1
|
Tian MY, Yang JQ, Hu JC, Lu S, Ji Y. Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control. Acta Pharmacol Sin 2025; 46:1250-1261. [PMID: 39856432 PMCID: PMC12032422 DOI: 10.1038/s41401-024-01448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 01/27/2025]
Abstract
Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients. However, the cardioprotective mechanism of semaglutide, especially its direct effects on cardiomyocytes (CMs), is not fully understood. Here, we used 8-week diabetic and obese db/db mice treated with semaglutide (200 μg·kg·d-1, i.p.) to study its direct effect on CMs and the underlying mechanisms. Our results revealed that the consecutive application of semaglutide improved cardiac function. Increased AMPK and ULK1 phosphorylation levels were detected, accompanied by elevated [Ca2+]mito. Seahorse analysis revealed that semaglutide increases ATP production via elevated basal and maximum respiration rates as well as spare respiration capacity in CMs. Transmission electron microscopy revealed improved mitochondrial morphology in the cardiomyocytes of db/db mice. On the other hand, Western blot analysis revealed increased Parkin and LC3 protein expression, indicating mitophagy in CMs. Collectively, our findings demonstrate that semaglutide directly protects CMs from high-glucose damage by promoting AMPK-dependent ATP production as well as ULK1-mediated mitophagy in db/db mice.
Collapse
Affiliation(s)
- Meng-Yun Tian
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ji-Qin Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jin-Chuan Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shan Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Cui X, Spanos M, Zhao C, Wan W, Cui C, Wang L, Xiao J. Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise. J Cardiovasc Transl Res 2025; 18:442-456. [PMID: 39863753 DOI: 10.1007/s12265-025-10591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca2+ regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis. Exercise plays a vital role in preserving mitochondrial homeostasis, thereby protecting the cardiovascular system from acute stress, and is a fundamental component in maintaining cardiovascular health. In this study, we review the mitochondrial dysfunction underlying the development and progression of HFpEF. Given the pivotal role of exercise in modulating cardiovascular diseases, we particularly focus on exercise as a potential therapeutic strategy for improving mitochondrial function. Graphical abstract Note: This picture was created with BioRender.com.
Collapse
Affiliation(s)
- Xinxin Cui
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Albert Einstein College of Medicine, Department of Internal Medicine, NCB, Bronx, NY, USA
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Caiyue Cui
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| |
Collapse
|
3
|
Guan X, Li H, Zhang L, Zhi H. Mechanisms of mitochondrial damage-associated molecular patterns associated with inflammatory response in cardiovascular diseases. Inflamm Res 2025; 74:18. [PMID: 39806203 DOI: 10.1007/s00011-025-01993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart. In cardiovascular illnesses, mitochondrial homeostasis is disrupted, accompanied by structural and functional impairments. During mitochondrial stress or injury, mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA, cardiolipin, N-formyl peptide, and adenosine triphosphate, are released to activate pattern recognition receptors and trigger immunological responses. Inflammatory responses mediated by mtDAMPs substantially contribute to the pathophysiology of cardiovascular illnesses. In this review, we discuss the molecular mechanisms by which different mtDAMPs control the inflammatory response, address the pathological consequences of mtDAMPs in inducing or exacerbating the inflammatory response in CVDs, and summarize potential therapeutic targets in relevant experimental studies. Preventing or reducing mtDAMP release may play a role in CVD progression by alleviating the inflammatory response.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Haitao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Lijuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| | - Hongwei Zhi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Zhao X, Shang L, Shen C. Daphnetin ameliorates diabetic cardiomyopathy by regulating inflammation and endoplasmic reticulum stress-induced apoptosis. Exp Anim 2025; 74:49-57. [PMID: 39111852 PMCID: PMC11742473 DOI: 10.1538/expanim.24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/31/2024] [Indexed: 01/15/2025] Open
