1
|
Du H, Wang Q, Chen Y, Wu X, Jiang J, Zhao Y. Association between mixed exposure of phenols, parabens, phthalates and cognitive function in US elders. J Affect Disord 2025; 382:139-147. [PMID: 40258425 DOI: 10.1016/j.jad.2025.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND In an aging society, understanding the factors influencing cognitive function in older adults is of great significance. Phenols, parabens, and phthalates (PAEs) can disrupt normal neural signaling. This research aims to investigate the association between mixed exposure of phenols, parabens, PAEs and cognitive function in US elders. Given that older adults are a vulnerable group in terms of health, and cognitive decline can severely impact their quality of life and independence. Studying the effects of these commonly - encountered environmental chemicals on their cognitive function is crucial as it can provide scientific basis for formulating public health policies. METHODS A total of 856 participants were selected from National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The generalized linear (GLM), weighted quantile sum (WQS), and Bayesian kernel machine regression (BKMR) models were used to evaluate the associations between mixed PAEs and the standardized z-scores for the four cognitive tests. RESULTS The mixed effect of the nine exposures examined is positively associated with lower IRT scores (OR: 1.77, 95 % CI: 1.04-3.02) for males in the WQS regression model. MEHP exhibits the largest contribution of all combinations. In the BKMR regression model, mixed exposure and cognitive impairment show positive correlation in the IRT, the DSST, and the global test for males. CONCLUSION Exposure to phenols, parabens, and PAEs may negatively affect cognition in older adults, particularly the male population. The effect of mixed exposure is positively associated with lower IRT scores and MECP has a dominant role.
Collapse
Affiliation(s)
- Huidi Du
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qingxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yiru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiyuan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Herrera-Castillo L, Hernández-Villasevil C, Barany A, Gómez-Boronat M, Isorna E, de Pedro N. Anorexigenic and anxiogenic effects of the plasticiser DEHP (di-2-ethylhexyl phthalate) in goldfish: Involvement of PPAR signalling and feeding-related neuropeptides. Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111878. [PMID: 40350142 DOI: 10.1016/j.cbpa.2025.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Di-2-ethylhexyl phthalate (DEHP), a widely used plasticiser, is a pervasive environmental contaminant with potential detrimental effects on aquatic organisms. The objective of this study was to provide an integrative analysis of how DEHP alters energy balance, temporal homeostasis and fish welfare - interrelated aspects critical to animal survival - to address critical gaps in our understanding of its toxicological effects. Goldfish (Carassius auratus) were chronically (14 days) treated with DEHP. Energy balance was assessed through locomotor activity, metabolic rate, feed intake, and growth indices. Daily of locomotor and metabolic rate rhythms were examined to explore potential circadian disruptions. Anxiety-like behaviours were also examined to assess welfare. DEHP decreased feed intake and food-anticipatory activity (FAA), suggesting an anorexigenic effect, which may have been mediated by increased expression of anorexigenic genes in the hypothalamus and liver, along with decreased expression of orexigenic npy (neuropeptide Y) gene in the hypothalamus. Growth parameters remained unchanged, probably due to compensatory reductions in energy expenditure, as indicated by decreased locomotor activity and metabolic rate. Daily rhythms in these two parameters were preserved, suggesting no disruption in temporal homeostasis. DEHP increased hepatic expression of peroxisome proliferator-activated receptor (PPAR)-related genes, suggesting that PPARs activation is a potential mode of action for DEHP in fish. Anxiety levels were elevated, as evidenced by increased thigmotaxis and scototaxis in behavioural tests, which may be mediated by changes in hypothalamic neuropeptides. These findings highlight the adverse effects of DEHP on energy regulation and animal welfare, providing novel insights into its broader physiological consequences in fish.
Collapse
Affiliation(s)
- Lisbeth Herrera-Castillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Spain. https://twitter.com/Lisbeth14559968
| | - Claudia Hernández-Villasevil
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Spain
| | - André Barany
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Spain
| | - Miguel Gómez-Boronat
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Spain. https://twitter.com/gomez_boronat
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Spain.
| |
Collapse
|
3
|
Li Z, He J, Li X, Chen J, You M, Sun B, Yang G. A narrative review of phthalates: From environmental release to kidney injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126380. [PMID: 40339891 DOI: 10.1016/j.envpol.2025.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Plastic products play an indispensable role in human daily lives, largely due to their low cost and unrivaled convenience. Phthalates (PAEs) are the most significant plastic additives due to their distinctive properties and are extensively utilized and produced in large quantities. Nevertheless, given their inability to form covalent bonds with plastics, these compounds are prone to leaching from plastic surfaces. As a result, the use of plastics in various industries has become a major source of PAEs in the environment, leading to increased risks to humans. The kidneys, which play a central role in the excretion of PAEs, are considered one of the primary target organs for PAEs accumulation and toxicity. A growing body of evidence supports an association between exposure to PAEs and adverse effects on the kidney. In environments, PAEs are often exposed simultaneously with other contaminants that may directly or indirectly modify the toxic effects of PAEs. This review focuses on the adverse effects of PAEs exposure on the kidney and their mechanisms of action, as well as the interactions between PAEs and other contaminants on the kidney. This review underscores the necessity for future toxicological studies to prioritize the mechanisms of renal injury caused by co-exposure to PAEs and other pollutants. The employment of advanced technologies, including network toxicology and molecular docking techniques, is imperative to enhance comprehension of the potential toxicity associated with co-exposures.
Collapse
Affiliation(s)
- Zenglin Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jixing He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Xue Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jing Chen
- Department of Nosocomial Infection Control, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Baojun Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
4
|
Li D, Wang X, Zhao J, Zheng X, Wang R, Zhao P, Deng W, Wang M, Yan H, Shen L, Wei Y, Wu S. MEHP impairs male reproductive function through the lipid metabolism pathway: Evidence from in vitro human immature testis culture. Food Chem Toxicol 2025; 202:115502. [PMID: 40320065 DOI: 10.1016/j.fct.2025.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used industrial plasticizer whose main metabolite in the body is mono-(2-ethylhexyl) phthalate (MEHP). The reproductive toxicity of DEHP and MEHP has been documented in some studies. However, precise mechanisms remain unclear, and most research has focused on animal models. In this study, an in vitro culture system of immature human testicular tissue was employed to explore the etiological link between MEHP and developmental toxicity in immature human testes. The examination of micro-morphology, subcellular structure and testosterone secretion demonstrated that immature human testicular tissue could grow best at the temperature of 34 °C in this in vitro culture system. MEHP exposure damaged organelles, reduced testosterone secretion, disrupted oxidative stress and autophagy expression levels. Transcriptome sequencing revealed that differentially expressed genes (DEGs) were mainly associated with lipid metabolism pathways, which indicated the key role of DEGs in MEHP-induced reproductive toxicity. In the current study, the toxicological mechanisms of MEHP were investigated using an in vitro model of immature human testicular tissue. The lipid metabolism pathway could be a critical molecular pathway involved. This study offers a theoretical basis for understanding toxic damage from environmental toxins.
Collapse
Affiliation(s)
- Dinggang Li
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Xia Wang
- Hubei Enshi College, 445000, Hubei, China
| | - Jie Zhao
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Xiangqin Zheng
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Runchang Wang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Peng Zhao
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Wei Deng
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Mingxin Wang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Hao Yan
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China
| | - Yi Wei
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China.
| | - Shengde Wu
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Children Urogenital Development and Tissue Engineering of Chongqing Education Commisson of China, Chongqing, 400014, China.
| |
Collapse
|
5
|
Li JJ, Kou L, Li J, Shi PY, Guo TR, Xiao QW, Wang Y, Zhang M, Wu WL. Determination of 36 non-phthalate plasticizers with the QuEChERS method in milk powder by gas chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1617-1626. [PMID: 39873497 DOI: 10.1039/d4ay02223h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A method involving gas chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (GC-Q/Orbitrap HRMS) with the QuEChERS method was developed to analyze 36 non-phthalate plasticizers in milk powder products. The samples were dissolved in 20% NaCl, extracted with acetonitrile, and purified using silica, PSA, and C18. The results showed the excellent linear relationship of the calibration curves of 36 non-phthalate plasticizers in the range of 10-1000 ng mL-1, with correlation coefficients (r) not less than 0.995. The limit of detection (LODs) of 36 non-phthalate plasticizers ranged from 0.02 to 0.04 mg kg-1, and the limit of quantification (LOQs) ranged from 0.04 to 0.08 mg kg-1. The recovery rates were between 64.1% and 116.5%, with the relative standard deviation less than 10%. The proposed method was applied to the detection and analysis of 36 non-phthalate plasticizers in 50 milk powder samples. The findings indicate that this highly sensitive, accurate, and high-throughput method is suitable for the rapid screening and identification of 36 non-phthalate plasticizers in milk powder products.
Collapse
Affiliation(s)
- Jia-Jia Li
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Lu Kou
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Jun Li
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Pei-Yu Shi
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Tian-Rong Guo
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Quan-Wei Xiao
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Yi Wang
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Min Zhang
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| | - Wen-Lin Wu
- Chengdu Institute of Food Inspection, Chengdu 611130, China.
- Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China
- Key Laboratory of Chemical Metrology, Applications on Nutrition and Health, State Administration for Market Regulation, Beijing 100029, China
| |
Collapse
|
6
|
Yasuda A, Murase W, Kubota A, Uramaru N, Okuda K, Hakota R, Ikeda A, Kojima H. Effects of di-(2-ethylhexyl) phthalate and its metabolites on transcriptional activity via human nuclear receptors and gene expression in HepaRG cells. Toxicol In Vitro 2024; 101:105943. [PMID: 39341470 DOI: 10.1016/j.tiv.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays. In the PPARα assay, the order of the agonistic activity was MEHP >> 5cx-MEPP >5OH-MEHP, 5oxo-MEHP >2cx-MMHP > DEHP, with DEHP significantly inhibiting MEHP-induced PPARα agonistic activity. This finding was compared to the results from in silico docking simulation. In the PXR assay, DEHP showed PXR agonistic activity more potent than that of MEHP, whereas the other metabolites showed little activity. In the CAR assay, none of the tested compounds showed agonistic activity. Moreover, the expression levels of PPARα-, PXR-, and CAR-target genes in HepaRG cells exposed to DEHP or MEHP were investigated using qRT-PCR analysis. As a result, exposure to these compounds significantly upregulated PXR/CAR target genes (CYP3A4 and CYP2B6), but not PPARα target genes (CYP4A11, etc.) in HepaRG cells. Taken together, these results suggest that direct PXR and/or indirect CAR activation by several DEHP metabolites may be involved in the endocrine disruption by altering hormone metabolism.
Collapse
Affiliation(s)
- Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Naoto Uramaru
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820 San-Nomiya, Koshigaya, Saitama 343-8540, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuhiro Okuda
- Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
7
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Pan J, Li X, Ding P, Luo H, Cai S, Ge Q, Zhang L, Hu G. Levels, sources, and health risk assessment of phthalate acid esters in indoor dust of various microenvironments in university. CHEMOSPHERE 2024; 364:143182. [PMID: 39182730 DOI: 10.1016/j.chemosphere.2024.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Phthalate acid esters (PAEs), as a common group of plasticizers, are widely present in indoor environments and pose a risk to human health. Indoor dust samples collected from dormitory, classroom, laboratory, and office in several universities in China, were analyzed for seven types of PAEs. The total concentrations of seven PAEs (Σ7PAEs) ranged from 4.87 to 360 μg/g, with a median concentration of 51 μg/g, which is lower than that reported by other studies. Using the median concentration of Σ7PAEs as a metric, we assessed the levels of contamination in different microenvironments, resulting in the following ranking: dormitory > classroom > laboratory > office. There are significant differences in the levels of individual PAEs in different microenvironments. Radiation from sunlight, ventilation rates, cleaning frequency, and sprays were influential factors for the concentrations of individual PAEs in indoor dust. The indoor environmental conditions and consumption patterns profoundly affect PAEs levels. The sources of PAEs in classroom and office were more complex than in dormitory and laboratory. Daily intakes of PAEs were used to calculate carcinogenic and non-carcinogenic human risk for males and females, indicating a low health risk to humans. This is the first study to assess the risk of PAEs in university microenvironments and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haojie Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sha Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Qing Ge
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liuyi Zhang
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China.
| |
Collapse
|
9
|
Khalifa M, Fayed RH, Ahmed YH, Sedik AA, El-Dydamony NM, Khalil HMA. Mitigating effect of ferulic acid on di-(2-ethylhexyl) phthalate-induced neurocognitive dysfunction in male rats with a comprehensive in silico survey. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3493-3512. [PMID: 37966574 PMCID: PMC11074231 DOI: 10.1007/s00210-023-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate threatening public health-induced neurotoxicity. This neurotoxicity is associated with behavioral and biochemical deficits in male rats. Our study investigated the neuroprotective effect of ferulic acid (FA) on male rats exposed to DEHP. Thirty-two male Wistar rats were assigned to four groups. Group I control rats received corn oil, group II intoxicated rats received 300 mg/kg of DEHP, group III received 300 mg/kg of DEHP + 50 mg/kg of FA, and group IV received 50 mg/kg of FA, all agents administrated daily per os for 30 days. Anxiety-like behavior, spatial working memory, and recognition memory were assessed. Also, brain oxidative stress biomarkers, including brain malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF) as well as heme oxygenase-1 (HO-1) were measured. Moreover, brain histopathology examinations associated with immunohistochemistry determination of brain caspase-3 were also evaluated. Furthermore, docking simulation was adapted to understand the inhibitory role of FA on caspase-3 and NO synthase. Compared to DEHP-intoxicated rats, FA-treated rats displayed improved cognitive memory associated with a reduced anxious state. Also, the redox state was maintained with increased BNDF levels. These changes were confirmed by restoring the normal architecture of brain tissue and a decrement in the immunohistochemistry caspase-3. In conclusion, FA has potent antioxidant and antiapoptotic properties that confirm the neuroprotective activity of FA, with a possible prospect for its therapeutic capabilities and nutritional supplement value.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Rabie H Fayed
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6Th of October City, 12585, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
10
|
Okeke ES, Feng W, Luo M, Mao G, Chen Y, Zhao T, Wu X, Yang L. RNA-Seq analysis offers insight into the TBBPA-DHEE-induced endocrine-disrupting effect and neurotoxicity in juvenile zebrafish (Danio rerio). Gen Comp Endocrinol 2024; 350:114469. [PMID: 38360373 DOI: 10.1016/j.ygcen.2024.114469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Ting Zhao
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
11
|
Singh J, Jangra A, Kumar D. Recent advances in toxicological research of di-(2-ethylhexyl)-phthalate: Focus on endoplasmic reticulum stress pathway. CHEMOSPHERE 2024; 356:141922. [PMID: 38593956 DOI: 10.1016/j.chemosphere.2024.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
12
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
13
|
Li P, Xu Q, Zhang W, Zhang D, Liao X, Zhao X, Zhang J, Sun T, Weng D. Plasticizer acetyl triethyl citrate (ATEC) induces lipogenesis and obesity. Toxicol Appl Pharmacol 2024; 482:116788. [PMID: 38086441 DOI: 10.1016/j.taap.2023.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Environmental chemicals, such as plasticizers, have been linked to increased rates of obesity, according to epidemiological studies. Acetyl triethyl citrate (ATEC) is a plasticizer that is commonly utilized in pharmaceutical products and food packaging as a non-phthalate alternative. Due to its direct contact with the human body and high leakage rate from the polymers, assessment of the potential risk of ATEC exposure at environmentally relevant low doses to human health is needed. Male C57BL/6 J mice were fed diets containing ATEC at doses of either 0.1 or 10 μg/kg per day in a period of 12 weeks to mimic the real exposure environment. The findings suggest that in C57BL/6 J mice, ATEC exposure resulted in increased body weight gain, body fat percentage, and benign hepatocytes, as well as adipocyte size. Consistent with in vivo models, ATEC treatment obviously stimulated the increase of intracellular lipid load in both mouse and human hepatocytes. Mechanically, ATEC induced the transcriptional expression of genes involved in de novo lipogenesis and lipid uptake. Using both enzyme inhibitor and small interfering RNA (siRNA) transfection, we found that stearoyl-coenzyme A desaturase 1 (SCD1) played a significant role in ATEC-induced intracellular lipid accumulation. This study for the first time provided initial evidence suggesting the obesogenic and fatty liver-inducing effect of ATEC at low doses near human exposure levels, and ATEC might be a potential environmental obesogen and its effect on human health need to be further evaluated.
Collapse
Affiliation(s)
- Peiqi Li
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Qian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Weigao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Danyang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Xin Liao
- Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai 536000, China
| | - Xunan Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anhui 246011, China.
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
14
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:203-212. [PMID: 38298799 PMCID: PMC10829632 DOI: 10.1016/j.bpsgos.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 02/02/2024] Open
Abstract
Background There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Laxmi Iyer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, Maryland
| | - Adam P. Swiercz
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Paronett
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Manelle Ramadan
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| | - Nikki Gillum Posnack
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| |
Collapse
|
15
|
Rashmi M, Singh T, Rajput NS, Kulshreshtha S. Biodegradation of di-2-ethylhexyl phthalate by Bacillus firmus MP04 strain: parametric optimization using full factorial design. Biodegradation 2023; 34:567-579. [PMID: 37354272 DOI: 10.1007/s10532-023-10043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is used as a plasticizer in making plastics and released from landfills. This study attempted to degrade DEHP using microbial isolates. Isolates of Bacillus spp. were tested for their efficacy in degrading DEHP. Degradation was assessed using liquid chromatography-mass spectrometry (LC-MS). The most efficient DEHP degradation was achieved by Bacillus firmus MP04, which has been identified as Bacillus firmus MP04. This strain was found to use DEHP as the sole source of carbon without carbon source supplementation. Full factorial design was used to optimize the conditions for DEHP degradation which revealed the suitability of pH 7, 5% salt concentration, 20 to 37 °C temperature, and yeast extract as a nitrogen source. LC-MS elucidated the possible degradation mechanism via benzoic acid formation. However, prolonged incubation formed a typical compound denatonium benzoate due to reactions with other compounds. As maximum degradation was achieved in 4 days, prolonged incubation is not suggested. It can be concluded that new strain Bacillus firmus MP04 is the most efficient strain among all the tested strains for DEHP degradation.
