1016/j.ejmech.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Camptothecin (CPT) derivatives are widely used as small molecule chemotherapeutic agents and have demonstrated efficacy in the treatment of diverse solid tumors. A variety of derivatives have been developed to resolve the drawbacks of poor water solubility, high toxicity and rapid hydrolysis in vivo. However, the obstacles, such as acquired resistance and toxicity, still exist. The utilization of rational drug combinations has the potential to enhance the efficacy and mitigate the toxicity of CPT derivatives. This paper provides an overview of CPT derivatives in combination with other drugs, with a particular focus on cell cycle inhibitors, DNA synthesis inhibitors, anti-metastatic drugs and immunotherapy agents. Concurrently, the mechanisms of antitumor activity of combinations of different classes of drugs and CPT derivatives are elucidated. While the various combination strategies have yielded more favorable therapeutic outcomes, the efficacy and toxicity of the drug combinations are influenced by the inherent properties of the drugs involved. Moreover, a summary of the drug conjugates of CPT derivatives was provided, accompanied by an analysis of the structural activity relationship (SAR). This paves the way for the subsequent developments in drug combinations and delivery modes.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Yajie Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
35
|
Sharma D, Dhobi M, Lather V, Pandita D. An insight into the therapeutic effects of isoliquiritigenin in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9503-9519. [PMID: 39007925 DOI: 10.1007/s00210-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer ranks as the most widespread malignant condition in women, emerging as a primary contributor to mortality. The primary challenges in cancer treatments involve undesirable side effects. Therefore, exploring natural compounds as additional therapy could provide valuable insights. Isoliquiritigenin (ILN), an isoflavonoid featuring a chalcone moiety primarily sourced from Glycyrrhiza species, has garnered increasing interest in breast cancer research. This review aims to provide a comprehensive understanding of ILN's mechanisms of action in breast cancer, drawing from a range of in vitro and in vivo studies. ILN primarily acts by inhibiting angiogenesis, aromatase, inflammation, and cell proliferation, and preventing invasion and metastasis. Mechanistically, it downregulates miR-374a, phosphoinositide-3-kinase-protein kinase B/Akt, maternal embryonic leucine zipper kinase, vascular endothelial growth factor, and estrogen receptor protein levels, and causes enhancement of Wnt inhibitory factor-1, and Unc-51-like kinase 1 expression to treat breast cancer. ILN emerges as a promising natural option, offering therapeutic advantages with minimal side effects. However, it is important to note that current research on ILN is primarily limited to preclinical models, underscoring the need for further investigation to validate its potential efficacy.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR) Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
- Centre for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017, India.
| |
Collapse
|
36
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Wang Y, Wang F, Liu W, Geng Y, Shi Y, Tian Y, Zhang B, Luo Y, Sun X. New drug discovery and development from natural products: Advances and strategies. Pharmacol Ther 2024; 264:108752. [PMID: 39557343 DOI: 10.1016/j.pharmthera.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Natural products (NPs) have a long history as sources for drug discovery, more than half of approved drugs are related to NPs, which also exhibit multifaceted advantages in the clinical treatment of complex diseases. However, bioactivity screening of NPs, target identification, and design optimization require continuously improved strategies, the complexity of drug mechanism of action and the limitations of technological strategies pose numerous challenges to the development of new drugs. This review begins with an overview of bioactivity- and target-based drug development patterns for NPs, advances in NP screening and derivatization, and the advantages and problems of major targets such as genes and proteins. Then, target-based drugs as well as identification and validation methods are further discussed to elucidate their mechanism of action. Subsequently, the current status and development trend of the application of traditional and emerging technologies in drug discovery and development of NPs are systematically described. Finally, the collaborative strategy of multi-technology integration and multi-disciplinary intersection is emphasized for the challenges faced in the identification, optimization, activity evaluation, and clinical application of NPs. It is hoped to provide a systematic overview and inspiration for exploring new drugs from natural resources in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