Abstract
Daphnetin has been demonstrated to exert beneficial effects on diabetes mellitus and renal complications. However, the role and molecular mechanism of daphnetin in diabetic cardiomyopathy (DCM) remain unclear. In this study, rats were injected with streptozotocin (STZ) to induce diabetes. The diabetic rats were then administered daphnetin (1 and 4 mg/kg) or dimethyl sulfoxide (DMSO) daily for 12 weeks. The results demonstrated that the diabetic rats exhibited elevated blood glucose levels, which were dose-dependently ameliorated by daphnetin. At 13 weeks following STZ injection, the rats exhibited typical diabetic signs, cardiac dysfunction, and evident pathological alterations in myocardial tissues. The administration of daphnetin to diabetic rats resulted in improvement in cardiac function, reductions in myocardial injury biomarkers, and the inhibition of myocardial fibrosis. Furthermore, daphnetin treatment suppressed inflammation and endoplasmic reticulum stress-induced apoptosis in a dose-dependent manner. Additionally, daphnetin exhibited partial blockade of the activation of mitogen-activated protein kinase pathways induced by diabetes. These findings indicate that daphnetin may be a promising therapeutic agent for the treatment of DCM.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P.R. China
| | - Longqi Shang
- Department of Nursing, The Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Shenyang, Liaoning Province 110000, P.R. China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, 20 Huanghe South Street,, Shenyang, Liaoning Province 110000, P.R. China
| |
Collapse
|
5
|
Liu HJ, Gui LK, Wei H, Zhou XY, Liu ZL, Jin LJ. The role of NF-κB in diabetic cardiomyopathy. ALL LIFE 2024; 17. [DOI: 10.1080/26895293.2024.2397402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/20/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
| | - Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
- School of Medicine, Yangtze University, Jingzhou, People’s Republic of China
| | - Han Wei
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
| | - Xing-Yu Zhou
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
- School of Medicine, Yangtze University, Jingzhou, People’s Republic of China
| | - Zhen-Lan Liu
- Department of Anesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, People’s Republic of China
| |
Collapse
|
6
|
Dhiman S, Dhankhar S, Garg A, Rohilla M, Saini M, Singh TG, Chauhan S, Selim S, Al Jaouni SK, Yasmin S, Begum N, Alshahrani A, Ansari MY. Mechanistic insights and therapeutic potential of astilbin and apigenin in diabetic cardiomyopathy. Heliyon 2024; 10:e39996. [PMID: 39583813 PMCID: PMC11582444 DOI: 10.1016/j.heliyon.2024.e39996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a critical complication of Diabetes mellitus (DM), characterized by structural and functional changes in the myocardium independent of coronary artery disease or hypertension. Emerging evidence highlights the significant roles of phytochemicals, particularly astilbin and apigenin, in modulating key molecular pathways implicated in DCM. This review synthesizes current mechanistic insights and therapeutic potential of these compounds, focusing on their interactions with AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), O-linked N-acetylglucosamine (O-GlcNAc), sodium-glucose co-transporter 2 (SGLT2), protein kinase C (PKC), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways. Astilbin and apigenin have demonstrated the ability to improve cardiac function, mitigate oxidative stress, and reduce inflammatory responses in diabetic conditions. By activating AMPK and PPARs, these flavonoids enhance glucose uptake and fatty acid oxidation, contributing to improved metabolic homeostasis. Their inhibition of O-GlcNAcylation, SGLT2 activity, and PKC signaling further attenuates hyperglycemia-induced cellular damage. Additionally, suppression of NF-κB, MAPK, and JNK pathways by astilbin and apigenin results in reduced pro-inflammatory cytokine production and apoptotic cell death. Collectively, these interactions position astilbin and apigenin as promising therapeutic agents for ameliorating DCM, offering novel avenues for treatment strategies aimed at modulating multiple pathogenic pathways.
