1
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short- and long-term enhancer regulation during cell fate specification. Cell Rep 2025; 44:115680. [PMID: 40349339 DOI: 10.1016/j.celrep.2025.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Chromatin and DNA modifications mediate the transcriptional activity of lineage-specifying enhancers, but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly resolved timeline of their dynamics during neural progenitor cell differentiation. We discovered that, while complete demethylation appears delayed relative to shorter-lived chromatin changes for thousands of enhancers, DNA demethylation actually initiates with 5-hydroxymethylation before appreciable accessibility and transcription factor occupancy is observed. The extended timeline of DNA demethylation creates temporal discordance appearing as heterogeneity in enhancer regulatory states. Few regions ever gain methylation, and resulting enhancer hypomethylation persists long after chromatin activities have dissipated. We demonstrate that the temporal methylation status of CpGs (mC/hmC/C) predicts past, present, and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to shape short- and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy J Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacqueline A Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Fabio Puddu
- Biomodal, Chesterford Research Park, Cambridge CB10 1XL, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pediatrics - Section of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Green EH, Kotrannavar SR, Rutherford ME, Lunnemann HM, Kaur H, Heiser CN, Ding H, Simmons AJ, Liu X, Lacy DB, Washington MK, Shrubsole MJ, Liu Q, Lau KS, Sears CL, Coffey RJ, Drewes JL, Markham NO. Multiomic spatial atlas shows deleted in malignant brain tumors 1 (DMBT1) glycoprotein is lost in colonic dysplasia. J Pathol 2025; 266:51-65. [PMID: 40026233 PMCID: PMC11985286 DOI: 10.1002/path.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is responsible for over 900,000 annual deaths worldwide. Emerging evidence supports pro-carcinogenic bacteria in the colonic microbiome are at least promotional in CRC development and may be causal. We previously showed toxigenic C. difficile from human CRC-associated bacterial biofilms accelerates tumorigenesis in ApcMin/+ mice, both in specific pathogen-free mice and in gnotobiotic mice colonized with a defined consortium of bacteria. To further understand host-microbe interactions during colonic tumorigenesis, we combined single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and immunofluorescence to define the molecular spatial organization of colonic dysplasia in our consortium model with or without C. difficile. Our data show a striking bipartite regulation of Deleted in Malignant Brain Tumors 1 (DMBT1) in the inflamed versus dysplastic colon. From scRNA-seq, differential gene expression analysis of normal absorptive colonocytes at 2 weeks postinoculation showed DMBT1 upregulated by C. difficile compared to colonocytes from mice without C. difficile exposure. In contrast, our spatial transcriptomic analysis showed DMBT1 dramatically downregulated in dysplastic foci compared with normal-adjacent tissue. We further integrated our datasets to generate custom colonic dysplasia scores and ligand-receptor mapping. Validation with immunofluorescence showed DMBT1 protein downregulated in dysplastic foci from three mouse models of colonic tumorigenesis and in adenomatous dysplasia from human samples. Finally, we used mouse and human organoids to implicate WNT signaling in the downregulation of DMBT1 mRNA and protein. Together, our data reveal cell type-specific regulation of DMBT1, a potential mechanistic link between bacteria and colonic tumorigenesis. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emily H Green
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Megan E Rutherford
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Hannah M Lunnemann
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Harsimran Kaur
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTNUSA
| | - Cody N Heiser
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Hua Ding
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Alan J Simmons
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Xiao Liu
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - M Kay Washington
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Martha J Shrubsole
- Vanderbilt Epidemiology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Qi Liu
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Ken S Lau
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Cynthia L Sears
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Nicholas O Markham
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
3
|
Juzenas S, Goda K, Kiseliovas V, Zvirblyte J, Quintinal-Villalonga A, Siurkus J, Nainys J, Mazutis L. inDrops-2: a flexible, versatile and cost-efficient droplet microfluidic approach for high-throughput scRNA-seq of fresh and preserved clinical samples. Nucleic Acids Res 2025; 53:gkae1312. [PMID: 39797728 PMCID: PMC11724362 DOI: 10.1093/nar/gkae1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples. Moreover, as the scale of single-cell sequencing continues to expand, accommodating diverse workflows and cost-effective multi-biospecimen profiling becomes more critical. Herein, we present inDrops-2, an open-source scRNA-seq technology designed to profile live or preserved cells with a sensitivity matching that of state-of-the-art commercial systems but at a 6-fold lower cost. We demonstrate the flexibility of inDrops-2, by implementing two prominent scRNA-seq protocols, based on exponential and linear amplification of barcoded-complementary DNA, and provide useful insights into the advantages and disadvantages inherent to each approach. We applied inDrops-2 to simultaneously profile multiple human lung carcinoma samples that had been subjected to cell preservation, long-term storage and multiplexing to obtain a multiregional cellular profile of the tumor microenvironment. The scalability, sensitivity and cost efficiency make inDrops-2 stand out among other droplet-based scRNA-seq methods, ideal for large-scale studies on rare cell molecular signatures.
