1
|
Zhang Q, Hutchison ER, Pan C, Warren MF, Keller MP, Attie AD, Lusis AJ, Rey FE. Systems genetics uncovers associations among host amylase locus, gut microbiome, and metabolic traits in mice. MICROBIOME 2025; 13:101. [PMID: 40259344 PMCID: PMC12012960 DOI: 10.1186/s40168-025-02093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/16/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Population studies have revealed associations between host genetic and gut microbiome in humans and mice. However, the molecular bases for how host genetic variation impacts the gut microbial community and bacterial metabolic niches remain largely unknown. RESULTS We leveraged 90 inbred hyperlipidemic mouse strains from the hybrid mouse diversity panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these, we detected a genetic locus surrounding multiple amylase genes that were associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar degrading capabilities. The genetic variants at the amylase gene locus were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. CONCLUSIONS This work reveals novel relationships among host genetic variation, gut microbial enterotypes, and host metabolic traits and supports the notion that variation of host amylase may represent a key determinant of gut microbiome in mice. Video Abstract.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan R Hutchison
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Matthew F Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Trepka KR, Kidder WA, Kyaw TS, Halsey T, Olson CA, Ortega EF, Noecker C, Upadhyay V, Stanfield D, Steiding P, Guthrie BGH, Spanogiannopoulos P, Dumlao D, Turnbaugh JA, Stachler MD, Van Blarigan EL, Venook AP, Atreya CE, Turnbaugh PJ. Expansion of a bacterial operon during cancer treatment ameliorates fluoropyrimidine toxicity. Sci Transl Med 2025; 17:eadq8870. [PMID: 40238917 DOI: 10.1126/scitranslmed.adq8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/15/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Here, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal profiling of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. Substantial shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities were revealed by 16S rRNA gene sequencing. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which was sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA+ bacteria depleted 5-FU in gut microbiota grown ex vivo and in the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA+ Escherichia coli, or preTA-high stool from patients with CRC. Last, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach may be generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
Collapse
Affiliation(s)
- Kai R Trepka
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wesley A Kidder
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Than S Kyaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taylor Halsey
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine A Olson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edwin F Ortega
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cecilia Noecker
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vaibhav Upadhyay
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dalila Stanfield
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Paige Steiding
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Benjamin G H Guthrie
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Darren Dumlao
- Department of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessie A Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew D Stachler
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erin L Van Blarigan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan P Venook
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Chloe E Atreya
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Ahn JS, Kim S, Han EJ, Hong ST, Chung HJ. Increasing spatial working memory in mice with Akkermansia muciniphila. Commun Biol 2025; 8:546. [PMID: 40175647 PMCID: PMC11965532 DOI: 10.1038/s42003-025-07975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Recent research has shown the gut microbiome's impact on memory, yet limitations hinder the identification of specific microbes linked to cognitive function. We measured spatial working memory in individual mice before and after fecal microbiota transplantation (FMT) to develop a targeted analysis that identifies memory-associated strains while minimizing host genetic effects. Transplantation of human fecal into C57BL/6 mice yielded varied outcomes: some mice showed significant improvements while others had negligible changes, indicating that these changes are due to differences in FMT colonization. Metagenomic analysis, stratified by memory performance, revealed a positive correlation between the abundance of Akkermansia muciniphila and improved memory. Moreover, administering two A. muciniphila strains, GMB 0476 and GMB 2066, to wild-type mice elevated spatial working memory via BDNF activation. Our findings indicate that specific gut microbes, particularly A. muciniphila, may modulate memory and represent potential targets for therapeutic intervention in cognitive enhancement.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Honam Regional Center, Korea Basic Science Institute, Gwangju, 61751, Republic of Korea
| | - Sura Kim
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Eui-Jeong Han
- Honam Regional Center, Korea Basic Science Institute, Gwangju, 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea.
| | - Hea-Jong Chung
- Honam Regional Center, Korea Basic Science Institute, Gwangju, 61751, Republic of Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Ma Q, Zhou X, Su W, Wang Q, Yu G, Tao W, Dong Z, Wang C, Wong CM, Liu T, Jia S. Akkermansia muciniphila inhibits jejunal lipid absorption and regulates jejunal core bacteria. Microbiol Res 2025; 293:128053. [PMID: 39798297 DOI: 10.1016/j.micres.2025.128053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Insufficiency of Akkermansia muciniphila (Akk) has been implicated in the pathogenesis of metabolic diseases, and administration or restoration of Akk has ameliorated these disorders. Recently, Pasteurized Akk (PA-Akk) has been approved as a functional food. However, the impact of Akk on lipid absorption in the proximal intestine, which is directly exposed to orally administered Akk, remains largely unexplored. In this study, we orally administered Akk and PA-Akk to mice and investigated the subsequent lipid absorption. Long-term administration of Akk resulted in reduced lipid deposits in the liver and adipocytes, along with improved glucose metabolism. This was primarily attributed to a reduction in lipid absorption by epithelial cells in the proximal jejunum. Mechanistically, Akk activated AMP-activated protein kinase (AMPK) and directly inhibit lipids absorption in both mouse and human jejunal epithelial cells. Furthermore, we demonstrated that Akk treatment, but not PA-Akk treatment, promotes the abundance of genera that are highly abundant in the normal jejunum and belong to the phylum Firmicutes. Thus, our study concludes that oral administration of Akk provides beneficial effects on metabolism, partially through inhibiting jejunal lipid absorption and promoting the abundance of core jejunal microbes.
Collapse
Affiliation(s)
- Qiming Ma
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Xincheng Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Weikang Su
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Qingyu Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Guoxing Yu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Weihua Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Biobank of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Cunchuan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Tiemin Liu
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Sciences, Fudan University, Shanghai, China.
| | - Shiqi Jia
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
6
|
Nguyen HVM, Cabello E, Dyer D, Fender C, Garcia-Jaramillo M, Hord NG, Austad S, Richardson A, Unnikrishnan A. Age, sex, and mitochondrial-haplotype influence gut microbiome composition and metabolites in a genetically diverse rat model. Aging (Albany NY) 2025; 17:524-549. [PMID: 40015964 PMCID: PMC11892925 DOI: 10.18632/aging.206211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. The age-related changes in the microbiome differed markedly between male and female rats. Five microbial species changed significantly with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan derived metabolites and bile acids. This study demonstrates that the host's sex plays a significant role in how the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the microbiome.
Collapse
Affiliation(s)
- Hoang Van M. Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Eleana Cabello
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - David Dyer
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Chloe Fender
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Archana Unnikrishnan
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, OU Health, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Farmakioti I, Stylianopoulou E, Siskos N, Karagianni E, Kandylas D, Vasileiou AR, Fragkiskatou F, Somalou P, Tsaroucha A, Ypsilantis P, Panas P, Kourkoutas Y, Skavdis G, Grigoriou ME. Enhancing Gut Microbiome and Metabolic Health in Mice Through Administration of Presumptive Probiotic Strain Lactiplantibacillus pentosus PE11. Nutrients 2025; 17:442. [PMID: 39940300 PMCID: PMC11820638 DOI: 10.3390/nu17030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
Background: Over the past decade, probiotics have gained increasing recognition for their health benefits to the host. While most research has focused on the therapeutic effects of probiotics in the treatment of various diseases, recent years have seen a shift towards exploring their role in enhancing and supporting overall health. Methods: In this work, we have studied the effects of a novel potential probiotic strain, Lactiplantibacillus pentosus PE11, in healthy mice following a six-week dietary intervention. The assessment included monitoring the general health of the animals, biochemical analyses, profiling of the gut and fecal microbial communities, and gene expression analysis. Results: Our results showed that the administration of Lactiplantibacillus pentosus PE11 led to changes in the composition of the fecal microbiome, specifically an increase in the Firmicutes/Bacteroidetes ratio and in the relative abundance of the Lachnospiraceae, Ruminococcaceae, and Rikenellaceae families. Reduced Tnf expression and elevated Zo1 expression were also observed in the cecum, pointing to anti-inflammatory properties and improved intestinal barrier integrity. Additionally, a significant reduction in triglycerides and alanine aminotransferase levels-within physiological ranges-was observed, along with a trend toward decreased total cholesterol levels. Conclusions: These findings suggest that in healthy mice, Lactiplantibacillus pentosus PE11 has the potential to positively influence gut microbiome structure and metabolism, thereby supporting improved overall health.