Collapse
Affiliation(s)
- Madhavi Rashmi
- Department of Biotechnology, Magadh University, Bodh Gaya, Bihar, India
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna, Bihar, India
| | - Nitesh Singh Rajput
- Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur, Rajasthan, 303007, India
| | - Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
16
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. ENVIRONMENT INTERNATIONAL 2023; 181:108294. [PMID: 37935082 DOI: 10.1016/j.envint.2023.108294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico.
| |
Collapse
|
17
|
Dagar M, Kumari P, Mirza AMW, Singh S, Ain NU, Munir Z, Javed T, Virk MFI, Javed S, Qizilbash FH, Kc A, Ekhator C, Bellegarde SB. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023; 15:e47282. [PMID: 38021644 PMCID: PMC10656111 DOI: 10.7759/cureus.47282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting β-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.
Collapse
Affiliation(s)
- Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Shivani Singh
- Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Noor U Ain
- Medicine, Mayo Hospital, Lahore, PAK
- Medicine, King Edward Medical University, Lahore, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | - Anil Kc
- Medicine and Surgery, Patan Academy of Health Sciences, Kathmandu, NPL
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Coolidge, ATG
| |
Collapse
|
18
|
Rivas J, Fuentes A, Maria A, Bergerot B, Siaussat D, Renault D. Effects of phthalate and bisphenol plasticizers on the activity of glycolytic enzymes of the moth Spodoptera littoralis. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104533. [PMID: 37380125 DOI: 10.1016/j.jinsphys.2023.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Environmental plastic pollution has significantly increased in the recent decades, and severely impacts economies, human and biodiversity health. Plastics are made of several chemical additives, including bisphenol and phthalate plasticizers such as bisphenol A (BPA) and Di(2-ethylhexyl)phthalate (DEHP). In some animal species, both BPA and DEHP are known as endocrine disruptor compounds, and can alter physiological and metabolic homeostasis, reproduction, development and/or behavior. To date, the impacts of BPA and DEHP have mainly focused on vertebrates, and to a lesser extent, on aquatic invertebrates. Yet, the few studies which examined the effects of DEHP on terrestrial insects also revealed the impacts this pollutant can have on development, hormone titrations, and metabolic profiles. In particular, it has been hypothesized in the Egyptian cotton leafworm Spodoptera littoralis that the observed metabolic alterations could result from the energetic costs necessary for DEHP detoxification or to the dysregulation of hormonally-controlled enzymatic activities. To get additional insights into the physiological effects of bisphenol and phthalate plasticizers on the moth S. littoralis, larvae were fed with food contaminated by BPA, DEHP, or the mixture of both compounds. Then, activities of four glycolytic enzymes, hexokinase, phosphoglucose isomerase, phosphofructokinase, and pyruvate kinase were measured. BPA and/or DEHP had no effects on the activities of phosphofructokinase and pyruvate kinase. Conversely, BPA-contaminated larvae were characterized by a 1.9-fold increase in phosphoglucose isomerase activity, and BPA + DEHP-fed larvae had highly variable hexokinase activity. Overall, since no disruption of glycolytic enzyme was observed in DEHP-contaminated larvae, our work tended to demonstrate that exposure to bisphenol and DEHP increased the amount of oxidative stress experienced.
Collapse
Affiliation(s)
- Johanna Rivas
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)] - UMR 6553, F-35000 Rennes, France; Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France.
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Benjamin Bergerot
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)] - UMR 6553, F-35000 Rennes, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)] - UMR 6553, F-35000 Rennes, France.
| |
Collapse
|
19
|
Mariana M, Cairrao E. The Relationship between Phthalates and Diabetes: A Review. Metabolites 2023; 13:746. [PMID: 37367903 DOI: 10.3390/metabo13060746] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Since the beginning of their production, in the 1930s, phthalates have been widely used in the plastics industry to provide durability and elasticity to polymers that would otherwise be rigid, or as solvents in hygiene and cosmetic products. Taking into account their wide range of applications, it is easy to understand why their use has been increasing over the years, making them ubiquitous in the environment. This way, all living organisms are easily exposed to these compounds, which have already been classified as endocrine disruptor compounds (EDC), affecting hormone homeostasis. Along with this increase in phthalate-containing products, the incidence of several metabolic diseases has also been rising, namely diabetes. That said, and considering that factors such as obesity and genetics are not enough to explain this substantial increase, it has been proposed that the exposure to environmental contaminants may also be a risk factor for diabetes. Thus, the aim of this work is to review whether there is an association between the exposure to phthalates and the development of the several forms of diabetes mellitus, during pregnancy, childhood, and adulthood.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
20
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536567. [PMID: 37886449 PMCID: PMC10602041 DOI: 10.1101/2023.04.13.536567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.
Collapse
|
22
|
Le Mentec H, Monniez E, Legrand A, Monvoisin C, Lagadic-Gossmann D, Podechard N. A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. Int J Mol Sci 2023; 24:ijms24043942. [PMID: 36835354 PMCID: PMC9959061 DOI: 10.3390/ijms24043942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which starts with liver steatosis, is a growing worldwide epidemic responsible for chronic liver diseases. Among its risk factors, exposure to environmental contaminants, such as endocrine disrupting compounds (EDC), has been recently emphasized. Given this important public health concern, regulation agencies need novel simple and fast biological tests to evaluate chemical risks. In this context, we developed a new in vivo bioassay called StAZ (Steatogenic Assay on Zebrafish) using an alternative model to animal experimentation, the zebrafish larva, to screen EDCs for their steatogenic properties. Taking advantage of the transparency of zebrafish larvae, we established a method based on fluorescent staining with Nile red to estimate liver lipid content. Following testing of known steatogenic molecules, 10 EDCs suspected to induce metabolic disorders were screened and DDE, the main metabolite of the insecticide DDT, was identified as a potent inducer of steatosis. To confirm this and optimize the assay, we used it in a transgenic zebrafish line expressing a blue fluorescent liver protein reporter. To obtain insight into DDE's effect, the expression of several genes related to steatosis was analyzed; an up-regulation of scd1 expression, probably relying on PXR activation, was found, partly responsible for both membrane remodeling and steatosis.
Collapse
Affiliation(s)
- Hélène Le Mentec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Emmanuelle Monniez
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Antoine Legrand
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Céline Monvoisin
- UMR 1236-MOBIDIC, INSERM, Université Rennes, Etablissement Français du Sang Bretagne, 35043 Rennes, France
| | - Dominique Lagadic-Gossmann
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Normand Podechard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
23
|
GC-MS Determination of Undeclared Phthalate Esters in Commercial Fragrances: Occurrence, Profiles and Assessment of Carcinogenic and Non-Carcinogenic Risk Associated with Their Consumption among Adult Consumers. Molecules 2023; 28:molecules28041689. [PMID: 36838677 PMCID: PMC9962674 DOI: 10.3390/molecules28041689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Phthalates are chemicals that are extensively used in the manufacturing of cosmetic products. The occurrence of phthalate esters in personal care products may pose adverse effects on consumers' health. In this work, a simple, fast and reliable GC-MS method was developed and validated for concurrent determination of phthalate esters in fragrances. Simple procedures were employed for sample preparation and clean up. The recoveries achieved were in the range of 94.9% to 105.6% with RSD ≤ 4.06. The detection limits were in the range of 0.0010 to 0.0021 µg/mL. The GC-MS method was utilized to investigate the occurrence of phthalate esters in different brands of perfumes sold in the Saudi Arabian market. Diethyl phthalate was detected in all analyzed samples, with a maximum concentration of 5766 µg/mL, and di (2-ethylhexyl) phthalate was detected in the majority of the analyzed samples (95%), with a mean concentration of 55.9 µg/mL and a highest concentration of 377.7 µg/mL. Additionally, the exposure to phthalate esters due to the consumption of perfumes was investigated among the adult Saudi population for the first time. It was found that the systemic exposure dose, measured at mean concentrations, ranged from 4.59 × 10-4 to 4.29 × 10-2 (mg/kg/day) and from 5.00 × 10-4 to 4.68 × 10-2 (mg/kg/day) for male and female users, respectively. Moreover, the non-carcinogenic risk of the investigated phthalate esters and the carcinogenic risk of DEHP were also evaluated. The non-carcinogenic risk values of the detected phthalate esters were greater than 100, which indicates that exposure to these phthalate esters is unlikely to produce non-carcinogenic health effects to consumers. However, at maximum DEHP concentrations, the carcinogenic risk values were 5.49 × 10-5 for male users and 5.98 × 10-5 for female users, which indicates the possibility of DEHP to pose a carcinogenic health effect if present at high levels. Regular monitoring of undeclared chemicals such as phthalate esters in personal care products marketed in Saudi Arabia is extremely important to ensure consumers' safety. To the best of the authors' knowledge, this is the first study to assess the health risk associated with consumption of perfumes in Saudi Arabia.