Collapse
Affiliation(s)
- Simonas Juzenas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Karolis Goda
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Vaidotas Kiseliovas
- Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY, 10065, USA
| | - Justina Zvirblyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | | | - Juozas Siurkus
- Thermo Fisher Scientific Baltics, Research and Development, Vilnius, 02241, Lithuania
| | | | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
- Department of Molecular Biology, Umea University, Umea, 901 87, Sweden
| |
Collapse
|
4
|
Short SP, Brown RE, Chen Z, Pilat JM, McElligott BA, Meenderink LM, Bickart AC, Blunt KM, Jacobse J, Wang J, Simmons AJ, Xu Y, Yang Y, Parang B, Choksi YA, Goettel JA, Lau KS, Hiebert SW, Williams CS. MTGR1 is required to maintain small intestinal stem cell populations. Cell Death Differ 2024; 31:1170-1183. [PMID: 39048708 PMCID: PMC11369156 DOI: 10.1038/s41418-024-01346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Undifferentiated intestinal stem cells (ISCs) are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis where they differentiate into specialized cell types. Coordinated execution of complex transcriptional programs is necessary to allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss specifically in ISC biology. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic and functional analyses revealed deficiencies in Mtgr1-null ISCs, including deregulated ISC-associated transcriptional programs. Ex vivo, intestinal organoids established from Mtgr1-null mice were unable to survive and expand due to aberrant differentiation and loss of stem and proliferative cells. Together, these results indicate that the role of MTGR1 in intestinal differentiation is likely stem cell intrinsic and identify a novel role for MTGR1 in maintaining ISC function.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Leslie M Meenderink
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Alexander C Bickart
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Koral M Blunt
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bobak Parang
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yash A Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Jeremy A Goettel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Scott W Hiebert
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun 2024; 15:7204. [PMID: 39169060 PMCID: PMC11339313 DOI: 10.1038/s41467-024-51580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella A Raffa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Contreras-Panta EW, Lee SH, Won Y, Norlander AE, Simmons AJ, Peebles RS, Lau KS, Choi E, Goldenring JR. Interleukin 13 Promotes Maturation and Proliferation in Metaplastic Gastroids. Cell Mol Gastroenterol Hepatol 2024; 18:101366. [PMID: 38815928 PMCID: PMC11292363 DOI: 10.1016/j.jcmgh.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND & AIMS Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 up-regulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.
Collapse
Affiliation(s)
- Ela W Contreras-Panta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yoonkyung Won
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
7
|
Awuah WA, Roy S, Tan JK, Adebusoye FT, Qiang Z, Ferreira T, Ahluwalia A, Shet V, Yee ALW, Abdul‐Rahman T, Papadakis M. Exploring the current landscape of single-cell RNA sequencing applications in gastric cancer research. J Cell Mol Med 2024; 28:e18159. [PMID: 38494861 PMCID: PMC10945075 DOI: 10.1111/jcmm.18159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.