Collapse
Affiliation(s)
- Ioanna Farmakioti
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Electra Stylianopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Nikistratos Siskos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Evangelia Karagianni
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Dionysios Kandylas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Andreas Rafail Vasileiou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Fragkiski Fragkiskatou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Paraskevi Somalou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Alexandra Tsaroucha
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.T.); (P.Y.)
| | - Petros Ypsilantis
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.T.); (P.Y.)
| | | | - Yiannis Kourkoutas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| |
Collapse
|
8
|
Han EJ, Ahn JS, Choi YJ, Kim DH, Chung HJ. Changes in Gut Microbiota According to Disease Severity in a Lupus Mouse Model. Int J Mol Sci 2025; 26:1006. [PMID: 39940777 PMCID: PMC11817498 DOI: 10.3390/ijms26031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease driven by immune dysregulation. This study investigated the relationship between gut microbiota and lupus severity using the MRL/lpr lupus mouse model. Mice were grouped based on total immunoglobulin (Ig)G, IgG2a levels, and urine albumin-to-creatinine ratio (ACR), allowing for the comparison of gut microbiota profiles across different disease severities. Interestingly, severe lupus mice exhibited significant reductions in Ruminiclostridium cellulolyticum, Lactobacillus johnsonii, and Kineothrix alysoides, while Clostridium saudiense, Pseudoflavonifractor phocaeensis, and Intestinimonas butyriciproducens were enriched. These microbial shifts correlated with elevated IgG, IgG2a, and ACR levels, indicating that changes in the gut microbiome may directly influence key immunological markers associated with lupus severity. The depletion of beneficial species and the enrichment of potentially pathogenic bacteria appear to contribute to immune activation and disease progression. This study suggests that gut microbiota dysbiosis plays a critical role in exacerbating lupus by modulating immune responses, reinforcing the link between microbial composition and lupus pathogenesis. Our findings provide the first evidence identifying these distinct gut microbial species as potential contributors to lupus severity, highlighting their role as key factors in disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea; (E.-J.H.); (J.-S.A.); (Y.-J.C.); (D.-H.K.)
| |
Collapse
|
9
|
Sharma A, Kapur S, Kancharla P, Yang T. Sex differences in gut microbiota, hypertension, and cardiovascular risk. Eur J Pharmacol 2025; 987:177183. [PMID: 39647571 PMCID: PMC11714433 DOI: 10.1016/j.ejphar.2024.177183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The intricate ecosystem of the gut microbiome exhibits sex-specific differences, influencing the susceptibility to cardiovascular diseases (CVD). Imbalance within the gut microbiome compromises the gut barrier, activates inflammatory pathways, and alters the production of metabolites, all of which initiate chronic diseases including CVD. In particular, the interplay between lifestyle choices, hormonal changes, and metabolic byproducts uniquely affects sex-specific gut microbiomes, potentially shaping the risk profiles for hypertension and CVD differently in men and women. Understanding the gut microbiome's role in CVD risk offers informative reasoning behind the importance of developing tailored preventative strategies based on sex-specific differences in CVD risk. Furthermore, insight into the differential impact of social determinants and biological factors on CVD susceptibility emphasizes the necessity for more nuanced approaches. This review also outlines specific dietary interventions that may enhance gut microbiome health, offering a glimpse into potential therapeutic avenues for reducing CVD risk that require greater awareness. Imbalance in natural gut microbiomes may explain etiologies of chronic diseases; we advocate for future application to alter the gut microbiome as possible treatment of the aforementioned diseases. This review mentions the idea of altering the gut microbiome through interventions such as fecal microbiota transplantation (FMT), a major application of microbiome-based therapy that is first-line for Clostridium difficile infections and patient-specific probiotics highlights more innovative approaches to hypertension and CVD prevention. Through increased analysis of gut microbiota compositions along with patient-centric probiotics and microbiome transfers, this review advocates for future preventative strategies for hypertension.
Collapse
Affiliation(s)
- Anish Sharma
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Sahil Kapur
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Priyal Kancharla
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA.
| |
Collapse
|
10
|
Yang JC, Lagishetty V, Aja E, Arias-Jayo N, Chang C, Hauer M, Katzka W, Zhou Y, Sedighian F, Koletic C, Liang F, Dong TS, Situ J, Troutman R, Buri H, Bhute S, Simpson CA, Braun J, Jacob N, Jacobs JP. Biogeographical distribution of gut microbiome composition and function is partially recapitulated by fecal transplantation into germ-free mice. THE ISME JOURNAL 2025; 19:wrae250. [PMID: 39680691 PMCID: PMC11973428 DOI: 10.1093/ismejo/wrae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Fecal microbiota transplantation has been vital for establishing whether host phenotypes can be conferred through the microbiome. However, whether the existing microbial ecology along the mouse gastrointestinal tract can be recapitulated in germ-free mice colonized with stool remains unknown. We first identified microbes and their predicted functions specific to each of six intestinal regions in three cohorts of specific pathogen-free mice spanning two facilities. Of these region-specific microbes, the health-linked genus Akkermansia was consistently enriched in the lumen of the small intestine compared to the colon. Predictive functional modeling on 16S rRNA gene amplicon sequencing data recapitulated in shotgun sequencing data revealed increased microbial central metabolism, lipolytic fermentation, and cross-feeding in the small intestine, whereas butyrate synthesis was colon-enriched. Neuroactive compound metabolism also demonstrated regional specificity, including small intestine-enriched gamma-aminobutyric acid degradation and colon-enriched tryptophan degradation. Specifically, the jejunum and ileum stood out as sites with high predicted metabolic and neuromodulation activity. Differences between luminal and mucosal microbiomes within each site of the gastrointestinal tract were largely facility-specific, though there were a few consistent patterns in microbial metabolism in specific pathogen-free mice. These included luminal enrichment of central metabolism and cross-feeding within both the small intestine and the colon, and mucosal enrichment of butyrate synthesis within the colon. Across three cohorts of germ-free mice colonized with mice or human stool, compositional and functional region specificity were inconsistently reproduced. These results underscore the importance of investigating the spatial variation of the gut microbiome to better understand its impact on host physiology.
Collapse
Affiliation(s)
- Julianne C Yang
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Venu Lagishetty
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Ezinne Aja
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Goodman-Luskin Microbiome Center at UCLA, Center for Health Sciences 42-210, 650 Charles E. Young Dr. S., Los Angeles, CA 90095-7378, United States
| | - Nerea Arias-Jayo
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Candace Chang
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Megan Hauer
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - William Katzka
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Goodman-Luskin Microbiome Center at UCLA, Center for Health Sciences 42-210, 650 Charles E. Young Dr. S., Los Angeles, CA 90095-7378, United States
| | - Yi Zhou
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China
| | - Farzaneh Sedighian
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073-1003, United States
| | - Carolina Koletic
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Fengting Liang
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Tien S Dong
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073-1003, United States
| | - Jamilla Situ
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Ryan Troutman
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Heidi Buri
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Shrikant Bhute
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Goodman-Luskin Microbiome Center at UCLA, Center for Health Sciences 42-210, 650 Charles E. Young Dr. S., Los Angeles, CA 90095-7378, United States
| | - Carra A Simpson
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
| | - Jonathan Braun
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048-1865, United States
| | - Noam Jacob
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073-1003, United States
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048-1865, United States
| | - Jonathan P Jacobs
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, 200 Medical Plaza, Los Angeles, CA 90024-2484, United States
- Goodman-Luskin Microbiome Center at UCLA, Center for Health Sciences 42-210, 650 Charles E. Young Dr. S., Los Angeles, CA 90095-7378, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073-1003, United States
| |
Collapse
|
11
|
Yilmaz B, Macpherson AJ. Delving the depths of 'terra incognita' in the human intestine - the small intestinal microbiota. Nat Rev Gastroenterol Hepatol 2025; 22:71-81. [PMID: 39443711 DOI: 10.1038/s41575-024-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The small intestinal microbiota has a crucial role in gastrointestinal health, affecting digestion, immune function, bile acid homeostasis and nutrient metabolism. The challenges of accessibility at this site mean that our knowledge of the small intestinal microbiota is less developed than of the colonic or faecal microbiota. Here, we summarize the features and fluctuations of the microbiota along the small intestinal tract, focusing on humans, and discuss physicochemical factors and assessment methods, including the technical challenges of investigating the low microbial biomass of the proximal small bowel. We highlight the essential protective mechanisms of the small intestine, including motility, the paracellular barrier and mucus, and secretory immunity, to show their roles in limiting excessive exposure of host tissues to microbial metabolites. We address current knowledge gaps, particularly the variability among individuals, the effects of dysbiosis of the small intestinal microbiota on health and how different taxa in small intestinal microbiota could compensate for each other functionally.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin SI, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. JCI Insight 2024; 10:e181481. [PMID: 39699961 PMCID: PMC11948581 DOI: 10.1172/jci.insight.181481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
Crohn's disease (CD) is the chronic inflammation of the terminal ileum and colon triggered by a dysregulated immune response to bacteria, but insights into specific molecular perturbations at the critical bacteria-epithelium interface are limited. Here, we report that the membrane mucin MUC17 protected small intestinal enterocytes against commensal and pathogenic bacteria. In noninflamed CD ileum, reduced MUC17 levels and a compromised glycocalyx barrier allowed recurrent bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine particularly prone to atypical bacterial infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and in the extraintestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in patients with CD. Our findings highlight MUC17 as an essential region-specific line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fleur C. van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sara I.M. Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Vaganova AN, Zhukov IS, Shemiakova TS, Rozhkov KA, Alferova LS, Karaseva AB, Ermolenko EI, Gainetdinov RR. Functional Analysis of TAAR1 Expression in the Intestine Wall and the Effect of Its Gene Knockout on the Gut Microbiota in Mice. Int J Mol Sci 2024; 25:13216. [PMID: 39684925 DOI: 10.3390/ijms252313216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce these amines, TAAR1 is suggested to be involved in the interaction between the host and gut microbiota. The purpose of this present study was to clarify the TAAR1 function in the intestinal wall and estimate the TAAR1 gene knockout effect on gut microbiota composition. By analyzing public transcriptomic data of the GEO repository, we identified TAAR1 expression in enterocytes, enteroendocrine cells, tuft cells, and myenteric neurons in mice. The analysis of genes co-expressed with TAAR1 in enteroendocrine cells allows us to suggest the TAAR1 involvement in enteroendocrine cell maturation. Also, in myenteric neurons, we identified the co-expression of TAAR1 with calbindin, which is specific for sensory neurons. The 16S rRNA gene-based analysis of fecal microbiota revealed a slight but significant impact of TAAR1 gene knockout in mice on the gut microbial community, which manifests in the higher diversity, accompanied by low between-sample variability and reorganization of the microbial co-occurrence network.
