1
|
Zhuang L, Zhao Y, Shen J, Sun L, Hao P, Yang J, Zhang Y, Shen Q. Advances in porcine epidemic diarrhea virus research: genome, epidemiology, vaccines, and detection methods. DISCOVER NANO 2025; 20:48. [PMID: 40029472 DOI: 10.1186/s11671-025-04220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV). The economic impact of PEDV on the global pig industry has been significant, resulting in considerable losses. This paper presents a review of the latest research progress on PEDV genome, molecular epidemiology, vaccine development, and molecular detection methods. It was determined that the genetic diversity of the PEDV spike (S) gene was closely associated with the epidemiological trend of PEDV. The prevalence of S gene variants of different genotypes exhibited variability across regions and pig populations. Epidemiological analyses have demonstrated that PEDV can be transmitted via multiple routes, including direct contact, airborne aerosol, and water source contamination. With regard to vaccine research, the available vaccines can be classified into several categories, including live-attenuated vaccines, inactivated vaccines, subunit vaccines, bacterial vector vaccines, viral vector vaccines, mRNA vaccines, etc. Each of these has distinctive characteristics in terms of immunogenicity, protection efficiency, and safety. Molecular detection methods, including PCR-based methods, isothermal amplification techniques, immunological assays, and biosensors, play an important role in the diagnosis and monitoring of PEDV. Furthermore, this paper examines the current developments in PEDV research and identifies the key areas of future investigation. The objective of this paper is to establish a theoretical foundation for the prevention and control strategies of PED, and to provide a point of reference for further research on the genomics, epidemiology, vaccine development and detection methods of PEDV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Liang F, Qiao W, Zhang M, Hu Z, Zhao S, Yan Q, Li W, Lang Y. Development and Efficacy Evaluation of a Novel Nanoparticle-Based Hemagglutination Inhibition Assay for Serological Studies of Porcine Epidemic Diarrhea Virus. Vet Sci 2025; 12:101. [PMID: 40005861 PMCID: PMC11861430 DOI: 10.3390/vetsci12020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen that causes serious economic losses to the swine industry. To aid PEDV clinical diagnosis and vaccine development, sensitive and precise serological methods are demanded for rapid detection of (neutralizing) antibodies. Aiming for the development of a novel virus-free hemagglutination inhibition (HI) assay, the N-terminal region of the PEDV S1 subunit, encompassing the sialic acid-binding motif, was first expressed as an Fc-fusion protein with a C-terminal Spy Tag (S10A-Spy). The S10A-Spy protein was then presented on SpyCatcher-mi3 nanoparticles, forming virus-like particles designated S10A-NPs. Electron microscopy and dynamic light scattering analysis confirmed its topology, and the hemagglutination assay showed that S10A-NPs can efficiently agglutinate red blood cells. The HI assay based on S10A-NPs was then validated with PEDV-positive and -negative samples. The results showed that the HI assay had high specificity for the detection of PEDV antibodies. Next, a total of 253 clinical serum samples were subjected to the HI testing along with virus neutralization (VN) assay. The area under the receiver operating characteristic curve with VN was 0.959, and the kappa value was 0.759. Statistical analysis of the results indicated that the HI titers of the samples tested exhibited high consistency with the VN titers. Taken together, a novel virus-free HI assay based on the multivalent display of a chimeric PEDV spike protein upon self-assembling nanoparticles was established, providing a new approach for PEDV serological diagnosis.
Collapse
Affiliation(s)
- Fengyan Liang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Wenyue Qiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangtiantian Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| |
Collapse
|
3
|
Han W, Ma Z, Li Z, Chang C, Yuan Y, Li Y, Feng R, Zheng C, Shi Z, Tian H, Zheng H, Xiao S. A novel double antibody sandwich quantitative ELISA for detecting porcine epidemic diarrhea virus infection. Appl Microbiol Biotechnol 2024; 108:482. [PMID: 39377803 PMCID: PMC11461564 DOI: 10.1007/s00253-024-13321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Porcine epidemic diarrhea (PED), a contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), has caused significant economic losses to the global pig farming industry due to its rapid course and spread and its high mortality among piglets. In this study, we prepared rabbit polyclonal antibody and monoclonal antibody 6C12 against the PEDV nucleocapsid (N) protein using the conserved and antigenic PEDV N protein as an immunogen. A double-antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-qELISA) was established to detect PEDV using rabbit polyclonal antibodies as capture antibodies and horseradish peroxidase (HRP)-labeled 6C12 as the detection antibody. Using DAS-qELISA, recombinant PEDV N protein, and virus titer detection limits were approximately 0.05 ng/mL and 103.02 50% tissue culture infective dose per mL (TCID50/mL), respectively. There was no cross-reactivity with porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (PoRV), porcine pseudorabies virus (PRV), porcine deltacoronavirus (PDCoV), or porcine circovirus (PCV). The reproducibility of DAS-qELISA was verified, and the coefficient of variation (CV) for intra- and inter-batch replicates was less than 10%, indicating good reproducibility. When testing anal swab samples from PEDV-infected piglets using DAS-qELISA, the coincidence rate was 92.55% with a kappa value of 0.85 when using reverse transcription-polymerase chain reaction (RT-PCR) and 94.29% with a kappa value of 0.88 when using PEDV antigen detection test strips, demonstrating the reliability of the method. These findings provide fundamental material support for both fundamental and practical studies on PEDV and offer a crucial diagnostic tool for clinical applications. KEY POINTS: • A new anti-PEDV N protein monoclonal antibody strain was prepared • Establishment of a more sensitive double antibody sandwich quantitative ELISA • DAS-qELISA was found to be useful for controlling the PEDV spread.