Collapse
Affiliation(s)
- Sachin Dhiman
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sanchit Dhankhar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Anjali Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Devi Dyal College of Pharmacy, GolpuraBarwala, Panchkula, Haryana, 134118, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab, 140601, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
7
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
8
|
Ma Y, Lai J, Chen Z, Wan Q, Shi X, Zhou H, Li J, Yang Z, Wu J. Exploring therapeutic targets and molecular mechanisms for treating diabetes mellitus-associated heart failure with Qishen Yiqi dropping pills: A network pharmacology and bioinformatics approach. Medicine (Baltimore) 2024; 103:e39104. [PMID: 39093800 PMCID: PMC11296435 DOI: 10.1097/md.0000000000039104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetes mellitus (DM) and heart failure frequently coexist, presenting significant public health challenges. QiShenYiQi Dropping Pills (QSDP) are widely employed in the treatment of diabetes mellitus concomitant with heart failure (DM-HF). Nevertheless, the precise mechanisms underlying their efficacy have yet to be elucidated. Active ingredients and likely targets of QSDP were retrieved from the TCMSP and UniProt databases. Genes associated with DM-HF were pinpointed through searches in the GeneCards, OMIM, DisGeNET, and TTD databases. Differential genes connected to DM-HF were sourced from the GEO database. Enrichment analyses via gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways, as well as immune infiltration assessments, were conducted using R software. Further analysis involved employing molecular docking strategies to explore the interactions between the identified targets and active substances in QSDP that are pertinent to DM-HF treatment. This investigation effectively discerned 108 active compounds and 257 targets relevant to QSDP. A protein-protein interaction network was constructed, highlighting 6 central targets for DM-HF treatment via QSDP. Gene ontology enrichment analysis predominantly linked these targets with responses to hypoxia, metabolism of reactive oxygen species, and cytokine receptor interactions. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways demonstrated that these targets mainly participate in pathways linked to diabetic complications, such as AGE-RAGE signaling, dyslipidemia, arteriosclerosis, the HIF-1 signaling pathway, and the tumor necrosis factor signaling pathway. Further, immune infiltration analysis implied that QSDP's mechanism in treating DM-HF might involve immune-mediated inflammation and crucial signaling pathways. Additionally, molecular docking studies showed that the active substances in QSDP have strong binding affinities with these identified targets. This research presents a new model for addressing DM-HF through the use of QSDP, providing novel insights into incorporating traditional Chinese medicine (TCM) principles in the clinical treatment of DM-HF. The implications of these findings are substantial for both clinical application and further scientific inquiry.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhengtao Chen
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianlin Shi
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiaming Li
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zurong Yang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
9
|
Gregolin CS, do Nascimento M, de Souza SLB, Mota GAF, Luvizotto RDAM, Sugizaki MM, Bazan SGZ, de Campos DHS, Camacho CRC, Cicogna AC, do Nascimento AF. Cardiac dysfunction in sucrose-fed rats is associated with alterations of phospholamban phosphorylation and TNF-α levels. Mol Cell Endocrinol 2024; 589:112236. [PMID: 38608803 DOI: 10.1016/j.mce.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.
Collapse
Affiliation(s)
- Cristina Schmitt Gregolin
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Milena do Nascimento
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | | | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Mário Mateus Sugizaki
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Dijon Henrique Salomé de Campos
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa Camacho
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
10
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
11
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Zhu T, Ye Z, Song J, Zhang J, Zhao Y, Xu F, Wang J, Huang X, Gao B, Li F. Effect of extracellular matrix stiffness on efficacy of Dapagliflozin for diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:273. [PMID: 39049086 PMCID: PMC11270890 DOI: 10.1186/s12933-024-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin β1, but without significant impact on piezo 1. CONCLUSIONS Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.