Collapse
Affiliation(s)
- Anastasia N Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
- St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Ilya S Zhukov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
- Federal State Budgetary Scientific Institution «Institute of Experimental Medicine» (FSBSI «IEM»), Str. Academica Pavlova 12, St. Petersburg 197022, Russia
| | - Taisiia S Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Konstantin A Rozhkov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Lyubov S Alferova
- Federal State Budgetary Scientific Institution «Institute of Experimental Medicine» (FSBSI «IEM»), Str. Academica Pavlova 12, St. Petersburg 197022, Russia
| | - Alena B Karaseva
- Federal State Budgetary Scientific Institution «Institute of Experimental Medicine» (FSBSI «IEM»), Str. Academica Pavlova 12, St. Petersburg 197022, Russia
| | - Elena I Ermolenko
- Federal State Budgetary Scientific Institution «Institute of Experimental Medicine» (FSBSI «IEM»), Str. Academica Pavlova 12, St. Petersburg 197022, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
- St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
14
|
Liu J, Xiang K, He H, Chen W. Endoscopic brush sampling identifies mucosa associated microbiota in colorectal adenomas. Heliyon 2024; 10:e38901. [PMID: 39640827 PMCID: PMC11620161 DOI: 10.1016/j.heliyon.2024.e38901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The intestinal microbiome plays a crucial role in colorectal adenomas and the mucosa associated microbiota are thought to play a more critical role in interactions with the host immune system. Current omics approaches, offer a holistic assessment of the gut microbiome and the human host interaction. To enhance the value of data from these sequencing methods, appropriate sample collection is vital. We evaluated the potential use of endoscopic brush samples for mucosal microbiota analysis in colorectal adenomas and compared it with direct adenoma tissue sequencing in terms of microbial gene sequencing. The results showed a significant increase in microbial diversity in samples collected by the endoscopic brush, which did not interfere with pathological biopsy. This study found that utilizing endoscopic brush sampling for the microbiome analysis of colorectal adenomas offers several advantages over the direct examination of microbiomes within tumor tissues, including the capacity to accurately collect gut microbiome from different locations in the intestine, circumventing interference from tissue genes, providing more abundant microbial data and enabling inclusion of small adenomas without disrupting pathological biopsies.
Collapse
Affiliation(s)
- Juncheng Liu
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Kexu Xiang
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huan He
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Weiqing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Nguyen HVM, Cabello E, Dyer D, Fender C, Garcia-Jaramillo M, Hord NG, Austad S, Richardson A, Unnikrishnan A. Age, sex, and mitochondrial-haplotype influence gut microbiome composition and metabolites in a genetically diverse rat model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620746. [PMID: 39553944 PMCID: PMC11565821 DOI: 10.1101/2024.10.28.620746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. Alpha-diversity, measuring richness and evenness of gut microbiome composition, did not change with age or mitochondrial-haplotype. However, beta-diversity, a measure of microbial differences among samples, was significantly modulated by age in male and female rats in both mitochondrial-haplotypes. The age-related changes in the microbiome differed markedly between male and female rats. Five microbial species changed significantly with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan derived metabolites and bile acids. This study demonstrates that the host's sex plays a significant role in how the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the microbiome and supports previous studies suggesting a bidirectional interaction between the gut microbiome and host mitochondria.
Collapse
Affiliation(s)
- Hoang Van M. Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, 1200 N Stonewall Ave, Oklahoma City, OK 73117, US
| | - Eleana Cabello
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117. US
| | - David Dyer
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117. US
| | - Chloe Fender
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, US
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, US
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, 122 N Monroe St, Stillwater, OK 74075, US
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, 902 14 Street South, Birmingham, AL 35205, US
| | - Arlan Richardson
- Department of Biochemistry and Physiology, College of Medicine, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, Oklahoma, 921 NE 13 St, Oklahoma City, OK 73104, US
| | - Archana Unnikrishnan
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Harold Hamm Diabetes Center, OU Health, Oklahoma City, Oklahoma, 1000 N Lincoln Boulevard, Oklahoma City, OK 73104, US
| |
Collapse
|
16
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
17
|
da Costa ALA, Soares MA, Lourenço TGB, Guimarães-Pinto K, Filardy AD, de Oliveira AM, de Luca BG, Magliano DAC, Araujo OMO, Moura L, Lopes RT, Palhares de Miranda AL, Tributino JLM, Vieira Colombo AP. Periodontal pathogen Aggregatibacter actinomycetemcomitans JP2 correlates with colonic leukocytes decrease and gut microbiome imbalance in mice. J Periodontal Res 2024; 59:961-973. [PMID: 38757372 DOI: 10.1111/jre.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
AIM Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.
Collapse
Affiliation(s)
- André L A da Costa
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Soares
- Department of Pharmaceutical Biotechnology, Laboratory of Studies in Experimental Pharmacology, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Talita G B Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamila Guimarães-Pinto
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra D Filardy
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Miranda de Oliveira
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Olga M O Araujo
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Moura
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa Palhares de Miranda
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L M Tributino
- Molecular Pharmacology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Taye B, Mekonnen Z, Belanger KD, Davenport ER. Gut-microbiome profiles among Soil-transmitted helminths (STHs) infected Ethiopian children enrolled in the school-based mass deworming program. PLoS Negl Trop Dis 2024; 18:e0012485. [PMID: 39405336 PMCID: PMC11478818 DOI: 10.1371/journal.pntd.0012485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Soil-transmitted helminths (STHs) and mutualistic gut microbes coexist in the gastrointestinal tract. However, limited data exist regarding how STH infections are associated with gut microbiome profiles. METHOD We conducted a cross-sectional analysis of baseline data collected in a longitudinal study to identify and explain differences in microbial communities between STH-infected and non-infected Ethiopian school children. We collected 138 stool samples and analyzed them for STH infection using standard direct wet mount and Kato Katz methods. The gut microbiome profiles were characterized using targeted amplicon sequencing of the 16S rRNA gene from the total DNA extracted from the stools. RESULTS Children infected with Trichuris trichiura showed significantly lower microbial diversity than those who were non-infected (p<0.05). We also observed significant difference in microbiome composition based on Trichuris trichiura infection status (PERMANOVA p< 0.01). A comparison of microbial taxa at the genus level among participants infected with different helminth species showed a significant increase in Agathobacter relative abundance among children infected with Trichuris trichiura compared to non-infected subjects (adjusted p = 0.001). CONCLUSIONS Our results indicate that changes in the gut microbiome composition may vary depending on the species of helminth present. Further studies should investigate how Trichuris trichiura selectively alters microbiome composition compared to other STH species.