Collapse
Affiliation(s)
- Weiguo Han
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Chuanzhe Chang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yue Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yongqi Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ran Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Congsen Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
4
|
Dong H, Zhang J, Wang Q, Shen Y, Zhou B, Dai L, Zhu W, Sun H, Xie X, Xie H, Xu C, Zhao G, Yin K. Development of an indirect ELISA for detecting Toxoplasma gondii IgG antibodies based on a recombinant TgIMP1 protein. PLoS Negl Trop Dis 2024; 18:e0012421. [PMID: 39141677 PMCID: PMC11346964 DOI: 10.1371/journal.pntd.0012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/26/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is widely spread around the world, which can cause serious harm to immunosuppressed patients. Currently, the commercial test kits are poor at assessing T. gondii infection and vaccine effectiveness, making an urgent need to exploit effective enzyme-linked immunosorbent assay with great performance to compensate for this deficiency. Here, the TgIMP1 recombinant protein was expressed in E. coli BL(21) cells. The TgIMP1 was purified with affinity chromatography and the reactivity was retained with anti-TgIMP1 antibodies. The TgIMP1 was then used to develop an indirect ELISA (IMP1-iELISA) and the reaction conditions of IMP1-iELISA were optimized. As a result, the cut-off value was determined to be 0.2833 by analyzing the OD450nm values of forty T. gondii-negative sera. The coefficient of variation of 6 T. gondii-positive sera within and between runs were both less than 10%. The IMP1-iELISA was non-cross-reactive with the sera of cytomegalovirus, herpes virus, rubella virus, Cryptosporidium spp., Theileria spp., Neospora spp. and Plasmodium spp.. Furthermore, the sensitivity and specificity of IMP1-iELISA were 98.9% and 96.7%, respectively, based on testing 150 serum samples. The results suggest that this IMP1-iELISA is specific, sensitive, repeatable and can be applied to the detection of T. gondii infections in the medical and health industries.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Yanmei Shen
- Digestive Disease Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Beibei Zhou
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Lisha Dai
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Wenju Zhu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Xiaoman Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| |
Collapse
|
5
|
Lang Q, Huang N, Guo J, Ge L, Yang X. High-affinity monoclonal antibodies against the porcine epidemic diarrhea virus S1 protein. BMC Vet Res 2024; 20:239. [PMID: 38831363 PMCID: PMC11145877 DOI: 10.1186/s12917-024-04091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.
Collapse
Affiliation(s)
- Qiaoli Lang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China
| | - Jincao Guo
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China.
| | - Xi Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China.
| |
Collapse
|
6
|
Liu Z, Zhao Y, Yang J, Liu X, Luo Y, Zhu L, Huang K, Sheng F, Du X, Jin M. Seroprevalence of the novel swine acute diarrhea syndrome coronavirus in China assessed by enzyme-linked immunosorbent assay. Front Cell Infect Microbiol 2024; 14:1367975. [PMID: 38736750 PMCID: PMC11082911 DOI: 10.3389/fcimb.2024.1367975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 05/14/2024] Open
Abstract
The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.
Collapse
Affiliation(s)
- Zuqing Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yun Luo
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
7
|
Xia Y, Li Y, He Y, Wang X, Qiu W, Diao X, Li Y, Gao J, Shen H, Xue C, Cao Y, Li P, Xu Z. Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China. ADVANCED BIOTECHNOLOGY 2024; 2:7. [PMID: 39883309 PMCID: PMC11740879 DOI: 10.1007/s44307-024-00015-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 01/31/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine deltacoronavirus (PDCoV) and Swine acute diarrhea syndrome coronavirus (SADS-CoV) rank among the most frequently encountered swine enteric coronaviruses (SECoVs), leading to substantial economic losses to the swine industry. The availability of a rapid and highly sensitive detection method proves beneficial for the monitoring and surveillance of SECoVs. Based on the N genes of four distinct SECoVs, a novel detection method was developed in this study by combining recombinant enzyme polymerase isothermal amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) 12a. Results showed that the cut-off value of CRISPR-Cas12a assay for SADS-CoV, PEDV, PDCoV and TGEV was 2.19 × 104 Relative Fluorescence Units (RFU), 1.57 × 104 RFU, 3.07 × 104 RFU and 1.64 × 104 RFU, respectively. The coefficient of variation (CV) of within and between runs by CRISPR-Cas12a assay for 6 clinical diarrhea samples were both less than 10%. The CRISPR-Cas12a assay demonstrated high specificity for TGEV, PEDV, PDCoV, and SADS-CoV with no cross-reactivity to other common swine viruses. This method also exhibited a low limit of detection of 2 copies for each virus. Additionally, the results demonstrated a perfect agreement (100%) between the CRISPR-Cas12a assay and the RT-qPCR assay. Finally, a total of 494 pig samples from the field tested by CRISPR-Cas12a assay showed that positive rate for SADS-CoV, TGEV, PDCoV and PEDV was 0, 0, 1.2% and 48.6%, respectively. The results suggested the great potential of CRISPR-Cas12a assay to detect SECoVs in the field.