Collapse
Affiliation(s)
- Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P.R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingjing Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jun Wang
- Department of Health Evaluation and Promotion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xin Huang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, P.R. China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
13
|
Lou S, Zhu W, Yu T, Zhang Q, Wang M, Jin L, Xiong Y, Xu J, Wang Q, Chen G, Liang G, Hu X, Luo W. Compound SJ-12 attenuates streptozocin-induced diabetic cardiomyopathy by stabilizing SERCA2a. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167140. [PMID: 38548092 DOI: 10.1016/j.bbadis.2024.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuaijie Lou
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tianxiang Yu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qianhui Zhang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Minxiu Wang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Leiming Jin
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongqiang Xiong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiachen Xu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinyan Wang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Gaozhi Chen
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Xiang Hu
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
15
|
Al-Madhagi H. The Landscape of Exosomes Biogenesis to Clinical Applications. Int J Nanomedicine 2024; 19:3657-3675. [PMID: 38681093 PMCID: PMC11048319 DOI: 10.2147/ijn.s463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Exosomes are extracellular vesicles that originate from various cells and mediate intercellular communication, altering the behavior or fate of recipient cells. They carry diverse macromolecules, such as lipids, proteins, carbohydrates, and nucleic acids. Environmental stressors can change the exosomal contents of many cells, making them useful for diagnosing many chronic disorders, especially neurodegenerative, cardiovascular, cancerous, and diabetic diseases. Moreover, exosomes can be engineered as therapeutic agents to modulate disease processes. State-of-art techniques are employed to separate exosomes including ultracentrifugation, size-exclusion chromatography and immunoaffinity. However, modern technologies such as aqueous two-phase system as well as microfluidics are gaining attention in the recent years. The article highlighted the composition, biogenesis, and implications of exosomes, as well as the standard and novel methods for isolating them and applying them as biomarkers and therapeutic cargo carriers.
Collapse
Affiliation(s)
- Haitham Al-Madhagi
- Biochemical Technology Program, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
| |
Collapse
|
16
|
Li M, Liu L, Zhang C, Deng L, Zhong Y, Liao B, Li X, Wan Y, Feng J. The latest emerging drugs for the treatment of diabetic cardiomyopathy. Expert Opin Pharmacother 2024; 25:641-654. [PMID: 38660817 DOI: 10.1080/14656566.2024.2347468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus involving multiple pathophysiologic mechanisms. In addition to hypoglycemic agents commonly used in diabetes, metabolism-related drugs, natural plant extracts, melatonin, exosomes, and rennin-angiotensin-aldosterone system are cardioprotective in DCM. However, there is a lack of systematic summarization of drugs for DCM. AREAS COVERED In this review, the authors systematically summarize the most recent drugs used for the treatment of DCM and discusses them from the perspective of DCM pathophysiological mechanisms. EXPERT OPINION We discuss DCM drugs from the perspective of the pathophysiological mechanisms of DCM, mainly including inflammation and metabolism. As a disease with multiple pathophysiological mechanisms, the combination of drugs may be more advantageous, and we have discussed some of the current studies on the combination of drugs.
Collapse
Affiliation(s)
- Minghao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuying Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University; Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Ying Wan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University; Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Shou Y, Li X, Fang Q, Xie A, Zhang Y, Fu X, Wang M, Gong W, Zhang X, Yang D. Progress in the treatment of diabetic cardiomyopathy, a systematic review. Pharmacol Res Perspect 2024; 12:e1177. [PMID: 38407563 PMCID: PMC10895687 DOI: 10.1002/prp2.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunction that occurs in individuals with diabetes, in the absence of coronary artery disease, valve disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. It is considered a significant and consequential complication of diabetes in the field of cardiovascular medicine. The primary pathological manifestations include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular function, which can lead to widespread myocardial necrosis. Ultimately, this can progress to the development of heart failure, arrhythmias, and cardiogenic shock, with severe cases even resulting in sudden cardiac death. Despite several decades of both fundamental and clinical research conducted globally, there are currently no specific targeted therapies available for DCM in clinical practice, and the incidence and mortality rates of heart failure remain persistently high. Thus, this article provides an overview of the current treatment modalities and novel techniques pertaining to DCM, aiming to offer valuable insights and support to researchers dedicated to investigating this complex condition.