Collapse
Affiliation(s)
- Bineyam Taye
- Department of Biology, Colgate University, Hamilton, New York, United States of America
| | - Zeleke Mekonnen
- Institute of Health, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Kenneth D. Belanger
- Department of Biology, Colgate University, Hamilton, New York, United States of America
| | - Emily R. Davenport
- Department of Biology, Huck Institutes of the Life Sciences, Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
19
|
Han K, Xie F, Animasahun O, Nenwani M, Kitamoto S, Kim Y, Phoo MT, Xu J, Wuchu F, Omoloja K, Achreja A, Choppara S, Li Z, Gong W, Cho YS, Dobson H, Ahn J, Zhou X, Huang X, An X, Kim A, Xu Y, Wu Q, Lee SH, O'Konek JJ, Xie Y, Lei YL, Kamada N, Nagrath D, Moon JJ. Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. NATURE MATERIALS 2024; 23:1444-1455. [PMID: 38977883 PMCID: PMC11442122 DOI: 10.1038/s41563-024-01909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeji Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kehinde Omoloja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Srinadh Choppara
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoheng Li
- Graduate Program in Biostatistics, University of Washington, Seattle, WA, USA
| | - Wang Gong
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Dobson
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jinsung Ahn
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Qi Wu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansang, MI, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Deepak Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Böswald LF, Popper B, Matzek D, Neuhaus K, Wenderlein J. Characterization of the gastrointestinal microbiome of the Syrian hamster (Mesocricetus auratus) and comparison to data from mice. FEBS Open Bio 2024; 14:1701-1717. [PMID: 39097990 PMCID: PMC11452302 DOI: 10.1002/2211-5463.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Syrian hamsters (Mesocricetus auratus) have been increasingly used as rodent models in recent years, especially for SARS-CoV-2 since the pandemic. However, the physiology of this animal model is not yet well-understood, even less when considering the digestive tract. Generally, the gastrointestinal microbiome influences the immune system, drug metabolism, and vaccination efficacy. However, a detailed understanding of the gastrointestinal microbiome of hamsters is missing. Therefore, we analyzed 10 healthy 11-week-old RjHan:AURA hamsters fed a pelleted standard diet. Their gastrointestinal content was sampled (i.e., forestomach, glandular stomach, ileum, cecum, and colon) and analyzed using 16S rRNA gene amplicon sequencing. Results displayed a distinct difference in the bacterial community before and after the cecum, possibly due to the available nutrients and digestive functions. Next, we compared hamsters with the literature data of young-adult C57BL/6J mice, another important animal model. We sampled the same gastrointestinal regions and analyzed the differences in the microbiome between both rodents. Surprisingly, we found strong differences in their specific gastrointestinal bacterial communities. For instance, Lactobacillaceae were more abundant in hamsters' forestomach and ileum, while Muribaculaceae dominated in the mouse forestomach and ileum. Similarly, in mouse cecum and colon, Muribaculaceae were dominant, while in hamsters, Lachnospiraceae and Erysipelotrichaceae dominated the bacterial community. Molecular strains of Muribaculaceae in both rodent species displayed some species specificity. This comparison allows a better understanding of the suitability of the Syrian hamster as an animal model, especially regarding its comparability to other rodent models. Thereby, this work contributes to the characterization of the hamster model and allows better experimental planning.
Collapse
Affiliation(s)
- Linda F. Böswald
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Medical FacultyLMU MunichPlanegg‐MartinsriedGermany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Jasmin Wenderlein
- Chair for Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and ZoonosesLMU MunichOberschleißheimGermany
- Department for Biological SafetyFederal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
21
|
Beekman CN, Penumutchu S, Peterson R, Han G, Belenky M, Hasan MH, Belenky A, Beura LK, Belenky P. Spatial analysis of murine microbiota and bile acid metabolism during amoxicillin treatment. Cell Rep 2024; 43:114572. [PMID: 39116202 DOI: 10.1016/j.celrep.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Antibiotics cause collateral damage to resident microbes that is associated with various health risks. To date, studies have largely focused on the impacts of antibiotics on large intestinal and fecal microbiota. Here, we employ a gastrointestinal (GI) tract-wide integrated multiomic approach to show that amoxicillin (AMX) treatment reduces bacterial abundance, bile salt hydrolase activity, and unconjugated bile acids in the small intestine (SI). Losses of fatty acids (FAs) and increases in acylcarnitines in the large intestine (LI) correspond with spatially distinct expansions of Proteobacteria. Parasutterella excrementihominis engage in FA biosynthesis in the SI, while multiple Klebsiella species employ FA oxidation during expansion in the LI. We subsequently demonstrate that restoration of unconjugated bile acids can mitigate losses of commensals in the LI while also inhibiting the expansion of Proteobacteria during AMX treatment. These results suggest that the depletion of bile acids and lipids may contribute to AMX-induced dysbiosis in the lower GI tract.
Collapse
Affiliation(s)
- Chapman N Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachel Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Marina Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Alexei Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
22
|
Covello C, Becherucci G, Di Vincenzo F, Del Gaudio A, Pizzoferrato M, Cammarota G, Gasbarrini A, Scaldaferri F, Mentella MC. Parenteral Nutrition, Inflammatory Bowel Disease, and Gut Barrier: An Intricate Plot. Nutrients 2024; 16:2288. [PMID: 39064731 PMCID: PMC11279609 DOI: 10.3390/nu16142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Malnutrition poses a critical challenge in inflammatory bowel disease, with the potential to detrimentally impact medical treatment, surgical outcomes, and general well-being. Parenteral nutrition is crucial in certain clinical scenarios, such as with patients suffering from short bowel syndrome, intestinal insufficiency, high-yielding gastrointestinal fistula, or complete small bowel obstruction, to effectively manage malnutrition. Nevertheless, research over the years has attempted to define the potential effects of parenteral nutrition on the intestinal barrier and the composition of the gut microbiota. In this narrative review, we have gathered and analyzed findings from both preclinical and clinical studies on this topic. Based on existing evidence, there is a clear correlation between short- and long-term parenteral nutrition and negative effects on the intestinal system. These include mucosal atrophic damage and immunological and neuroendocrine dysregulation, as well as alterations in gut barrier permeability and microbiota composition. However, the mechanistic role of these changes in inflammatory bowel disease remains unclear. Therefore, further research is necessary to effectively address the numerous gaps and unanswered questions pertaining to these issues.
Collapse
Affiliation(s)
- Carlo Covello
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Guia Becherucci
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
| | - Federica Di Vincenzo
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Angelo Del Gaudio
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Chiara Mentella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
23
|
Cheng M, Jia X, Ren L, Chen S, Wang W, Wang J, Cong B. Region-Specific Effects of Metformin on Gut Microbiome and Metabolome in High-Fat Diet-Induced Type 2 Diabetes Mouse Model. Int J Mol Sci 2024; 25:7250. [PMID: 39000356 PMCID: PMC11241422 DOI: 10.3390/ijms25137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Department of Pathogen Biology, Institute of basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Siqian Chen
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Wei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
24
|
Roussin L, Gry E, Macaron M, Ribes S, Monnoye M, Douard V, Naudon L, Rabot S. Microbiota influence on behavior: Integrative analysis of serotonin metabolism and behavioral profile in germ-free mice. FASEB J 2024; 38:e23648. [PMID: 38822661 PMCID: PMC12086753 DOI: 10.1096/fj.202400334r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.
Collapse
Affiliation(s)
- Léa Roussin
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Elisa Gry
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Mira Macaron
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Sandy Ribes
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Magali Monnoye
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Véronique Douard
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| | - Laurent Naudon
- Université Paris‐Saclay, INRAE, AgroParisTech, CNRSMicalis InstituteJouy‐en‐JosasFrance
| | - Sylvie Rabot
- Université Paris‐Saclay, INRAE, AgroParisTechMicalis InstituteJouy‐en‐JosasFrance
| |
Collapse
|
25
|
Pierce R, Jan NJ, Kumar P, Middleton J, Petri WA, Marie C. Persistent dysbiosis of duodenal microbiota in patients with controlled pediatric Crohn's disease after resolution of inflammation. Sci Rep 2024; 14:12668. [PMID: 38830904 PMCID: PMC11148174 DOI: 10.1038/s41598-024-63299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Crohn's disease is an inflammatory condition of the intestine characterized by largely unknown etiology and a relapse remission cycle of disease control. While possible triggers have been identified, research is inconsistent on the precise cause of these relapses, especially in the under-researched pediatric population. We hypothesized that patients in remission would have persistent microbial and inflammatory changes in small intestinal tissue that might trigger relapse. To this end, we analyzed intestinal biopsy samples from six patients with pediatric Crohn's disease in remission and a control group of 16 pediatric patients with no evident pathogenic abnormality. We identified compositional microbiota differences, including decreases in the genera Streptococcus and Actinobacillus as well as increases in Oribacterium and Prevotella in patients with controlled Crohn's disease compared to controls. Further, a histologic analysis found that patients with controlled Crohn's disease had increased epithelial integrity, and decreased intraepithelial lymphocytes compared with controls. Additionally, we observed increased peripheral CD4+ T cells in patients with pediatric Crohn's disease. These results indicate that markers of intestinal inflammation are responsive to Crohn's disease treatment, however the interventions may not resolve the underlying dysbiosis. These findings suggest that persistent dysbiosis may increase vulnerability to relapse of pediatric Crohn's disease. This study used a nested cohort of patients from the Bangladesh Environmental Enteric Dysfunction (BEED) study (ClinicalTrials.gov ID: NCT02812615 Date of first registration: 24/06/2016).
