1
|
Vanan AG, Vesal S, Seraj P, Ghezel MA, Eini P, Talebileili M, Asgari Z, Tahmasebi S, Hashemi M, Taheriazam A. DCLK1 in gastrointestinal cancer: A driver of tumor progression and a promising therapeutic target. Int J Cancer 2025; 156:2068-2086. [PMID: 40056091 DOI: 10.1002/ijc.35365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 04/05/2025]
Abstract
Cancers of the gastrointestinal (GI) tract, including colorectal, pancreatic, and hepatocellular carcinomas, represent a significant global health burden due to their high incidence and mortality rates. Doublecortin-like kinase 1 (DCLK1), initially identified for its role in neurogenesis, has emerged as a crucial player in GI cancer progression. This review comprehensively examines the multifaceted roles of DCLK1 in GI cancers, focusing on its structural isoforms, functions in normal and inflammatory states, and contributions to cancer progression and metastasis. DCLK1 is overexpressed in various GI cancers and is associated with poor prognosis, enhanced tumorigenic potential, and increased metastatic capacity. The review discusses the molecular mechanisms through which DCLK1 influences cancer stem cell maintenance, epithelial-mesenchymal transition (EMT), and cell survival pathways, as well as its interactions with key signaling pathways such as Notch, WNT/β-catenin, and NF-κB. The potential of DCLK1 as a therapeutic target is also explored, highlighting preclinical and early clinical efforts to inhibit its function using small molecule inhibitors or monoclonal antibodies. Despite significant advancements, further research is needed to fully elucidate DCLK1's role in GI cancers and to develop effective therapeutic strategies targeting this protein.
Collapse
Affiliation(s)
- Ahmad Ghorbani Vanan
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Parmida Seraj
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Pooya Eini
- Toxicological Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Talebileili
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeynab Asgari
- Department of Immunology, School of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Advanced Science and Technology, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Department of Orthopedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Orooji N, Babaei S, Fadaee M, Abbasi-Kenarsari H, Eslami M, Kazemi T, Yousefi B. Novel therapeutic approaches for non-small cell lung cancer: an updated view. J Drug Target 2025:1-16. [PMID: 40186594 DOI: 10.1080/1061186x.2025.2489986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Non-small cell lung cancer (NSCLC) continues to be one of the leading causes of cancer-related mortality globally. Most patients who undergo surgical procedures may encounter distant metastasis or local recurrence, necessitating supplementary treatments such as radiation therapy, chemotherapy, or targeted therapy as adjuvant alternatives. Recent advancements in molecular biology and immunotherapy have paved the way for innovative therapeutic approaches that target specific genetic mutations and promote the immune response against tumour cells. This review explores emerging therapies, including targeted therapies such as tyrosine kinase inhibitors (TKIs) for actionable mutations (e.g., EGFR, ALK, ROS1), as well as the role of immune checkpoint inhibitors (ICIs) that employ the body's immune system to combat cancer. Additionally, we discuss the potential of exosome therapies, as well as promising nanotherapeutic options for the treatment of NSCLC. This study attempts to provide a thorough overview of the changing landscape of NSCLC treatment and its implications for enhancing patient outcomes by presenting these innovative techniques.
Collapse
Affiliation(s)
- Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Shabnam Babaei
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Cui R, Su H, Jiang Y, Yu X, Liu Y. Propensity score analysis of high-dose rate brachytherapy, immune checkpoint inhibitors, and docetaxel in second-line advanced NSCLC treatment. Sci Rep 2025; 15:12650. [PMID: 40221605 PMCID: PMC11993689 DOI: 10.1038/s41598-025-97918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/08/2025] [Indexed: 04/14/2025] Open
Abstract
This study evaluated the efficacy and safety of combining high-dose-rate brachytherapy, immune checkpoint inhibitors, and docetaxel as second-line treatment for advanced NSCLC, given the poor prognosis after first-line therapy. We conducted a single-center, retrospective, propensity score-matched study comparing HDR brachytherapy plus ICIs and docetaxel (study group) versus ICIs plus docetaxel (control group) in patients with advanced NSCLC who progressed after prior treatment without known driver gene mutations or uninvestigated mutation status. After propensity score matching, 21 patients were included in each group. The study group had a higher ORR (42.9% vs. 28.6%). Median OS was 18.6 months for the study group and 12.8 months for the control group (HR 0.45, 95% CI 0.20-0.85, P = 0.042). Median PFS was 8.6 vs. 5.6 months (HR 0.29, 95% CI 0.15-0.55, P < 0.001). The DCR was higher in the study group (71.4% vs. 61.9%). Treatment-related AEs were manageable, with no significant increase in grade 3/4 toxicities in the study group. Results suggest that combining high-dose rate brachytherapy, immune checkpoint inhibitors, and docetaxel may improve survival and response rates in advanced NSCLC after first-line therapy. Prospective randomized trials are necessary to confirm these findings and validate the strategy's effectiveness.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hong Su
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Yan Jiang
- Department of Gastroenterology, The People's Hospital of Longchang, Neijiang, Sichuan, China
| | - Xinlin Yu
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Yu Liu
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, Sichuan, China.
- Department of Oncology, The Second People's hospital of Neijiang, Neijiang, Sichuan, China.
| |
Collapse
|
5
|
Ruan X, Wan X, Ma W, Liu J, Tian T, Zhang J, Zhi J, Qiu M, Zhao M, Wang Q, Li P. Genome-wide screening and validation of exosome-derived TLN1 as a regulator of epithelial-mesenchymal transition in lung cancer. Sci Rep 2025; 15:11453. [PMID: 40181045 PMCID: PMC11968874 DOI: 10.1038/s41598-025-96210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
In addition to embryonic development, wound healing, and tissue fibrosis, epithelial-mesenchymal transition (EMT) is another process that enhances tumor invasiveness and metastatic activity. Exosomes transport a variety of bioactive components between cells and are crucial for cell‒cell communication in multiple complex biological processes, including cancer. Although a few studies have shown that exosomes encapsulate microRNAs that induce a pro-EMT tumor microenvironment, a systematic survey of potential EMT-related regulators in lung cancer exosomes is still lacking. To identify exosome-related EMT signals that could be employed for precise cancer diagnosis, we used a computational approach to generate a list of candidates EMT regulators and performed experimental validation in lung cancer cell lines. Particularly, we focused on exosome-derived differentially expressed genes that were not previously reported to be associated with lung cancer. We identified 25 exosome-derived protein coding regulators associated with EMT with aberrant transcript expression in both lung squamous cell carcinoma and lung adenocarcinoma. By focusing on clinical features such as survival time, smoking status, tumor purity, and primary tumor subtypes, we found that these 25 genes are important for lung cancer development based on a combined cohort of 9781 lung cancer samples from 24 independent genomics studies. By validating two examples of upregulated and downregulated exosome-derived regulators, we confirmed that TLN1 is a potential oncogene in lung cancer progression, which suggests that it may serve as a diagnostic marker. In summary, our results provide a potential exosome-based biomarker for cancer diagnosis that could be used as a therapeutic tool to control the occurrence of EMT and affect cancer progression.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xing Wan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weike Ma
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianli Liu
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Tongfei Tian
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Jiaojiao Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jingtai Zhi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Tianjin, 300060, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Qi Wang
- Department of Orthopedics, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, 300100, China.
| | - Peng Li
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Sugár SN, Molnár BA, Bugyi F, Kecskeméti G, Szabó Z, Laczó I, Harkó T, Moldvay J, Turiák L. Glycoproteomics Analysis of Triple Wild-Type Lung Adenocarcinoma Tissue Samples. J Proteome Res 2025. [PMID: 40175289 DOI: 10.1021/acs.jproteome.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Lung cancer has both high incidence and mortality, making it the leading cause of cancer-related mortality worldwide. It is a highly heterogeneous disease, with several histological subtypes and genetic alterations that influence prognosis and available treatment options. Here, we focus on the triple wild-type (TWT) subtype of lung adenocarcinoma (LUAD) that lacks the three most common actionable genetic alterations, subsequently making targeted therapies inaccessible. In this study, our aim was the mass spectrometry-based proteomic and N-glycoproteomic characterization of tumor and adjacent normal lung tissue regions from individuals (n = 12) with TWT LUAD. We found several proteins previously identified as potential prognostic or diagnostic biomarkers in LUAD and described dysregulated biological processes, giving an overview of the general differences between healthy and tumor tissue. Also, we highlight specific signatures detected using N-glycoproteomics and discuss their potential and importance based on data from databases and literature. To the best of our knowledge, this is the first N-glycoproteomics-focused study on TWT LUAD, and it could provide a valuable resource for further studies into this less well characterized subtype of lung cancer. For instance, we report altered N-glycosylation for several glycoproteins implicated in LUAD and other cancers that could have functional importance connected to the disease.
