1
|
Li K, Thindwa D, Weinberger D, Pitzer V. The Role of Viral Interference in Shaping RSV Epidemics Following the 2009 H1N1 Influenza Pandemic. Influenza Other Respir Viruses 2025; 19:e70111. [PMID: 40275825 PMCID: PMC12022500 DOI: 10.1111/irv.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Disruptions in respiratory syncytial virus (RSV) activity were observed in different countries following the 2009 influenza pandemic. Given the limited use of non-pharmaceutical interventions, these disruptions provide an opportunity to probe viral interference due to the out-of-season epidemics. The objectives of the study are twofold: to characterize atypical RSV activity in the United States (US) and to explore the mechanisms underlying changes in RSV epidemics following the pandemic. METHODS Laboratory-confirmed RSV cases across 10 US regions from June 2007 to July 2019 were analyzed. A dynamic time warping method was used to characterize RSV activity in different seasons. A two-pathogen model was constructed to explore viral interference mechanisms. A sampling-importance-resampling method was applied to estimate the effects of viral interference. RESULTS We found that RSV activity was reduced following the influenza pandemic in the 2009/10 season across all regions in the US. By contrast, we found an enhanced but delayed RSV epidemic across the US in the 2010/11 season. Using a mathematical model, we explored three potential viral interference mechanisms that could explain the change of RSV activity following the pandemic. The pandemic influenza may interfere with RSV to reduce susceptibility to RSV coinfection, or shorten the RSV infectious period, or decrease RSV infectivity in co-infections. CONCLUSIONS This study provides statistical evidence for atypical RSV seasons following the influenza pandemic in the US and sheds light on viral interference mechanisms affecting RSV epidemics, offering a model-fitting framework for analyzing surveillance data at the population level.
Collapse
Affiliation(s)
- Ke Li
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticutUSA
| | - Deus Thindwa
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticutUSA
| | - Daniel M. Weinberger
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticutUSA
| | - Virginia E. Pitzer
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticutUSA
| |
Collapse
|
2
|
Perry SS, Brice DC, Sakr AA, Kandeil A, DeBeauchamp J, Ghonim M, Jones J, Miller L, Vegesana K, Crawford JC, Langfitt DM, Kercher L, Abdelsamed HA, Webster RG, Thomas PG, Webby RJ, Okda FA. Modulation of cytokeratin and cytokine/chemokine expression following influenza virus infection of differentiated human tonsillar epithelial cells. J Virol 2025; 99:e0146024. [PMID: 39791909 PMCID: PMC11852761 DOI: 10.1128/jvi.01460-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles. We found that differentiated HTECs possess more abundant α2,3-linked SA (preferentially bound by avian influenza viruses) than α2,6-linked SA (preferentially bound by mammalian strains). This dual receptor expression suggests a role in influenza virus adaptation and tropism within the tonsils by facilitating the binding and entry of multiple influenza virus strains. Our results indicated the susceptibility of differentiated HTECs to a wide range of influenza viruses from human, swine, and avian hosts. Virus production for most strains was detected as early as 1 day post-infection (dpi), and typically peaked by 3 dpi. However, pandemic H1N1 virus showed remarkably delayed replication kinetics that did not peak until at least 7 dpi. Notably, influenza virus infection impacted the expression of cytokeratins in HTEC cultures, which correlated with altered cytokine secretion patterns. These patterns varied within the strains but were most distinct in swine H3N2 infection. In conclusion, differentiated HTECs exhibited a strain-specific pattern of influenza virus replication and innate immune responses that included changes in cytokeratin and cytokine expression. These studies shed light on the complex interplay between influenza viruses and host cells in the tonsils. IMPORTANCE To develop effective interventions against influenza, it is important to identify host factors affecting pathogenesis and immune responses. Tonsils are lymphoepithelial organs characterized by infiltration of B and T lymphocytes into the squamous epithelium of tonsillar crypts, beneath which germinal centers play key roles in antigen processing and the immune response. Influenza virus tropism in the human upper respiratory tract is a key determinant of host-range, pathogenesis, and transmission. Accordingly, experimental models using primary cells from the human respiratory tract are relevant for assessing virus tropism and replication competence. Our study addresses the dynamics of influenza virus replication in HTECs, including cellular tropism, infectivity, and cytokeratin and cytokine expression. The results of this study highlight the complex interplay between structural proteins and immune signaling pathways, all of which provide valuable insights into host-virus interactions.