Collapse
Affiliation(s)
- Rebecca Pierce
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ning-Jiun Jan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy Middleton
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chelsea Marie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Otaru N, Kourouma L, Pugin B, Constancias F, Braegger C, Mansuy IM, Lacroix C. Transgenerational effects of early life stress on the fecal microbiota in mice. Commun Biol 2024; 7:670. [PMID: 38822061 PMCID: PMC11143345 DOI: 10.1038/s42003-024-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Lola Kourouma
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland
| | - Benoit Pugin
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Florentin Constancias
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Christian Braegger
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Isabelle M Mansuy
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland.
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland.
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
27
|
Chibuye M, Mende DR, Spijker R, Simuyandi M, Luchen CC, Bosomprah S, Chilengi R, Schultsz C, Harris VC. Systematic review of associations between gut microbiome composition and stunting in under-five children. NPJ Biofilms Microbiomes 2024; 10:46. [PMID: 38782939 PMCID: PMC11116508 DOI: 10.1038/s41522-024-00517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Childhood stunting is associated with impaired cognitive development and increased risk of infections, morbidity, and mortality. The composition of the enteric microbiota may contribute to the pathogenesis of stunting. We systematically reviewed and synthesized data from studies using high-throughput genomic sequencing methods to characterize the gut microbiome in stunted versus non-stunted children under 5 years in LMICs. We included 14 studies from Asia, Africa, and South America. Most studies did not report any significant differences in the alpha diversity, while a significantly higher beta diversity was observed in stunted children in four out of seven studies that reported beta diversity. At the phylum level, inconsistent associations with stunting were observed for Bacillota, Pseudomonadota, and Bacteroidota phyla. No single genus was associated with stunted children across all 14 studies, and some associations were incongruent by specific genera. Nonetheless, stunting was associated with an abundance of pathobionts that could drive inflammation, such as Escherichia/Shigella and Campylobacter, and a reduction of butyrate producers, including Faecalibacterium, Megasphera, Blautia, and increased Ruminoccoccus. An abundance of taxa thought to originate in the oropharynx was also reported in duodenal and fecal samples of stunted children, while metabolic pathways, including purine and pyrimidine biosynthesis, vitamin B biosynthesis, and carbohydrate and amino acid degradation pathways, predicted linear growth. Current studies show that stunted children can have distinct microbial patterns compared to non-stunted children, which could contribute to the pathogenesis of stunting.
Collapse
Affiliation(s)
- Mwelwa Chibuye
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel R Mende
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rene Spijker
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Chaluma C Luchen
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- The Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
| | - Constance Schultsz
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Vanessa C Harris
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Rithidech KN, Peanlikhit T, Honikel L, Li J, Liu J, Karakach T, Zimmerman T, Welsh J. Consumption of Apigenin Prevents Radiation-induced Gut Dysbiosis in Male C57BL/6J Mice Exposed to Silicon Ions. Radiat Res 2024; 201:317-329. [PMID: 38373016 DOI: 10.1667/rade-23-00110.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The search for medical treatments to prevent radiation-induced damage to gastrointestinal tissue is crucial as such injuries can be fatal. This study aimed to investigate the effects of apigenin (AP) on the gut microbiome of irradiated mice, as it is a promising radiation countermeasure. Male C57BL/6J mice were divided into four groups, with six mice in each group. Two groups were given food with apigenin (20 mg/kg body weight or AP 20) before and after exposure to 0 or 50 cGy of silicon (28Si) ions, while another two groups of mice received regular diet without apigenin (0 mg/kg body weight or AP 0) before and after irradiation. The duodenum, the primary site for oral AP absorption, was collected from each mouse seven days after radiation exposure. Using 16S rRNA amplicon sequencing, we found significant differences in microbial diversity among groups. Firmicutes and Bacteroidetes were the major phyla for all groups, while actinobacterial and proteobacterial sequences represented only a small percentage. Mice not given dietary apigenin had a higher Firmicutes and Bacteroidetes (F/B) ratio and an imbalanced duodenal microbiota after exposure to radiation, while irradiated mice given apigenin had maintained homeostasis of the microbiota. Additionally, irradiated mice not given apigenin had decreased probiotic bacteria abundance and increased inflammation, while apigenin-supplemented mice had reduced inflammation and restored normal histological structure. In conclusion, our results demonstrate the potential of dietary apigenin as a countermeasure against radiation-induced gut injuries due to its anti-inflammatory activity, reduction of gut microbiota dysbiosis, and increase in probiotic bacteria (e.g., Lachnospiraceae, Muribaculaceae and Bifidobacteriaceae).
Collapse
Affiliation(s)
| | - Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Jinyu Li
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Jingxuan Liu
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Thomas Zimmerman
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
- Division of Laboratory Animal Resources, Stony Brook University, Stony Brook, New York 11794-8611
| | - James Welsh
- Department of Radiation Oncology, Loyola University Health System, Maywood, Illinois 60153
| |
Collapse
|
29
|
Wang Z, Gao M, Kan J, Cheng Q, Chen X, Tang C, Chen D, Zong S, Jin C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024; 13:1028. [PMID: 38611336 PMCID: PMC11011479 DOI: 10.3390/foods13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a complicated inflammatory disease with a continually growing incidence. In this study, resistant starch was obtained from purple sweet potato (PSPRS) by the enzymatic isolation method. Then, the structural properties of PSPRS and its protective function in dextran sulfate sodium (DSS)-induced colitis were investigated. The structural characterization results revealed that the crystallinity of PSPRS changed from CA-type to A-type, and the lamellar structure was totally destroyed during enzymatic hydrolysis. Compared to DSS-induced colitis mice, PSPRS administration significantly improved the pathological phenotype and colon inflammation in a dose-dependent manner. ELISA results indicated that DSS-induced colitis mice administered with PSPRS showed higher IL-10 and IgA levels but lower TNF-α, IL-1β, and IL-6 levels. Meanwhile, high doses (300 mg/kg) of PSPRS significantly increased the production of acetate, propionate, and butyrate. 16S rDNA high-throughput sequencing results showed that the ratio of Firmicutes to Bacteroidetes and the potential probiotic bacteria levels were notably increased in the PSPRS treatment group, such as Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group, and Bifidobacterium. Simultaneously, harmful bacteria like Bacteroides, Staphylococcus, and Akkermansia were significantly inhibited by the administration of a high dose of PSPRS (p < 0.05). Therefore, PSPRS has the potential to be a functional food for promoting intestinal health and alleviating UC.
Collapse
Affiliation(s)
| | | | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.W.); (M.G.); (Q.C.); (X.C.); (C.T.); (D.C.); (S.Z.); (C.J.)
| | | | | | | | | | | | | |
Collapse
|
30
|
Gustafson KL, McAdams ZL, Russell AL, Dorfmeyer RA, Turner GM, Ericsson AC. Effect size of delayed freezing, diurnal variation, and hindgut location on the mouse fecal microbiome. iScience 2024; 27:109090. [PMID: 38361608 PMCID: PMC10867441 DOI: 10.1016/j.isci.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Practical considerations in fecal sample collection for microbiome research include time to sample storage, time of collection, and hindgut position during terminal collections. Here, parallel experiments were performed to investigate the relative effect of these factors on microbiome composition in mice colonized with two different vendor-origin microbiomes. 16S rRNA amplicon sequencing of immediately flash-frozen feces showed no difference in alpha or beta diversity compared to samples incubated up to 9 h at room temperature. Samples collected in the morning showed greater alpha diversity compared to samples collected in the afternoon. While a significant effect of time was detected in all hindgut regions, the effect increased from cecum to distal colon. This study highlights common scenarios in microbiome research that may affect outcome measures of microbial community analysis. However, we demonstrate a relatively low effect size of these technical factors when compared to a primary experimental factor with large intergroup variability.