Collapse
Affiliation(s)
| | - Sakshi Roy
- School of MedicineQueen's University BelfastBelfastUK
| | | | | | - Zekai Qiang
- Department of Oncology & MetabolismThe University of SheffieldSheffieldUK
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| |
Collapse
|
8
|
Gu G, Brown M, Agan V, Nevills S, Hu R, Simmons A, Xu Y, Yang Y, Yagan M, Najam S, Dadi P, Sampson L, Magnuson M, Jacobson D, Lau K, Hodges E. Endocrine islet β-cell subtypes with differential function are derived from biochemically distinct embryonic endocrine islet progenitors that are regulated by maternal nutrients. RESEARCH SQUARE 2024:rs.3.rs-3946483. [PMID: 38496675 PMCID: PMC10942487 DOI: 10.21203/rs.3.rs-3946483/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Endocrine islet b cells comprise heterogenous cell subsets. Yet when/how these subsets are produced and how stable they are remain unknown. Addressing these questions is important for preventing/curing diabetes, because lower numbers of b cells with better secretory function is a high risk of this disease. Using combinatorial cell lineage tracing, scRNA-seq, and DNA methylation analysis, we show here that embryonic islet progenitors with distinct gene expression and DNA methylation produce b-cell subtypes of different function and viability in adult mice. The subtype with better function is enriched for genes involved in vesicular production/trafficking, stress response, and Ca2+-secretion coupling, which further correspond to differential DNA methylation in putative enhancers of these genes. Maternal overnutrition, a major diabetes risk factor, reduces the proportion of endocrine progenitors of the b-cell subtype with better-function via deregulating DNA methyl transferase 3a. Intriguingly, the gene signature that defines mouse b-cell subtypes can reliably divide human cells into two sub-populations while the proportion of b cells with better-function is reduced in diabetic donors. The implication of these results is that modulating DNA methylation in islet progenitors using maternal food supplements can be explored to improve b-cell function in the prevention and therapy of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yilin Yang
- Vanderbilty University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li J, Simmons AJ, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. A Specialized Epithelial Cell Type Regulating Mucosal Immunity and Driving Human Crohn's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560293. [PMID: 37873404 PMCID: PMC10592875 DOI: 10.1101/2023.09.30.560293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder that may affect any part of gastrointestinal tract with extra-intestinal manifestations and associated immune dysregulation. To characterize heterogeneity in CD, we profiled single-cell transcriptomics of 170 samples from 65 CD patients and 18 non-inflammatory bowel disease (IBD) controls in both the terminal ileum (TI) and ascending colon (AC). Analysis of 202,359 cells identified a novel epithelial cell type in both TI and AC, featuring high expression of LCN2, NOS2, and DUOX2, and thus is named LND. LND cells, confirmed by high-resolution in-situ RNA imaging, were rarely found in non-IBD controls, but expanded significantly in active CD. Compared to other epithelial cells, genes defining LND cells were enriched in antimicrobial response and immunoregulation. Moreover, multiplexed protein imaging demonstrated that LND cell abundance was associated with immune infiltration. Cross-talk between LND and immune cells was explored by ligand-receptor interactions and further evidenced by their spatial colocalization. LND cells showed significant enrichment of expression specificity of IBD/CD susceptibility genes, revealing its role in immunopathogenesis of CD. Investigating lineage relationships of epithelial cells detected two LND cell subpopulations with different origins and developmental potential, early and late LND. The ratio of the late to early LND cells was related to anti-TNF response. These findings emphasize the pathogenic role of the specialized LND cell type in both Crohn's ileitis and Crohn's colitis and identify novel biomarkers associated with disease activity and treatment response.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A. Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N. Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W. Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N. Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dawn B. Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L. Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N. Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S. Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T. Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA
| | - Elizabeth A. Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - David A. Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Ken S. Lau
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Williams C, Brown R, Zhao Y, Wang J, Chen Z, Blunt K, Pilat J, Parang B, Choksi Y, Lau K, Hiebert S, Short S, Jacobse J, Xu Y, Yang Y, Goettel J. MTGR1 is required to maintain small intestinal stem cell populations. RESEARCH SQUARE 2023:rs.3.rs-3315071. [PMID: 37790452 PMCID: PMC10543309 DOI: 10.21203/rs.3.rs-3315071/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Undifferentiated intestinal stem cells (ISCs), particularly those marked by Lgr5, are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis, where they differentiate into a variety of specialized cell types. This process requires coordinated execution of complex transcriptional programs, which allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Thus, disrupting these programs may negatively impact homeostasis and response to injury. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss on ISC biology and differentiation programs. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic analyses revealed MTGR1 loss may instead promote stem cell differentiation into transit-amplifying cells at the expense of cycling ISC populations. Furthermore, ex vivo intestinal organoids established from Mtgr1 null were found nearly completely unable to survive and expand, likely due to aberrant ISC differentiation, suggesting that Mtgr1 null ISCs were functionally deficient as compared to WT ISCs. Together, these results identify a novel role for MTGR1 in ISC function and suggest that MTGR1 is required to maintain the undifferentiated state.