Collapse
Affiliation(s)
- Yongbo Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yue Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yihong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaowei Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wenjing Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaoyuan Diao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yunfei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Hanqin Shen
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527400, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, 50010, USA.
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Pang J, Tian X, Han X, Yuan J, Li L, You Y, Zhou Y, Xing G, Li R, Wang Z. Computationally-driven epitope identification of PEDV N-protein and its application in development of immunoassay for PEDV detection. J Pharm Biomed Anal 2023; 235:115660. [PMID: 37598469 DOI: 10.1016/j.jpba.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The nucleocapsid (N) protein is a suitable candidate for early diagnosis of porcine epidemic diarrhea virus (PEDV). Here, we identified the linear B-cell epitopes of the PEDV N-protein by integrating a computational-experimental framework and constructed three-dimensional (3D) structure model of the N protein using the ColabFold program in Google Colaboratory. Furthermore, we prepared the monoclonal antibodies against the predicted epitopes and recombinant N protein, respectively, and selected pairing mAbs (named 9C4 and 3C5) to develop a double-antibody sandwich immunochromatographic test strip using CdSe/ZnS quantum dots (QDs)-labelled 9C4 and 3C5 as capture and detection antibodies, respectively. This strip can specifically detect PEDV within 10 min with a detection limit of less than 6.25 × 103 TCID50/mL. In comparison with RT-PCR for testing 90 clinical samples, the relative sensitivity and specificity of the strip were found to be 98.0% and 100%, respectively, with a concordance rate of 98.9% and a kappa value of 0.978, indicating that QDs-ICTS is a reliable method for the application of PEDV detection in clinical samples.
Collapse
Affiliation(s)
- Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghe You
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Yanlin Zhou
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
9
|
Nguyen TL, Le TPT, Dinh TT, Nguyen-Ho HV, Mai QG, Vo-Nguyen HV, Tran TL, Tran HX, Tran-Van H. Investigation of variants in genetics and virulence of Porcine Epidemic Diarrhea Virus after serial passage on Vero cells. J Virol Methods 2023; 318:114755. [PMID: 37244432 DOI: 10.1016/j.jviromet.2023.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.
Collapse
Affiliation(s)
- Tan-Liem Nguyen
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Thu-Phuong Thi Le
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Thuan-Thien Dinh
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University Hochiminh City, Thu Duc, Ho Chi Minh City, Vietnam
| | - Hai-Vy Nguyen-Ho
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Quoc-Gia Mai
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University Hochiminh City, Thu Duc, Ho Chi Minh City, Vietnam
| | - Hai-Vy Vo-Nguyen
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University Hochiminh City, Thu Duc, Ho Chi Minh City, Vietnam
| | - Thuoc Linh Tran
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University Hochiminh City, Thu Duc, Ho Chi Minh City, Vietnam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Hieu Tran-Van
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University Hochiminh City, Thu Duc, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
García-González E, Cerriteño-Sánchez JL, Cuevas-Romero JS, García-Cambrón JB, Castañeda-Montes FJ, Villaseñor-Ortega F. Seroepidemiology Study of Porcine Epidemic Diarrhea Virus in Mexico by Indirect Enzyme-Linked Immunosorbent Assay Based on a Recombinant Fragment of N-Terminus Domain Spike Protein. Microorganisms 2023; 11:1843. [PMID: 37513015 PMCID: PMC10385564 DOI: 10.3390/microorganisms11071843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is an intestinal disease caused by the porcine epidemic diarrhea virus (PEDV) and affects Mexico's swine industry. Despite the disease initially being described in Mexico in 2013, there has been no research into the virus's seroepidemiology carried out in Mexico. Thus, the goal of this study was to develop an indirect ELISA (iELISA) based on a recombinant N-terminal domain truncated spike (S) protein (rNTD-S) of PEDV to evaluate serum obtained from different pig-producing states in Mexico. A total of 1054 sera were collected from pig farms, slaughterhouses, and backyard production in the states of Aguascalientes, Guanajuato, Hidalgo, Jalisco, Morelos, Queretaro, Sinaloa, and Veracruz between 2019 and 2021. The rNTD-S protein was expressed in E. coli BL21 (DE3) cells. Negative and positive serum samples used in the iELISA were previously tested by Western blot. According to our findings, 61.66% of the serum samples (650/1054) were positive, with Jalisco having the highest percentage of positive samples, at a rate of 21.44% (226/1054). This is the first seroepidemiology study of PEDV carried out in Mexico, revealing that the virus is still circulating since the initial outbreak; furthermore, it provides an overview of PEDV's spread and high level of persistence across the country's key swine-producing states.