38
|
Xu T, Na J, Liu Q, Kuang G, Zhang Q, Zhao Y. The function of albumin and its application in tumor therapy. MATERIALS TODAY COMMUNICATIONS 2024; 41:110575. [DOI: 10.1016/j.mtcomm.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Zhang A, Huang J, Liu Y, Gong H, Guan F, Li W, Han F, Wang Y. Hyaluronic acid application strategies for plant bioactive component delivery: A review. Int J Biol Macromol 2024; 282:137129. [PMID: 39486733 DOI: 10.1016/j.ijbiomac.2024.137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Despite the notable therapeutic effects of bioactive components derived from naturally occurring medicinal plants, various factors such as low solubility, poor bioavailability, possible toxicity, and inadequate tumor targeting capabilities generally hinder their full potential. Hyaluronic Acid (HA), a naturally occurring polysaccharide, has recently attracted significant research interest from scientists owing to its ability to precisely target tumors, anionic polysaccharide properties, and easily modifiable unique structure. In addition to offering a solid backing for delivering plant bioactive constituents, these remarkable attributes also have considerable implications for drug delivery systems in the future. This review delves into HA's application in delivering plant bioactive components, starting with a summary of HA's functional characteristics and detailing its strategies for single and dual-component delivery. The review also provides a forward-looking analysis of the challenges encountered in developing HA-based drug delivery systems.
Collapse
Affiliation(s)
- Ailin Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jianchang Huang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yutong Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hexin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Fengjuan Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
40
|
Zeng YY, Gu Q, Li D, Li AX, Liu RM, Liang JY, Liu JY. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin 2024; 45:2455-2473. [PMID: 39085407 PMCID: PMC11579519 DOI: 10.1038/s41401-024-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.
Collapse
Affiliation(s)
- Yuan-Ye Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai, 200070, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ai-Xue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong-Mei Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Yong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Sun F, Dong B, Zhang H, Tian M. Permeability-Controlled Probe for Ratiometric Detection of Plasma Membrane Integrity and Late Apoptosis. ACS Sens 2024; 9:6092-6102. [PMID: 39460734 DOI: 10.1021/acssensors.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The destruction of plasma membrane integrity is closely related to immune response, neuronal injury, cell apoptosis, and other pathological events. However, the construction of ratiometric fluorescent probes capable of detecting plasma membrane integrity remains a significant challenge, hindering in-depth studies on related biomedical areas. Herein, a polarity-responsive fluorescent probe was constructed for the ratiometric detection of cell membrane integrity for the first time. The probe targeted intact plasma membranes in healthy cells and relocated into the cytoplasm to give significantly red-shifted fluorescence after plasma membrane damage. Molecular simulations revealed that the high transmembrane barrier and amphipathic nature of the probe were responsible for its targeting ability. With the probe, the ratiometric detection of late apoptosis stage was realized for the first time, and the membrane damage of tumor cells induced by UV irradiation, toxins, and antitumor drugs was visualized. The effect of formaldehyde on membrane integrity was evaluated using a probe, and cysteine was proved to be a potential detoxifier to counteract the toxicity of formaldehyde.