Collapse
Affiliation(s)
- Simon Nándor Sugár
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
| | - Balázs András Molnár
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
| | - Fanni Bugyi
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Square 8, Szeged H-6720, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Square 8, Szeged H-6720, Hungary
| | - Ibolya Laczó
- Békés County Central Hospital, Semmelweis Utca 1, Gyula, H-5700, Hungary
| | - Tünde Harkó
- National Korányi Institute of Pulmonology, Korányi Frigyes Street 1, Budapest, H-1121, Hungary
| | - Judit Moldvay
- National Korányi Institute of Pulmonology, Korányi Frigyes Street 1, Budapest, H-1121, Hungary
- Pulmonology Clinic, Albert Szent-Györgyi Medical School, University of Szeged, Alkotmány Street 36, Deszk H-6771, Hungary
| | - Lilla Turiák
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
7
|
Karankar VS, Awasthi S, Srivastava N. Peptide-driven strategies against lung cancer. Life Sci 2025; 366-367:123453. [PMID: 39923837 DOI: 10.1016/j.lfs.2025.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Lung cancer remains one of the most significant global health challenges, accounting for 18 % of all cancer-related deaths. While risk factors such as heavy metal exposure and cigarette smoking are well-known contributors, the limitations of conventional treatments including severe side effects and drug resistance highlight the urgent need for more targeted and safer therapeutic options. In this context, peptides have emerged as a novel, precise, and effective class of therapies for lung cancer treatment. They have shown promise in limiting lung cancer progression by targeting key molecular pathways involved in tumour growth. Anti-non-small cell lung cancer peptides that specifically target proteins such as EGFR, TP53, BRAF, MET, ROS1, and ALK have demonstrated potential in improving lung cancer outcomes. Additionally, anti-inflammatory and apoptosis-inducing peptides offer further therapeutic benefits. This review provides a comprehensive overview of the peptides currently in use or under investigation for the treatment of lung cancer, highlighting their mechanisms of action and therapeutic potential. As research continues to advance, peptides are poised to become a promising new therapeutic option in the fight against lung cancer.
Collapse
Affiliation(s)
- Vijayshree S Karankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Saurabh Awasthi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Nagasaka M, Roy UB, Berk A, Liu G, Nadler E, Abrahami D. The value of real-world evidence in supporting targeted therapies for patients with rare oncogenic drivers in mNSCLC. Future Oncol 2025; 21:1005-1011. [PMID: 40084656 PMCID: PMC11988244 DOI: 10.1080/14796694.2025.2475728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
With the ongoing discovery of various oncogenic driver mutations in metastatic non-small cell lung cancer (mNSCLC), a precision medicine approach has emerged, characterized by targeted therapies for select patient populations. Randomized controlled trials (RCT) remain the gold standard for evaluating efficacy and safety of such therapies; however, RCTs evaluating treatments for rare oncogenic drivers still face limitations, given small populations, potentially long-time horizon for outcome events to occur, and underrepresentation of certain subgroups. For these targeted therapies, the complementary nature between real-world evidence (RWE) and RCT may expand the totality of evidence available, to better inform treatment decision-making. In particular, treatments for rare oncogenic drivers can benefit from RWE that provides additional, generalizable clinical insights for subgroups underrepresented or ineligible for RCT, or confirms outcomes observed in RCT. As a discipline, RWE has seen significant advances in methodology and healthcare stakeholder acceptability, with potential for even greater innovation, and presents a valuable opportunity to support decision-making around access and use of targeted therapies for rare oncogenic drivers in mNSCLC.
Collapse
Affiliation(s)
- Misako Nagasaka
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, USA
- Division of Neurology, Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Upal Basu Roy
- Translational Science Research Program, LUNGevity Foundation, Chicago, IL, USA
| | | | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Eric Nadler
- Charles Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Devin Abrahami
- HTA Value and Evidence, Oncology, Pfizer Inc, New York, NY, USA
| |
Collapse
|
10
|
Song JY, An H, Kim S. A novel mesenchymal epithelial transition (MET) inhibitor, CB538, relieves acquired resistance in EGFR-mutated MET-amplified non-small cell lung cancer. Transl Cancer Res 2025; 14:1915-1927. [PMID: 40224983 PMCID: PMC11985202 DOI: 10.21037/tcr-24-1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/03/2025] [Indexed: 04/15/2025]
Abstract
Background Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is the first-line standard therapy for metastatic EGFR-mutated non-small cell lung cancer (NSCLC). Although osimertinib is effective, it's durable response is invariably limited by the emergence of acquired resistance. Mesenchymal epithelial transition (MET) amplification is a frequent mechanism in patients with EGFR-mutated NSCLC who are resistant to EGFR-TKIs. Consequently, combined treatment with EGFR-TKIs and MET-TKIs has been explored as a strategy for overcoming this resistance. The current study aimed to explore the single and combination inhibition effect of CB538, a novel MET inhibitor in MET-activated, EGFR-mutant NSCLC cells. Methods The cellular inhibitory effects of single and co-treatment of CB538 with EGFR-TKIs were evaluated in the established EGFR-TKI-resistant cells [PC9/ER (erlotinib resistance), HCC827/OR (osimertinib resistance)]. The preclinical activities of CB538 were investigated by evaluating in vitro kinase activity, cell growth, and Western blotting of phosphorylated MET and downstream signaling molecules in MET-activated, EGFR-TKI-resistant cells. Cell viability was examined by MTT and colony formation. The inhibition of migration was determined by wound-healing assay. A xenograft tumor model was employed to investigate in vivo HCC827/OR cell growth in BALB/c nude mice. Results We confirmed that activated MET/Axl signaling pathways and EMT-related proteins were inhibited by CB538 in established EGFR-TKI-resistant NSCLC cells. CB538, a novel c-MET inhibitor, decreased the growth, migration, and invasive properties of these EGFR-TKI-resistant NSCLC cells. CB538 also inhibited tumor growth and expression of activated proteins (MET and Axl) in in vivo HCC827/OR xenograft model. Conclusions Additional treatment with CB538 enhanced sensitivity to EGFR-TKIs in two EGFR-TKI-resistant NSCLC cells by inhibiting EGFR/MET/Axl pathway axis. Overall, the treatment effects of CB538 were confirmed to relieve EGFR-TKI-driven resistance in EGFR-mutant NSCLC cells.