Collapse
Affiliation(s)
- Yiyi Shou
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Xingyu Li
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Quan Fang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Aqiong Xie
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Yinghong Zhang
- Department of ImmunologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xinyan Fu
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Mingwei Wang
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Wenyan Gong
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xingwei Zhang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Dong Yang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
18
|
Zhang J, Li X, Zhang S, Wang Z, Tian R, Xu F, Chen Y, Li C. Distribution and prognostic value of high-sensitivity cardiac troponin T and I across glycemic status: a population-based study. Cardiovasc Diabetol 2024; 23:83. [PMID: 38402162 PMCID: PMC10894468 DOI: 10.1186/s12933-023-02092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Whether distributions and prognostic values of high-sensitivity cardiac troponin (hs-cTn) T and I are different across normoglycemic, prediabetic, and diabetic populations is unknown. METHODS 10127 adult participants from the National Health and Nutrition Examination Survey 1999-2004 with determined glycemic status and measurement of at least one of hs-cTn assays were included, from whom healthy participants and presumably healthy diabetic and prediabetic participants were selected to investigate pure impacts of glycemic status on distributions of hs-cTn. The nonparametric method and bootstrapping were used to derive the 99th upper reference limits of hs-cTn and 95% CI. Participants with available follow-up and hs-cTn concentrations of all 4 assays were included in prognostic analyses. Associations of hs-cTn with all-cause and cardiac-specific mortality were modeled by Cox proportional hazard regression under the complex survey design. The incremental value of hs-cTn to an established risk score in predicting cardiac-specific mortality was assessed by the 10-year area under time-dependent receiver operating characteristic curve (AUC) using the Fine-Grey competing risk model. RESULTS Among 9714 participants included in prognostic analyses, 5946 (61.2%) were normoglycemic, 2172 (22.4%) prediabetic, and 1596 (16.4%) diabetic. Hyperglycemic populations were older than the normoglycemic population but sex and race/ethnicity were similar. During the median follow-up of 16.8 years, hs-cTnT and hs-cTnI were independently associated with all-cause and cardiac-specific mortality across glycemic status. In the diabetic population, adjusted hazard ratios per 1-standard deviation increase of log-transformed hs-cTnT and hs-cTnI (Abbott) concentrations were 1.77 (95% CI 1.48-2.12; P < .001) and 1.83 (95% CI 1.33-2.53; P < .001), respectively, regarding cardiac-specific mortality. In the diabetic but not the normoglycemic population, adding either hs-cTnT (difference in AUC: 0.062; 95% CI 0.038-0.086; P < 0.001) or hs-cTnI (Abbott) (difference in AUC: 0.071; 95% CI 0.046-0.097; P < 0.001) would significantly increase the discriminative ability of the risk score; AUC of the score combined with hs-cTnT would be further improved by incorporating hs-cTnI (0.018; 95%CI 0.006-0.029; P = 0.002). The 99th percentile of hs-cTnT of the presumably healthy diabetic population was higher than the healthy population and had no overlap in 95% CIs, however, for hs-cTnI 99th percentiles of the two populations were very close and 95% CIs extensively overlapped. CONCLUSIONS Hs-cTnT and hs-cTnI demonstrated consistent prognostic associations across glycemic status but incremental predictive values in hyperglycemic populations only. The susceptibility of hs-cTnT 99th percentiles to diabetes plus the additive value of hs-cTnI to hs-cTnT in diabetic cardiovascular risk stratification suggested hs-cTnI and hs-cTnT may be differentially associated with glycemic status, but further research is needed to illustrate the interaction between hyperglycemia and hs-cTn.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shenglin Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Tian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China.
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China.