Collapse
Affiliation(s)
- S. Scott Perry
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - David C. Brice
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ahmed Atef Sakr
- Cornell Veterinary Biobank, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Ahmed Kandeil
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- National Research Center, Giza, Egypt
| | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mohamed Ghonim
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Jones
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lance Miller
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kasi Vegesana
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Chase Crawford
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Deanna M. Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lisa Kercher
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Department of Physiology, Medical College of Georgia (MCG), Augusta University, Augusta, Georgia, USA
| | - Robert G. Webster
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J. Webby
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Faten A. Okda
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- National Research Center, Giza, Egypt
| |
Collapse
|
3
|
Li K, Thindwa D, Weinberger DM, Pitzer VE. The role of viral interference in shaping RSV epidemics following the 2009 H1N1 influenza pandemic. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.02.25.24303336. [PMID: 38464193 PMCID: PMC10925368 DOI: 10.1101/2024.02.25.24303336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Disruptions in respiratory syncytial virus (RSV) activity were observed in different countries following the 2009 influenza pandemic. Given the limited use of non-pharmaceutical interventions, these disruptions do provide an opportunity to probe viral interference due to the out-of-season epidemics. The objectives of the study are twofold: to characterize atypical RSV activity in the United States (US) and to explore the mechanisms underlying changes in RSV epidemics following the pandemic. Methods Laboratory-confirmed RSV cases across 10 US regions from June 2007 to July 2019 were analyzed. A dynamic time warping method was used to characterize RSV activity in different seasons. A two-pathogen model was constructed to explore viral interference mechanisms. A sampling-importance resampling method was applied to estimate the effects of viral interference. Results We found that RSV activity was reduced following the influenza pandemic in the 2009/10 season across all regions in the US. By contrast, we found an enhanced but delayed RSV epidemic across the US in the 2010/11 season. Using a mathematical model, we identified three potential viral interference mechanisms that could explain the change of RSV activity following the pandemic. The pandemic influenza may interfere with RSV to reduce susceptibility to RSV coinfection, or shorten the RSV infectious period, or decrease RSV infectivity in co-infections. Conclusions This study provides statistical evidence for atypical RSV seasons following the influenza pandemic in the US and sheds light on viral interference mechanisms affecting RSV epidemics, offering a model-fitting framework for analyzing surveillance data at the population level.
Collapse
Affiliation(s)
- Ke Li
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Deus Thindwa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
4
|
Seki N, Tsujimoto H, Tanemura S, Kikuchi J, Saito S, Sugahara K, Yoshimoto K, Akiyama M, Takeuchi T, Chiba K, Kaneko Y. Longitudinal analysis at pre- and post-flare of T peripheral helper and T follicular helper subsets in patients with systemic lupus erythematosus. Immunol Lett 2024; 269:106905. [PMID: 39103125 DOI: 10.1016/j.imlet.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE We focused to analyze the time-course changes at pre- and post-flare of T peripheral helper (Tph) cells and circulating T follicular helper (Tfh) cells in the blood of patients with systemic lupus erythematosus (SLE) with lupus low disease activity state (LLDAS) before flare. METHODS This study included inactive (n = 29) and active (n = 55) patients with SLE. Tph subsets, Tfh subsets, CD11chi B cells, and plasma cells in the blood were determined by flow cytometry. The blood levels of cytokines including interferons (IFNs) were measured by electrochemiluminescence assay or cytokine beads array. RESULTS Active SLE patients exhibited the increased frequency of Tph1, Tph2, Tfh1, and Tfh2 subsets when compared to inactive patients, but no clear changes in the other subsets. During the treatment with medications, Tph1, Tph2, and Tfh2 subsets were significantly reduced along with disease activity and Tph1 and Tph2 subsets were positively correlated with SLE disease activity index (SLEDAI). The time course analysis of patients at pre- and post-flare revealed that in the patients at LLDAS before flare, Tph subsets and Tfh subsets were relatively low levels. At the flare, Tph cells, particularly Tph1 and Tph2 subsets, were increased and correlated with SLEDAI. Furthermore, the blood levels of IFN-α2a, IFN-γ, and IFN-λ1 were low in the patients with LLDAS before flare but these IFNs, particularly IFN-λ1, were increased along with flare. CONCLUSION Increased frequency of Tph1 and Tph2 subsets and elevated levels of serum IFN-λ1 are presumably critical for triggering of flare in SLE.
Collapse
Affiliation(s)
- Noriyasu Seki
- Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Tsujimoto
- Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Tanemura
- Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuntaro Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kunio Sugahara
- Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Kenji Chiba
- Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
7
|
Zhou Y, Cao D, Liu J, Li F, Han H, Lei Q, Liu W, Li D, Wang J. Chicken adaptive response to nutrient density: immune function change revealed by transcriptomic analysis of spleen. Front Immunol 2023; 14:1188940. [PMID: 37256135 PMCID: PMC10225541 DOI: 10.3389/fimmu.2023.1188940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Feed accounts for the largest portion (65-70%) of poultry production costs. The feed formulation is generally improved to efficiently meet the nutritional needs of chickens by reducing the proportion of crude protein (CP) and metabolizable energy (ME) levels in the diet. Although many studies have investigated the production performance during dietary restriction, there is a lack of research on the mechanisms by which immune cell function is altered. This study examined the effects of ME and CP restriction in the chicken diet on serum immunoglobulins and expression of immune function genes in spleen. Changes in serum immunoglobulins and immune-related gene expression were analyzed in 216 YS-909 broilers fed with 9 different dietary treatments, including experimental treatment diets containing low, standard, and high levels of ME or CP in the diet. At 42 days of age, serum immunoglobulins and expression of spleen immune genes in 6 female chickens selected randomly from each dietary treatment (3×3 factorial arrangement) group were measured by enzyme-linked immunosorbent assay (ELISA) and transcriptomic analysis using RNA sequencing, respectively. The results showed that the IgM level in the low ME group chickens was significantly (p < 0.05) lower than that in other groups. In addition, immune-related genes, such as MX1, USP18, TLR4, IFNG and IL18 were significantly upregulated when the dietary nutrient density was reduced, which may put the body in an inflammatory state. This study provided general information on the molecular mechanism of the spleen immune response to variable nutrient density.