Collapse
Affiliation(s)
- Kevin L. Gustafson
- University of Missouri (MU) Comparative Medicine Program, Columbia, MO 65201, USA
- Department of Veterinary Pathobiology, MU, Columbia, MO 65201, USA
| | - Zachary L. McAdams
- Molecular Pathogenesis and Therapeutics Program, MU, Columbia, MO 65201, USA
| | - Amber L. Russell
- Department of Veterinary Pathobiology, MU, Columbia, MO 65201, USA
| | - Rebecca A. Dorfmeyer
- MU Metagenomics Center (MUMC), Mutant Mouse Resource and Research Center at the University of Missouri (MU MMRRC), Columbia, MO 65201, USA
| | - Giedre M. Turner
- MU Metagenomics Center (MUMC), Mutant Mouse Resource and Research Center at the University of Missouri (MU MMRRC), Columbia, MO 65201, USA
| | - Aaron C. Ericsson
- University of Missouri (MU) Comparative Medicine Program, Columbia, MO 65201, USA
- Department of Veterinary Pathobiology, MU, Columbia, MO 65201, USA
- Molecular Pathogenesis and Therapeutics Program, MU, Columbia, MO 65201, USA
- MU Metagenomics Center (MUMC), Mutant Mouse Resource and Research Center at the University of Missouri (MU MMRRC), Columbia, MO 65201, USA
| |
Collapse
|
31
|
Zhang Q, Hutchison ER, Pan C, Warren MF, Keller MP, Attie AD, Lusis AJ, Rey FE. Systems genetics approach uncovers associations between host amylase locus, gut microbiome and metabolic traits in hyperlipidemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582610. [PMID: 38464150 PMCID: PMC10925268 DOI: 10.1101/2024.02.28.582610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The molecular basis for how host genetic variation impacts gut microbial community and bacterial metabolic niches remain largely unknown. We leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these we detected a genetic locus surrounding multiple amylase genes that was associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar metabolism functions. We also found that lower amylase gene number in the mouse genome was associated with higher gut Muribaculaceae levels. Previous work suggests that modulation of host amylase activity impacts the availability of carbohydrates to the host and potentially to gut bacteria. The genetic variants described above were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. This work reveals novel relationships between host genetic variation, gut microbial enterotypes and host physiology/disease phenotypes in mice.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evan R. Hutchison
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Matthew F. Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin S, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.578867. [PMID: 38405862 PMCID: PMC10888976 DOI: 10.1101/2024.02.08.578867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Crohn's disease (CD) is the chronic inflammation of the ileum and colon triggered by bacteria, but insights into molecular perturbations at the bacteria-epithelium interface are limited. We report that membrane mucin MUC17 protects small intestinal enterocytes against commensal and pathogenic bacteria. In non-inflamed CD ileum, reduced MUC17 levels correlated with a compromised glycocalyx, allowing bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine prone to atypical infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and extra-intestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in CD. Our findings highlight MUC17 as an essential line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Fleur C. van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sara Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
33
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Ortiz-Alvarez de la Campa M, Curtis-Joseph N, Beekman C, Belenky P. Gut Biogeography Accentuates Sex-Related Differences in the Murine Microbiome. Microorganisms 2024; 12:221. [PMID: 38276206 PMCID: PMC10821414 DOI: 10.3390/microorganisms12010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have highlighted the influence of factors such as sex and sex-linked hormones on microbiome composition, raising concerns about the generalizability of findings. Here, we explore whether gut geography, specifically the upper and lower gastrointestinal tract (GI), contributes to sex-linked microbiome differences in mice. We collected microbial samples throughout the length of the GI from male and female C57B6/J mice at 6- and 8-weeks old, and conducted 16S rRNA sequencing. Our findings revealed significant sex-related differences, with Clostridium_sensu_stricto_1 more abundant in the male colon, while females exhibited higher levels of Dubosiella newyorkensis across all organs at 6 weeks. We also observed decreased Shannon alpha diversity in the small intestine compared to the lower GI, and this diversity decreased further at 8 weeks. Interestingly, our results suggest that age mitigates sex-related, but not gut geography-related differences in beta diversity, with implications for experimental outcomes and treatment strategies. This study underscores the dynamic nature of microbial diversity, influenced by sex, age, and GI localization, emphasizing the need for a more comprehensive understanding of microbiome dynamics in experimental research and clinical interventions.
Collapse
Affiliation(s)
| | - Noelle Curtis-Joseph
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Chapman Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
35
|
Kim S, Chun SH, Cheon YH, Kim M, Kim HO, Lee H, Hong ST, Park SJ, Park MS, Suh YS, Lee SI. Peptoniphilus gorbachii alleviates collagen-induced arthritis in mice by improving intestinal homeostasis and immune regulation. Front Immunol 2024; 14:1286387. [PMID: 38239365 PMCID: PMC10794505 DOI: 10.3389/fimmu.2023.1286387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The intricate connection between gut microbiota and rheumatoid arthritis (RA) pathogenesis has gained prominence, although the specific microbial species contributing to RA development remain largely unknown. Recent studies have sought to comprehensively explore alterations in the human microbiome, focusing on identifying disease-related microbial species through blood analysis. Consequently, this study aimed to identify RA-associated microbial species using a serum microbial array system and to investigate the efficacy and underlying mechanisms of potential microbial species for RA treatment. Methods Serum immunoglobulin M levels against 384 intestinal microbial species were assessed using a microbial microarray in patients with RA and healthy individuals. We investigated the therapeutic potential of the identified microbial candidate regarding arthritis development, immune responses, gut barrier function, and gut microbiome using a collagen-induced arthritis (CIA) mouse model. Results Our findings revealed significant alterations in antibody levels against 36 microbial species in patients with RA compared to healthy individuals. Notably, the antibody levels against Peptoniphilus gorbachii (PG) were decreased in patients with RA and exhibited an inverse correlation with RA disease activity. In vitro experiments demonstrated that PG produced acetate and butyrate, while exhibiting anti-inflammatory properties. In CIA mice, PG administration suppressed arthritis symptoms, reduced the accumulation of inflammatory monocytes in the mesenteric lymph nodes, and downregulated gene expression of pro-inflammatory cytokines in the ileum. Additionally, PG supplementation restored intestinal barrier integrity and partially resolved gut microbial dysbiosis in CIA mice. The fecal microbiota in PG-treated mice corresponded to improved intestinal barrier integrity and reduced inflammatory responses. Conclusion This study highlights the potential of serum-based detection of anti-microbial antibodies to identify microbial targets at the species level for RA treatment. Moreover, our findings suggest that PG, identified through the microbial microarray analysis, holds therapeutic potential for RA by restoring intestinal barrier integrity and suppressing the immunologic response associated with RA.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hanna Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Young Sun Suh
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| |
Collapse
|
36
|
Anandakumar H, Rauch A, Wimmer MI, Yarritu A, Koch G, McParland V, Bartolomaeus H, Wilck N. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 2024; 16:2398126. [PMID: 39254265 PMCID: PMC11404582 DOI: 10.1080/19490976.2024.2398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.
Collapse
Affiliation(s)
- Harithaa Anandakumar
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Moritz I Wimmer
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Gudrun Koch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
37
|
Wang M, Lkhagva E, Kim S, Zhai C, Islam MM, Kim HJ, Hong ST. The gut microbe pair of Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270 confers complete protection against SARS-CoV-2 infection by activating CD8+ T cell-mediated immunity. Gut Microbes 2024; 16:2342497. [PMID: 38635321 PMCID: PMC11028030 DOI: 10.1080/19490976.2024.2342497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite the potential protective role of the gut microbiome against COVID-19, specific microbes conferring resistance to COVID-19 have not yet been identified. In this work, we aimed to identify and validate gut microbes at the species level that provide protection against SARS-CoV-2 infection. To identify gut microbes conferring protection against COVID-19, we conducted a fecal microbiota transplantation (FMT) from an individual with no history of COVID-19 infection or immunization into a lethal COVID-19 hamster model. FMT from this COVID-19-resistant donor resulted in significant phenotypic changes related to COVID-19 sensitivity in the hamsters. Metagenomic analysis revealed distinct differences in the gut microbiome composition among the hamster groups, leading to the identification of two previously unknown bacterial species: Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, both associated with COVID-19 resistance. Subsequently, we conducted a proof-of-concept confirmation animal experiment adhering to Koch's postulates. Oral administration of this gut microbe pair, Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, to the hamsters provided complete protection against SARS-CoV-2 infection through the activation of CD8+ T cell mediated immunity. The prophylactic efficacy of the gut microbe pair against SARS-CoV-2 infection was comparable to, or even superior to, current mRNA vaccines. This strong prophylactic efficacy suggests that the gut microbe pair could be developed as a host-directed universal vaccine for all betacoronaviruses, including potential future emerging viruses.