Collapse
Affiliation(s)
- Fengkai Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China
- Shandong Chambroad Holding Co., Ltd. Binzhou, Shandong 256500, PR China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|
42
|
Faris PS. Verbascum ponticum (Stef.) Extract Induces Lung Cancer Apoptosis via Mitochondrial-Dependent Apoptosis Pathway. Life (Basel) 2024; 14:1520. [PMID: 39598318 PMCID: PMC11595628 DOI: 10.3390/life14111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Non-small-cell lung carcinoma remains a significant health concern due to its high incidence and mortality rates. Traditional medicines play a central role in cancer therapy, with plant-derived bioactive compounds being studied for their potential to offer fewer side effects than conventional treatments. In traditional Kurdish medicine, different Verbascum species are used to treat burns, inflammation, and other conditions. While some species extracts have shown cytotoxic effects against several cancer cell lines like A549, the efficacy and mechanisms of action of the other species like Verbascum ponticum (V. ponticum) remain to be elucidated. Therefore, this study aimed to explore the effect of V. ponticum (Stef.) extract, collected from the Kurdistan region of the Iraq mountains, on A549 cells. A comprehensive approach was employed, utilizing immunocytochemical and functional analyses to assess apoptotic morphology, DNA fragmentation, alongside assays for cellular and mitochondrial function, proliferation, and viability. Additionally, the study investigated AIF mitochondrial translocation and evaluated mitochondrial membrane potential using the Rhodamine 123 assay. The results showed that the V. ponticum flower extract induced mitochondrial-mediated apoptosis in A549 cells via disruption of mitochondrial membrane potential, release of AIF, and translocation to the nucleus, independently of the caspase-3-activation pathway. These findings emphasize the potential of V. ponticum in lung cancer strategic treatments, meriting further phytochemical studies to identify the bioactive compounds it contains.
Collapse
Affiliation(s)
- Pawan S. Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region of Iraq, Iraq;
- Department of Biology, Cihan University-Erbil, Erbil 44001, Kurdistan Region of Iraq, Iraq
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
43
|
Xie Q, Jia Y, Tao J, Bu T, Wang Q, Shen N, Zhang X, Xiao Y, Ye L, Chen Z, Huang H, Li Q, Tang Z. Chemical constituents and biological activities of endophytic fungi from Fagopyrum dibotrys. PeerJ 2024; 12:e18529. [PMID: 39575167 PMCID: PMC11580677 DOI: 10.7717/peerj.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Background Fagopyrum dibotrys is an important wild food and feed germplasm resource. It has high nutritional and medicinal value and is rich in natural products, including flavonoids, phenolic acids, coumarins, and alkaloids. Endophytic fungi in F. dibotrys have emerged as valuable sources of natural products. However, studies on the biological activity and chemical composition of these endophytic fungi remain limited. Methods In this paper, a new method to obtain natural active ingredients by fermentation of endophytic fungi from medicinal plants was proposed. Then the antioxidant and pathogenic activities of the endophytic fungi extracts were determined in vitro. In addition, secondary metabolites produced by endophytic fungi with medicinal activity were analyzed by high performance liquid chromatography-tandem mass spectrometry (LC-MS). Results Among the 95 endophytic fungal strains in F. dibotrys, four strains with high phenol yields were selected by reaction: Alternaria alstroemeriae (J2), Fusarium oxysporum (J15), Colletotrichum karsti (J74), and Colletotrichum boninense (J61). Compared with those of various extracts, the ethyl acetate fractions of A. alstroemeriae (J2), F. oxysporum (J15), and C. boninense (J61) exhibited superior antioxidant and antibacterial properties. The results indicated that the fungal extract was an excellent natural antioxidant and might be a potential antibacterial agent. The DPPH free radical clearance of A. alstroemeriae was 94.96 ± 0.004%. These findings indicated that A. alstroemeriae had strong antioxidant activity. In addition, the extract of A. alstroemeriae had good antibacterial activity against Escherichia coli and Staphylococcus aureus, with MICs of 0.5 and 0.05 mg/mL, respectively. The chemical constituents of the ethyl acetate extract from A. alstroemeriae were further analyzed by liquid chromatography-mass spectrometry (LC-MS). We noted that A. alstroemeriae can create a variety of medicinal substances that have high value in medicine, such as caffeic acid (884.75 ng/mL), 3-phenyllactic acid (240.72 ng/mL) and norlichexanthone (74.36 ng/mL). Discussion In summary, many valuable active substances and medicinal substances can be obtained through the study of endophytic fungi of F. dibotrys.