Collapse
|
8
|
Raj S, Alizadeh M, Shoojadoost B, Hodgins D, Nagy É, Mubareka S, Karimi K, Behboudi S, Sharif S. Determining the Protective Efficacy of Toll-Like Receptor Ligands to Minimize H9N2 Avian Influenza Virus Transmission in Chickens. Viruses 2023; 15:238. [PMID: 36680279 PMCID: PMC9861619 DOI: 10.3390/v15010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Low-pathogenicity avian influenza viruses (AIV) of the H9N2 subtype can infect and cause disease in chickens. Little is known about the efficacy of immune-based strategies for reducing the transmission of these viruses. The present study investigated the efficacy of Toll-like receptor (TLR) ligands (CpG ODN 2007 and poly(I:C)) to reduce H9N2 AIV transmission from TLR-treated seeder (trial 1) or inoculated chickens (trial 2) to naive chickens. The results from trial 1 revealed that a low dose of CpG ODN 2007 led to the highest reduction in oral shedding, and a high dose of poly(I:C) was effective at reducing oral and cloacal shedding. Regarding transmission, the recipient chickens exposed to CpG ODN 2007 low-dose-treated seeder chickens showed a maximum reduction in shedding with the lowest number of AIV+ chickens. The results from trial 2 revealed a maximum reduction in oral and cloacal shedding in the poly(I:C) high-dose-treated chickens (recipients), followed by the low-dose CpG ODN 2007 group. In these two groups, the expression of type I interferons (IFNs), protein kinase R (PKR), interferon-induced transmembrane protein 3 (IFITM3), viperin, and (interleukin) IL-1β, IL-8, and 1L-18 was upregulated in the spleen, cecal tonsils and lungs. Hence, TLR ligands can reduce AIV transmission in chickens.
Collapse
Affiliation(s)
- Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Douglas Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Park JW, Ndimukaga M, So J, Kim S, Truong AD, Tran HTT, Dang HV, Song KD. Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:183-196. [PMID: 37093904 PMCID: PMC10119460 DOI: 10.5187/jast.2022.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 01/19/2023]
Abstract
Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Marc Ndimukaga
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Jaerung So
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Sujung Kim
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Anh Duc Truong
- Vietnam National Institute of Veterinary
Research, Ha Noi 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Vietnam National Institute of Veterinary
Research, Ha Noi 100000, Viet Nam
| | - Hoang Vu Dang
- Vietnam National Institute of Veterinary
Research, Ha Noi 100000, Viet Nam
| | - Ki-Duk Song
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
- The Animal Molecular Genetics and Breeding
Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
10
|
Tsai M, Osman W, Adair J, ElMergawy R, Chafin L, Johns F, Farkas D, Elhance A, Londino J, Mallampalli RK. The E3 ligase subunit FBXO45 binds the interferon-λ receptor and promotes its degradation during influenza virus infection. J Biol Chem 2022; 298:102698. [PMID: 36379255 PMCID: PMC9747586 DOI: 10.1016/j.jbc.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022] Open
Abstract
Influenza remains a major public health challenge, as the viral infection activates multiple biological networks linked to altered host innate immunity. Following infection, IFN-λ, a ligand crucial for the resolution of viral infections, is known to bind to its cognate receptor, IFNLR1, in lung epithelia. However, little is known regarding the molecular expression and regulation of IFNLR1. Here, we show that IFNLR1 is a labile protein in human airway epithelia that is rapidly degraded after influenza infection. Using an unbiased proximal ligation biotin screen, we first identified that the Skp-Cullin-F box E3 ligase subunit, FBXO45, binds to IFNLR1. We demonstrate that FBXO45, induced in response to influenza infection, mediates IFNLR1 protein polyubiquitination and degradation through the ubiquitin-proteasome system by docking with its intracellular receptor domain. Furthermore, we found ectopically expressed FBXO45 and its silencing in cells differentially regulated both IFNLR1 protein stability and interferon-stimulated gene expression. Mutagenesis studies also indicated that expression of a K319R/K320R IFNLR1 variant in cells exhibited reduced polyubiquitination, yet greater stability and proteolytic resistance to FBXO45 and influenza-mediated receptor degradation. These results indicate that the IFN-λ-IFNLR1 receptor axis is tightly regulated by the Skp-Cullin-F box ubiquitin machinery, a pathway that may be exploited by influenza infection as a means to limit antiviral responses.
Collapse
|
11
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Host gene expression is associated with viral shedding magnitude in blue-winged teals (Spatula discors) infected with low-path avian influenza virus. Comp Immunol Microbiol Infect Dis 2022; 90-91:101909. [PMID: 36410069 PMCID: PMC10500253 DOI: 10.1016/j.cimid.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Intraspecific variation in host infectiousness affects disease transmission dynamics in human, domestic animal, and many wildlife host-pathogen systems including avian influenza virus (AIV); therefore, identifying host factors related to host infectiousness is important for understanding, controlling, and preventing future outbreaks. Toward this goal, we used RNA-seq data collected from low pathogenicity avian influenza virus (LPAIV)-infected blue-winged teal (Spatula discors) to determine the association between host gene expression and intraspecific variation in cloacal viral shedding magnitude, the transmissible fraction of virus. We found that host genes were differentially expressed between LPAIV-infected and uninfected birds early in the infection, host genes were differentially expressed between shed level groups at one-, three-, and five-days post-infection, host gene expression was associated with LPAIV infection patterns over time, and genes of the innate immune system had a positive linear relationship with cloacal viral shedding. This study provides important insights into host gene expression patterns associated with intraspecific LPAIV shedding variation and can serve as a foundation for future studies focused on the identification of host factors that drive or permit the emergence of high viral shedding individuals.