Collapse
Affiliation(s)
- Eduardo García-González
- Programa de Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico
| | - José Luis Cerriteño-Sánchez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Mexico City 05110, Mexico
| | | | - José Bryan García-Cambrón
- Programa de Maestría en Biología Experimental, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico
| | - Francisco Jesus Castañeda-Montes
- Programa de Estancias Posdoctorales por México para la Formación y Consolidación de las y los Investigadores por México, CONAHCYT, Mexico City 03940, Mexico
| | - Francisco Villaseñor-Ortega
- Programa de Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico
- Tecnológico Nacional de México en Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico
| |
Collapse
|
11
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
12
|
Li R, Wen Y, Yang L, Qian QS, Chen XX, Zhang JQ, Li X, Xing BS, Qiao S, Zhang G. Development of an enzyme-linked immunosorbent assay based on viral antigen capture by anti-spike glycoprotein monoclonal antibody for detecting immunoglobulin A antibodies against porcine epidemic diarrhea virus in milk. BMC Vet Res 2023; 19:46. [PMID: 36765329 PMCID: PMC9921583 DOI: 10.1186/s12917-023-03605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED), caused by PED virus (PEDV), is a severe enteric disease burdening the global swine industry in recent years. Especially, the mortality of PED in neonatal piglets approaches 100%. Maternal antibodies in milk, particularly immunoglobulin A (IgA) antibodies, are of great importance for protection neonatal suckling piglets against PEDV infection as passive lactogenic immunity. Therefore, appropriate detection methods are required for detecting PEDV IgA antibodies in milk. In the current study, we prepared monoclonal antibodies (mAbs) against PEDV spike (S) glycoprotein. An enzyme-linked immunosorbent assay (ELISA) was subsequently developed based on PEDV antigen capture by a specific anti-S mAb. RESULTS The developed ELISA showed high sensitivity (the maximum dilution of milk samples up to 1:1280) and repeatability (coefficient of variation values < 10%) in detecting PEDV IgA antibody positive and negative milk samples. More importantly, the developed ELISA showed a high coincidence rate with a commercial ELISA kit for PEDV IgA antibody detection in clinical milk samples. CONCLUSIONS The developed ELISA in the current study is applicable for PEDV IgA antibody detection in milk samples, which is beneficial for evaluating vaccination efficacies and neonate immune status against the virus.
Collapse
Affiliation(s)
- Rui Li
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Ying Wen
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Lei Yang
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Qi-sheng Qian
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Xin-xin Chen
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Jia-qing Zhang
- grid.495707.80000 0001 0627 4537Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Xuewu Li
- grid.495707.80000 0001 0627 4537Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Bao-song Xing
- grid.495707.80000 0001 0627 4537Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
13
|
Qiu X, Cao X, Shi N, Zhang H, Zhu X, Gao Y, Mai Z, Jin N, Lu H. Development and application of an indirect ELISA for detecting equine IgG antibodies against Getah virus with recombinant E2 domain protein. Front Microbiol 2022; 13:1029444. [PMID: 36439788 PMCID: PMC9685671 DOI: 10.3389/fmicb.2022.1029444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/13/2022] [Indexed: 03/25/2024] Open
Abstract
Getah virus (GETV) disease is a mosquito-borne infectious disease that causes fever, aseptic meningitis, and abortion in a variety of animals. Currently, the epidemic trend of GETV disease increases seriously worldwide, especially in China, posing a potential threat to animal safety and public health. However, there are few reports about the epidemiological investigation of GETV disease in China as well as a lack of commercial diagnostic kit for GETV antibody. Therefore, the establishment of a rapid, sensitive and suitable GETV antibody detection method for large-scale samples is an urgent request to fully understand the prevalence of GETV disease. Here, a recombinant plasmid pET22b-GETV-E2d that contained the domain of GETV-E2 (E2d) fused to His-tag was constructed to express recombinant protein E2d (rE2d) in Escherichia coli. The rE2d was mainly expressed in inclusion bodies. And it was purified successfully by nickel affinity column so that it could be used to develop an indirect ELISA (rE2d-ELISA). After optimizing reaction conditions of rE2d-ELISA, the cut-off value was determined as 0.396 with 100 equine sera tested by virus neutralization test (VNT). Furthermore, rE2d-ELISA method showed the positive rate of IgG antibodies against GETV was 54.3% based on testing 646 clinical serum samples obtained in Xinjiang whereas the overall coincidence rate between rE2d-ELISA and VNT was 94.0%, with 98.2% sensitivity and 92.6% specificity. The findings suggest that the developed IgG ELISA employing recombinant E2d promises was an efficient and low-cost type of antibody detection method for horse, which will benefit for prevention of GETV outbreaks in horses.