Collapse
Affiliation(s)
- Ji Yeon Song
- CHA (Christianity, Humanism and Academia) Advanced Research Institute, Seongnam-si, Korea
- College of Pharmacy, CHA (Christianity, Humanism and Academia) University, Pocheon, Korea
| | - Hyunsook An
- CHA (Christianity, Humanism and Academia) Advanced Research Institute, Seongnam-si, Korea
| | - Soojeong Kim
- CHA (Christianity, Humanism and Academia) Advanced Research Institute, Seongnam-si, Korea
| |
Collapse
|
11
|
Wislez M, Mascaux C, Cadranel J, Thomas QD, Ricordel C, Swalduz A, Pichon E, Veillon R, Gounant V, Rousseau-Bussac G, Madroszyk A, Daniel C, Ravoire M, Metivier AC, Fournel P, Missy P, Morin F, Guisier F, Westeel V. Real-world effectiveness and tolerability of sotorasib in patients with KRAS G12C-mutated metastatic non-small cell lung cancer: The IFCT-2102 Lung KG12Ci study. Eur J Cancer 2025; 219:115301. [PMID: 39970524 DOI: 10.1016/j.ejca.2025.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Sotorasib has shown efficacy in a phase 3 trial compared to docetaxel among previously treated non-small cell lung cancer (NSCLC) patients with a KRAS G12C mutation. However, its real-world effectiveness and tolerance, especially post-immunotherapy, remain debated. METHODS This French retrospective multicentre study analysed NSCLC patients receiving at least one dose of sotorasib as part of early access program The main objective was to assess real-world progression-free survival (rwPFS), and secondary objectives included assessment of overall survival (rwOS) and sotorasib-related hepatotoxicity. RESULTS 458 patients from 76 centres were analysed, with a median age 65.8. Among them, 43.4 % were female, 28.3 % had performance status ≥ 2, 95.4 % were active/former smokers, and 38.0 % had brain metastases with 55.2 % in progression at sotorasib initiation. PD-L1 expression was < 1 %, ≥ 1-49 %, ≥ 50 %, and unknown in 35.1 %, 34.1 %, 23.4 %, and 7.4 % of patients, respectively. Most patients had received prior treatments (96.7 %), including immunotherapy (54.9 %). Median (95 % confidence interval [CI]) rwPFS and rwOS were 3.5 (3.1-4.2) and 8.3 (7.5-9.3) months, with a median (95 % CI) follow-up of 15.8 (13.9-17.3) and 16.4 (15.5-17.3) months, respectively. The real-world objective response rate (rwORR) was 33.2 % and disease control rate (rwDCR) was 63.2 %. In patients with brain metastases, cerebral rwORR and rwDCR were 20.1 % and 66.9 %, respectively. Grade 3-4 adverse events related to hepatotoxicity occurred in 5.2 % of patients. Sotorasib was discontinued for toxicity in 16.5 % of patients. CONCLUSION This study gave insights into effectiveness and safety of sotorasib in a real-world setting, in advanced or metastatic KRAS G12C-mutated non-squamous NSCLC.
Collapse
Affiliation(s)
- M Wislez
- APHP, Hôpital Cochin, Service de Pneumologie, Unité d'Oncologie Thoracique, Paris, France; Université Paris Cité, Paris, France.
| | - C Mascaux
- CHU de Strasbourg, Nouvel Hôpital Civil, Service de Pneumologie, Pôle de Pathologie Thoracique, Strasbourg, France
| | - J Cadranel
- APHP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Paris, France; GRC04, Theranoscan Sorbonne Université, Paris, France
| | - Q D Thomas
- Institut du cancer de Montpellier, Service d'Oncologie Médicale, Montpellier, France
| | - C Ricordel
- Université de Rennes 1, Unité COSS INSERM U1242 - CEM, Rennes, France; CHU Rennes, Service de Pneumologie, Rennes, France
| | - A Swalduz
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France
| | - E Pichon
- CHU de Tours, Hôpital Bretonneau, Service de Pneumologie, Tours, France
| | - R Veillon
- CHU de Bordeaux, Service Des Maladies Respiratoires, Bordeaux, France
| | - V Gounant
- APHP, Hôpital Bichat, Service d'Oncologie Thoracique, Paris, France
| | - G Rousseau-Bussac
- Centre hospitalier Intercommunal de Créteil, Service de Pneumologie, Créteil, France
| | - A Madroszyk
- Institut Paoli Calmettes, Service d'Oncologie Médicale, Marseille, France
| | - C Daniel
- Institut Curie, Département d'Oncologie Médicale, Paris, France
| | - M Ravoire
- Institut du Cancer Avignon-Provence, Service de Pneumologie, Avignon, France
| | - A-C Metivier
- Hôpital Foch, Service de Pneumologie, Suresnes, France
| | - P Fournel
- CHU de Saint-Etienne, Service de Pneumologie et d'oncologie Thoracique, France
| | - P Missy
- IFCT, Unité de Recherche Clinique, Paris, France
| | - F Morin
- IFCT, Unité de Recherche Clinique, Paris, France
| | - F Guisier
- Univ Rouen Normandie, LITIS Lab QuantIF team EA4108, CHU Rouen, Inserm CIC-CRB 1404, Department of Pneumology, Thoracic Oncology and Respiratory Intensive Care, Rouen, France
| | - V Westeel
- Service de Pneumologie, Hôpital Jean Minjoz, Besançon, France
| |
Collapse
|
12
|
Li J, Shi X, Zhang H, Lin X, Zheng S, Chen W, Zhou Y, Liang Z. Clinical Validation of a Targeted RNA-Sequencing Assay for Driver Gene Alteration Detection in Non-Small Cell Lung Cancer. Mol Diagn Ther 2025:10.1007/s40291-025-00774-w. [PMID: 40087257 DOI: 10.1007/s40291-025-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND AND OBJECTIVE With the increasing number of diagnostic biomarkers associated with tumor diagnosis, targeted therapy, and immunotherapy, access to clinical pathological specimens of an appropriate size for analysis is becoming a problem. Conventional high-throughput sequencing assays for non-small cell lung cancer (NSCLC) often necessitate the extraction of separate DNA and RNA samples to achieve precise detection of various mutation types. This study aimed to employ RNA-next-generation sequencing (NGS) technology to simultaneously detect different types of mutations in NSCLC samples, including single nucleotide variations, insertions and deletions, fusions/rearrangements, and exon skipping, thereby addressing the issue of limited sample availability. METHODS Two hundred and twenty cases of formalin-fixed paraffin-embedded NSCLC clinical specimens were retrospectively included for targeted RNA sequencing based on the principle of probe hybridization capture. Lung cancer tissue samples with different storage times were compared for success in DNA-NGS and RNA-NGS assays. The clinical detection performance of RNA-NGS was evaluated by comparing its results to those of DNA-NGS and clinical assays. Samples with inconsistent results were further verified by immunohistochemistry, amplification refractory mutation system-polymerase chain reaction, or droplet digital polymerase chain reaction. RESULTS DNA-NGS exhibited an overall success rate of 91.82% in all samples, while RNA-NGS achieved an overall success rate of 92.73%. However, the success rate declined with longer storage times. Compared with DNA-NGS, targeted RNA sequencing for single nucleotide variation/insertion and deletion detection achieved a sensitivity of 93.75%, a specificity of 100%, and an overall concordance of 97.86%. Compared with the validated results, it achieved a sensitivity of 97.96%, a specificity of 99.28%, an and overall concordance of 98.93% in fusion/rearrangement and Met exon skipping detection, which was superior to DNA-NGS. Compared to clinical testing, this assay demonstrated a sensitivity of 93.33%, a specificity of 100%, and an overall concordance rate of 97.93%. CONCLUSIONS This study substantiates that the targeted RNA-sequencing assay, based on probe hybridization capture, represents a superior detection technology platform for the application of drug targeting. It expeditiously and reliably provides all the requisite biomarkers for current NSCLC targeted therapies in a single-sample testing workflow, facilitating rapid clinical diagnosis and the formulation of rational treatment plans by clinicians.