Collapse
|
24
|
Zeng F, Zhang L, Deng F, Lou S. Early-life exposure to di (2-ethyl-hexyl) phthalate: Role in children with endocrine disorders. Front Cell Dev Biol 2023; 11:1115229. [PMID: 36846588 PMCID: PMC9950113 DOI: 10.3389/fcell.2023.1115229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP), one of endocrine-disrupting chemicals (EDCs), has widespread concern due to its serious health hazards. Exposure to DEHP in the early stage of life affects fetal metabolic and endocrine function, which even would cause genetic lesions. To date, it is widely believed that the increasing incidence of childhood obesity and diabetes in adolescents is related to the impact of DEHP on glucose and lipid homeostasis in children. However, there remains a knowledge gap to recognize these adverse effects. Thus, in this review, besides the exposure routes and levels of DEHP, we further outline the effects of early-life exposure to DEHP on children and potential mechanisms, focusing on the aspect of metabolic and endocrine homeostasis.
Collapse
Affiliation(s)
- Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Luodan Zhang
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, China
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Children’s Hospital of Anhui Medical University, Hefei, China,*Correspondence: Fang Deng, ; Shuiping Lou,
| | - Shuiping Lou
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China,*Correspondence: Fang Deng, ; Shuiping Lou,
| |
Collapse
|
25
|
Qian B, Zheng ZX, Yang L, Wang CQ, Lin YC, Lin ZN. Prenatal exposure to phthalates and polybrominated diphenyl ethers on neonatal health: A birth cohort study in Guangxi, China. ENVIRONMENTAL RESEARCH 2023; 216:114571. [PMID: 36243047 DOI: 10.1016/j.envres.2022.114571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Few epidemiological studies have focused on prenatal phthalates (PAEs) and polybrominated diphenyl ethers (PBDEs) exposure to neonatal health in China. This study aimed to assess the associations between prenatal PAEs and PBDEs exposure and neonatal health in Guangxi, a Zhuang autonomous region of China. Concentrations of 4 PAEs metabolites (mPAEs) and 5 PBDEs congeners were measured in the serum of 267 healthy pregnant women. Birth outcomes and clinical data of neonates were collected after delivery. Mono-(2-Ethylhexyl) phthalate (MEHP) (81.52%) and BDE47 (35.21%) were the mPAEs and PBDEs congeners with the highest detection rate in serum. Prenatal exposures to mono-n-butyl phthalate (MBP), MEHP, and ΣmPAEs were negatively associated with birth weight (BW), birth length (BL), and gestational age (GA). Higher exposures to MBP, MEHP, and ΣmPAEs were associated with an increased odds ratio (OR) for low birth weight (LBW), but exposure to BDE28 exhibited the opposite effect. Moreover, higher exposures to MBP, MEHP, ΣmPAEs, BDE99, and ΣPBDEswere associated with an increased OR for premature birth (PTB) (P < 0.05). In contrast to MBP exposure, BDE28 exposure was associated with a higher OR for neonatal jaundice (NNJ) (P < 0.05). The interaction analysis showed a positive interaction between monoethyl phthalate (MEP) and BDE28 on the risk of NNJ and positive interaction between ΣmPAEs and BDE47 on the risk of NNJ. In addition, there are ethnicity-specific associations of prenatal PBDEs exposure with neonatal health in individuals of Zhuang and Han nationalities, and boy neonates were more sensitive to prenatal PBDEs exposure than girl neonates. The results revealed that prenatal exposure to mPAEs and PBDEs might have adverse effects on neonatal development, and the effects might be ethnicity- and sex-specific.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Cheng-Qiang Wang
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
26
|
Lee SH, Du ZY, Tseng WC, Lin WY, Chen MH, Lin CC, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Identification of serum metabolic signatures of environmental-leveled phthalate in the Taiwanese child population using NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120454. [PMID: 36306885 DOI: 10.1016/j.envpol.2022.120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates have become important environmental pollutants due to their high exposure frequency in daily life; thus, phthalates are prevalent in humans. Although several epidemiologic surveys have linked phthalates with several adverse health effects in humans, the molecular events underlying phthalate exposure have not been fully elucidated. The purpose of this study was to reveal associations between phthalate exposure and the serum metabolome in Taiwanese children using a metabolomic approach. A total of 256 Taiwanese children (8-10 years old) from two cohorts were enrolled in this study. Twelve urinary phthalate metabolites were analyzed by high-performance liquid chromatography/tandem mass spectrometry, while a nuclear magnetic resonance-based metabolomic approach was used to record serum metabolic profiles. The associations between metabolic profiles and phthalate levels were assessed by partial least squares analysis coupled with multiple linear regression analysis. Our results revealed that unique phthalate exposures, such as mono-isobutyl phthalate, mono-n-butyl phthalate, and mono (2-ethyl-5-oxohexyl) phthalate, were associated with distinct serum metabolite profiles. These phthalate-mediated metabolite changes may be associated with perturbed energy mechanisms, increased oxidative stress, and lipid metabolism. In conclusion, this study suggests that metabolomics is a valid approach to examine the effects of environmental-level phthalate on the serum metabolome. This study also highlighted potentially important phthalates and their possible effects on children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Pesonen M, Vähäkangas K. Contribution of common plastic-related endocrine disruptors to epithelial-mesenchymal transition (EMT) and tumor progression. CHEMOSPHERE 2022; 309:136560. [PMID: 36152835 DOI: 10.1016/j.chemosphere.2022.136560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many chemicals, including many endocrine disruptors (EDCs) are known to leach out from various plastic consumer products and waste, and are widespread in the environment. EDCs are a large group of contaminants that can interfere with hormonal metabolism or function. In addition, there are in the literature implications of contribution by EDCs in tumor progression, the last stage of carcinogenesis driven by cells with a metastatic phenotype. The process of epithelial cells losing their apical-basal polarity and cell-to-cell contacts, and acquiring migration and invasive properties typical of mesenchymal cells is called epithelial-mesenchymal transition (EMT). It is essential for tumor progression. In human cells, plastic-related EDCs, (phthalates, bisphenol A, and the alkylphenols: nonylphenol and octylphenol) reduce epithelial E-cadherin, and increase mesenchymal N-cadherin and extracellular matrix metalloproteinases. These changes are hallmarks of EMT. In xenograft mouse studies, EDCs increase migration of cells and metastatic growth in distant tissues. Their contribution to EMT and tumor progression, the topic of this review, is important from public health perspective, because of the ubiquitous exposure to these EDCs. In this mini-review we also discuss molecular mechanisms associated with EDC-induced EMT and tumor progression.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
28
|
Wen ZJ, Wang ZY, Zhang YF. Adverse cardiovascular effects and potential molecular mechanisms of DEHP and its metabolites-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157443. [PMID: 35868369 DOI: 10.1016/j.scitotenv.2022.157443] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Currently, cardiovascular disease (CVD) is a health hazard that is associated with progressive deterioration upon exposure to environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP) has been one of the focuses of emerging concern due to its ubiquitous nature and its toxicity to the cardiovascular (CV) system. DEHP has been noted as a causative risk factor or a risk indicator for the initiation and augment of CVDs. DEHP represents a precursor that contributes to the pathogenesis of CVDs through its active metabolites, which mainly include mono (2-ethylhexyl) phthalate (MEHP). Herein, we systematically presented the association between DEHP and its metabolites and adverse CV outcomes and discussed the corresponding effects, underlying mechanisms and possibly interventions. Epidemiological and experimental evidence has suggested that DEHP and its metabolites have significant impacts on processes and factors involved in CVD, such as cardiac developmental toxicity, cardiac injury and apoptosis, cardiac arrhythmogenesis, cardiac metabolic disorders, vascular structural damage, atherogenesis, coronary heart disease and hypertension. DNA methylation, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbance may pinpoint the relevant mechanisms. The preventive and therapeutic measures are potentially related with P-glycoprotein, heat-shock proteins, some antioxidants, curcumin, apigenin, β-thujaplicin, glucagon-like peptide-1 receptor agonists and Ang-converting enzyme inhibitors and so on. Promisingly, future investigations should aid in thoroughly assessing the causal relationship and molecular interactions between CVD and DEHP and its metabolites and explore feasible prevention and treatment measures accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
29
|
Novel miniaturized passive sampling devices based on liquid phase microextraction equipped with cellulose-grafted membranes for the environmental monitoring of phthalic acid esters in natural waters. Anal Chim Acta 2022; 1231:340405. [PMID: 36220296 DOI: 10.1016/j.aca.2022.340405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Phthalic acid esters (PAEs) are considered endocrine disruptors and potential carcinogens. Consequently, efficient and accurate environmental monitoring of trace levels of these organic pollutants is necessary to protect the population against their hazardous effects. Passive sampling techniques have gained notoriety for environmental monitoring and have been proven highly sensitive to temporal variations. This study developed a miniaturized passive sampling device (MPSD) based on hollow fiber liquid-phase microextraction (HF-LPME). The devices were calibrated in the laboratory using an automated calibration system. The results demonstrated the first-order uptake ranges for Diethyl phthalate (DEP), Diisobutyl phthalate (DiBP), Dibutyl phthalate (DBP), Benzyl butyl phthalate (BBP) and Bis(2-ethylhexyl phthalate) (DEHP) between 30 min and 24 h with sampling rates equivalent to 0.009; 0.021; 0.033; 0.085 and 0.003 mL h-1 respectively (R2 between 0.88 and 0.99). The calibrated devices were deployed in 12 marginal lagoons, stretching approximately 330 km along the main river. The extracts recovered from the devices were analyzed by gas chromatography (GC), resulting in the identification and quantification of DEP (0.697-13.7 ng L-1), DiBP (0.100-4.43 ng L-1), DBP (0.014-1.21 ng L-1), BBP (0.218-5.67 ng L-1), and DEHP (0.002-2.24 ng L-1). Despite being frequently identified, DEHP concentrations were well below the maximum established limits, revealing a good water quality in terms of the target PAEs. In contrast, screening the extracts using GCxGC was possible to detect other hazardous pollutants such as pesticides, drugs, and their metabolites. The described device was effective and reliable, providing accurate PAE measurements following short exposure periods. In this sense, its deployment during emergency operations, such as accidental discharges of industrial effluents into natural waters, could continuously and cost-effectively monitor water quality.