Collapse
Affiliation(s)
- Xiangshu Qiu
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou Zhejiang, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xinyu Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- Key Laboratory of Zoonoses Research, College of Veterinary Medicine, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Ningyi Jin
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou Zhejiang, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
14
|
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022; 11:pathogens11101074. [PMID: 36297131 PMCID: PMC9612268 DOI: 10.3390/pathogens11101074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
15
|
Park S, Jung B, Kim E, Yoon H, Hahn TW. Evaluation of Salmonella Typhimurium Lacking fruR, ssrAB, or hfq as a Prophylactic Vaccine against Salmonella Lethal Infection. Vaccines (Basel) 2022; 10:vaccines10091413. [PMID: 36146494 PMCID: PMC9506222 DOI: 10.3390/vaccines10091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the primary causes of foodborne gastroenteritis; occasionally, it causes invasive infection in humans. Because of its broad host range, covering diverse livestock species, foods of animal origin pose a critical threat of NTS contamination. However, there is currently no licensed vaccine against NTS infection. FruR, also known as Cra (catabolite repressor/activator), was initially identified as the transcriptional repressor of the fructose (fru) operon, and then found to activate or repress the transcription of many different genes associated with carbon and energy metabolism. In view of its role as a global regulator, we constructed a live attenuated vaccine candidate, ΔfruR, and evaluated its prophylactic effect against NTS infection in mice. A Salmonella Typhimurium mutant strain lacking fruR was defective in survival inside macrophages and exhibited attenuated virulence in infected mice. Immunization with the ΔfruR mutant stimulated the production of antibodies, including the IgG, IgM, and IgG subclasses, and afforded a protection of 100% to mice against the challenge of lethal infection with a virulent Salmonella strain. The prophylactic effect obtained after ΔfruR immunization was also validated by the absence of signs of hepatosplenomegaly, as these mice had comparable liver and spleen weights in comparison with healthy mice. These results suggest that the ΔfruR mutant strain can be further exploited as a promising vaccine candidate against Salmonella lethal infection.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| |
Collapse
|
16
|
CCR4-NOT Complex 2—A Cofactor in Host Cell for Porcine Epidemic Diarrhea Virus Infection. Genes (Basel) 2022; 13:genes13091504. [PMID: 36140672 PMCID: PMC9498821 DOI: 10.3390/genes13091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there is no consensus on the primary receptor associated with the PEDV invasion of host cells. An increasing number of studies have reported that PEDV invading host cells may require collaboration between multiple receptors and to better understand the virus-host interaction during PEDV entry, surface plasmon resonance (SPR) assays are performed to investigate relevant host factors interacting with PEDV spike-1 protein (S1) in Vero and IPEC-J2 cell membranes. Subsequently, the rabbit anti-PEDV S1 polyclonal antibody is used as bait to recognize the complexes of IPEC-J2 membrane proteins with or without PEDV infection, followed by detection using liquid chromatography with tandem mass spectrometry (LC-MS-MS). Our results show that 13 and 10 proteins interacting between the S1 protein and plasma membrane protein of Vero or IPEC-J2 can be identified. More specifically, a total of 11 differentially expressed interacting proteins were identified in IPEC-J2 membrane proteins after PEDV infection, compared to the uninfected group. Furthermore, we found that the differentially interacting protein CCR4-NOT complex 2 (CNOT2), identified in PEDV S1 with plasma membrane proteins of Vero cells, is involved in viral infection. The results show that the knockout of CNOT2 significantly inhibits PEDV replication in vitro. These data provide novel insights into the entry mechanism of PEDV.
Collapse
|
17
|
Wu X, Liu Y, Gao L, Yan Z, Zhao Q, Chen F, Xie Q, Zhang X. Development and Application of a Reverse-Transcription Recombinase-Aided Amplification Assay for Porcine Epidemic Diarrhea Virus. Viruses 2022; 14:591. [PMID: 35336998 PMCID: PMC8948910 DOI: 10.3390/v14030591] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus currently widespread worldwide in the swine industry. Since PEDV was discovered in China in 1984, it has caused huge economic losses in the swine industry. PEDV can infect pigs of all ages, but piglets have the highest infection with a death rate as high as 100%, and the clinical symptoms are watery diarrhea, vomiting, and dehydration. At present, there is not any report on PEDV detection by RT-RAA. In this study, we developed an isothermal amplification technology by using reverse-transcription recombinase-aided amplification assay (RT-RAA) combined with portable instruments to achieve a molecular diagnosis of PEDV in clinical samples from China. By designing a pair of RT-RAA primers and probes based on the PEDV N gene, this method breaks the limitations of existing detection methods. The assay time was within 30 min at 41 °C and can detect as few as 10 copies of PEDV DNA molecules per reaction. Sixty-two clinical tissue samples were detected by RT-qPCR and RT-RAA. The positive and negative rates for the two methods were 24.19% and 75.81%, respectively. Specificity assay showed that the RT-RAA had specifically detected PEDV and was not reactive for porcine parvovirus (PPV), transmissible gastroenteritis virus (TGEV), porcine circovirus type 2 (PCV2), porcine pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), swine flu virus (SIV), or porcine Japanese encephalitis virus (JEV). The results suggested that RT-RAA had a strong specificity and high detection sensitivity when combined with a portable instrument to complete the detection under a constant temperature of 30 min, which are more suitable for preventing and controlling PEDV onsite in China.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yuanjia Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen’s Foodstuff Group Co., Ltd., Yunfu 527439, China;
| | - Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| |
Collapse
|
18
|
Serological detection of Mycobacterium Tuberculosis complex infection in multiple hosts by One Universal ELISA. PLoS One 2021; 16:e0257920. [PMID: 34618810 PMCID: PMC8496862 DOI: 10.1371/journal.pone.0257920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB), a contagious disease mainly caused by Mycobacterium tuberculosis (M. tb), Mycobacterium bovis (M. bovis), and Mycobacterium caprae (M. caprae), poses a major global threat to the health of humans and many species of animals. Developing an ante-mortem detection technique for different species would be of significance in improving the surveillance employing a One Health strategy. To achieve this goal, a universal indirect ELISA was established for serologically detecting Mycobacterium tuberculosis complex infection for multiple live hosts by using a fusion protein of MPB70, MPB83, ESAT6, and CFP10 common in M. tb, M. bovis, and M. caprae as the coating antigen (MMEC) and HRP-labeled fusion protein A and G as a secondary antibody. After testing the known positive and negative sera, the receiver operating characteristic curves were constructed to decide the cut-off values. Then, the diagnostic sensitivity and specificity of MMEC/AG-iELISA were determined as 100.00% (95% CI: 96.90%, 100.00%) and 100.00% (95% CI: 98.44%, 100.00%) for M. bovis infection of cattle, 100.00% (95% CI: 95.00%, 100.00%) and 100.0% (95% CI: 96.80%, 100.00%) for M. bovis infection of sheep, 90.74% (95% CI: 80.09%, 95.98%) and 98.63% (95% CI: 95.14%, 99.76%) for M. bovis infection of cervids, 100.00% (95% CI: 15.81%, 100.00%) and 98.81% (95% CI: 93.54%, 99.97%) for M. bovis infection of monkeys, 100.00% (95% CI: 86.82%, 100.00%) and 94.85% (95% CI: 91.22%, 97.03%) for M. tb infection of humans. Furthermore, this MMEC/AG-iELISA likely detects M. caprae infection in roe deer. Thus this method has a promising application in serological TB surveillance for multiple animal species thereby providing evidence for taking further action in TB control.