Collapse
Affiliation(s)
- Qiqi Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujie Jia
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiwen Tao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qing Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Nayu Shen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xinyu Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Cheng’du, Sichuan, China
| | - Zhao Chen
- Ya’an People’s Hospital, Ya’an People’s Hospital, Ya’an, Sichuan, China
| | - Huahai Huang
- Da’zhu Institute of Scientific and Technical Information, Unaffiliated, Da’zhu, Sichuan, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
44
|
Song JX, Wang Y, Hua ZP, Huang Y, Hu LF, Tian MR, Qiu L, Liu H, Zhang J. FATS inhibits the Wnt pathway and induces apoptosis through degradation of MYH9 and enhances sensitivity to paclitaxel in breast cancer. Cell Death Dis 2024; 15:835. [PMID: 39550407 PMCID: PMC11569202 DOI: 10.1038/s41419-024-07164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer is one of the most prevalent and diverse malignancies, and, with global cases increasing, the need for biomarkers to inform individual sensitivity to chemotherapeutics has never been greater. Our retrospective clinical analysis predicted that the expression of the fragile site-associated tumor suppressor (FATS) gene was associated with the sensitivity of breast cancer to neoadjuvant chemotherapy with paclitaxel. In vitro experiments subsequently demonstrated that FATS significantly increased the inhibitory effects of paclitaxel on breast cancer cells' migration, growth, and survival. An interaction screen revealed that FATS interacted with MYH9 and promoted its degradation via the ubiquitin-proteasome pathway, thereby downregulating Wnt signaling. By overexpressing FATS and MYH9, we demonstrated that FATS enhanced paclitaxel-induced apoptosis in breast cancer cells by degrading MYH9 to downregulate the Wnt pathway. We also demonstrated in a mouse xenograft model that FATS significantly increased the chemosensitivity of breast cancer cells to paclitaxel in vivo. This study presents a new mechanism by which FATS interacts with MYH9 to suppress the Wnt/β-catenin signaling pathway and induce apoptosis, thus enhancing the sensitivity of breast cancer cells to paclitaxel chemotherapy. The results also propose novel biomarkers for predicting breast cancer sensitivity to neoadjuvant chemotherapy with paclitaxel. Finally, we provide in vivo evidence that the combination of paclitaxel with IWR-1, a novel Wnt pathway inhibitor, synergistically suppresses breast cancer growth, laying the foundation for future trials with this drug combination. These results therefore provide a number of potential solutions for more precise treatment of patients with breast cancer in the future.
Collapse
Affiliation(s)
- Jin-Xuan Song
- Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Yue Wang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Zhi-Peng Hua
- Department of Breast Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Yue Huang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Lin-Fei Hu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Meng-Ran Tian
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Li Qiu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China.
| | - Hong Liu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China.
| | - Jun Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China.
| |
Collapse
|
45
|
Díaz E, Quezada V, Cifuentes J, Arias Morales NY, Reyes LH, Muñoz-Camargo C, Cruz JC. Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates. ACS OMEGA 2024; 9:45402-45420. [PMID: 39554413 PMCID: PMC11561594 DOI: 10.1021/acsomega.4c07415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Melanoma, known for its aggressive metastatic potential, poses significant treatment challenges. Despite the potent antiproliferative effects of anticancer drugs, systemic toxicity and low water solubility limit their efficacy. This study addresses these challenges by employing magnetite (Fe3O4) nanobioconjugates as a drug delivery system, aimed at enhancing drug solubility and reducing off-target effects in melanoma therapy. Magnetite nanoparticles (MNPs) were engineered with functional molecules and loaded with the anticancer agents Temozolomide (TMZ) or paclitaxel (PTX). The nanobioconjugates were characterized via Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The results validated the efficacious synthesis and drug loading, attaining efficiencies ranging from 32 to 72% for TMZ and 32 to 60% for PTX. Biocompatibility assessments demonstrated excellent tolerance, with minimal hemolysis rates and platelet aggregation. In vitro studies revealed enhanced cytotoxicity against A-375 human melanoma cells compared to free drugs, with cellular uptake facilitated primarily through macropinocytosis, caveolin-, and clathrin-mediated endocytosis. Furthermore, the nanobioconjugates exhibited significant efficacy in targeting A-375 melanoma spheroids, underlining their potential in melanoma therapy. This research underscores magnetite nanobioconjugates as a promising avenue for targeted melanoma treatment, offering enhanced drug delivery specificity and reduced systemic toxicity in oncological drug delivery systems.