Collapse
|
30
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
31
|
Tao L, Tan H, Qiao X, Li L, Yu Y, Xie J, Chen D. Emerging Plasticizers in South China House Dust and Hand Wipes: Calling for Potential Concern? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12190-12199. [PMID: 35975842 DOI: 10.1021/acs.est.2c02106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Following regulations on legacy plasticizers, a large variety of industrial chemicals have been employed as substitutes to manufacture consumer products. However, knowledge remains limited on their environmental distributions, fate, and human exposure risks. In the present work, we screened for a total of 34 emerging plasticizers in house dust from South China and matched hand wipes collected from volunteers (n = 49 pairs). The results revealed a frequent detection of 27 emerging plasticizers in house dust, with the total concentrations reaching a median level of 106 700 ng/g. Thirteen of them had never been investigated by any environmental studies prior to our work, which included glycerol monooleate (median: 61 600 ng/g), methyl oleate (16 400 ng/g), butyl oleate (411 ng/g), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (341 ng/g), 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (105 ng/g), isopropyl myristate (154 ng/g), di(2-ethylhexyl) sebacate (69.1 ng/g), triisononyl trimellitate (64.4 ng/g), as well as a few others. Emerging plasticizers were also frequently detected in hand wipes, with a median total level of 4680 ng, indicating potential exposure via hand-to-mouth contact. Several chemicals, including acetyl tributyl citrate, tributyl citrate, di-n-butyl maleate, isopropyl myristate, and isopropyl palmitate, exhibited significant correlations between dust and hand wipe. However, other plasticizers did not follow this pattern, and the chemical compositional profiles differed between dust and hand wipe, suggesting chemical-specific sources and exposure pathways. Although the estimation of daily intake (EDI) indicated no substantial risks through dust ingestion or hand-to-mouth transfer of emerging plasticizers, continuous monitoring is needed to explore whether some of the important plasticizers are safe replacements or regrettable substitutions of the legacy ones.
Collapse
Affiliation(s)
- Lin Tao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xinhang Qiao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou 510530, China
| | - Jinxin Xie
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Batool S, Batool S, Shameem S, Batool T, Batool S. Effects of dibutyl phthalate and di (2-ethylhexyl) phthalate on hepatic structure and function of adult male mice. Toxicol Ind Health 2022; 38:470-480. [PMID: 35700117 DOI: 10.1177/07482337221108578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of the present research was to determine if dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) alone and combined exposure induced pathological alterations in laboratory reared albino mice. Adult male mice were equally divided (n = 10) into Control, corn oil (CO), DBP, DEHP, and DBP+DEHP treated groups. Dibutyl phthalate (250 mg/kg), DEHP (300 mg/kg), and DBP+DEHP (250+300 mg/kg), respectively, were administered by oral gavage mixed in corn oil (0.2 mL) for 28 days. All animals were sacrificed following 28 days of treatment and blood was collected for serum lipid profiles and liver function tests. Liver samples were also collected for observation of histological changes. Microphotographs of hematoxylin and eosin-stained sections were used for computer-based micrometry. CO, DBP, DEHP, and DBP+DEHP treatment resulted in a significant increase in the mean body and liver weights as compared with the Control group. Histological examination of the livers with DBP and/or DEHP treatment showed marked alterations leading to hepatic hypertrophy. In the treated groups, a significant increase in the mean number of mononucleated, binucleated cells, and oval cells per unit area was noticed with disorganized trabecular arrangement as compared with the Control group. Treatment with DBP and/or DEHP resulted in large regeneration zones in the liver and an increased relative nucleo-cytoplasmic index of mononuclear shepatocytes when compared with the Control group. All treatments caused a significant increases in the liver enzymes and proteins as well as altered serum cholesterol, triglycerides, LDL, and VLDL levels. The histopathological and serological findings confirmed the toxic potentials to hepatic tissue of DBP and DEHP either given alone or in combination.
Collapse
Affiliation(s)
- Saira Batool
- Department of Zoology, 66971University of Sargodha, Sargodha. Pakistan
| | - Sajida Batool
- Department of Zoology, 66971University of Sargodha, Sargodha. Pakistan
| | - Sitara Shameem
- Department of Zoology, 66971University of Sargodha, Sargodha. Pakistan
| | - Tahira Batool
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Saima Batool
- Institute for Advanced Study, 47890Shenzhen University, Shenzhen, China
| |
Collapse
|
33
|
Iram F, Batool S, Shameem S, Aslam I, Batool S, Shaheen M, Aziz R. Effect of aqueous garlic (Allium sativum) extract against di-(2-ethylhexyl) phthalate induced reproductive toxicity in male mice. Andrologia 2022; 54:e14480. [PMID: 35670728 DOI: 10.1111/and.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
This study was designed to investigate testicular and male reproductive tract histopathologies and lipid profile against di-ethylhexyl phthalate (DEHP) exposure in mice and curative potentials of aqueous garlic (Allium sativum) extract. Four groups (n = 10) were named and treated as follow (a) control (C): (normal feed and drinking water + 0.2 ml corn oil); (b) aqueous garlic extract group (AGE): (500 mg/kg body weight of aqueous garlic extract); (c) DEHP group: (500 mg/kg body weight of DEHP, dissolved in corn oil; (d) AGE + DEHP group (500 mg/kg body weight garlic aqueous extract, and DEHP 500 mg/kg body weight dissolved in corn oil). The doses were given once daily through gavages for 28 days and on the 29th day, all the animals were euthanized through cervical dislocation and reproductive organs and blood samples were collected. The results showed that exposure to DEHP caused a significant effect on body weight, testicular weight, serum cholesterol, triglycerides, lipid profile, average cross-sectional area (ACSA) of the seminiferous tubule, ACSA of the lumen of seminiferous tubule, spermatogenic cells, Leydig's cells number, vas deferens diameter, lumen, muscular thickness, and epithelial cell height of vas deferens. This study revealed that exposure to DEHP can be injurious to male reproductive health and aqueous garlic extract can decrease the toxic effects of DEHP in male mice.
Collapse
Affiliation(s)
- Fatima Iram
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Sajida Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Sitara Shameem
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Iqra Aslam
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Saira Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Marrium Shaheen
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Riqza Aziz
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
34
|
Wang WJ, Wang CS, Wang CK, Yang AM, Lin CY. Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19126964. [PMID: 35742214 PMCID: PMC9222572 DOI: 10.3390/ijerph19126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Purpose: Di-(2-ethylhexyl) phthalate (DEHP) has been utilized in many daily products for decades. Previous studies have reported that DEHP exposure could induce renin–angiotensin–aldosterone system activation and increase epithelial sodium channel (ENaC) activity, which contributes to extracellular fluid (ECF) volume expansion. However, there is also no previous study to evaluate the association between DEHP exposure and body fluid status. Methods: We selected 1678 subjects (aged ≥18 years) from a National Health and Nutrition Examination Survey (NHANES) in 2003–2004 to determine the relationship between urine DEHP metabolites and body composition (body measures, bioelectrical impedance analysis (BIA)). Results: After weighing the sampling strategy in multiple linear regression analysis, we report that higher levels of DEHP metabolites are correlated with increases in body measures (body weight, body mass index (BMI), waist circumference), BIA parameters (estimated fat mass, percent body fat, ECF, and ECF/intracellular fluid (ICF) ratio) in multiple linear regression analysis. The relationship between DEHP metabolites and the ECF/ICF ratio was more evident in subjects of younger age (20–39 years old), women, non-Hispanic white ethnicity, and subjects who were not active smokers. Conclusion: In addition to being positively correlated with body measures and body fat, we found that urine DEHP metabolites were positively correlated with ECF and the ECF/ICF ratio in the US general adult population. The finding implies that DEHP exposures might increase ECF volume and the ECF/ICF ratio, which may have adverse health outcomes on the cardiovascular system. Further research is needed to clarify the causal relationship.