Collapse
Affiliation(s)
| | | | | | - Jing Wang
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Arceneaux D, Chen Z, Simmons AJ, Heiser CN, Southard-Smith AN, Brenan MJ, Yang Y, Chen B, Xu Y, Choi E, Campbell JD, Liu Q, Lau KS. A contamination focused approach for optimizing the single-cell RNA-seq experiment. iScience 2023; 26:107242. [PMID: 37496679 PMCID: PMC10366499 DOI: 10.1016/j.isci.2023.107242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/10/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Droplet-based single-cell RNA-seq (scRNA-seq) data are plagued by ambient contaminations caused by nucleic acid material released by dead and dying cells. This material is mixed into the buffer and is co-encapsulated with cells, leading to a lower signal-to-noise ratio. Although there exist computational methods to remove ambient contaminations post-hoc, the reliability of algorithms in generating high-quality data from low-quality sources remains uncertain. Here, we assess data quality before data filtering by a set of quantitative, contamination-based metrics that assess data quality more effectively than standard metrics. Through a series of controlled experiments, we report improvements that can minimize ambient contamination outside of tissue dissociation, via cell fixation, improved cell loading, microfluidic dilution, and nuclei versus cell preparation; many of these parameters are inaccessible on commercial platforms. We provide end-users with insights on factors that can guide their decision-making regarding optimizations that minimize ambient contamination, and metrics to assess data quality.
Collapse
Affiliation(s)
- Deronisha Arceneaux
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J. Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody N. Heiser
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Austin N. Southard-Smith
- McDonnell Genome Institute and Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eunyoung Choi
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua D. Campbell
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Cui C, Bao S, Li J, Deng R, Remedios LW, Asad Z, Chiron S, Lau KS, Wang Y, Coburn LA, Wilson KT, Roland JT, Landman BA, Liu Q, Huo Y. Influence of Cell-type Ratio on Spatially Resolved Single-cell Transcriptomes using the Tangram Algorithm: Based on Implementation on Single-Cell and MxIF Data. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12471:124710A. [PMID: 37324550 PMCID: PMC10270698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The Tangram algorithm is a benchmarking method of aligning single-cell (sc/snRNA-seq) data to various forms of spatial data collected from the same region. With this data alignment, the annotation of the single-cell data can be projected to spatial data. However, the cell composition (cell-type ratio) of the single-cell data and spatial data might be different because of heterogeneous cell distribution. Whether the Tangram algorithm can be adapted when the two data have different cell-type ratios has not been discussed in previous works. In our practical application that maps the cell-type classification results of single-cell data to the Multiplex immunofluorescence (MxIF) spatial data, cell-type ratios were different, though they were sampled from adjacent areas. In this work, both simulation and empirical validation were conducted to quantitatively explore the impact of the mismatched cell-type ratio on the Tangram mapping in different situations. Results show that the cell-type difference has a negative influence on classification accuracy.