Collapse
Affiliation(s)
- Erika Díaz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Javier Cifuentes
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Nydia Yadira Arias Morales
- Center
for Microscopy (MicroCore), Vice Presidency for Research and Creation, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Product
and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | | | - Juan C. Cruz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| |
Collapse
|
46
|
Yue D, Ng EWH, Hirao H. Hydrogen-Bond-Assisted Catalysis: Hydroxylation of Paclitaxel by Human CYP2C8. J Am Chem Soc 2024; 146:30117-30125. [PMID: 39441858 PMCID: PMC11544615 DOI: 10.1021/jacs.4c07937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme's specific substrate positioning.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Elvis Wang Hei Ng
- Department
of Pharmacology and Pharmacy, The University
of Hong Kong, Pokfulam 999077, Hong Kong SAR, P. R. China
| | - Hajime Hirao
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
47
|
Zhang R, Zheng Y, Xiang F, Zhou J. Inducing or enhancing protein-protein interaction to develop drugs: Molecular glues with various biological activity. Eur J Med Chem 2024; 277:116756. [PMID: 39191033 DOI: 10.1016/j.ejmech.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Over the past two decades, molecular glues (MGs) have gradually attracted the attention of the pharmaceutical community with the advent of MG degraders such as IMiDs and indisulam. Such molecules degrade the target protein by promoting the interaction between the target protein and E3 ligase. In addition, as a chemical inducer, MGs promote the dimerization of homologous proteins and heterologous proteins to form ternary complexes, which have great prospects in regulating biological activities. This review focuses on the application of MGs in the field of drug development including protein-protein interaction (PPI) stability and protein degradation. We thoroughly analyze the structure of various MGs and the interactions between MGs and various biologically active molecules, thus providing new perspectives for the development of PPI stabilizers and new degraders.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Yirong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Fengjiao Xiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
48
|
Qi Z, Gu J, Qu L, Shi X, He Z, Sun J, Tan L, Sun M. Advancements of engineered live oncolytic biotherapeutics (microbe/virus/cells): Preclinical research and clinical progress. J Control Release 2024; 375:209-235. [PMID: 39244159 DOI: 10.1016/j.jconrel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The proven efficacy of immunotherapy in fighting tumors has been firmly established, heralding a new era in harnessing both the innate and adaptive immune systems for cancer treatment. Despite its promise, challenges such as inefficient delivery, insufficient tumor penetration, and considerable potential toxicity of immunomodulatory agents have impeded the advancement of immunotherapies. Recent endeavors in the realm of tumor prophylaxis and management have highlighted the use of living biological entities, including bacteria, oncolytic viruses, and immune cells, as a vanguard for an innovative class of live biotherapeutic products (LBPs). These LBPs are gaining recognition for their inherent ability to target tumors. However, these LBPs must contend with significant barriers, including robust immune clearance mechanisms, cytotoxicity and other in vivo adverse effects. Priority must be placed on enhancing their safety and therapeutic indices. This review consolidates the latest preclinical research and clinical progress pertaining to the exploitation of engineered biologics, spanning bacteria, oncolytic viruses, immune cells, and summarizes their integration with combination therapies aimed at circumventing current clinical impasses. Additionally, the prospective utilities and inherent challenges of the biotherapeutics are deliberated, with the objective of accelerating their clinical application in the foreseeable future.