Collapse
Affiliation(s)
- Wei-Jie Wang
- Division of Nephrology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan;
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 300, Taiwan
| | - Chia-Sung Wang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
| | - Chi-Kang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Correspondence:
| |
Collapse
|
35
|
Dao TS, Nguyen VT, Baduel C, Bui MH, Tran VT, Pham TL, Bui BT, Dinh KV. Toxicity of di-2-ethylhexyl phthalate and tris (2-butoxyethyl) phosphate to a tropical micro-crustacean (Ceriodaphnia cornuta) is higher in Mekong River water than in standard laboratory medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39777-39789. [PMID: 35113371 DOI: 10.1007/s11356-022-18993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plasticizers such as di(2-ethylhexyl) phthalate (DEHP) and tris (2-butoxyethyl) phosphate (TBOEP) are manufactured chemicals produced in high volumes. These chemicals are frequently detected in the aquatic environment and cause toxic effects on organisms. In this study, we assessed the chronic impacts of DEHP and TBOEP, respectively, at the concentration of 100 µg L-1 dissolved in the artificial medium (M4/4) and Mekong River water on life history traits of a tropical micro-crustacean, Ceriodaphnia cornuta, for 14 days. DEHP and TBOEP substantially reduced the survival of C. cornuta. In M4/4 medium, both plasticizers strongly enhanced reproduction but did not influence the growth of C. cornuta. Mekong River water, plasticizers-exposed C. cornuta produced less neonates than those in the control. The detrimental impacts of DEHP and TBOEP on the fitness of C. cornuta were much stronger in natural river water than in M4/4. Our results suggest that plasticizers can cause adverse effects on tropical freshwater cladocerans, particularly in natural water. These results are of a deep concern, as national and international regulatory guidelines which are based on ecotoxicological tests using standard media may not fully capture these effects.
Collapse
Affiliation(s)
- Thanh-Son Dao
- Department of Environmental Management, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam.
- CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Van-Tai Nguyen
- Department of Environmental Management, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Christine Baduel
- IRD, CNRS, Grenoble INP, Institut Des Géosciences Et de L'Environnement (IGE), Université Grenoble Alpes, 38050, Grenoble, France
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Vietnam
| | - Viet Tuan Tran
- Environmental Monitoring Division, Institute for Tropical Technology and Environmental Protection, Ho Chi Minh City, Vietnam
| | - Thanh-Luu Pham
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, Vietnam
| | - Ba-Trung Bui
- Department of Environmental Toxicology, Institute for Environment and Resources, Ho Chi Minh City, Vietnam
| | - Khuong V Dinh
- Department of Fisheries Biology, Nha Trang University, Nha Trang City, Vietnam
- Department of Biosciences, University of Oslo, Blindernvn. 31, 0371, Oslo, Norway
| |
Collapse
|
36
|
Huang YQ, Tang YX, Qiu BH, Talukder M, Li XN, Li JL. Di-2-ethylhexyl phthalate (DEHP) induced lipid metabolism disorder in liver via activating the LXR/SREBP-1c/PPARα/γ and NF-κB signaling pathway. Food Chem Toxicol 2022; 165:113119. [PMID: 35537648 DOI: 10.1016/j.fct.2022.113119] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
37
|
Yoon H, Kim TH, Lee BC, Lee B, Kim P, Shin BS, Choi J. Comparison of the exposure assessment of di(2-ethylhexyl) phthalate between the PBPK model-based reverse dosimetry and scenario-based analysis: A Korean general population study. CHEMOSPHERE 2022; 294:133549. [PMID: 35066077 DOI: 10.1016/j.chemosphere.2022.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), classified as a reproductive toxicant, is a ubiquitous pollutant in foodstuffs, dust, and commercial products. In this study, to provide a useful cross-check on the accuracy of the exposure assessment, the estimated daily intake of DEHP was compared using reverse dosimetry with a physiologically-based pharmacokinetic (PBPK) model and a scenario-based probabilistic estimation model for six subpopulations in Korea. For reverse dosimetry analysis, the concentrations of urinary DEHP metabolites, namely mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl)phthalate (MEOHP), from three human biomonitoring program datasets were used. For the scenario-based model, we evaluated the various exposure sources of DEHP, including diet, air, indoor dust, soil, and personal care products (PCPs), and also determined its levels based on the literature review and measurements of indoor dust. The DEHP exposure doses using both exposure assessment approaches were similar in all cases, except for the 95th percentile exposure doses in toddlers (1-2 years) and young children (3-6 years). The PBPK-reverse dosimetry estimated daily intakes at the 95th percentile ranged between 22.53 and 29.90 μg/kg/day for toddlers and young children. These exceeded the reference dose (RfD) of 20 μg/kg bw/day of the US Environmental Protection Agency (EPA) based on the increased relative liver weight. Although, food was considered the primary source of DEHP, contributing to a total exposure of 50.8-75.1%, the effect of exposure to indoor dust should not be overlooked. The occurrence of high levels of DEHP in indoor dust collected from Korean homes suggests the use of a wide variety of consumer products containing DEHP. Furthermore, more attention should be paid to the high exposure levels of DEHP, especially in young children. Therefore, it is necessary to perform continuous monitoring of the indoor dust, consumer products, and the body burden of children.
Collapse
Affiliation(s)
- Hyojung Yoon
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, Republic of Korea; School of Environmental Engineering, University of Seoul, Seoul, Republic of Korea
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - Byoung-Cheun Lee
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Byeongwoo Lee
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Beom Soo Shin
- College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Dziobak MK, Wells RS, Pisarski EC, Wirth EF, Hart LB. A Correlational Analysis of Phthalate Exposure and Thyroid Hormone Levels in Common Bottlenose Dolphins ( Tursiops truncatus) from Sarasota Bay, Florida (2010-2019). Animals (Basel) 2022; 12:824. [PMID: 35405813 PMCID: PMC8996861 DOI: 10.3390/ani12070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Phthalates are chemical esters used to enhance desirable properties of plastics, personal care, and cleaning products. Phthalates have shown ubiquitous environmental contamination due to their abundant use and propensity to leach from products to which they are added. Following exposure, phthalates are rapidly metabolized and excreted through urine. Common bottlenose dolphins (Tursiops truncatus) sampled from Sarasota Bay, Florida, have demonstrated prevalent di(2-ethylhexyl) phthalate (DEHP) exposure indicated by detectable urinary mono(2-ethylhexyl) phthalate (MEHP) concentrations. Widespread exposure is concerning due to evidence of endocrine disruption from human and laboratory studies. To better understand how phthalate exposure may impact dolphin health, correlations between relevant hormone levels and detectable urinary MEHP concentrations were examined. Hormone concentrations measured via blood serum samples included triiodothyronine (T3), total thyroxine (T4), and free thyroxine (FT4). Urinary MEHP concentrations were detected in 56% of sampled individuals (n = 50; mean = 8.13 ng/mL; s.d. = 15.99 ng/mL). Adult female and male FT4 was significantly correlated with urinary MEHP concentrations (adult female Kendall's tau = 0.36, p = 0.04; adult male Kendall's tau = 0.42, p = 0.02). Evidence from this study suggests DEHP exposure may be impacting thyroid hormone homeostasis. Cumulative effects of other stressors and resultant endocrine impacts are unknown. Further research is warranted to understand potential health implications associated with this relationship.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Environmental and Sustainability Studies Graduate Program, College of Charleston, Charleston, SC 29424, USA
- Environmental Health Sciences Graduate Program, University of South Carolina, Columbia, SC 29208, USA
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL 34236, USA;
| | - Emily C. Pisarski
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA; (E.C.P.); (E.F.W.)
| | - Ed F. Wirth
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA; (E.C.P.); (E.F.W.)
| | - Leslie B. Hart
- Department of Health and Human Performance, College of Charleston, Charleston, SC 29424, USA
| |
Collapse
|
39
|
Ledniowska K, Nosal-Kovalenko H, Janik W, Krasuska A, Stańczyk D, Sabura E, Bartoszewicz M, Rybak A. Effective, Environmentally Friendly PVC Plasticizers Based on Succinic Acid. Polymers (Basel) 2022; 14:polym14071295. [PMID: 35406169 PMCID: PMC9002721 DOI: 10.3390/polym14071295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
The plasticizers used in this study were synthesized from renewable raw materials using succinic acid, oleic acid, and propylene glycol. Four environmentally friendly plasticizer samples were obtained; their chemical structures and compositions were confirmed by gas chromatography (GC) and infrared spectroscopy (FT–IR) analyses, and their physicochemical properties and thermal stability (TGA analysis) were investigated. The obtained ester mixtures were used as poly(vinyl chloride) (PVC) plasticizers and their plasticization efficiency was determined in comparison to traditional, commercially available phthalate plasticizers, such as DEHP (di(2-ethylhexyl phthalate) and DINP (diisononyl phthalate). Mechanical properties and migration resistance were determined for soft PVC with the use of three concentrations of plasticizers (40 PHR, 50 PHR, and 60 PHR). It was observed that the obtained plasticizers exhibited the same plasticization efficiency and were characterized with good mechanical and physical properties in comparison to commercial plasticizers. The tensile strength was approx. 19 MPa, while the elongation at break was approx. 250% for all tested plasticizers at a concentration of 50 PHR. Furthermore, plasticizer migration studies showed that the synthesized plasticizers had excellent resistance to plasticizer leaching. The best migration test result obtained was 70% lower than that for DEHP or DINP. The ester mixture that was found to be the most favorable plasticizer was characterized by good thermal and thermo-oxidative stability (5% weight loss temperature: 227.8 °C in air and 261.1 °C in nitrogen). The results of the research clearly indicate that the synthesized esters can provide a green alternative to toxic phthalate plasticizers.