Collapse
Affiliation(s)
- Mingda Wang
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China
| | - Enkhchimeg Lkhagva
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Sura Kim
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Chongkai Zhai
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
- College of Food and Drugs, Luoyang Polytechnic, Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, Henan Province, China
| | - Md Minarul Islam
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Hyeon J. Kim
- BioLabs-LA at the Lundquist Institute for Bio Medical Innovation at Harbor UCLA, SNJ Pharma Inc, Torrance, CA, USA
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| |
Collapse
|
38
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
39
|
Jin L, Wu H, Li G, Yang S, Wei R, Huang Y, Penttinen P, Deng W, Chen J, Han X, Li C, Hu L, Li T, Zhang H, Zhao K, Zou L. Gastrointestinal microbiome, resistance genes, and risk assessment of heavy metals in wild giant pandas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165671. [PMID: 37478939 DOI: 10.1016/j.scitotenv.2023.165671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The gastrointestinal microbiome (GM) of giant panda (GP) plays an important role in food utilization and health and is also an essential reservoir of resistance genes. Currently, little knowledge is available on the GM, acid resistance genes (AcRGs), antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in wild GPs. We sampled the gastrointestinal tract of a dead GP and explored the composition and function of GM and resistance genes through cryo-scanning electron microscopy, metagenomic sequencing, and genome-resolved metagenomics. The concentration of metals in the gastrointestinal lumen, feces, bamboo, and soil was measured by inductively coupled plasma mass spectrometry. Results showed that the composition of the microbiota varied in different gastrointestinal regions. Fecal microbiota was highly associated with small intestinal and colonic microbes. The lignocellulosic cross-linked structure of bamboo was destroyed in the stomach initially and destroying degree increased from stomach to anus. Reconstruction of metagenome-assembled-genomes confirmed that core GM, e.g., Streptococcus, Clostridium, Lactococcus, Leuconostoc, and Enterococcus, carried genes encoding the lignocellulose degradation enzyme. There were no significant differences of resistance genes between gastrointestinal and fecal samples, except MGEs. Multidrug and multi-metal resistance genes were predominant in all samples, while the transposase gene tnpA was the major type of MGE. Significant correlations were observed among the abundance of GM, resistance genes, and MGEs. Gastrointestinal and fecal mercury and chromium were the main metals influencing GM and resistance genes. The content of gastrointestinal and fecal metals was significantly associated with the presence of the same metals in bamboo, which could pose a threat to the health of wild GPs. This study characterized the gastrointestinal microbiome of wild GPs, providing new evidence for the role of the gastrointestinal microbiome in degrading lignocellulose from bamboo and highlighting the urgent need to monitor metal levels in soil and bamboo.
Collapse
Affiliation(s)
- Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hongning Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Guo Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Rongping Wei
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenwen Deng
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Jianbin Chen
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Lan Hu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Ti Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan 611830, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
40
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
41
|
Hernández M, Ancona S, Hereira-Pacheco S, Díaz DE LA Vega-Pérez AH, Navarro-Noya YE. Comparative analysis of two nonlethal methods for the study of the gut bacterial communities in wild lizards. Integr Zool 2023; 18:1056-1071. [PMID: 36881373 DOI: 10.1111/1749-4877.12711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fecal samples or cloacal swabs are preferred over lethal dissections to study vertebrate gut microbiota for ethical reasons, but it remains unclear which nonlethal methods provide more accurate information about gut microbiota. We compared the bacterial communities of three gastrointestinal tract (GIT) segments, that is, stomach, small intestine (midgut), and rectum (hindgut) with the bacterial communities of the cloaca and feces in the mesquite lizard Sceloporus grammicus. The hindgut had the highest taxonomic and functional alpha diversity, followed by midgut and feces, whereas the stomach and cloaca showed the lowest diversities. The taxonomic assemblages of the GIT segments at the phylum level were strongly correlated with those retrieved from feces and cloacal swabs (rs > 0.84 in all cases). The turnover ratio of Amplicon Sequence Variants (ASVs) between midgut and hindgut and the feces was lower than the ratio between these segments and the cloaca. More than half of the core-ASVs in the midgut (24 of 32) and hindgut (58 of 97) were also found in feces, while less than 5 were found in the cloaca. At the ASVs level, however, the structure of the bacterial communities of the midgut and hindgut were similar to those detected in feces and cloaca. Our findings suggest that fecal samples and cloacal swabs of spiny lizards provide a good approximation of the taxonomic assemblages and beta diversity of midgut and hindgut microbiota, while feces better represent the bacterial communities of the intestinal segments at a single nucleotide variation level than cloacal swabs.
Collapse
Affiliation(s)
- Mauricio Hernández
- Doctorado en Ciencias Biológicas, Centro de Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Sergio Ancona
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica la Malinche, Centro de Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H Díaz DE LA Vega-Pérez
- Consejo Nacional de Ciencia y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Yendi E Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
42
|
Zabel B, Mäkelä SM, Nedveck D, Hibberd AA, Yeung N, Latvala S, Lehtoranta L, Junnila J, Walters KB, Morovic W, Lehtinen MJ. The Effect of Bifidobacterium animalis subsp. lactis Bl-04 on Influenza A Virus Infection in Mice. Microorganisms 2023; 11:2582. [PMID: 37894240 PMCID: PMC10609243 DOI: 10.3390/microorganisms11102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza A virus infection is a major global disease requiring annual vaccination. Clinical studies indicate that certain probiotics may support immune function against influenza and other respiratory viruses, but direct molecular evidence is scarce. Here, mice were treated with a placebo or Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) orally via food (cereal) and also by gavage and exposed to Influenza A virus H1N1 (H1N1). The symptoms of the infection were observed, and tissues and digesta were collected for viral load RT-qPCR, transcriptomics, and microbiomics. The treatment decreased the viral load by 48% at day 3 post-infection in lungs and symptoms of infection at day 4 compared to placebo. Tissue transcriptomics showed differences between the Bl-04 and placebo groups in the genes in the Influenza A pathway in the intestine, blood, and lungs prior to and post-infection, but the results were inconclusive. Moreover, 16S rRNA gene profiling and qPCR showed the presence of Bl-04 in the intestine, but without major shifts in the microbiome. In conclusion, Bl-04 treatment may influence the host response against H1N1 in a murine challenge model; however, further studies are required to elucidate the mechanism of action.
Collapse
Affiliation(s)
- Bryan Zabel
- Health & Biosciences, International Flavors & Fragrances, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Sanna M Mäkelä
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Derek Nedveck
- Health & Biosciences, International Flavors & Fragrances, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Ashley A Hibberd
- Health & Biosciences, International Flavors & Fragrances, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Nicolas Yeung
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Sinikka Latvala
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Liisa Lehtoranta
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | | | - Kevin B Walters
- Department of Infectious Disease Research, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, USA
| | - Wesley Morovic
- Health & Biosciences, International Flavors & Fragrances, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Markus J Lehtinen
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
43
|
Yang S, Yang Y, Long X, Li H, Zhang F, Wang Z. Integrated Analysis of the Effects of Cecal Microbiota and Serum Metabolome on Market Weights of Chinese Native Chickens. Animals (Basel) 2023; 13:3034. [PMID: 37835639 PMCID: PMC10571757 DOI: 10.3390/ani13193034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota plays an important role in the physiological activities of the host and affects the formation of important economic traits in livestock farming. The effects of cecal microbiota on chicken weights were investigated using the Guizhou yellow chicken as a model. Experimental cohorts from chickens with high- (HC, n = 16) and low-market-weights (LC, n = 16) were collected. Microbial 16S rRNA gene sequencing and non-targeted serum metabolome data were integrated to explore the effect and metabolic mechanism of cecal microbiota on market weight. The genera Lachnoclostridium, Alistipes, Negativibacillus, Sellimonas, and Ruminococcus torques were enriched in the HC group, while Phascolarctobacterium was enriched in the LC group (p < 0.05). Metabolomic analysis determined that pantothenic acid (vitamin B5), luvangetin (2H-1-benzopyran-6-acrylic acid), and menadione (vitamin K3) were significantly higher in HC serum, while beclomethasone dipropionate (a glucocorticoid) and chlorophene (2-benzyl-4-chlorophenol) were present at higher levels in the LC group. The microbes enriched in HC were significantly positively correlated with metabolites, including pantothenic acid and menadione, and negatively correlated with beclomethasone dipropionate and chlorophene. These results indicated that specific cecal bacteria in Guizhou yellow chickens alter the host metabolism and growth performance. This study provides a reference for revealing the mechanism of cecal microbe actions that affect chicken body weight.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (S.Y.); (Y.Y.); (X.L.); (H.L.); (F.Z.)
| |
Collapse
|
44
|
Jensen BAH, Heyndrickx M, Jonkers D, Mackie A, Millet S, Naghibi M, Pærregaard SI, Pot B, Saulnier D, Sina C, Sterkman LGW, Van den Abbeele P, Venlet NV, Zoetendal EG, Ouwehand AC. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration. Cell Rep Med 2023; 4:101190. [PMID: 37683651 PMCID: PMC10518632 DOI: 10.1016/j.xcrm.2023.101190] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations.