Collapse
Affiliation(s)
- Zhengzhuo Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Junmou Gu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihang Qu
- The 4th People's Hospital of Shenyang, China Medical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Lingchen Tan
- School of Life Sciences and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
49
|
Lai MH, Lin WJ. Zein-PEG nanoparticles modified with hyaluronic acid for paclitaxel delivery in SKOV3 ovarian cancer cells. Int J Biol Macromol 2024; 281:136651. [PMID: 39423978 DOI: 10.1016/j.ijbiomac.2024.136651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Ovarian cancer is a leading gynecological cancer globally. This study aimed to develop hyaluronic acid-modified polyethylene glycol conjugated zein nanoparticles (zein-PEG/HA NPs) to enhance paclitaxel (PTX) cytotoxicity in SKOV3 ovarian cancer cells. Zein-PEG, with its amphiphilic nature, self-assembled into micelles to encapsulate the hydrophobic PTX, while the PEG shell retained micelle stability and hemolytic resistance. PTX@zein-PEG micelles (17.2 ± 0.3 mV) were complexed with negatively charged HA through electrostatic interactions, resulting in PTX@zein-PEG/HA NPs with a negative zeta potential of -15.3 ± 1.1 mV. Cellular uptake of fluorescent zein-PEG/HA NPs was higher than zein-PEG micelles in CD44-overexpressing SKOV3 cells. Additionally, PTX@zein-PEG/HA NPs demonstrated significantly greater cytotoxicity than free PTX and PTX@zein-PEG micelles, with IC50 values reduced by 6.13-fold and 3.58-fold, respectively. PTX@zein-PEG/HA NPs induced the highest expression levels of apoptotic proteins, particularly PARP, in SKOV3 cells compared to PTX@zein-PEG NPs and free PTX. In summary, PTX@zein-PEG/HA NPs demonstrated potential as a delivery system for PTX in ovarian cancer.
Collapse
Affiliation(s)
- Min-Hua Lai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
50
|
Chang X, Du M, Wei J, Zhang Y, Feng X, Deng B, Liu P, Wang Y. Serum tsncRNAs reveals novel potential therapeutic targets of Salvianolic Acid B on atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155994. [PMID: 39243751 DOI: 10.1016/j.phymed.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Salvianolic Acid B (SalB) has been proven to delay the progression of atherosclerosis. The therapeutic mechanisms of this compound are unclear. A novel class of short non-coding RNAs, pre-transfer RNA and mature transfer RNA (tsncRNAs) may regulate gene expression. TsncRNAs-sequencing revealed novel therapeutic targets for SalB. This is the first study focusing on tsncRNAs to treat atherosclerosis using SalB. PURPOSE To explore the potential mechanism of SalB treating atherosclerosis through tsncRNAs. METHODS Five groups of mice were created at random: control group (CON), atherosclerosis model group (MOD), SalB with high dose-treated group (SABH), SalB with low dose-treated group (SABL), and Simvastatin-treated group (ST). Aortic sinus plaque, body weight and inflammatory cytokines were evaluated. The Illumina NextSeq equipment was used to do expression profiling of tsncRNAs from serum. The targets of tsncRNAs were then predicted using tRNAscan and TargetScan. The KEGG pathway and GO analysis were utilized to forecast the bioinformatics analysis. Potential tsncRNAs and associated mRNAs were validated using quantitative real-time PCR. RESULTS tRF-Glu-CTC-014 and tRF-Gly-GCC-074 were markedly increased by SalB with high dose treatment and validated with quantitative real-time PCR. Two mRNAs SRF and Arrb related to tRF-Glu-CTC-014 changed consistently. GO analysis revealed that the altered target genes of the selected tsncRNAs were most enriched in protein binding and cellular process. Moreover, KEGG pathway analysis demonstrated that altered target genes of tsncRNAs were most enriched in MAPK signaling pathway. CONCLUSION SalB can promote the expression of tRF-Glu-CTC-014 to treat atherosclerosis.
Collapse
Affiliation(s)
- Xindi Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Min Du
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Jing Wei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Xiaoteng Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|