Collapse
Affiliation(s)
- Kerstin Ledniowska
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland
- Correspondence:
| | - Hanna Nosal-Kovalenko
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
| | - Weronika Janik
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland
| | - Agata Krasuska
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
| | - Dorota Stańczyk
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
| | - Ewa Sabura
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
| | - Maria Bartoszewicz
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (H.N.-K.); (W.J.); (A.K.); (D.S.); (E.S.); (M.B.)
| | - Aleksandra Rybak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland;
| |
Collapse
|
40
|
Xiang S, Dong J, Li X, Li C. Urine Phthalate Levels and Liver Function in US Adolescents: Analyses of NHANES 2007–2016. Front Public Health 2022; 10:843971. [PMID: 35317511 PMCID: PMC8934389 DOI: 10.3389/fpubh.2022.843971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Phthalates are non-persistent chemicals with endocrine-disrupting abilities widely used in a variety of consumer products. Evidence for the effects of phthalate exposure on liver function in adolescents is lacking. Methods Data were analyzed from the combined 2007–2016 National Health and Nutrition Examination Survey (NHANES). Ultimately, a total of 1,650 adolescents aged 12–19 years were selected as the samples. Weighted linear regression was used to investigate the effects of urinary phthalate metabolites on liver function indexes. Results Weighted Linear regression models showed that MCOP was negatively associated with TBIL (β = −0.0435, PFDR = 0.007), ΣDEHP (β = −0.0453, PFDR = 0.003) and MCOP (β = −0.0379, PFDR = 0.006) were negatively correlated with ALB, while MCPP was positively correlated with ALB (β = 0.0339, PFDR = 0.024), and MCOP was negatively correlated with TP (β = −0.0551; PFDR = 0.004). Conclusions Phthalate metabolites were significantly but weakly associated with changes in liver function indicators among US adolescents. Future work should further examine these relationships.
Collapse
Affiliation(s)
- Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Jie Dong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Xun Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
- *Correspondence: Xun Li
| | - Chao Li
- Department of Epidemiology and Medical Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Chao Li
| |
Collapse
|
41
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
42
|
Kang L, Chen J, Wang J, Zhao T, Wei Y, Wu Y, Han L, Zheng X, Shen L, Long C, Wei G, Wu S. Multiple transcriptomic profiling: potential novel metabolism-related genes predict prepubertal testis damage caused by DEHP exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13478-13490. [PMID: 34595713 DOI: 10.1007/s11356-021-16701-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The toxic effect of di(2-ethylhexyl) phthalate (DEHP) on prepubertal testes was examined in this study. We treated 3-week-old male mice with 4.8 mg/kg/day (milligram/kilogram/day) (no observed adverse effect level), 30 mg/kg/day (high exposure dose relative to humans), 100 mg/kg/day (level causing a reproductive system disorder), and 500 mg/kg/day (dose causing a multigenerational reproductive system disorder) of DEHP via gavage. Obvious abnormalities in the testicular organ coefficient, spermatogenic epithelium, and testosterone levels occurred in the 500 mg/kg DEHP group. Ribonucleic acid sequencing (RNA-seq) showed that differentially expressed genes (DEGs) in each group could enrich reproduction and reproductive process terms according to the gene ontology (GO) results, and coenrichment of metabolism pathway was observed by the Reactome pathway analysis. Through the analysis of common genes in the metabolism pathway, we discovered that DEHP exposure at 4.8 to 500 mg/kg or 100 mg/kg caused the same damages to the prepubertal testis. In general, we identified two key transcriptional biomarkers (fatty acid binding protein 3 (Fabp3) and carboxylesterase (Ces) 1d), which provided new insight into the gene regulatory mechanism associated with DEHP exposure and will contribute to the prediction and diagnosis of prepuberty testis injury caused by DEHP.
Collapse
Affiliation(s)
- Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Lindong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China.
| |
Collapse
|
43
|
Zeng G, Zhang Q, Wang X, Wu KH. Urinary levels of Phthalate metabolite mixtures and pulmonary function in adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118595. [PMID: 34843848 DOI: 10.1016/j.envpol.2021.118595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Although an association between urinary phthalate (PAE) metabolites and respiratory symptoms and diseases has been reported, knowledge regarding its effect on pulmonary function is limited, especially in adolescents. Using cross-sectional data from 1389 adolescents (aged 10-19 years) in the 2007-2012 National Health and Nutrition Examination Survey, the association of mixed urinary PAE metabolites with pulmonary function was evaluated using the weighted quantile sum. Moreover, multivariate linear regression was performed to investigate associations between each urinary PAE metabolite and pulmonary function indicators and to estimate the interaction effects between urinary PAE metabolites and demographic characteristics. We found that mixed urinary PAE metabolites were negatively associated with forced expiratory volume at the 1 s (FEV1, p < 0.001) and forced vital capacity (FVC, p = 0.008) levels. In individual PAE metabolite analyses, mono (carboxynonyl) pthalate (MCNP), mono-n-butyl pthalate (MnBP), mono-isobutyl pthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-benzyl phthalate (MBzP) correlated negatively with both FVC and FEV1 values (Holm-Bonferroni corrected p < 0.05). Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was negatively associated with the FVC value. Significant interactions between sex and urinary MnBP or MBzP levels for the risk of FEV1 decrease in girls were found (p = 0.005), as was a significant interaction between sex and urinary MBzP level for the risk of FVC decline. Our findings suggest that higher PAE exposure is associated with respiratory dysfunction; the association is more pronounced among girls.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
44
|
Kaneko K, Ito Y, Ebara T, Kato S, Matsuki T, Tamada H, Sato H, Saitoh S, Sugiura-Ogasawara M, Yamazaki S, Ohya Y, Kishi R, Yaegashi N, Hashimoto K, Mori C, Ito S, Yamagata Z, Inadera H, Nakayama T, Iso H, Shima M, Kurozawa Y, Suganuma N, Kusuhara K, Katoh T, Kamijima M. Association of Maternal Total Cholesterol With SGA or LGA Birth at Term: the Japan Environment and Children's Study. J Clin Endocrinol Metab 2022; 107:e118-e129. [PMID: 34416000 PMCID: PMC8684489 DOI: 10.1210/clinem/dgab618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 12/18/2022]
Abstract
CONTEXT Maternal cholesterol is important for fetal development. Whether maternal serum total cholesterol (maternal TC) levels in midpregnancy are associated with small (SGA) or large (LGA) for gestational age independent of prepregnancy body mass index (BMI) and weight gain during pregnancy is inconclusive. OBJECTIVE This work aimed to prospectively investigate the association between maternal TC in midpregnancy and SGA or LGA. METHODS The Japan Environment and Children's Study is a nationwide prospective birth cohort study in Japan. Participants in this study included 37 449 nondiabetic, nonhypertensive mothers with singleton birth at term without congenital abnormalities. Birth weight for gestational age less than the 10th percentile and greater than or equal to the 90th percentile were respectively defined as SGA and LGA by the Japanese neonatal anthropometric charts. RESULTS The mean gestational age at blood sampling was 22.7 ± 4.0 weeks. After adjustment for maternal age, sex of child, parity, weight gain during pregnancy, prepregnancy BMI, smoking, alcohol drinking, blood glucose levels, household income, and study areas, 1-SD decrement of maternal TC was linearly associated with SGA (odds ratio [OR]: 1.20; 95% CI, 1.15-1.25). In contrast, 1-SD increment of maternal TC was linearly associated with LGA (OR: 1.13; 95% CI, 1.09-1.16). Associations did not differ according to prepregnancy BMI and gestational weight gain (P for interaction > .20). CONCLUSION Maternal TC levels in midpregnancy were associated with SGA or LGA in a Japanese cohort. It may help to predict SGA and LGA. Favorable maternal lipid profiles for fetal development must be explored.
Collapse
Affiliation(s)
- Kayo Kaneko
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
- Correspondence: Yuki Ito, PhD, Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Taro Matsuki
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Hirotaka Sato
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Shin Yamazaki
- National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Yukihiro Ohya
- National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Reiko Kishi
- Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | - Shuichi Ito
- Yokohama City University, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | - Koichi Kusuhara
- University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| |
Collapse
|
45
|
Huang Y, Du X, Liu T, Liu Q. siRNA@superparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113083. [PMID: 34915219 DOI: 10.1016/j.ecoenv.2021.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNA@superparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway.