Collapse
Affiliation(s)
- Amanda C Dolinski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jared J Homola
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Mark D Jankowski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; US Environmental Protection Agency, Region 10, Seattle, WA 98101, USA
| | - John D Robinson
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jennifer C Owen
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; Michigan State University, Department of Large Animal Clinical Sciences, 736 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Qin R, Meng G, Pushalkar S, Carlock MA, Ross TM, Vogel C, Mahal LK. Prevaccination Glycan Markers of Response to an Influenza Vaccine Implicate the Complement Pathway. J Proteome Res 2022; 21:1974-1985. [PMID: 35757850 PMCID: PMC9361353 DOI: 10.1021/acs.jproteome.2c00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A key to improving vaccine design and vaccination strategy is to understand the mechanism behind the variation of vaccine response with host factors. Glycosylation, a critical modulator of immunity, has no clear role in determining vaccine responses. To gain insight into the association between glycosylation and vaccine-induced antibody levels, we profiled the pre- and postvaccination serum protein glycomes of 160 Caucasian adults receiving the FLUZONE influenza vaccine during the 2019-2020 influenza season using lectin microarray technology. We found that prevaccination levels of Lewis A antigen (Lea) are significantly higher in nonresponders than responders. Glycoproteomic analysis showed that Lea-bearing proteins are enriched in complement activation pathways, suggesting a potential role of glycosylation in tuning the activities of complement proteins, which may be implicated in mounting vaccine responses. In addition, we observed a postvaccination increase in sialyl Lewis X antigen (sLex) and a decrease in high mannose glycans among high responders, which were not observed in nonresponders. These data suggest that the immune system may actively modulate glycosylation as part of its effort to establish effective protection postvaccination.
Collapse
Affiliation(s)
- Rui Qin
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Smruti Pushalkar
- Center
for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, United States
| | - Michael A. Carlock
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30602, United States
| | - Ted M. Ross
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30602, United States
| | - Christine Vogel
- Center
for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, United States
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
13
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Mallampalli RK, Adair J, Elhance A, Farkas D, Chafin L, Long ME, De M, Mora AL, Rojas M, Peters V, Bednash JS, Tsai M, Londino JD. Interferon Lambda Signaling in Macrophages Is Necessary for the Antiviral Response to Influenza. Front Immunol 2021; 12:735576. [PMID: 34899695 PMCID: PMC8655102 DOI: 10.3389/fimmu.2021.735576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interferon lambda (IFNλ) signaling is a promising therapeutic target against viral infection in murine models, yet little is known about its molecular regulation and its cognate receptor, interferon lambda receptor 1 (IFNLR1) in human lung. We hypothesized that the IFNλ signaling axis was active in human lung macrophages. In human alveolar macrophages (HAMs), we observed increased IFNLR1 expression and robust increase in interferon-stimulated gene (ISG) expression in response to IFNλ ligand. While human monocytes express minimal IFNLR1, differentiation of monocytes into macrophages with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) increased IFNLR1 mRNA, IFNLR1 protein expression, and cellular response to IFNλ ligation. Conversely, in mice, M-CSF or GM-CSF stimulated macrophages failed to produce ISGs in response to related ligands, IFNL2 or IFNL3, suggesting that IFNLR1 signaling in macrophages is species-specific. We next hypothesized that IFNλ signaling was critical in influenza antiviral responses. In primary human airway epithelial cells and precision-cut human lung slices, influenza infection substantially increased IFNλ levels. Pretreatment of both HAMs and differentiated human monocytes with IFNL1 significantly inhibited influenza infection. IFNLR1 knockout in the myeloid cell line, THP-1, exhibited reduced interferon responses to either direct or indirect exposure to influenza infection suggesting the indispensability of IFNLR1 for antiviral responses. These data demonstrate the presence of IFNλ - IFNLR1 signaling axis in human lung macrophages and a critical role of IFNλ signaling in combating influenza infection.
Collapse
Affiliation(s)
- Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Jessica Adair
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Ajit Elhance
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Daniela Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Lexie Chafin
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Matthew E. Long
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States,Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Mithu De
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Ana L. Mora
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Victor Peters
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - MuChun Tsai
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - James D. Londino
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute, Columbus, Ohio, United States,*Correspondence: James D. Londino,
| |
Collapse
|
15
|
Alqazlan N, Emam M, Nagy É, Bridle B, Sargolzaei M, Sharif S. Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2. Sci Rep 2021; 11:20462. [PMID: 34650121 PMCID: PMC8517014 DOI: 10.1038/s41598-021-99182-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses cause severe respiratory infections in humans and birds, triggering global health concerns and economic burden. Influenza infection is a dynamic process involving complex biological host responses. The objective of this study was to illustrate global biological processes in ileum and cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus (LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing analyses to characterize differentially expressed genes and overrepresented pathways. Statistical analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock response. Research on these candidate genes and pathways is warranted to decipher underlying mechanisms of immunity against LPAIV in chickens.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Emam
- grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC H3A 0E7 Canada
| | - Éva Nagy
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Byram Bridle
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Sargolzaei
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada ,Select Sires, Inc., Plain City, OH 43064 USA
| | - Shayan Sharif
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
16
|
Sánchez-González MT, Cienfuegos-Jiménez O, Álvarez-Cuevas S, Pérez-Maya AA, Borrego-Soto G, Marino-Martínez IA. Prevalence of the SNP rs10774671 of the OAS1 gene in Mexico as a possible predisposing factor for RNA virus disease. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:52-60. [PMID: 34336138 PMCID: PMC8310884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The COVID-19 pandemic has revealed the susceptibility of certain populations to RNA virus infection. This variety of agents is currently the cause of severe respiratory diseases (SARS-CoV2 and Influenza), Hepatitis C, measles and of high prevalence tropical diseases that are detected throughout the year (Dengue and Zika). The rs10774671 polymorphism is a base change from G to A in the last nucleotide of intron-5 of the OAS1 gene. This change modifies a splicing site and generates isoforms of the OAS1 protein with a higher molecular weight and a demonstrated lower enzymatic activity. The low activity of these OAS1 isoforms makes the innate immune response against RNA virus infections less efficient, representing a previously unattended risk factor for certain populations. OBJECTIVE Determine the distribution of rs10774671 in the open population of Mexico. METHODS In 98 healthy volunteers, allelic and genotypic frequencies were determined by qPCR using allele specific labeled probes, and the Hardy-Weinberg equilibrium was determined. RESULTS The A-allele turned out to be the most prevalent in the analyzed population. CONCLUSIONS Our population is genetically susceptible to RNA virus disease due to the predominant presence of the A allele of rs10774671 in the OAS1 gene.