Collapse
Affiliation(s)
- Can Cui
- Vanderbilt University, Nashville TN 37215, USA
| | | | - Jia Li
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | | | | | - Zuhayr Asad
- Vanderbilt University, Nashville TN 37215, USA
| | - Sophie Chiron
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Ken S Lau
- Vanderbilt University, Nashville TN 37215, USA
| | - Yaohong Wang
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Lori A Coburn
- Vanderbilt University Medical Center, Nashville TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Keith T Wilson
- Vanderbilt University Medical Center, Nashville TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Joseph T Roland
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | | | - Qi Liu
- Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Yuankai Huo
- Vanderbilt University, Nashville TN 37215, USA
| |
Collapse
|
13
|
Lin JR, Wang S, Coy S, Chen YA, Yapp C, Tyler M, Nariya MK, Heiser CN, Lau KS, Santagata S, Sorger PK. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 2023; 186:363-381.e19. [PMID: 36669472 PMCID: PMC10019067 DOI: 10.1016/j.cell.2022.12.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Collapse
Affiliation(s)
- Jia-Ren Lin
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shu Wang
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Shannon Coy
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yu-An Chen
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Madison Tyler
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Maulik K Nariya
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cody N Heiser
- Program in Chemical & Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sandro Santagata
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Min J, Zhang C, Bliton RJ, Caldwell B, Caplan L, Presentation KS, Park DJ, Kong SH, Lee HS, Washington MK, Kim WH, Lau KS, Magness ST, Lee HJ, Yang HK, Goldenring JR, Choi E. Dysplastic Stem Cell Plasticity Functions as a Driving Force for Neoplastic Transformation of Precancerous Gastric Mucosa. Gastroenterology 2022; 163:875-890. [PMID: 35700772 PMCID: PMC9509466 DOI: 10.1053/j.gastro.2022.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Dysplasia carries a high risk of cancer development; however, the cellular mechanisms for dysplasia evolution to cancer are obscure. We have previously identified 2 putative dysplastic stem cell (DSC) populations, CD44v6neg/CD133+/CD166+ (double positive [DP]) and CD44v6+/CD133+/CD166+ (triple positive [TP]), which may contribute to cellular heterogeneity of gastric dysplasia. Here, we investigated functional roles and cell plasticity of noncancerous Trop2+/CD133+/CD166+ DSCs initially developed in the transition from precancerous metaplasia to dysplasia in the stomach. METHODS Dysplastic organoids established from active Kras-induced mouse stomachs were used for transcriptome analysis, in vitro differentiation, and in vivo tumorigenicity assessments of DSCs. Cell heterogeneity and genetic alterations during clonal evolution of DSCs were examined by next-generation sequencing. Tissue microarrays were used to identify DSCs in human dysplasia. We additionally evaluated the effect of casein kinase 1 alpha (CK1α) regulation on the DSC activities using both mouse and human dysplastic organoids. RESULTS We identified a high similarity of molecular profiles between DP- and TP-DSCs, but more dynamic activities of DP-DSCs in differentiation and survival for maintaining dysplastic cell lineages through Wnt ligand-independent CK1α/β-catenin signaling. Xenograft studies demonstrated that the DP-DSCs clonally evolve toward multiple types of gastric adenocarcinomas and promote cancer cell heterogeneity by acquiring additional genetic mutations and recruiting the tumor microenvironment. Last, growth and survival of both mouse and human dysplastic organoids were controlled by targeting CK1α. CONCLUSIONS These findings indicate that the DSCs are de novo gastric cancer-initiating cells responsible for neoplastic transformation and a promising target for intervention in early induction of gastric cancer.