Collapse
|
19
|
Peng P, Gao Y, Zhou Q, Jiang T, Zheng S, Huang M, Xue C, Cao Y, Xu Z. Development of an indirect ELISA for detecting swine acute diarrhoea syndrome coronavirus IgG antibodies based on a recombinant spike protein. Transbound Emerg Dis 2021; 69:2065-2075. [PMID: 34148289 DOI: 10.1111/tbed.14196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022]
Abstract
Swine acute diarrhoea syndrome coronavirus (SADS-CoV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhoea in neonatal piglets, leading to significant economic losses to the swine industry. Currently, there are no suitable serological methods to assess the infection of SADS-CoV and effectiveness of vaccines, making an urgent need to exploit effective enzyme-linked immunosorbent assay (ELISA) to compensate for this deficiency. Here, a recombinant plasmid that expresses the spike (S) protein of SADS-CoV fused to the Fc domain of human IgG was constructed to generate recombinant baculovirus and expressed in HEK 293F cells. The S-Fc protein was purified with protein G Resin, which retained reactivity with anti-human Fc and anti-SADS-CoV antibodies. The S-Fc protein was then used to develop an indirect ELISA (S-iELISA) and the reaction conditions of S-iELISA were optimized. As a result, the cut-off value was determined as 0.3711 by analyzing OD450nm values of 40 SADS-CoV-negative sera confirmed by immunofluorescence assay (IFA) and western blot. The coefficient of variation (CV) of 6 SADS-CoV-positive sera within and between runs of S-iELISA were both less than 10%. The cross-reactivity assays demonstrated that S-iELISA was non-cross-reactive with other swine viruses' sera. Furthermore, the overall coincidence rate between IFA and S-iELISA was 97.3% based on testing 111 clinical serum samples. Virus neutralization test with seven different OD450nm values of the sera showed that the OD450nm values tested by S-iELISA are positively correlated with the virus neutralization assay. Finally, a total of 300 pig field serum samples were tested by S-iELISA and commercial kits of other swine enteroviruses showed that the IgG-positive for SADS-CoV, TGEV, PDCoV and PEDV was 81.7, 54, 65.3 and 6%, respectively. The results suggest that this S-iELISA is specific, sensitive, repeatable and can be applied for the detection of the SADS-CoV infection in the swine industry.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yuepeng Gao
- Agricultural product Quality and Safety Inspection and Testing Center, Shenzhen, China
| | - Qingfeng Zhou
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Guangdong, China
| | - Tianhua Jiang
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Guangdong, China
| | - Shumei Zheng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Meiyan Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Kang KJ, Kim DH, Hong EJ, Shin HJ. The Carboxy Terminal Region on Spike Protein of Porcine Epidemic Diarrhea Virus (PEDV) Is Important for Evaluating Neutralizing Activity. Pathogens 2021; 10:pathogens10060683. [PMID: 34072840 PMCID: PMC8226889 DOI: 10.3390/pathogens10060683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we evaluated 62 sow sera samples from PED-vaccinated sows to compare the serum neutralizing test (SNT) and enzyme-linked immunosorbent assay (ELISA). We performed protein ELISA (pELISA) using fragments of spike proteins S1, S2, S3 and entire nucleocapsid proteins, and found a correlation between the SNT and ELISA in PEDV-vaccinated sera. Sera with higher neutralizing activity showed higher titers of IgG. In the antibody profiling, the neutralizing activities are correlated with the levels of the spike antibody, especially the S3 region. We confirmed that the carboxy-terminal region, including the endodomain of the S protein, induced stronger neutralizing activity than the ectodomain. This region of the S protein could be useful for evaluating PED vaccine efficacy, and it is a strong neutralizing epitope of PEDV. The S3 protein could be useful for evaluating PED vaccine efficacy, and it is a strong neutralizing epitope of PEDV.