Collapse
Affiliation(s)
- Yongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Te Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
46
|
Jiang FW, Yang ZY, Bian YF, Cui JG, Zhang H, Zhao Y, Li JL. The novel role of the aquaporin water channel in lycopene preventing DEHP-induced renal ionic homeostasis disturbance in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112836. [PMID: 34601266 DOI: 10.1016/j.ecoenv.2021.112836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an extensively used plasticizer, can cause environmental pollution and organ injury. Lycopene (LYC) is a natural carotene that has the potential to prevent chronic diseases. To reveal the effect of DEHP and/or LYC on the kidney, male mice were treated with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg) by gavage for 28 days. The study indicated that DEHP caused glomerular atrophy, tubular expansion, disappearance of the mitochondrial membrane, and cristae rupture. DEHP exposure can increase the expression of aquaporin (AQP) subunits and the activity of Ca2+-Mg2+-ATPase and decrease the activity of Na+-K+-ATPase, which results in ion disorder. However, LYC can relieve kidney injury by regulating the activity of ATPase, the expression of ATPase subunits, and AQP subunit expression. The results indicated that AQP was a target for LYC in antagonizing the disturbance of DEHP-induced renal damage.
Collapse
Affiliation(s)
- Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhou-Yi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Feng Bian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
47
|
Chen Q, Zhang Y, Ye L, Gong S, Sun H, Su G. Identifying active xenobiotics in humans by use of a suspect screening technique coupled with lipidomic analysis. ENVIRONMENT INTERNATIONAL 2021; 157:106844. [PMID: 34455192 DOI: 10.1016/j.envint.2021.106844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Lipidomic analysis has been proven to be a powerful technique to explore the underlying associations between xenobiotics and health status of organisms. Here, we established a strategy that combined the lipidomic analysis with high-throughput suspect contaminant screening technique with an aim to efficiently identify active xenobiotics in humans. Firstly, in the light of single liquid phase equilibrium of chloroform-methanol-water (15:14:2, v/v/v), we developed an efficient method that was able to simultaneously extract both polar and nonpolar lipids in serum samples. By use of this method, targeted and non-targeted lipid analyses were conducted for n = 120 serum samples collected from Wuxi city, China. Secondly, we established a suspect database containing 1450 contaminants that have been previously reported in human samples, and contaminants in this database were screened in the same batch of serum samples by use of high-resolution mass spectrometry (HR-MS). Thirdly, the underlying associations between suspect contaminants and lipids were explored and discussed, and we observed that levels of some lipids were statistically correlated with concentrations of numerous contaminants. Among these active contaminants, 23 ones were identified on the basis of HR MS1 and MS2 characteristics, and these contaminants belonged to the classes of phthalates, phenols, parabens, or perfluorinated compounds (PFCs). Three active xenobiotics were fully validated by comparison with authentic standards, and they were perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and diethyl phthalate (DEP). There were statistically significant changes in levels of triglyceride (TG), lysophosphocholine (LPC), and sphingomyelin (SM) as peak areas of xenobiotics increase. We also observed that, among target lipid molecules, 18:0 lysophosphatidylethanolamine (LPE(18:0)) was very sensitive, and this lipid responded to exposure of various contaminants. Our present study provides novel knowledge on potential alteration of lipid metabolism in humans following exposure to xenobiotics, and provides an efficient strategy for efficiently identifying active xenobiotics in humans.
Collapse
Affiliation(s)
- Qianyu Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China.
| |
Collapse
|
48
|
Lee BY, Jo JB, Choi D, Lee SH, Cheon YP. A Chronic-Low-Dose Exposing of DEHP with OECD TG 443 Altered the
Histological Characteristics and Steroidogeic Gene Expression of Adrenal Gland
in Female Mice. Dev Reprod 2021; 25:257-268. [PMID: 35141451 PMCID: PMC8807134 DOI: 10.12717/dr.2021.25.4.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Bo Young Lee
- Division of Developmental Biology and
Physiology, Center for Development and Program Research, Department of
Biotechnology, Institute of Basic Sciences, Sungshin
University, Seoul 02844, Korea
| | - Jeong Bin Jo
- Division of Developmental Biology and
Physiology, Center for Development and Program Research, Department of
Biotechnology, Institute of Basic Sciences, Sungshin
University, Seoul 02844, Korea
| | - Donchan Choi
- Dept. of Life Science, College of
Environmental Sciences, Yong-In University, Yongin
17092, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, Center for Development and Program Research, Department of
Biotechnology, Institute of Basic Sciences, Sungshin
University, Seoul 02844, Korea
- Corresponding author Yong-Pil Cheon,
Division of Developmental Biology and Physiology, Department of Biotechnology,
Institute of Basic Sciences, Sungshin University, Seoul 02844, Korea. Tel:
+82-2-920-7639, Fax: +82-2-920-2736,
E-mail:
| |
Collapse
|
49
|
Ahmaditabatabaei S, Kyazze G, Iqbal HMN, Keshavarz T. Fungal Enzymes as Catalytic Tools for Polyethylene Terephthalate (PET) Degradation. J Fungi (Basel) 2021; 7:931. [PMID: 34829219 PMCID: PMC8625934 DOI: 10.3390/jof7110931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023] Open
Abstract
The ubiquitous persistence of plastic waste in diverse forms and different environmental matrices is one of the main challenges that modern societies are facing at present. The exponential utilization and recalcitrance of synthetic plastics, including polyethylene terephthalate (PET), results in their extensive accumulation, which is a significant threat to the ecosystem. The growing amount of plastic waste ending up in landfills and oceans is alarming due to its possible adverse effects on biota. Thus, there is an urgent need to mitigate plastic waste to tackle the environmental crisis of plastic pollution. With regards to PET, there is a plethora of literature on the transportation route, ingestion, environmental fate, amount, and the adverse ecological and human health effects. Several studies have described the deployment of various microbial enzymes with much focus on bacterial-enzyme mediated removal and remediation of PET. However, there is a lack of consolidated studies on the exploitation of fungal enzymes for PET degradation. Herein, an effort has been made to cover this literature gap by spotlighting the fungi and their unique enzymes, e.g., esterases, lipases, and cutinases. These fungal enzymes have emerged as candidates for the development of biocatalytic PET degradation processes. The first half of this review is focused on fungal biocatalysts involved in the degradation of PET. The latter half explains three main aspects: (1) catalytic mechanism of PET hydrolysis in the presence of cutinases as a model fungal enzyme, (2) limitations hindering enzymatic PET biodegradation, and (3) strategies for enhancement of enzymatic PET biodegradation.
Collapse
Affiliation(s)
- Seyedehazita Ahmaditabatabaei
- School of Life sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK; (S.A.); (G.K.)
| | - Godfrey Kyazze
- School of Life sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK; (S.A.); (G.K.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Tajalli Keshavarz
- School of Life sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK; (S.A.); (G.K.)
| |
Collapse
|
50
|
Leng J, Li H, Niu Y, Chen K, Yuan X, Chen H, Fu Z, Zhang L, Wang F, Chen C, Héroux P, Yang J, Zhu X, Lu W, Xia D, Wu Y. Low-dose mono(2-ethylhexyl) phthalate promotes ovarian cancer development through PPARα-dependent PI3K/Akt/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147990. [PMID: 34380243 DOI: 10.1016/j.scitotenv.2021.147990] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) and its hydrolysate mono(2-ethylhexyl) phthalate (MEHP) are major toxicants from plastics, but their association with hormone-dependent cancers has been controversial. We treated the human ovarian cancer cell lines SKOV3 and A2780 with low concentrations of DEHP/MEHP, and found that although no significant effect on cell proliferation was observed, ovarian cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT) were promoted by submicromolar MEHP but not DEHP. Next, ovarian cancer patient data from The Cancer Genome Atlas (TCGA) were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) supported enrichment and Kaplan-Meier survival analyses, which identified PI3K/Akt pathway as a pivotal signaling pathway in ovarian cancer. We found that 500 nM MEHP treatment significantly increased PIK3CA expression, which could be reversed by the knockdown of peroxisome proliferator-activated receptor alpha (PPARα). Silencing PIK3CA significantly suppressed the MEHP-induced migration, invasion and EMT. In addition, we validated that MEHP treatment promoted phosphorylation of Akt and degradation of IκB-α, thereby activating NF-κB and enhancing NF-κB nuclear translocation. In nude mice, MEHP exposure significantly promoted the metastasis of ovarian cancer xenografts, which could be suppressed by the treatment of PPARα inhibitor GW6471. Our findings showed that low-dose MEHP promoted ovarian cancer progression through activating PI3K/Akt/NF-κB pathway, in a PPARα-dependent manner.
Collapse
Affiliation(s)
- Jing Leng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyi Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Scientific Research Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwen Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoyi Chen
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Jun Yang
- Department of Public Health, Hangzhou Normal University School of Medicine, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinqiang Zhu
- Central Laboratory of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiguo Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China.
| |
Collapse
|