Collapse
Affiliation(s)
- María Teresa Sánchez-González
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la SaludMonterrey, Nuevo León, México
| | - Oscar Cienfuegos-Jiménez
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la SaludMonterrey, Nuevo León, México
| | - Salomón Álvarez-Cuevas
- Universidad Autónoma de Nuevo León, Departamento de Patología, Facultad de MedicinaMonterrey, Nuevo León, México
| | - Antonio Ali Pérez-Maya
- Universidad Autónoma de Nuevo León, Departamento de Bioquímica y Medicina Molecular, Facultad de MedicinaMonterrey, Nuevo León, México
| | - Gissela Borrego-Soto
- Department of Molecular Biosciences, University of Texas at AustinAustin, Texas, United States of America
| | - Iván Alberto Marino-Martínez
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la SaludMonterrey, Nuevo León, México
- Universidad Autónoma de Nuevo León, Departamento de Patología, Facultad de MedicinaMonterrey, Nuevo León, México
| |
Collapse
|
17
|
Lu M, Panebra A, Kim WH, Lillehoj HS. Characterization of immunological properties of chicken chemokine CC motif ligand 5 using new monoclonal antibodies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104023. [PMID: 33497732 DOI: 10.1016/j.dci.2021.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
CCL5 (formerly RANTES) belongs to the CC (or β) chemokine family and is associated with a plethora of inflammatory disorders and pathologic states. CCL5 is mainly produced and secreted by T cells, macrophages, epithelial cells, and fibroblasts and acts as a chemoattractant to recruit effector cells to the inflammation sites. Chicken CCL5 (chCCL5) protein is closely related to avian CCL5 orthologs but distinct from mammalian orthologs, and its modulatory roles in the immune response are largely unknown. The present work was undertaken to characterize the immunological properties of chCCL5 using the new sets of anti-chCCL5 mouse monoclonal antibodies (mAbs). Eight different mAbs (6E11, 6H1, 8H11, 11G1, 11G11, 12H1, 13D1, and 13G3) were characterized for their specificity and binding ability toward chCCL5. Two (13G3 and 6E11) of them were selected to detect native chCCL5 in chCCL5-specific antigen-capture ELISA. Using 13G3 and 6E11 as capture and detection antibodies, respectively, the ELISA system detected serum chCCL5 secretions in Clostridium perfringens- and Eimeria-infected chickens. The intracellular expressions of chCCL5 in primary cells or cell lines derived from chickens were validated in immunocytochemistry and flow cytometry assays using both 13G3 and 6E11 mAbs. Furthermore, 6E11, but not 13G3, neutralized chCCL5-induced chemotaxis in vitro using chicken PBMCs. These molecular characteristics of chCCL5 demonstrate the potential application of anti-chCCL5 mAbs and CCL5-specific antigen-capture detection ELISA for detecting native chCCL5 in biological samples. The availability of these new immunological tools will be valuable for fundamental and applied studies in avian species.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
18
|
Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 2021; 9:microorganisms9030665. [PMID: 33806942 PMCID: PMC8005181 DOI: 10.3390/microorganisms9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.