Collapse
Affiliation(s)
- Ki-Jong Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejon 34134, Korea; (K.-J.K.); (D.-H.K.); (E.-J.H.)
| | - Dong-Hwan Kim
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejon 34134, Korea; (K.-J.K.); (D.-H.K.); (E.-J.H.)
| | - Eui-Ju Hong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejon 34134, Korea; (K.-J.K.); (D.-H.K.); (E.-J.H.)
- Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejon 34134, Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejon 34134, Korea; (K.-J.K.); (D.-H.K.); (E.-J.H.)
- Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejon 34134, Korea
- Correspondence:
| |
Collapse
|
21
|
Hsu WT, Chang CY, Tsai CH, Wei SC, Lo HR, Lamis RJS, Chang HW, Chao YC. PEDV Infection Generates Conformation-Specific Antibodies That Can Be Effectively Detected by a Cell-Based ELISA. Viruses 2021; 13:v13020303. [PMID: 33671997 PMCID: PMC7919263 DOI: 10.3390/v13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes serious and highly contagious enteric disease in swine worldwide. In this study, we constructed a recombinant baculovirus (S-Bac) expressing full-length spike protein of the virulent epidemic genotype 2b (G2b) PEDV strain for serological studies of infected pigs. We found that most spike-specific antibodies produced upon PEDV infection in pigs are conformation-specific and they could be detected on S-Bac-infected insect cells by immunofluorescent assay, but they were insensitive to Western blot analysis, the typical method for antiserum analysis. These results indicated that spike conformation is crucial for serum recognition. Since it is difficult to purify trimeric spike membrane protein for conventional enzyme-linked immunosorbent assay (ELISA), we used S-Bac to generate a novel cell-based ELISA for convenient PEDV detection. We analyzed 100 pig serum samples, and our cell-based ELISA exhibited a sensitivity of 100%, a specificity of 97%, and almost perfect agreement [Cohen’s kappa coefficient value (κ) = 0.98] with immunocytochemical staining results. Our cell-based ELISA rapidly presented antigen for proper detection of conformation-specific antibodies, making PEDV detection more convenient, and it will be useful for detecting many viral diseases in the future.
Collapse
Affiliation(s)
- Wei-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Yu Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-Y.C.); (H.-W.C.)
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Huei-Ru Lo
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Robert John S. Lamis
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-Y.C.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan
- Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
22
|
Park S, Jung B, Kim E, Hong ST, Yoon H, Hahn TW. Salmonella Typhimurium Lacking YjeK as a Candidate Live Attenuated Vaccine Against Invasive Salmonella Infection. Front Immunol 2020; 11:1277. [PMID: 32655567 PMCID: PMC7324483 DOI: 10.3389/fimmu.2020.01277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) causes gastrointestinal infection, which is commonly self-limiting in healthy humans but may lead to invasive infection at extraintestinal sites, leading to bacteremia and focal systemic infections in the immunocompromised. However, a prophylactic vaccine against invasive NTS has not yet been developed. In this work, we explored the potential of a ΔyjeK mutant strain as a live attenuated vaccine against invasive NTS infection. YjeK in combination with YjeA is required for the post-translational modification of elongation factor P (EF-P), which is critical for bacterial protein synthesis. Therefore, malfunction of YjeK and YjeA-mediated EF-P activation might extensively influence protein expression during Salmonella infection. Salmonella lacking YjeK showed substantial alterations in bacterial motility, antibiotics resistance, and virulence. Interestingly, deletion of the yjeK gene increased the expression levels of Salmonella pathogenicity island (SPI)-1 genes but decreased the transcription levels of SPI-2 genes, thereby influencing bacterial invasion and survival abilities in contact with host cells. In a mouse model, the ΔyjeK mutant strain alleviated the levels of splenomegaly and bacterial burdens in the spleen and liver in comparison with the wild-type strain. However, mice immunized with the ΔyjeK mutant displayed increased Th1- and Th2-mediated immune responses at 28 days post-infection, promoting cytokines and antibodies production. Notably, the Th2-associated antibody response was highly induced by administration of the ΔyjeK mutant strain. Consequently, vaccination with the ΔyjeK mutant strain protected 100% of the mice against challenge with lethal invasive Salmonella and significantly relieved bacterial burdens in the organs. Collectively, these results suggest that the ΔyjeK mutant strain can be exploited as a promising live attenuated NTS vaccine.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
23
|
Mannully ST, Rekha V, Singh N, Shanthi C, Pulicherla K. Purification and in vivo stability and half-life of recombinant lipid modified staphylokinase. Biologicals 2020; 64:15-22. [DOI: 10.1016/j.biologicals.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/28/2022] Open
|
24
|
Xu F, Jin Z, Zou S, Chen C, Song Q, Deng S, Xiao W, Zhang X, Jia A, Tang Y. EuNPs-mAb fluorescent probe based immunochromatographic strip for rapid and sensitive detection of porcine epidemic diarrhea virus. Talanta 2020; 214:120865. [PMID: 32278431 PMCID: PMC7111840 DOI: 10.1016/j.talanta.2020.120865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
Porcine epidemic diarrhea (PED), induced by porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets, resulting in significant economic losses in the pig industries. In this study, an immunochromatographic assay (ICA) based on a EuNPs-mAb fluorescent probe was developed and optimized for rapid detection of PEDV. The limit of detection (LOD) of the ICA was 0.218 μg/mL (2.725 × 103 TCID50/mL) and its linear detection range was 0.03125-8 μg/mL (3.91 × 102-105 TCID50/mL). The ICA was also validated for the detection of PEDV in swine stool samples. 60 swine stool samples from southern China were analyzed by the ICA and RT-PCR, and the results showed that the coincidence rate of the ICA to RT-PCR was 86.67%, which was significantly higher than that of AuNPs based ICA. The ICA is sensitive and specific and can achieve on-site rapid detection of swine stool samples. Therefore, the ICA has a great potential for PED diagnosis and prevention.