Collapse
Affiliation(s)
- Jimin Min
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Leah Caplan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kimberly S Presentation
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Woo-Ho Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Scott T Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
15
|
Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, Stauffer PE, Wasdin PT, Huang X, Qiao Y, Lim JS, Bader J, Liu Q, Simmons AJ, Lau KS, Iams WT, Hardin DP, Saff EB, Holmes WR, Tyson DR, Lovly CM, Rathmell JC, Marth G, Sage J, Oliver TG, Weaver AM, Quaranta V. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Syst 2022; 13:690-710.e17. [PMID: 35981544 PMCID: PMC9615940 DOI: 10.1016/j.cels.2022.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Geena V Ildefonso
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin O McAtee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip E Stauffer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Perry T Wasdin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Shan Lim
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jackie Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Wade T Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Doug P Hardin
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward B Saff
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Holmes
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; Department of Physics, Vanderbilt University, Nashville, TN 37235, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine M Lovly
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
16
|
Simmons AJ, Lau KS. Dissociation and inDrops microfluidic encapsulation of human gut tissues for single-cell atlasing studies. STAR Protoc 2022; 3:101570. [PMID: 35880121 PMCID: PMC9307676 DOI: 10.1016/j.xpro.2022.101570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In droplet-based single-cell RNA-sequencing (scRNA-seq) experiments, cells, along with some of their surrounding buffer and ambient material, are encapsulated into droplets for mRNA capture and barcoding. This protocol details the steps for human gut tissue dissociation using cold active protease, and subsequent isolation of single epithelial cells, with enrichment of viability through washes. Next, the steps for encapsulation on the inDrops scRNA-seq platform are described. This procedure has been demonstrated to be applicable to polyps, cancers, and inflamed tissues. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).
Collapse
Affiliation(s)
- Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Drewes JL, Chen J, Markham NO, Knippel RJ, Domingue JC, Tam AJ, Chan JL, Kim L, McMann M, Stevens C, Dejea CM, Tomkovich S, Michel J, White JR, Mohammad F, Campodónico VL, Heiser CN, Wu X, Wu S, Ding H, Simner P, Carroll K, Shrubsole MJ, Anders RA, Walk ST, Jobin C, Wan F, Coffey RJ, Housseau F, Lau KS, Sears CL. Human Colon Cancer-Derived Clostridioides difficile Strains Drive Colonic Tumorigenesis in Mice. Cancer Discov 2022; 12:1873-1885. [PMID: 35678528 PMCID: PMC9357196 DOI: 10.1158/2159-8290.cd-21-1273] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
Defining the complex role of the microbiome in colorectal cancer and the discovery of novel, protumorigenic microbes are areas of active investigation. In the present study, culturing and reassociation experiments revealed that toxigenic strains of Clostridioides difficile drove the tumorigenic phenotype of a subset of colorectal cancer patient-derived mucosal slurries in germ-free ApcMin/+ mice. Tumorigenesis was dependent on the C. difficile toxin TcdB and was associated with induction of Wnt signaling, reactive oxygen species, and protumorigenic mucosal immune responses marked by the infiltration of activated myeloid cells and IL17-producing lymphoid and innate lymphoid cell subsets. These findings suggest that chronic colonization with toxigenic C. difficile is a potential driver of colorectal cancer in patients. SIGNIFICANCE Colorectal cancer is a leading cause of cancer and cancer-related deaths worldwide, with a multifactorial etiology that likely includes procarcinogenic bacteria. Using human colon cancer specimens, culturing, and murine models, we demonstrate that chronic infection with the enteric pathogen C. difficile is a previously unrecognized contributor to colonic tumorigenesis. See related commentary by Jain and Dudeja, p. 1838. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Julia L. Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jie Chen
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, Maryland
| | - Nicholas O. Markham
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Reece J. Knippel
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jada C. Domingue
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada J. Tam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - June L. Chan
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lana Kim
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Madison McMann
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Courtney Stevens
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M. Dejea
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida
| | - John Michel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Fuad Mohammad
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria L. Campodónico
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cody N. Heiser
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell and Developmental Biology and Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xinqun Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaoguang Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hua Ding
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, Maryland
| | - Patricia Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen Carroll
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martha J. Shrubsole
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida
| | - Fengyi Wan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert J. Coffey
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Franck Housseau
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell and Developmental Biology and Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Cynthia L. Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Brown RE, Jacobse J, Anant SA, Blunt KM, Chen B, Vega PN, Jones CT, Pilat JM, Revetta F, Gorby AH, Stengel KR, Choksi YA, Palin K, Piazuelo MB, Washington MK, Lau KS, Goettel JA, Hiebert SW, Short SP, Williams CS. MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight 2022; 7:e153045. [PMID: 35503250 PMCID: PMC9220854 DOI: 10.1172/jci.insight.153045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-/- colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
Collapse
Affiliation(s)
- Rachel E. Brown
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Koral M. Blunt
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
| | - Chase T. Jones
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Aidan H. Gorby
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimmo Palin
- Department of Medical and Clinical Genetics
- Applied Tumor Genomics Research Program, Research Programs Unit, and
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher S. Williams
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Alfieri JM, Wang G, Jonika MM, Gill CA, Blackmon H, Athrey GN. A Primer for Single-Cell Sequencing in Non-Model Organisms. Genes (Basel) 2022; 13:380. [PMID: 35205423 PMCID: PMC8872538 DOI: 10.3390/genes13020380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Single-cell sequencing technologies have led to a revolution in our knowledge of the diversity of cell types, connections between biological levels of organization, and relationships between genotype and phenotype. These advances have mainly come from using model organisms; however, using single-cell sequencing in non-model organisms could enable investigations of questions inaccessible with typical model organisms. This primer describes a general workflow for single-cell sequencing studies and considerations for using non-model organisms (limited to multicellular animals). Importantly, single-cell sequencing, when further applied in non-model organisms, will allow for a deeper understanding of the mechanisms between genotype and phenotype and the basis for biological variation.