Collapse
|
19
|
Choreño-Parra JA, Jiménez-Álvarez LA, Ramírez-Martínez G, Sandoval-Vega M, Salinas-Lara C, Sánchez-Garibay C, Luna-Rivero C, Hernández-Montiel EM, Fernández-López LA, Cabrera-Cornejo MF, Choreño-Parra EM, Cruz-Lagunas A, Domínguez A, Márquez-García E, Cabello-Gutiérrez C, Bolaños-Morales FV, Mena-Hernández L, Delgado-Zaldivar D, Rebolledo-García D, Guadarrama-Ortiz P, Regino-Zamarripa NE, Mendoza-Milla C, García-Latorre EA, Rodríguez-Reyna TS, Cervántes-Rosete D, Hernández-Cárdenas CM, Khader SA, Zlotnik A, Zúñiga J. CXCL17 Is a Specific Diagnostic Biomarker for Severe Pandemic Influenza A(H1N1) That Predicts Poor Clinical Outcome. Front Immunol 2021; 12:633297. [PMID: 33717172 PMCID: PMC7953906 DOI: 10.3389/fimmu.2021.633297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The C-X-C motif chemokine ligand 17 (CXCL17) is chemotactic for myeloid cells, exhibits bactericidal activity, and exerts anti-viral functions. This chemokine is constitutively expressed in the respiratory tract, suggesting a role in lung defenses. However, little is known about the participation of CXCL17 against relevant respiratory pathogens in humans. Here, we evaluated the serum levels and lung tissue expression pattern of CXCL17 in a cohort of patients with severe pandemic influenza A(H1N1) from Mexico City. Peripheral blood samples obtained on admission and seven days after hospitalization were processed for determinations of serum CXCL17 levels by enzyme-linked immunosorbent assay (ELISA). The expression of CXCL17 was assessed by immunohistochemistry (IHQ) in lung autopsy specimens from patients that succumbed to the disease. Serum CXCL17 levels were also analyzed in two additional comparative cohorts of coronavirus disease 2019 (COVID-19) and pulmonary tuberculosis (TB) patients. Additionally, the expression of CXCL17 was tested in lung autopsy specimens from COVID-19 patients. A total of 122 patients were enrolled in the study, from which 68 had pandemic influenza A(H1N1), 24 had COVID-19, and 30 with PTB. CXCL17 was detected in post-mortem lung specimens from patients that died of pandemic influenza A(H1N1) and COVID-19. Interestingly, serum levels of CXCL17 were increased only in patients with pandemic influenza A(H1N1), but not COVID-19 and PTB. CXCL17 not only differentiated pandemic influenza A(H1N1) from other respiratory infections but showed prognostic value for influenza-associated mortality and renal failure in machine-learning algorithms and regression analyses. Using cell culture assays, we also identified that human alveolar A549 cells and peripheral blood monocyte-derived macrophages increase their CXCL17 production capacity after influenza A(H1N1) pdm09 virus infection. Our results for the first time demonstrate an induction of CXCL17 specifically during pandemic influenza A(H1N1), but not COVID-19 and PTB in humans. These findings could be of great utility to differentiate influenza and COVID-19 and to predict poor prognosis specially at settings of high incidence of pandemic A(H1N1). Future studies on the role of CXCL17 not only in severe pandemic influenza, but also in seasonal influenza, COVID-19, and PTB are required to validate our results.
Collapse
Affiliation(s)
- Jose Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Montserrat Sandoval-Vega
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Citlaltepetl Salinas-Lara
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Cesar Luna-Rivero
- Department of Pathology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Erika Mariana Hernández-Montiel
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Luis Alejandro Fernández-López
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - María Fernanda Cabrera-Cornejo
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | | | - Alfredo Cruz-Lagunas
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Andrea Domínguez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Eduardo Márquez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Carlos Cabello-Gutiérrez
- Department of Virology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Lourdes Mena-Hernández
- Departments of Dermatology and Education, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diego Delgado-Zaldivar
- Departments of Dermatology and Education, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Daniel Rebolledo-García
- Departments of Dermatology and Education, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Nora E. Regino-Zamarripa
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Criselda Mendoza-Milla
- Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Ethel A. García-Latorre
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Diana Cervántes-Rosete
- Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Carmen M. Hernández-Cárdenas
- Respiratory Critical Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, MO, United States
| | - Albert Zlotnik
- Department of Physiology & Biophysics School of Medicine, Institute for Immunology, University of California, Irvine, CA, United States
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
20
|
Lozhkov AA, Klotchenko SA, Ramsay ES, Moshkoff HD, Moshkoff DA, Vasin AV, Salvato MS. The Key Roles of Interferon Lambda in Human Molecular Defense against Respiratory Viral Infections. Pathogens 2020; 9:pathogens9120989. [PMID: 33255985 PMCID: PMC7760417 DOI: 10.3390/pathogens9120989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Interferons (IFN) are crucial for the innate immune response. Slightly more than two decades ago, a new type of IFN was discovered: the lambda IFN (type III IFN). Like other IFN, the type III IFN display antiviral activity against a wide variety of infections, they induce expression of antiviral, interferon-stimulated genes (MX1, OAS, IFITM1), and they have immuno-modulatory activities that shape adaptive immune responses. Unlike other IFN, the type III IFN signal through distinct receptors is limited to a few cell types, primarily mucosal epithelial cells. As a consequence of their greater and more durable production in nasal and respiratory tissues, they can determine the outcome of respiratory infections. This review is focused on the role of IFN-λ in the pathogenesis of respiratory viral infections, with influenza as a prime example. The influenza virus is a major public health problem, causing up to half a million lethal infections annually. Moreover, the virus has been the cause of four pandemics over the last century. Although IFN-λ are increasingly being tested in antiviral therapy, they can have a negative influence on epithelial tissue recovery and increase the risk of secondary bacterial infections. Therefore, IFN-λ expression deserves increased scrutiny as a key factor in the host immune response to infection.
Collapse
Affiliation(s)
- Alexey A. Lozhkov
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Sergey A. Klotchenko
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
| | - Herman D. Moshkoff
- Russian Technological University (MIREA), 119454 Moscow, Russia;
- US Pharma Biotechnology, Inc., 5000 Thayer Center, Suite C, Oakland, MD 21550, USA
| | - Dmitry A. Moshkoff
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
- US Pharma Biotechnology, Inc., 5000 Thayer Center, Suite C, Oakland, MD 21550, USA
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
| | - Andrey V. Vasin
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.A.L.); (D.A.M.); (A.V.V.)