Collapse
Affiliation(s)
- Ji Li
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Xiaojing Lin
- Zhenyue Biotechnology Jiangsu Co., Ltd., Taizhou, Jiangsu, China
| | - Shan Zheng
- Zhenyue Biotechnology Jiangsu Co., Ltd., Taizhou, Jiangsu, China
| | - Weizhi Chen
- Zhenyue Biotechnology Jiangsu Co., Ltd., Taizhou, Jiangsu, China
| | - Yang Zhou
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China.
| |
Collapse
|
13
|
Lourenço P, Cruz C. G-Quadruplex Conformational Switching for miR-155-3p Detection Using a Ligand-Based Fluorescence Approach. Biomolecules 2025; 15:410. [PMID: 40149946 PMCID: PMC11940483 DOI: 10.3390/biom15030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
MicroRNA-155-3p (miR-155-3p) is an important biomarker in various pathological conditions, including cancer, making the development of sensitive and specific detection methods crucial. Here, we present a molecular beacon (MB-G4) that underwent a conformational switch upon hybridization with miR-155-3p, enabling the formation of a G-quadruplex (G4) structure. This G4 was recognized by the fluorogenic ligand N-methyl mesoporphyrin IX (NMM), producing a fluorescence signal proportional to the target concentration, making it a new detection method. The conformational dynamics of MB-G4 were characterized through circular dichroism (CD) spectroscopy and native polyacrylamide gel electrophoresis (PAGE), confirming the transition from a hairpin structure to an RNA-DNA hybrid duplex that facilitated G4 formation. The optimization of the experimental conditions, including the potassium chloride (KCl) and NMM concentrations, ensured selective detection with minimal background signal. The detection limit (LOD) was determined to be 10.85 nM, using a linear fluorescence response curve, and the specificity studies demonstrated a clear distinction between miR-155-3p and miR-155-5p. Furthermore, MB-G4 was studied with total RNA extracted from the lung cancer cell line A549 to evaluate its detection in a more complex environment and was able to detect its target, validating its potential for biological sample analysis.
Collapse
Affiliation(s)
- Pedro Lourenço
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Carla Cruz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Department of Chemistry, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
14
|
Borg M, Løkke A, Ibsen R, Hilberg O. Four decades of lung cancer: Trends in comorbidities and causes of death in a nationwide Danish cohort. Eur J Cancer 2025; 218:115303. [PMID: 39952148 DOI: 10.1016/j.ejca.2025.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related deaths globally, with gradual improvements in patient survival attributed to early detection through low-dose computed tomography screening and advances in oncological therapies. Despite these advancements, the management of comorbidities, particularly cardiovascular disease and chronic obstructive pulmonary disease, is critical due to their shared causal link with lung cancer - smoking. This study explores the prevalence of comorbidities among lung cancer patients in Denmark over four decades, using comprehensive national registry data. METHODS By examining the Danish National Patient Register and Danish Cancer Registry, we identified all Danish lung cancer cases diagnosed from 1980 to 2018, analyzing comorbidities and causes of death. A comparison cohort matched by age, sex, municipality, and marital status was also established. FINDINGS The findings reveal a significant increase in comorbidities among lung cancer patients over time, while this increase was less significant in the comparison cohort. Almost half of lung cancer patients had at least one comorbidity in the most recent period, 2008-2018. Cardiovascular disease, chronic obstructive pulmonary disease, diabetes, stroke, and peripheral atherosclerosis were the most prevalent comorbidities. Among patients diagnosed with lung cancer, it was the cause of death in 84 % of cases. The study also highlights a notable decrease in deaths from ischemic heart disease, with an increase in dementia-related deaths, suggesting an increasing burden of neurodegenerative diseases in aging populations. INTERPRETATION This longitudinal analysis highlights that as the burden of comorbidities increases, comprehensive management strategies become increasingly crucial. These strategies could include less invasive diagnostic approaches, such as endobronchial evaluation, as well as treatment options like segmental resection and stereotactic body radiation. Addressing comorbidities alongside cancer treatment may improve patient outcomes and overall quality of life in aging populations.
Collapse
Affiliation(s)
- Morten Borg
- Department of Medicine, Lillebaelt Hospital Vejle, University Hospital of Southern Denmark, Vejle 7100, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Anders Løkke
- Department of Medicine, Lillebaelt Hospital Vejle, University Hospital of Southern Denmark, Vejle 7100, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Rikke Ibsen
- i2 Minds, Nørrebrogade 18b, Aarhus C 8000, Denmark
| | - Ole Hilberg
- Department of Medicine, Lillebaelt Hospital Vejle, University Hospital of Southern Denmark, Vejle 7100, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Madheswaran T, Chellappan DK, Lye FSN, Dua K. Recent advances in the use of liquid crystalline nanoparticles for non-small cell lung cancer treatment. Expert Opin Drug Deliv 2025:1-13. [PMID: 40022612 DOI: 10.1080/17425247.2025.2474693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) continues to pose a considerable health challenge with few therapeutic alternatives. Liquid crystalline nanoparticles (LCN) are nanostructured drug delivery systems made of lipid-based amphiphilic materials that self-assemble into crystalline phases in aqueous environments. LCN have become a promising way to treat NSCLC owing to their specific properties that make them useful for targeted delivery and controlled drug release. AREAS COVERED The review provides a brief overview of the use of LCN in the treatment of NSCLC. It explores their composition, fabrication methods, and characterization processes. The article further addresses several nanoparticle-based approaches for the treatment of NSCLC. Ultimately, it underscores the promise of LCNs as a promising drug delivery system for NSCLC and discusses the obstacles and outlook in this field. EXPERT OPINION LCN represents a promising frontier in the treatment of NSCLC, offering several specific advantages over conventional therapies. Utilizing their intrinsic self-assembly characteristics, LCN provides meticulous control over drug encapsulation, release kinetics, and cellular absorption, which are crucial for improving therapy success. LCN also has the capability for co-delivery of various drugs, facilitating synergistic therapeutic benefits and addressing multidrug resistance, a prevalent issue in NSCLC treatment.
Collapse
Affiliation(s)
- Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
- Department of Life Sciences, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Fiona Sze Nee Lye
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Selangor, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Chopra D, Waterhouse DM, Sultan I, Stollenwerk B. Real-World Treatment Patterns, Healthcare Resource Utilization, and Healthcare Costs in the First-Line Treatment of Metastatic Non-Small Cell Lung Cancer in the US. Curr Oncol 2025; 32:151. [PMID: 40136355 PMCID: PMC11940980 DOI: 10.3390/curroncol32030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
This study characterizes real-world treatment patterns and economic and healthcare resource utilization (HCRU) burden associated with first-line (1L) treatment of metastatic non-small cell lung cancer (NSCLC) without actionable alterations in the United States. This retrospective observational study used Optum Clinformatics® data. A total of 15,659 patients with metastatic NSCLC who started 1L treatment between January 2020 and March 2023 were included (52% male; mean age at the start of 1L treatment 71.7 years; 86% Medicare Advantage). The most frequent 1L regimens were immune checkpoint inhibitor (ICI) + platinum-based chemotherapy (PBCT) (47%), PBCT only (26%), and ICI only (20%). The median 1L treatment duration was 4.2 months (range 2.7-6.5) and was shorter with chemotherapy-only regimens. Outpatient visits accounted for the majority of HCRU (mean 6.6 visits per patient per month [PPPM]). Outpatient, inpatient, and emergency department visits were highest for chemotherapy-only regimens. Mean total (all-cause) healthcare costs were $32,215 PPPM and were highest for ICI + chemotherapy ($34,741-38,454 PPPM). Inpatient costs PPPM were highest for PBCT ($4725) and ICI + non-PBCT ($4648). First-line treatment of metastatic NSCLC without actionable alterations imposes a notable HCRU and cost burden, underscoring the need for better treatment options to improve outcomes and reduce economic impact.
Collapse
|
17
|
D’Mello RS, Mendon V, Pai P, Das I, Sundara BK. Exploring the therapeutic potential of oleanolic acid and its derivatives in cancer treatment: a comprehensive review. 3 Biotech 2025; 15:56. [PMID: 39926108 PMCID: PMC11803024 DOI: 10.1007/s13205-025-04209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Oleanolic acid (OA) is a triterpenoid that occurs naturally and may be isolated from various plants. Analogs of oleanolic acid can be produced artificially or naturally. The current treatments have limited selectivity and may also impact normal cells. OA and its derivatives provide a promising cancer treatment platform with greater selectivity and less toxic effects. As a result of their enhanced sensitivity, selectivity, and low toxicity, they are great options for focusing on particular biological pathways and reducing the growth of tumor cells. The effects of OA and derivatives of OA on various cancer types have been investigated. However, breast and hepatocellular malignancies are the most studied cancers. In breast cancer, derivatives such as saikosaponin A (SSa), saikosaponin B (SSb), and SZC014 influence key pathways such as the Janus kinase/signal transducer and activator of transcription (JAK/STAT), protein kinase-B (Akt), and nuclear factor-kappa B (NF-κB) pathways, inhibiting metastasis, angiogenesis, and cell migration, respectively. When a para-aminobenzoic acid (PABA)/nitric oxide (NO) derivative of OA is administered to HepG2 cells, the reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK)-mediated mitochondrial pathway causes apoptosis. Nanoformulations incorporating OA, such as OA-paclitaxel (PTX), show potential for suppressing tumor progression by inhibiting drug efflux mechanisms. Thus, exploring the interactions of OA and a few of its derivatives with various cellular pathways offers a promising approach to combating different types of cancer. This review delves into the potential of oleanolic acid and its derivatives in retarding cancer progression through their interactions with diverse cellular pathways.