Collapse
Affiliation(s)
- Fei Xu
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Zhiyuan Jin
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Siyi Zou
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Chaoqun Chen
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Qifang Song
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Shengchao Deng
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Wei Xiao
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China
| | - Xiaoli Zhang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China.
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry & Veterinary, PR China.
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Jinan University, Guangzhou, 510632, PR China; Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
25
|
Chang CY, Peng JY, Cheng YH, Chang YC, Wu YT, Tsai PS, Chiou HY, Jeng CR, Chang HW. Development and comparison of enzyme-linked immunosorbent assays based on recombinant trimeric full-length and truncated spike proteins for detecting antibodies against porcine epidemic diarrhea virus. BMC Vet Res 2019; 15:421. [PMID: 31775769 PMCID: PMC6880432 DOI: 10.1186/s12917-019-2171-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2010, outbreaks of genotype 2 (G2) porcine epidemic diarrhea virus (PEDV) have caused high mortality in neonatal piglets and have had devastating impacts on the swine industry in many countries. A reliable serological assay for evaluating the PEDV-specific humoral and mucosal immune response is important for disease survey, monitoring the efficacy of immunization, and designing strategies for the prevention and control of PED. Two PEDV spike (S) glycoprotein-based indirect enzyme-linked immunosorbent assays (ELISAs) were developed using G2b PEDV-Pintung 52 (PEDV-PT) trimeric full-length S and truncated S1-501 proteins derived from the human embryonic kidney (HEK)-293 cell expression system. The truncated S1-501 protein was selected from a superior expressed stable cell line. The sensitivity and specificity of these two ELISAs were compared to immunostaining of G2b PEDV-PT infected cells and to a commercial nucleocapsid (N)-based indirect ELISA kit using a panel of PEDV negative and hyperimmune sera. RESULTS The commercial N-based ELISA exhibited a sensitivity of 37%, a specificity of 100%, and a fair agreement (kappa = 0.37) with the immunostaining result. In comparison, the full-length S-based ELISA showed a sensitivity of 97.8%, a specificity of 94%, and an almost perfect agreement (kappa = 0.90) with the immunostaining result. Interestingly, the S1-501-based ELISA had even higher sensitivity of 98.9% and specificity of 99.1%, and an almost perfect agreement (kappa = 0.97) with the immunostaining result. A fair agreement (kappa< 0.4) was seen between the commercial N-based ELISA and either of our S-based ELISAs. However, the results of the full-length S-based ELISA shared an almost perfect agreement (kappa = 0.92) with that of S1-501-based ELISA. CONCLUSIONS Both full-length S-based and S1-501-based ELISAs exhibit high sensitivity and high specificity for detecting antibodies against PEDVs. Considering the high protein yield and cost-effectiveness, the S1-501-based ELISA could be used as a reliable, sensitive, specific, and economic serological test for PEDV.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ju-Yi Peng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yun-Han Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Tse Wu
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
26
|
Ma Z, Wang T, Li Z, Guo X, Tian Y, Li Y, Xiao S. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. J Nanobiotechnology 2019; 17:96. [PMID: 31526383 PMCID: PMC6745792 DOI: 10.1186/s12951-019-0531-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV), which is characterized by severe watery diarrhea, vomiting, dehydration and a high mortality rate in piglets, leads to enormous economic losses to the pork industry and remains a large challenge worldwide. Thus, a rapid and reliable method is required for epidemiological investigations and to evaluate the effect of immunization. However, the current diagnostic methods for PEDV are time-consuming and very expensive and rarely meet the requirements for clinical application. Nanobodies have been used in the clinic to overcome these problems because of the advantages of their easy expression and high level of stability. In the present work, a novel biotinylated nanobody-based blocking ELISA (bELISA) was developed to detect anti-PEDV antibodies in clinical pig serum. Results Using phage display technology and periplasmic extraction ELISA (PE-ELISA), anti-PEDV N protein nanobodies from three strains of PEDV were successfully isolated after three consecutive rounds of bio-panning from a high quality phage display VHH library. Then, purified Nb2-Avi-tag fusion protein was biotinylated in vitro. A novel bELISA was subsequently developed for the first time with biotinylated Nb2. The cutoff value for bELISA was 29.27%. One hundred and fifty clinical serum samples were tested by both newly developed bELISA and commercial kits. The sensitivity and specificity of bELISA were 100% and 93.18%, respectively, and the coincidence rate between the two methods was 94%. Conclusions In brief, bELISA is a rapid, low-cost, reliable and useful nanobody-based tool for the serological evaluation of current PEDV vaccines efficacy and indirect diagnosis of PEDV infection.
Collapse
Affiliation(s)
- Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tianyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangsheng Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|