Collapse
Affiliation(s)
| | - Marc Heyndrickx
- Flanders Research Institute of Agriculture, Fisheries and Food, Belgium & Ghent University, Department Pathobiology, Pharmacology and Zoological Medicine, B-9090 Melle, 9820 Merelbeke, Belgium
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sam Millet
- Flanders Research Institute of Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | | | - Simone Isling Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bruno Pot
- Yakult Europe BV, 1332 Almere, the Netherlands
| | | | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center of Schleswig-Holstein & University of Lübeck, 23538 Lübeck, Germany
| | | | | | - Naomi Vita Venlet
- International Life Science Institute, European Branch, Brussels, Belgium.
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | | |
Collapse
|
45
|
Di Gesù CM, Matz LM, Fultz R, Bolding IJ, Buffington SA. Monospecies probiotic preparation and administration with downstream analysis of sex-specific effects on gut microbiome composition in mice. STAR Protoc 2023; 4:102386. [PMID: 37379217 PMCID: PMC10331592 DOI: 10.1016/j.xpro.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Dysbiosis of the gut microbiome is implicated in the growing burden of non-communicable chronic diseases, including neurodevelopmental disorders, and both preclinical and clinical studies highlight the potential for precision probiotic therapies in their prevention and treatment. Here, we present an optimized protocol for the preparation and administration of Limosilactobacillus reuteri MM4-1A (ATCC-PTA-6475) to adolescent mice. We also describe steps for performing downstream analysis of metataxonomic sequencing data with careful assessment of sex-specific effects on microbiome composition and structure. For complete details on the use and execution of this protocol, please refer to Di Gesù et al.1.
Collapse
Affiliation(s)
- Claudia M Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Lisa M Matz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ian J Bolding
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Shelly A Buffington
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
46
|
Ahn JS, Choi YJ, Kim HB, Chung HJ, Hong ST. Identification of the Intestinal Microbes Associated with Locomotion. Int J Mol Sci 2023; 24:11392. [PMID: 37511151 PMCID: PMC10380270 DOI: 10.3390/ijms241411392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Given the impact of the gut microbiome on human physiology and aging, it is possible that the gut microbiome may affect locomotion in the same way as the host's own genes. There is not yet any direct evidence linking the gut microbiome to locomotion, though there are some potential connections, such as regular physical activity and the immune system. In this study, we demonstrate that the gut microbiome can contribute differently to locomotion. We remodeled the original gut microbiome of mice through fecal microbiota transplantation (FMT) using human feces and compared the changes in locomotion of the same mice before and three months after FMT. We found that FMT affected locomotion in three different ways: positive, none (the same), and negative. Analysis of the phylogenesis, α-diversities, and β-diversities of the gut microbiome in the three groups showed that a more diverse group of intestinal microbes was established after FMT in each of the three groups, indicating that the human gut microbiome is more diverse than that of mice. The FMT-remodeled gut microbiome in each group was also different from each other. Fold change and linear correlation analyses identified Lacrimispora indolis, Pseudoflavonifractor phocaeensis, and Alistipes senegalensis in the gut microbiome as positive contributors to locomotion, while Sphingobacterium cibi, Prevotellamassilia timonensis, Parasutterella excrementihominis, Faecalibaculum rodentium, and Muribaculum intestinale were found to have negative effects. This study not only confirms the presence of gut microbiomes that contribute differently to locomotion, but also explains the mixed results in research on the association between the gut microbiome and locomotion.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
47
|
Chen X, Hu C, Yan C, Tao E, Zhu Z, Shu X, Guo R, Jiang M. Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood. Sci Rep 2023; 13:7670. [PMID: 37169847 PMCID: PMC10175246 DOI: 10.1038/s41598-023-34792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
We assessed dynamic changes in visceral hypersensitivity and fecal metabolomics through a mouse model of irritable bowel syndrome (IBS) from childhood to adulthood. A mouse model of IBS was constructed with maternal separation (MS) in early life. Male mice aged 25, 40, and 70 days were used. Visceral sensitivity was assessed by recording the reaction between the abdominal withdrawal reflex and colorectal distension. Metabolomics was identified and quantified by liquid chromatography-tandem mass spectrometry. The visceral sensitivity of the MS group was significantly higher than that of the non-separation (NS) group in the three age groups. The top four fecal differential metabolites in the different age groups were lipids, lipid molecules, organic heterocyclic compounds, organic acids and derivatives, and benzenoids. Five identical differential metabolites were detected in the feces and ileal contents of the MS and NS groups at different ages, namely, benzamide, taurine, acetyl-L-carnitine, indole, and ethylbenzene. Taurine and hypotaurine metabolism were the most relevant pathways at P25, whereas histidine metabolism was the most relevant pathway at P40 and P70. Visceral hypersensitivity in the MS group lasted from childhood to adulthood. The different metabolites and metabolic pathways detected in MS groups of different ages provide a theoretical basis for IBS pathogenesis.
Collapse
Affiliation(s)
- Xiaolong Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
- Department of Pediatrics, The First People's Hospital of Jiashan, Jiashan, 314100, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Chenxi Yan
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Enfu Tao
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Rui Guo
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
| |
Collapse
|
48
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
49
|
Matsumoto S, Ren L, Iigo M, Murai A, Yoshimura T. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen. PLoS One 2023; 18:e0278013. [PMID: 36791094 PMCID: PMC9931110 DOI: 10.1371/journal.pone.0278013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
To better adapt to seasonal environmental changes, physiological processes and behaviors are regulated seasonally. The gut microbiome interacts with the physiology, behavior, and even the diseases of host animals, including humans and livestock. Seasonal changes in gut microbiome composition have been reported in several species under natural environments. Dietary content significantly affects the composition of the microbiome, and, in the natural environment, the diet varies between different seasons. Therefore, understanding the seasonal regulatory mechanisms of the gut microbiome is important for understanding the seasonal adaptation strategies of animals. Herein, we examined the effects of changing day length and temperature, which mimic summer and winter conditions, on the gut microbiome of laboratory mice. Principal coordinate analysis and analysis of the composition of microbiomes of 16S rRNA sequencing data demonstrated that the microbiomes of the cecum and large intestine showed significant differences between summer and winter mimicking conditions. Similar to previous studies, a daily rhythm was observed in the composition of the microbiome. Furthermore, the phylogenetic investigation of communities by reconstruction of unobserved states predicted seasonal changes in several metabolic pathways. Changing day length and temperature can affect the composition of the gut microbiome without changing dietary contents.
Collapse
Affiliation(s)
- Shoko Matsumoto
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Liang Ren
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Masayuki Iigo
- Department of Applied Biological Chemistry, Utsunomiya University, Utsunomiya, Japan
| | - Atsushi Murai
- Laboratory of Animal Nutrition, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
50
|
Fecal Microbiome Does Not Represent Whole Gut Microbiome. Cell Microbiol 2023. [DOI: 10.1155/2023/6868417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The current gut microbiome research relies on the fecal microbiome under the assumption that the fecal microbiome represents the microbiome of the entire gastrointestinal (GI) tract. However, there have been growing concerns about using feces as a proxy to study the gut microbiome. Here, we comprehensively analyzed the composition of microbiome and metabolites in the feces and at 14 different locations of GI tracts of genetically homogenous sibling pigs to evaluate the validity of using feces as a proxy to the whole gut microbiome. The composition of intestinal microbes constituting the gut microbiome at each intestinal content and feces and their metabolic compositions were thoroughly investigated through metagenome sequencing and an ultraperformance LC-MS/MS, respectively. The fluctuation in the composition of the microbiome in the stomach and the small intestine became stabilized from the large intestine to feces and was able to be categorized into 3 groups. The taxonomic α-diversities measured by ACE (abundance-based coverage estimator) richness and Shannon diversity indicated that the microbiome in the large intestine was much more diverse than those of the small intestine and feces. The highly independent intestinal microbes in the stomach and the small intestine became flourished in the large intestine and converged into a community with tightly connected networks. β-Diversity analyses by NMDS plots, PCA, and unsupervised hierarchical clustering all showed that the diversities of microbiome compositions were lowest in feces while highest in the large intestine. In accordance with fluctuation of the composition of gut microbiome along with the GI tract, the metabolic composition also completely differed in a location-specific manner along with the GI tract. Comparative analysis of the fecal microbiome and metabolites with those of the whole GI tract indicated that fecal microbiome is insufficient to represent the whole gut microbiome.
Collapse
|