Collapse
Affiliation(s)
- Rachel Savio D’Mello
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vividh Mendon
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ipshita Das
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
18
|
Girard N, Han JY, Soo RA, Wang K, Tang W, Nikolaidis GF, Tasoulas A, Barouma I, Castro JC, Yang Z, Chaudhary T, Zhan L. Comparative effectiveness and safety of tislelizumab versus other anti-PD-(L)1 agents in first- and subsequent lines in locally advanced or metastatic non-small cell lung cancer: Systematic literature review and network meta-analysis. Lung Cancer 2025; 201:108450. [PMID: 39986214 DOI: 10.1016/j.lungcan.2025.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVES To estimate the relative efficacy and safety of tislelizumab with or without chemotherapy in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) in first-line (1L) squamous, 1L non-squamous with programmed death-ligand 1 (PD-L1) ≥ 50 %, and second- and subsequent lines (2L + ) settings via indirect treatment comparisons, following a systematic literature review (SLR) of studies investigating existing anti-programmed cell death protein-(ligand)1 (PD-[L]1) therapies. METHODS The SLR was originally conducted in 2022 and updated in 2023. A feasibility assessment (FA) was undertaken to assess the assumptions required for network meta-analysis (NMA) among therapies approved in the UK and European Union aligning with tislelizumab's license. Outcomes included overall survival (OS), progression-free survival (PFS), and grade ≥ 3 treatment-related adverse events (TRAEs). Analyses were conducted in the hazard ratio scale for OS and PFS and in the odds ratio scale for TRAEs. Uncertainty was expressed in 95 % credible intervals. RESULTS The SLR identified 277 total studies in 1L and 176 in 2L + NSCLC, with 23 and eight carried forward to their respective FAs. After the FA stage, 20 and eight studies qualified for the 1L and 2L + NMAs, respectively. Tislelizumab with or without chemotherapy was statistically significantly more favorable than most comparator treatments and ranked as best or second-best treatment overall for the following: PFS in 1L squamous NSCLC, OS/PFS in 1L non-squamous NSCLC with PD-L1 ≥ 50 %, and OS/PFS/TRAEs in 2L + NSCLC of any histology. For the remaining analyses (i.e. OS/TRAEs in 1L squamous NSCLC), tislelizumab with or without chemotherapy was comparable to other anti-PD-(L)1 therapies and combination therapies. CONCLUSIONS Tislelizumab with or without chemotherapy appears to be comparable to or more favorable than other regimens of anti-PD-(L)1 therapies or combination therapies in OS/PFS/TRAEs across patients with 1L squamous NSCLC, 1L non-squamous NSCLC with PD-L1 ≥ 50 %, and 2L + NSCLC of any histology.
Collapse
Affiliation(s)
| | | | - Ross A Soo
- National University Cancer Institute Singapore
| | | | | | | | | | | | | | | | | | - Lin Zhan
- BeiGene USA, Inc., Emeryville, CA, USA
| |
Collapse
|
19
|
Chen CL, Chen NY, Wu S, Lin X, He XW, Qiu Y, Xue DX, Li J, He MD, Dong XX, Zhuang WY, Liang MZ. Nomogram for predicting survival in breast cancer with lung metastasis based on SEER data. Transl Cancer Res 2025; 14:808-826. [PMID: 40104706 PMCID: PMC11912048 DOI: 10.21037/tcr-24-1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/04/2024] [Indexed: 03/20/2025]
Abstract
Background The incidence of breast cancer (BC) has been steadily increasing, highlighting the need for a predictive model to assess the survival prognosis of BC patients. The objective of this research was to formulate a prognostic nomogram framework tailored to forecast survival among individuals diagnosed with BC with lung metastasis (BCLM). Methods Our information was sourced from the Surveillance, Epidemiology, and End Results (SEER) database. Individuals who were diagnosed with BC from 2010 to 2015 were selected. The 4,309 collected participants were randomly separated into a training cohort (n=3,231) and a validation cohort (n=1,078). In this study, age, marital status, race, tumor location, laterality, type of primary surgery, surgical margin, tumor grade, tumor (T) stage, node (N) stage, as well as the use of radiotherapy and chemotherapy, were identified as potential prognostic factors. The overall survival (OS) and breast cancer-specific survival (CSS) were defined as the primary endpoints of this study. Univariate and multivariate analyses were conducted to assess the impact of different factors on prognosis. Structured nomograms were developed to improve the prediction of OS and CSS. The concordance index (C-index), receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were employed to estimate the performance of the nomogram. Results The nomograms incorporated age, marital status, race, primary surgery or not, BC subtype, grade, T stage, and the use of chemotherapy or not. The C-index for OS was 0.77, and it was 0.77 in CSS for the training group. The C-indexes for the control group of OS and CSS prediction were 0.78 and 0.78, respectively. ROC curves, calibration plots, and DCA curves displayed excellent predictive validity. The results indicate a median survival time of 1.67 years [95% confidence interval (CI): 1.58-1.83], with a total of 3,640 deaths recorded. Survival time was found to be associated with factors such as age, marital status, race, whether primary site surgery was performed, BC subtype, tumor grade, T stage, and the administration of chemotherapy. Conclusions Nomograms were created to predict OS and CSS for individuals diagnosed with BCLM. The nomogram has a reliable and valid prediction power; it could perhaps assist physicians in calculating patients' mortality risk.
Collapse
Affiliation(s)
- Cheng-Liang Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ni-Ya Chen
- Department of Medical Insurance Division, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuo Wu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Lin
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Wei He
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Qiu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Di-Xin Xue
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Li
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-Die He
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Xi Dong
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Ya Zhuang
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mei-Zhen Liang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Rabby MS, Islam MM, Kumar S, Maniruzzaman M, Hasan MAM, Tomioka Y, Shin J. Identification of potential biomarkers for lung cancer using integrated bioinformatics and machine learning approaches. PLoS One 2025; 20:e0317296. [PMID: 40014586 DOI: 10.1371/journal.pone.0317296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 03/01/2025] Open
Abstract
Lung cancer is one of the most common cancer and the leading cause of cancer-related death worldwide. Early detection of lung cancer can help reduce the death rate; therefore, the identification of potential biomarkers is crucial. Thus, this study aimed to identify potential biomarkers for lung cancer by integrating bioinformatics analysis and machine learning (ML)-based approaches. Data were normalized using the robust multiarray average method and batch effect were corrected using the ComBat method. Differentially expressed genes were identified by the LIMMA approach and carcinoma-associated genes were selected using Enrichr, based on the DisGeNET database. Protein-protein interaction (PPI) network analysis was performed using STRING, and the PPI network was visualized using Cytoscape. The core hub genes were identified by overlapping genes obtained from degree, betweenness, closeness, and MNC. Moreover, the MCODE plugin for Cytoscape was used to perform module analysis, and optimal modules were selected based on MCODE scores along with their associated genes. Subsequently, Boruta-based ML approach was utilized to identify the important genes. Consequently, the core genes were identified by the overlapping genes obtained from PPI networks, module analysis, and ML-based approach. The prognostic and discriminative power analysis of the core genes was assessed through survival and ROC analysis. We extracted five datasets from USA cohort and three datasets from Taiwan cohort and performed same experimental protocols to determine potential biomarkers. Four genes (LPL, CLDN18, EDNRB, MME) were identified from USA cohort, while three genes (DNRB, MME, ROBO4) were from Taiwan cohort. Finally, two biomarkers (EDNRB and MME) were identified by intersecting genes, obtained from USA and Taiwan cohorts. The proposed biomarkers can significantly improve patient outcomes by enabling earlier detection, precise diagnosis, and tailored treatment, ultimately contributing to better survival rates and quality of life for patients.