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 196376 St. Petersburg, Russia; (S.A.K.); (E.S.R.)
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
- St. Petersburg State Chemical-Pharmaceutical Academy, 197022 St. Petersburg, Russia
| | - Maria S. Salvato
- Global Virus Network(GVN), 725 W Lombard St, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
21
|
Xiao S, Xie W, Zhou L. Mucosal chemokine CXCL17: What is known and not known. Scand J Immunol 2020; 93:e12965. [PMID: 32869346 DOI: 10.1111/sji.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023]
Abstract
CXCL17, the last described chemokine, has recently been found to be abundantly and specifically expressed in mucosal sites, while its receptor is still not well determined. Accumulative studies indicate that CXCL17 could potentially exhibit chemotactic, anti-inflammatory, antimicrobial activities under multiple biological conditions. However, the mechanism by which it contributes to the physiological and pathological processes within specific mucosal tissues is still far from being fully elucidated. In this present review, we therefore summarize the current available evidence of CXCL17 with specific emphasis on its biological role and pathophysiological significance, in order to aid in the advancement of CXCL17-related studies.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 2020; 53:53-62. [PMID: 32345516 PMCID: PMC7177079 DOI: 10.1016/j.cytogfr.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
C-X-C motif chemokine 17 (CXCL17), plays a functional role in maintaining homeostasis at mucosal barriers. CXCL17 expression is associated with both disease progression and protection in various diseases. The multifactorial mechanistic properties of CXCL17 could be exploited as a therapeutic target
C-X-C motif chemokine 17 (CXCL-17) is a novel chemokine that plays a functional role maintaining homeostasis at distinct mucosal barriers, including regulation of myeloid-cell recruitment, angiogenesis, and control of microorganisms. Particularly, CXCL17 is produced along the epithelium of the airways both at steady state and under inflammatory conditions. While increased CXCL17 expression is associated with disease progression in pulmonary fibrosis, asthma, and lung/hepatic cancer, it is thought to play a protective role in pancreatic cancer, autoimmune encephalomyelitis and viral infections. Thus, there is emerging evidence pointing to both a harmful and protective role for CXCL17 in human health and disease, with therapeutic potential for translational applications. In this review, we provide an overview of the discovery, characteristics and functions of CXCL17 emphasizing its clinical potential in respiratory disorders.
Collapse
|
23
|
Effects of infectious bursal disease virus infection on interferon and antiviral gene expression in layer chicken bursa. Microb Pathog 2020; 144:104182. [PMID: 32247644 DOI: 10.1016/j.micpath.2020.104182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Layer chickens were artificially challenged with infectious bursal disease virus (IBDV), and the kinetics of IFN-λ and antiviral genes in the bursa were explored using quantitative real-time PCR. Data showed that after the chickens were infected with IBDV, the virus load in the bursa of the Fabricius peaked at 96 h and gradually decreased. The relative mRNA expression levels of IFN-λ and antiviral genes (zinc-finger antiviral protein [ZAP], interferon alpha-inducible protein 6 [IFI6], laboratory of genetics and physiology 2 [LGP2], virus inhibitory protein [Viperin], and Mx) of the infected group dramatically increased at 24-168 h compared with those of the negative-infected group. Furthermore, the ZAP mRNA expression peaked at 24 h (3.97-fold). The Viperin mRNA transcript level was highest at 48 h (384.60-fold). The mRNA expression levels of IFI6 (96.31-fold), LGP2 (18.29-fold), and Mx (88.85-fold) peaked at 72 h, and that of IFN-λ was most remarkable at 96 h (2978.81-fold). Furthermore, the ZAP change rule was significantly positively correlated with the change rule of the IBDV load. The mRNA expression levels of IFN-λ and antiviral genes (ZAP, IFI6, LGP2, Viperin, and Mx) increased as the virus expression increased and then decreased. These results further corroborated that the IBDV infection seriously interfered with the chicken's innate immune response.
Collapse
|
24
|
Bertran K, Pantin-Jackwood MJ, Criado MF, Lee DH, Balzli CL, Spackman E, Suarez DL, Swayne DE. Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection. Vet Res 2019; 50:89. [PMID: 31675983 PMCID: PMC6824115 DOI: 10.1186/s13567-019-0704-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
In the 2014-2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80-100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Charles L Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Battelle National Biodefense Institute, National Biodefense Analysis and Countermeasures Center, 8300 Research PI, Fort Detrick, MD, 21702, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.