Collapse
Affiliation(s)
- James M. Alfieri
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (M.M.J.); (H.B.)
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA;
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Guosong Wang
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (G.W.); (C.A.G.)
| | - Michelle M. Jonika
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (M.M.J.); (H.B.)
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| | - Clare A. Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (G.W.); (C.A.G.)
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (M.M.J.); (H.B.)
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA;
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA;
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
20
|
Lin X, Chi D, Meng Q, Gong Q, Tong Z. Single-Cell Sequencing Unveils the Heterogeneity of Nonimmune Cells in Chronic Apical Periodontitis. Front Cell Dev Biol 2022; 9:820274. [PMID: 35237614 PMCID: PMC8883837 DOI: 10.3389/fcell.2021.820274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic apical periodontitis (CAP) is a unique dynamic interaction between microbial invasions and host defense mechanisms, resulting in infiltration of immune cells, bone absorption, and periapical granuloma formation. To help to understand periapical tissue pathophysiology, we constituted a single-cell atlas for 26,737 high-quality cells from inflammatory periapical tissue and uncovered the complex cellular landscape. The eight types of cells, including nonimmune cells and immune cells, were identified in the periapical tissue of CAP. Considering the key roles of nonimmune cells in CAP, we emphasized osteo-like cells, basal/stromal cells, endothelial cells, and epithelial cells, and discovered their diversity and heterogeneity. The temporal profiling of genomic alterations from common CAP to typical periapical granuloma provided predictions for transcription factors and biological processes. Our study presented potential clues that the shift of inflammatory cytokines, chemokines, proteases, and growth factors initiated polymorphic cell differentiation, lymphangiogenesis, and angiogenesis during CAP.
Collapse
Affiliation(s)
- Xinwei Lin
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Danlu Chi
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qingzhen Meng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qimei Gong, ; Zhongchun Tong,
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qimei Gong, ; Zhongchun Tong,
| |
Collapse
|
21
|
Chen B, Scurrah CR, McKinley ET, Simmons AJ, Ramirez-Solano MA, Zhu X, Markham NO, Heiser CN, Vega PN, Rolong A, Kim H, Sheng Q, Drewes JL, Zhou Y, Southard-Smith AN, Xu Y, Ro J, Jones AL, Revetta F, Berry LD, Niitsu H, Islam M, Pelka K, Hofree M, Chen JH, Sarkizova S, Ng K, Giannakis M, Boland GM, Aguirre AJ, Anderson AC, Rozenblatt-Rosen O, Regev A, Hacohen N, Kawasaki K, Sato T, Goettel JA, Grady WM, Zheng W, Washington MK, Cai Q, Sears CL, Goldenring JR, Franklin JL, Su T, Huh WJ, Vandekar S, Roland JT, Liu Q, Coffey RJ, Shrubsole MJ, Lau KS. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 2021; 184:6262-6280.e26. [PMID: 34910928 PMCID: PMC8941949 DOI: 10.1016/j.cell.2021.11.031] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.