Collapse
Affiliation(s)
- Md Symun Rabby
- Department of Statistics, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh
| | - Md Merajul Islam
- Department of Statistics, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh
| | - Sujit Kumar
- Department of Statistics, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh
| | - Md Maniruzzaman
- Statistics Discipline, Khulna University, Khulna, Bangladesh
| | - Md Al Mehedi Hasan
- Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Yoichi Tomioka
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan
| |
Collapse
|
21
|
Ramos R, Moura CS, Costa M, Lamas NJ, Correia R, Garcez D, Pereira JM, Lindahl T, Sousa C, Vale N. Lung Cancer Therapy: The Role of Personalized Medicine. Cancers (Basel) 2025; 17:725. [PMID: 40075573 PMCID: PMC11899562 DOI: 10.3390/cancers17050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer is the deadliest cancer worldwide, exhibiting the highest incidence rate among all cancer types. Poor outcomes often characterize this cancer as it is commonly diagnosed in advanced stages due to its unspecific symptoms. After diagnosis, the therapeutic choice is a crucial stage that profoundly affects patients' survival. Treatment choices for lung cancer must be made carefully, acknowledging the histological type and genetic characteristics of the tumor. Non-small cell lung cancer, the most common and complex type, has a high mutational burden, making next-generation sequencing (NGS) essential for identifying specific mutations and guiding treatment. With several approved targeted therapies already available, this approach highlights the critical role of personalized medicine in lung cancer care. Despite the current therapeutic pipeline, research trying to develop new tailored drugs considering individual patient characteristics has evolved over the years. This article aims to outline the current therapeutic approach for each type of lung cancer and present the latest insights into emerging therapies, highlighting the role of personalized medicine in enhancing treatment outcomes and improving patients' quality of life.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Conceição Souto Moura
- Pathology Laboratory, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal;
| | - Mariana Costa
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Jorge Lamas
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Largo Professor Abel Salazar, 4099-001 Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, Rua da Universidade, 4710-057 Braga, Portugal
| | - Renato Correia
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - Diogo Garcez
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - José Miguel Pereira
- Radiology Department, Unilabs Portugal, Rua de Diogo Botelho 485, 4150-255 Porto, Portugal;
| | - Thomas Lindahl
- Unilabs Group Services, Succursale d’Unilabs, Laboratoire d’Analyses Médicales SA, Rue de Lausanne 15, 1201 Geneva, Switzerland;
| | - Carlos Sousa
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Vale
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Laboratory of Personalized Medicine, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
22
|
Nyen JE, Booth AØ, Husby Ø, Bugge C, Engebretsen I, Oteiza F, Helland Å, Fjellbirkeland L, Brustugun OT, Grønberg BH. Targeted treatment and survival in advanced non-squamous non-small cell lung cancer patients - a nationwide and longitudinal study. Front Oncol 2025; 15:1506041. [PMID: 40052133 PMCID: PMC11882418 DOI: 10.3389/fonc.2025.1506041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Objectives We aimed to describe treatment patterns, time on treatment (ToT) and overall survival (OS) for patients with advanced non-squamous, EGFR+, ALK+ and ROS1+ NSCLC in Norway. Materials and methods We extracted data on patients ≥ 18 years diagnosed with advanced non-squamous NSCLC between 2015 and 2022 from the Cancer Registry of Norway and data on cancer drug therapy from the Norwegian Patient Registry and the Norwegian Prescribed Drug Registry. ToT was measured from the date treatment was collected or administered until the last dispensing was depleted or last hospital drug administration. OS was measured from date of diagnosis until death. Results In total, 5,279 patients were included, of whom 449 EGFR+, 131 ALK+ and 38 ROS1+. 75% of EGFR+ patients, 88% of ALK+ patients, and 58% of ROS1+ patients received at least one systemic treatment within the first three months after diagnosis. Median follow-up was 13, 19, and 4 months for EGFR+, ALK+, and ROS1+, respectively. The median ToT in first line (1L) for EGFR+ patients was 11 months for osimertinib (CI: 10.1-NA) and 9 months (CI: 8.2-11.2) for afatinib, dacomitinib, erlotinib and gefitinib. For ALK+ patients, median ToT in 1L was 20 months (CI: 14.7-23.7for alectinib, 11 months (CI: 4.7-NA) for brigatinib, and 7 months (CI: 2.9-21.6) for crizotinib. For the five ROS1+ patients treated with crizotinib in 1L, median ToT was 5 months (CI: 2.4-NA). For all patients with a targetable genomic alteration, unadjusted median OS was higher (p-value = 0.025) for patients diagnosed in 2020-2022 (median OS: 23 months, CI: 19.5-NA) compared to patients diagnosed in 2015-2019 (median: 19 months, CI: 16.5-21.2). Conclusions ToT for targeted therapies was shorter than progression-free survival in clinical trials. However, patients eligible for targeted therapy still had a survival improvement during the study period.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Åslaug Helland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars Fjellbirkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Odd Terje Brustugun
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
23
|
Tahayneh K, Idkedek M, Abu Akar F. NSCLC: Current Evidence on Its Pathogenesis, Integrated Treatment, and Future Perspectives. J Clin Med 2025; 14:1025. [PMID: 39941694 PMCID: PMC11818267 DOI: 10.3390/jcm14031025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises the majority of lung cancer cases, characterized by a complex interplay of genetic alterations, environmental factors, and molecular pathways contributing to its pathogenesis. This article highlights the multifaceted pathogenesis of NSCLC and discusses screening and integrated strategies for current treatment options. NSCLC is an evolving field with various aspects including the underlying molecular alterations, oncogenic driver mutations, and immune microenvironment interactions that influence tumor progression and response to therapy. Surgical treatment remains the most applicable curative option, especially in the early stages of the disease, adjuvant chemotherapy may add benefits to previously resected patients. Combined Radio-chemotherapy can also be used for palliative purposes. There are various future perspectives and advancing horizons in NSCLC management, encompassing novel therapeutic modalities and their applications, such as CAR-T cell therapy, antibody-drug conjugates, and gene therapies. On the other hand, it's crucial to highlight the efficacy of innovative modalities of Immunotherapy and immune checkpoint inhibitors that are nowadays widely used in treatment of NSCLC. Moreover, the latest advancements in molecular profiling techniques and the development of targeted therapies designed for specific molecular alterations in NSCLC play a significant role in its treatment. In conclusion, personalized approaches are a cornerstone of successful treatment, and they are based on a patient's unique molecular profile, tumor characteristics, and host factors. Entitling the concept of individualized treatment strategies requires proper patient selection, taking into consideration mechanisms of resistance, and investigating potential combination therapies, to achieve the optimal impact on long-term survival.
Collapse
Affiliation(s)
- Kareem Tahayneh
- Faculty of Medicine, Al-Quds University, East Jerusalem 20002, Palestine;
| | - Mayar Idkedek
- Faculty of Medicine, Al-Quds University, East Jerusalem 20002, Palestine;
| | - Firas Abu Akar
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem 20002, Palestine
- Department of Thoracic Surgery, The Edith Wolfson Medical Center, Holon 58100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
24
|
Florez N, Patel SP, Wakelee H, Bazhenova L, Massarelli E, Salgia R, Stiles B, Peters S, Malhotra J, Gadgeel SM, Nieva JJ, Afkhami M, Hirsch FR, Gubens M, Cascone T, Levy B, Sabari J, Husain H, Ma PC, Backhus LM, Iyengar P, Lee P, Miller R, Sands J, Kim E. Proceedings of the 1st biannual bridging the gaps in lung cancer conference. Oncologist 2025; 30:oyae228. [PMID: 39237103 PMCID: PMC11883156 DOI: 10.1093/oncolo/oyae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Lung cancer is the leading cause of cancer death in the US and globally. The mortality from lung cancer has been declining, due to a reduction in incidence and advances in treatment. Although recent success in developing targeted and immunotherapies for lung cancer has benefitted patients, it has also expanded the complexity of potential treatment options for health care providers. To aid in reducing such complexity, experts in oncology convened a conference (Bridging the Gaps in Lung Cancer) to identify current knowledge gaps and controversies in the diagnosis, treatment, and outcomes of various lung cancer scenarios, as described here. Such scenarios relate to biomarkers and testing in lung cancer, small cell lung cancer, EGFR mutations and targeted therapy in non-small cell lung cancer (NSCLC), early-stage NSCLC, KRAS/BRAF/MET and other genomic alterations in NSCLC, and immunotherapy in advanced NSCLC.