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
19
|
Shi K, Zhang G, Fu H, Li XM, Yu SQ, Shi R, Yan WF, Qian WL, Xu HY, Li Y, Guo YK, Yang ZG. Reduced thoracic skeletal muscle size is associated with adverse outcomes in diabetes patients with heart failure and reduced ejection fraction: quantitative analysis of sarcopenia by using cardiac MRI. Cardiovasc Diabetol 2024; 23:28. [PMID: 38218882 PMCID: PMC10787494 DOI: 10.1186/s12933-023-02109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Sarcopenia is frequently found in patients with heart failure with reduced ejection fraction (HFrEF) and is associated with reduced exercise capacity, poor quality of life and adverse outcomes. Recent evidence suggests that axial thoracic skeletal muscle size could be used as a surrogate to assess sarcopenia in HFrEF. Since diabetes mellitus (DM) is one of the most common comorbidities with HFrEF, we aimed to explore the potential association of axial thoracic skeletal muscle size with left ventricular (LV) remodeling and determine its prognostic significance in this condition. METHODS A total of 243 diabetes patients with HFrEF were included in this study. Bilateral axial thoracic skeletal muscle size was obtained using cardiac MRI. Patients were stratified by the tertiles of axial thoracic skeletal muscle index (SMI). LV structural and functional indices, as well as amino-terminal pro-B-type natriuretic peptide (NT-proBNP), were measured. The determinants of elevated NT-proBNP were assessed using linear regression analysis. The associations between thoracic SMI and clinical outcomes were assessed using a multivariable Cox proportional hazards model. RESULTS Patients in the lowest tertile of thoracic SMI displayed a deterioration in LV systolic strain in three components, together with an increase in LV mass and a heavier burden of myocardial fibrosis (all P < 0.05). Moreover, thoracic SMI (β = -0.25; P < 0.001), rather than body mass index (β = -0.04; P = 0.55), was independently associated with the level of NT-proBNP. The median follow-up duration was 33.6 months (IQR, 20.4-52.8 months). Patients with adverse outcomes showed a lower thoracic SMI (40.1 [34.3, 47.9] cm2/m2 vs. 45.3 [37.3, 55.0] cm2/m2; P < 0.05) but a similar BMI (P = 0.76) compared with those without adverse outcomes. A higher thoracic SMI indicated a lower risk of adverse outcomes (hazard ratio: 0.96; 95% confidence interval: 0.92-0.99; P = 0.01). CONCLUSIONS With respect to diabetes patients with HFrEF, thoracic SMI is a novel alternative for evaluating muscle wasting in sarcopenia that can be obtained by a readily available routine cardiac MRI protocol. A reduction in thoracic skeletal muscle size predicts poor outcomes in the context of DM with HFrEF.
Collapse
Affiliation(s)
- Ke Shi
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ge Zhang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Ming Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Qin Yu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Li X, Zhou W, Guo D, Hu Y, Zhou H, Chen Y. Roles of MDA-LDL/OX-LDL/LOX-1 and TNF-α/TLR4/NF-κB Signaling Pathways in Myocardial Damage by Implantations of Cardiac Pacemakers in Elderly Patients. Curr Vasc Pharmacol 2024; 22:251-265. [PMID: 38920075 DOI: 10.2174/0115701611260215231221072709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Permanent pacemakers are an established treatment for sick sinus syndrome and high-grade atrioventricular block. Permanent cardiac pacemaker implantations may damage the myocardium. OBJECTIVE This study evaluated markers of myocardial injury, oxidative stress and inflammation in elderly patients with permanent pacemaker implantations. METHODS Various markers were measured at 1, 2, 3 and 4 months after permanent pacemaker implantations in elderly patients. RESULTS The levels of high-sensitivity troponin T (hsTnT), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), malondialdehyde-modified low-density lipoprotein (MDA-LDL), oxidized low-density lipoprotein (OX-LDL), tumour necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) were increased in 2-month group compared with control and 1- month groups (P<0.001), and were further increased at 4-month group compared with 2- and 3- month groups after pacemaker implantations (P<0.001). Patients with dual-chamber pacemakers had higher levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB than patients with single chamber pacemakers (P<0.001). Patients who underwent the pacemakers with the active fixation leads had raised levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB compared patients with pacemakers using the passive fixation leads (P<0.001). Myocardial blood flows in 3-month and 4-month groups were lower than 1-month and 2-month groups (P<0.001). CONCLUSION Levels of hsTnT, LOX-1, MDA-LDL, OX-LDL, TNF-α, TLR4 and NF-κB were elevated in elderly patients with permanent pacemaker implantations and the activations of oxidative stress and pro-inflammatory signalling pathways may be associated with myocardial damages and ischemia after pacemaker implantations in elderly patients.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Wenhang Zhou