Collapse
Affiliation(s)
- Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiangzhu Zhu
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hyeyon Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Zhou
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Ro
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne D Berry
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mirazul Islam
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan H Chen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew J Aguirre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jeremy A Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Gastroenterology Division, University of Washington School of Medicine, Seattle, WA, USA
| | - Wei Zheng
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Su
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Martha J Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology 2021; 19:312. [PMID: 34635104 PMCID: PMC8507141 DOI: 10.1186/s12951-021-01045-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Tian-Tian Xu
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, 830004, People's Republic of China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Gen He
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
23
|
Heiser CN, Wang VM, Chen B, Hughey JJ, Lau KS. Automated quality control and cell identification of droplet-based single-cell data using dropkick. Genome Res 2021; 31:1742-1752. [PMID: 33837131 PMCID: PMC8494217 DOI: 10.1101/gr.271908.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
A major challenge for droplet-based single-cell sequencing technologies is distinguishing true cells from uninformative barcodes in data sets with disparate library sizes confounded by high technical noise (i.e., batch-specific ambient RNA). We present dropkick, a fully automated software tool for quality control and filtering of single-cell RNA sequencing (scRNA-seq) data with a focus on excluding ambient barcodes and recovering real cells bordering the quality threshold. By automatically determining data set-specific training labels based on predictive global heuristics, dropkick learns a gene-based representation of real cells and ambient noise, calculating a cell probability score for each barcode. Using simulated and real-world scRNA-seq data, we benchmarked dropkick against conventional thresholding approaches and EmptyDrops, a popular computational method, showing greater recovery of rare cell types and exclusion of empty droplets and noisy, uninformative barcodes. We show for both low- and high-background data sets that dropkick's weakly supervised model reliably learns which genes are enriched in ambient barcodes and draws a multidimensional boundary that is more robust to data set-specific variation than existing filtering approaches. dropkick provides a fast, automated tool for reproducible cell identification from scRNA-seq data that is critical to downstream analysis and compatible with popular single-cell Python packages.
Collapse
Affiliation(s)
- Cody N Heiser
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Victoria M Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jacob J Hughey
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
24
|
Guenay-Greunke Y, Bohan DA, Traugott M, Wallinger C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci Rep 2021; 11:19510. [PMID: 34593851 PMCID: PMC8484467 DOI: 10.1038/s41598-021-98018-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
High-throughput sequencing platforms are increasingly being used for targeted amplicon sequencing because they enable cost-effective sequencing of large sample sets. For meaningful interpretation of targeted amplicon sequencing data and comparison between studies, it is critical that bioinformatic analyses do not introduce artefacts and rely on detailed protocols to ensure that all methods are properly performed and documented. The analysis of large sample sets and the use of predefined indexes create challenges, such as adjusting the sequencing depth across samples and taking sequencing errors or index hopping into account. However, the potential biases these factors introduce to high-throughput amplicon sequencing data sets and how they may be overcome have rarely been addressed. On the example of a nested metabarcoding analysis of 1920 carabid beetle regurgitates to assess plant feeding, we investigated: (i) the variation in sequencing depth of individually tagged samples and the effect of library preparation on the data output; (ii) the influence of sequencing errors within index regions and its consequences for demultiplexing; and (iii) the effect of index hopping. Our results demonstrate that despite library quantification, large variation in read counts and sequencing depth occurred among samples and that the sequencing error rate in bioinformatic software is essential for accurate adapter/primer trimming and demultiplexing. Moreover, setting an index hopping threshold to avoid incorrect assignment of samples is highly recommended.
Collapse
Affiliation(s)
- Yasemin Guenay-Greunke
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria. .,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria.
| | - David A Bohan
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Corinna Wallinger
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria
| |
Collapse
|
25
|
Chinowsky CR, Pinette JA, Meenderink LM, Lau KS, Tyska MJ. Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Mol Biol Cell 2020; 31:2803-2815. [PMID: 33026933 PMCID: PMC7851865 DOI: 10.1091/mbc.e20-09-0582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the "terminal web." Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.
Collapse
Affiliation(s)
- Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|