Collapse
Affiliation(s)
- Narjust Florez
- Dana-Farber Cancer Institute, Harvard University School of Medicine, Boston, MA, United States
| | - Sandip P Patel
- Sanford Stem Cell Clinical Center and San Diego Center for Precision Immunotherapy, University of California San Diego, La Jolla, CA, United States
| | - Heather Wakelee
- Stanford University School of Medicine and Stanford Cancer Institute, Stanford, CA, United States
| | - Lyudmila Bazhenova
- University of California San Diego Moores Cancer Center, La Jolla, CA, United States
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, United States
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, United States
| | - Brendon Stiles
- Cardiovascular and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Solange Peters
- Medical Oncology, Lausanne University Hospital, Lausanne Vaud, Switzerland
| | - Jyoti Malhotra
- Thoracic Medical Oncology, City of Hope Orange County, Irvine, CA, United States
| | - Shirish M Gadgeel
- Henry Ford Cancer Institute, Henry Ford Health Center, Detroit, MI, United States
| | - Jorge J Nieva
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Fred R Hirsch
- Icahn School of Medicine and Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, United States
| | - Matthew Gubens
- Thoracic Medical Oncology, University of California San Francisco, San Francisco, CA, , United States
| | - Tina Cascone
- University of Texas MD Anderson Cancer Center, United States
| | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - Joshua Sabari
- Langone Health Perlmutter Cancer Center and NYU Langone Grossman School of Medicine, New York, NY, United States
| | - Hatim Husain
- University of California San Diego, San Diego, CA, United States
| | - Patrick C Ma
- Penn State Cancer Institute, Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA, United States
| | - Leah M Backhus
- Department of Cardiothoracic Surgery, Standford University, Palo Alto, CA, United States
| | - Puneeth Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Percy Lee
- City of Hope National Medical Center, Los Angeles, CA, United States
| | - Russell Miller
- University of California San Diego, San Diego, CA, United States
| | - Jacob Sands
- Dana-Farber Cancer Institute, Harvard University School of Medicine, Boston, MA, United States
| | - Edward Kim
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, United States
| |
Collapse
|
25
|
Mahajan A, Panzade G, Bhuniya T, Das P, Bhattacharjee B, Das S, Chowdhury A, Chakraborty K, Guha S, Samant A, Dey A, Ghosh S. Revolutionizing lung cancer treatment: Introducing PROTAC therapy as a novel paradigm in targeted therapeutics. Curr Probl Cancer 2025; 54:101172. [PMID: 39731828 DOI: 10.1016/j.currproblcancer.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
This comprehensive review explores the transformative potential of PROTAC (Proteolysis-Targeting Chimeras) therapy as a groundbreaking approach in the landscape of lung cancer treatment. The introduction provides a succinct overview of current challenges in lung cancer treatment, emphasizing the significance of targeted therapies. Focusing on PROTAC therapy, the article elucidates its mechanism of action, comparing it with traditional targeted therapies and highlighting the key components and design principles of PROTAC molecules. In the context of lung cancer, the review meticulously summarizes preclinical evidence, emphasizing efficacy and specificity gleaned from studies evaluating PROTAC therapy. It delves into the implications of this preclinical data, discussing potential advantages over existing targeted therapies. An update on ongoing clinical trials involving PROTAC therapy for lung cancer offers a snapshot of the current progress, with a summary of key outcomes and advancements in early-phase trials. The mechanistic insights into PROTAC therapy's impact on lung cancer cells are explored, alongside a discussion on potential biomarkers for patient stratification and response prediction. The influence of tumor heterogeneity on PROTAC therapy outcomes is also addressed. Safety and tolerability assessments, encompassing preclinical and clinical studies, are comprehensively evaluated, including a comparative analysis with traditional targeted therapies and strategies to mitigate side effects. Looking forward, the article discusses the future perspectives of PROTAC therapy in lung cancer treatment and addresses ongoing challenges, providing a nuanced exploration of potential combination therapies and synergistic approaches. In conclusion, the review summarizes key findings and insights, underscoring the tremendous potential of PROTAC therapy as a promising and innovative avenue in pursuing more effective lung cancer treatments.
Collapse
Affiliation(s)
- Atharva Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Mumbai, Maharashtra, India
| | - Gauri Panzade
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Mumbai, Maharashtra, India
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, West Bengal, India
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | | - Sagnik Das
- Department of Microbiology, St Xavier's College (autonomous) Kolkata, West Bengal, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Delhi, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology Dhanbad, Jharkhand, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology Dhanbad, Jharkhand, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Orissa, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
26
|
Wang H, Cheng L, Chen J, Chen P, Tang Z, Wang Q, Ma Y, Zhao C, Li X, Jiang T, Zhou F, Chen X, Zhou C. Efficacy of PD-1 blockade plus chemotherapy in patients with oncogenic-driven non-small-cell lung cancer. Cancer Immunol Immunother 2025; 74:89. [PMID: 39891730 PMCID: PMC11787076 DOI: 10.1007/s00262-024-03937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND PD-1 blockade plus chemotherapy has become the first-line standard of care for patients with advanced non-small-cell lung cancer (NSCLC) without oncogenic drivers. Oncogenic-driven advanced NSCLC showed limited response to PD-1 blockade monotherapy or chemotherapy alone. Whether NSCLC patients with oncogenic drivers could benefit from PD-1 blockade plus chemotherapy remains undetermined. METHODS Three hundred twelve NSCLC patients with at least one oncogenic driver alteration received PD-1 plus chemotherapy or each monotherapy were retrospectively identified. Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were compared to evaluate the therapeutic outcomes differences among patients with different oncogenic drivers. RESULTS One hundred sixty-two patients received PD-1 blockade plus chemotherapy, 57 received PD-1 blockade monotherapy and 93 received chemotherapy alone were included. Oncogenic driver mutations including KRAS (31.4%), EGFR (28.8%), HER2 (14.7%), BRAF (10.6%), RET (7.4%), and other mutations (7.1%) were identified. Patients with oncogenic drivers who received PD-1 blockade plus chemotherapy had significantly better outcomes compared to those received PD-1 blockade or chemotherapy alone (ORR: 51% vs. 18% vs. 25%, P < 0.001; median PFS: 10.0 [95% CI: 8.9-12.6] vs. 3.7 [95% CI: 2.9-5.1] vs. 5.3 [95% CI: 4.5-6.2] months, P < 0.001; median OS: 26.0 [95% CI: 23.0-30.0] vs. 14.3 [95% CI: 9.6-19.8] vs. 16.1 [95% CI: 11.6-21.9] months, P < 0.001). The superior efficacy was consistently found in separate analyses for patients received first-line and second/third line treatments. Among individual gene alterations, patients with KRAS, EGFR, or BRAF mutations treated with PD-1 blockade plus chemotherapy achieved markedly improved PFS and OS than those received PD-1 blockade or chemotherapy alone. Multivariate Cox regression analysis revealed that PD-1 blockade plus chemotherapy was independently associated with better PFS and OS. CONCLUSION PD-1 blockade plus chemotherapy demonstrated superior efficacy than PD-1 blockade monotherapy or chemotherapy alone in patients with oncogenic-driven advanced NSCLC, particularly in KRAS, EGFR and BRAF subgroups. These findings suggest that PD-1 blockade plus chemotherapy may be considered as an optional treatment option for patients without available targeted therapies.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Qianyi Wang
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ying Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
27
|
Kwiecień I, Rutkowska E, Raniszewska A, Sokołowski R, Bednarek J, Jahnz-Różyk K, Rzepecki P. The Detection of Lung Cancer Cell Profiles in Mediastinal Lymph Nodes Using a Hematological Analyzer and Flow Cytometry Method. Cancers (Basel) 2025; 17:431. [PMID: 39941799 PMCID: PMC11816154 DOI: 10.3390/cancers17030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The presence of metastases in mediastinal lymph nodes (LNs) is essential for planning lung cancer treatment and assessing anticancer immune responses. The aim of the study was to assess LNs for the presence of neoplastic cells and evaluate lung cancer-selected antigen expression. LN aspirates were obtained during an EBUS/TBNA procedure. The cells were analyzed using a hematological analyzer and flow cytometry. It was possible to indicate the presence of cells characterized by high fluorescence connected with high metabolic activity using a hematological analyzer and to determine their non-hematopoietic origin using flow cytometry. Using these methods together, we detected very quickly a high proportion of cancer cells in LNs. We noticed that it was possible to determine a high expression of EpCAM, TTF-1, Ki67, cytokeratin, HER, and differences between non-small-cell (NSCLC) and small-cell lung cancer (SCLC) for the antigens MUC-1, CD56, HLA-DR, CD39, CD184, PD-L1, PD-L2 and CTLA-4 on tumor cells. We report, for the first time, that the detection of tumor cells in LNs with the expression of specific antigens is easy to evaluate using a hematological analyzer and flow cytometry in EBUS/TBNA samples. Such precise characteristics of non-hematopoietic cells in LNs may be of great diagnostic importance in the detection of micrometastases.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland; (E.R.); (A.R.)