| |
Collapse
|
25
|
Joyce MA, Berry-Wynne KM, dos Santos T, Addison WR, McFarlane N, Hobman T, Tyrrell DL. HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: Up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathog 2019; 15:e1007949. [PMID: 31374104 PMCID: PMC6677295 DOI: 10.1371/journal.ppat.1007949] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Host encounters with viruses lead to an innate immune response that must be rapid and broadly targeted but also tightly regulated to avoid the detrimental effects of unregulated interferon expression. Viral stimulation of host negative regulatory mechanisms is an alternate method of suppressing the host innate immune response. We examined three key mediators of the innate immune response: NF-KB, STAT1 and STAT2 during HCV infection in order to investigate the paradoxical induction of an innate immune response by HCV despite a multitude of mechanisms combating the host response. During infection, we find that all three are repressed only in HCV infected cells but not in uninfected bystander cells, both in vivo in chimeric mouse livers and in cultured Huh7.5 cells after IFNα treatment. We show here that HCV and Flaviviruses suppress the innate immune response by upregulation of PDLIM2, independent of the host interferon response. We show PDLIM2 is an E3 ubiquitin ligase that also acts to stimulate nuclear degradation of STAT2. Interferon dependent relocalization of STAT1/2 to the nucleus leads to PDLIM2 ubiquitination of STAT2 but not STAT1 and the proteasome-dependent degradation of STAT2, predominantly within the nucleus. CRISPR/Cas9 knockout of PDLIM2 results in increased levels of STAT2 following IFNα treatment, retention of STAT2 within the nucleus of HCV infected cells after IFNα stimulation, increased interferon response, and increased resistance to infection by several flaviviruses, indicating that PDLIM2 is a global regulator of the interferon response. The response of cells to an invading pathogen must be swift and well controlled because of the detrimental effects of chronic inflammation. However, viruses often hijack host control mechanisms. HCV and flaviviruses are known to suppress the innate immune response in cells by a variety of mechanisms. This study clarifies and expands a specific cellular mechanism for global control of the antiviral response after the induction of interferon expression. It shows how several viruses hijack this control mechanism to suppress the innate interferon response.
Collapse
Affiliation(s)
- Michael A. Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (MAJ); (DLT)
| | - Karyn M. Berry-Wynne
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Theodore dos Santos
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - William R. Addison
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicola McFarlane
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tom Hobman
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (MAJ); (DLT)
| |
Collapse
|
26
|
Arslan M, Yang X, Santhakumar D, Liu X, Hu X, Munir M, Li Y, Zhang Z. Dynamic Expression of Interferon Lambda Regulated Genes in Primary Fibroblasts and Immune Organs of the Chicken. Genes (Basel) 2019; 10:genes10020145. [PMID: 30769908 PMCID: PMC6409627 DOI: 10.3390/genes10020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines that establish a first line of defense against viral infections in vertebrates. Several types of IFN have been identified; however, limited information is available in poultry, especially using live animal experimental models. IFN-lambda (IFN-λ) has recently been shown to exert a significant antiviral impact against viral pathogens in mammals. In order to investigate the in vivo potential of chicken IFN-λ (chIFN-λ) as a regulator of innate immunity, and potential antiviral therapeutics, we profiled the transcriptome of chIFN-λ-stimulated chicken immune organs (in vivo) and compared it with primary chicken embryo fibroblasts (in vitro). Employing the baculovirus expression vector system (BEVS), recombinant chIFN-λ3 (rchIFN-λ3) was produced and its biological activities were demonstrated. The rchIFNλ3 induced a great array of IFN-regulated genes in primary chicken fibroblast cells. The transcriptional profiling using RNA-seq and subsequent bioinformatics analysis (gene ontology, differential expressed genes, and KEGGs analysis) of the bursa of Fabricious and the thymus demonstrated an upregulation of crucial immune genes (viperin, IKKB, CCL5, IL1β, and AP1) as well as the antiviral signaling pathways. Interestingly, this experimental approach revealed contrasting evidence of the antiviral potential of chIFN-λ in both in vivo and in vitro models. Taken together, our data signifies the potential of chIFN-λ as a potent antiviral cytokine and highlights its future possible use as an antiviral therapeutic in poultry.
Collapse
Affiliation(s)
- Mehboob Arslan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Diwakar Santhakumar
- Division of Biomedical and Life sciences, Faculty of Health and Medicine, Lancaster University,LA1 4YG, Lancaster, UK.
| | - Xingjian Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyuan Hu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Munir
- Division of Biomedical and Life sciences, Faculty of Health and Medicine, Lancaster University,LA1 4YG, Lancaster, UK.
| | - Yinü Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhifang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
27
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
28
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
29
|
Saletti G, Gerlach T, Rimmelzwaan GF. Influenza vaccines: 'tailor-made' or 'one fits all'. Curr Opin Immunol 2018; 53:102-110. [PMID: 29734023 DOI: 10.1016/j.coi.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023]
Abstract
Currently used inactivated influenza vaccines aim at the induction of virus-neutralizing antibodies directed to the variable head domain of the viral hemagglutinin. Although these vaccines are effective against antigenically matching virus strains, they offer little protection against antigenically distinct drift variants or potentially pandemic viruses of alternative subtypes. In the last decades, the threat of novel influenza pandemics has sparked research efforts to develop vaccines that induce more broadly protective immunity. Here, we discuss the immune responses induced by conventional 'tailor-made' inactivated and live influenza vaccines and novel 'one fits all' candidate vaccines able to induce cross-reactive virus-specific antibody and T cell responses and to afford protection to a wider range of influenza viruses.
Collapse
Affiliation(s)
- Giulietta Saletti
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Thomas Gerlach
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
30
|
Schönbach C, Li J, Ma L, Horton P, Sjaugi MF, Ranganathan S. A bioinformatics potpourri. BMC Genomics 2018; 19:920. [PMID: 29363432 PMCID: PMC5780851 DOI: 10.1186/s12864-017-4326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018.
Collapse
Affiliation(s)
- Christian Schönbach
- International Research Center for Medical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Jinyan Li
- The Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Lan Ma
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 People’s Republic of China
| | - Paul Horton
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064 Japan
| | | | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|