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| |
Collapse
|
21
|
Fumagalli S, Ricciardi G, Di Serio C, La Marca G, Pieraccini G, Franci Montorzi R, Santamaria E, Spanalatte G, Marchetti F, Corti G, Pinton L, Marchionni N. Inflammation, mitochondrial dysfunction and physical performance: a possible association in older patients with persistent atrial fibrillation-the results of a preliminary study. Aging Clin Exp Res 2023; 35:2831-2837. [PMID: 37733227 DOI: 10.1007/s40520-023-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with chronic inflammation, a hallmark of ageing process. The aim of this study was to determine interleukin-6 (IL-6)-associated variables, also exploring acylcarnitines, expression of mitochondrial abnormalities. METHODS We evaluated 22 controls and 50 patients with persistent AF. IL-6 and acylcarnitines were measured with ELISA kits and mass spectrometry techniques. RESULTS IL-6 concentration (mean: 3.9 ± 3.1 pg/mL) was lower in controls and increased in AF patients, especially with heart failure. The CHA2DS2-VASc, the MMSE and the SPPB scores were 3.8 ± 1.6, 28 ± 2 and 9.4 ± 2.1. Thirteen acylcanitines correlated with IL-6. At multivariable analysis, IL-6 was directly associated with C4-OH-a short-chain acylcarnitine, fibrinogen and alanine aminotransferase values, and with hyperuricemia. An inverse association existed with calcium concentration and SPPB score. CONCLUSIONS In older AF patients, IL-6 correlated with acylcarnitines and lower physical performance. Alterations in energy production, reduced physical function and inflammation could contribute to frailty development.
Collapse
Affiliation(s)
- Stefano Fumagalli
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy.
| | - Giulia Ricciardi
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Claudia Di Serio
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Giancarlo La Marca
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Giuseppe Pieraccini
- Department of Health Sciences, CISM Mass Spectrometry Centre, University of Florence, Florence, Italy
| | - Riccardo Franci Montorzi
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Emanuele Santamaria
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Giulia Spanalatte
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Francesca Marchetti
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Ginevra Corti
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Laura Pinton
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| | - Niccolò Marchionni
- Department of Experimental and Clinical Medicine, Geriatric Intensive Care Unit and Geriatric Arrhythmia Unit, University of Florence, Largo G. Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
22
|
Nekolla SG, Rischpler C, Higuchi T. Preclinical Imaging of Cardiovascular Disesase. Semin Nucl Med 2023; 53:586-598. [PMID: 37268498 DOI: 10.1053/j.semnuclmed.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Noninvasive imaging techniques, such as SPECT, PET, CT, echocardiography, or MRI, have become essential in cardiovascular research. They allow for the evaluation of biological processes in vivo without the need for invasive procedures. Nuclear imaging methods, such as SPECT and PET, offer numerous advantages, including high sensitivity, reliable quantification, and the potential for serial imaging. Modern SPECT and PET imaging systems, equipped with CT and MRI components in order to get access to morphological information with high spatial resolution, are capable of imaging a wide range of established and innovative agents in both preclinical and clinical settings. This review highlights the utility of SPECT and PET imaging as powerful tools for translational research in cardiology. By incorporating these techniques into a well-defined workflow- similar to those used in clinical imaging- the concept of "bench to bedside" can be effectively implemented.
Collapse
Affiliation(s)
- Stephan G Nekolla
- Nuklearmedizinische Klinik der TU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
23
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|