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland; (E.R.); (A.R.)
| | - Agata Raniszewska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland; (E.R.); (A.R.)
| | - Rafał Sokołowski
- Department of Internal Medicine, Pneumonology, Allergology, Clinical Immunology and Rare Diseases, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland; (R.S.); (J.B.); (K.J.-R.)
| | - Joanna Bednarek
- Department of Internal Medicine, Pneumonology, Allergology, Clinical Immunology and Rare Diseases, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland; (R.S.); (J.B.); (K.J.-R.)
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pneumonology, Allergology, Clinical Immunology and Rare Diseases, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland; (R.S.); (J.B.); (K.J.-R.)
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland;
| |
Collapse
|
28
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Secretome and Proteome of Extracellular Vesicles Provide Protein Markers of Lung and Colorectal Cancer. Int J Mol Sci 2025; 26:1016. [PMID: 39940785 PMCID: PMC11816676 DOI: 10.3390/ijms26031016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) and lung cancer (LC) are leading causes of cancer-related mortality, highlighting the need for minimally invasive diagnostic, prognostic, and predictive markers for these cancers. Proteins secreted by a tumor into the extracellular space directly, known as the tumor secretome, as well as proteins in the extra-cellular vesicles (EVs), represent an attractive source of biomarkers for CRC and LC. We performed proteomic analyses on secretome and EV samples from LC (A549, NCI-H23, NCI-H460) and CRC (Caco2, HCT116, HT-29) cell lines and targeted mass spectrometry on EVs from plasma samples of 20 patients with CRC and 19 healthy controls. A total of 782 proteins were identified across the CRC and LC secretome and EV samples. Of these, 22 and 44 protein markers were significantly elevated in the CRC and LC samples, respectively. Functional annotation revealed enrichment in proteins linked to metastasis and tumor progression for both cancer types. In EVs isolated from the plasma of patients with CRC, ITGB3, HSPA8, TUBA4A, and TLN1 were reduced, whereas FN1, SERPINA1, and CST3 were elevated, compared to healthy controls. These findings support the development of minimally invasive liquid biopsy methods for the detection, prognosis, and treatment monitoring of LC and CRC.
Collapse
Affiliation(s)
| | | | | | | | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (N.S.); (S.N.); (T.F.); (O.T.)
| |
Collapse
|
29
|
Mehri-Kakavand G, Mdletshe S, Wang A. A Comprehensive Review on the Application of Artificial Intelligence for Predicting Postsurgical Recurrence Risk in Early-Stage Non-Small Cell Lung Cancer Using Computed Tomography, Positron Emission Tomography, and Clinical Data. J Med Radiat Sci 2025. [PMID: 39844750 DOI: 10.1002/jmrs.860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Despite advancements in early detection and treatment, postsurgical recurrence remains a significant challenge, occurring in 30%-55% of patients within 5 years after surgery. This review analysed existing studies on the utilisation of artificial intelligence (AI), incorporating CT, PET, and clinical data, for predicting recurrence risk in early-stage NSCLCs. METHODS A literature search was conducted across multiple databases, focusing on studies published between 2018 and 2024 that employed radiomics, machine learning, and deep learning based on preoperative positron emission tomography (PET), computed tomography (CT), and PET/CT, with or without clinical data integration. Sixteen studies met the inclusion criteria and were assessed for methodological quality using the METhodological RadiomICs Score (METRICS). RESULTS The reviewed studies demonstrated the potential of radiomics and AI models in predicting postoperative recurrence risk. Various approaches showed promising results, including handcrafted radiomics features, deep learning models, and multimodal models combining different imaging modalities with clinical data. However, several challenges and limitations were identified, such as small sample sizes, lack of external validation, interpretability issues, and the need for effective multimodal imaging techniques. CONCLUSIONS Future research should focus on conducting larger, prospective, multicentre studies, improving data integration and interpretability, enhancing the fusion of imaging modalities, assessing clinical utility, standardising methodologies, and fostering collaboration among researchers and institutions. Addressing these aspects will advance the development of robust and generalizable AI models for predicting postsurgical recurrence risk in early-stage NSCLC, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Ghazal Mehri-Kakavand
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sibusiso Mdletshe
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Matai Medical Research Institute, Gisborne, New Zealand
- Medical Imaging Research Centre, The University of Auckland, Auckland, New Zealand
- Centre for Co-Created Ageing Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Ancel J, Bergantini L, Mendogni P, Hu Z. Thoracic Malignancies: From Prevention and Diagnosis to Late Stages. Life (Basel) 2025; 15:138. [PMID: 40003547 PMCID: PMC11856772 DOI: 10.3390/life15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/12/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, characterized by its complexity and heterogeneity [...].
Collapse
Affiliation(s)
- Julien Ancel
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France
- CHU de Reims, Hopital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Laura Bergantini
- Respiratory Diseases Unit, University of Siena, 53100 Siena, Italy;
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplant Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Zhiwei Hu
- Pelotonia Institute for Immuno-Oncology, The Arthur G. James Comprehensive Cancer Center, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Maleki AH, Rajabivahid M, Khosh E, Khanali Z, Tahmasebi S, Ghorbi MD. Harnessing IL-27: challenges and potential in cancer immunotherapy. Clin Exp Med 2025; 25:34. [PMID: 39797931 PMCID: PMC11724803 DOI: 10.1007/s10238-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways. Specifically, IL-27 is identified as augmenting cytokine of immune responses, including Th1 cell differentiation, TCd4 + cell proliferation, and IFN-γ production with the help of IL-12. According to several published studies, due to the pro-inflammatory or anti-inflammatory functions of cytokine related to the biological context in various disorders and diseases, IL-27 has been considered a complex regulator of the immune system. Surprisingly, the dual role of IL-27, the same as the double-edged sword, has also been evidenced in clinical models of various hematological or solid tumors. Predominantly, Il-27 applies anti-tumor functions by inducing the responses of a cytotoxic T lymphocyte (CTL) and Th1 and suppressing the growth, proliferation, angiogenesis, invasiveness, metastasis, and survival of tumor cells. On the other hand, IL-27 may also play a protumor role in cancers and induce tumor progression. The current update study aimed to summarize the protumor anti-tumor and biological functions of IL-27 in different hematological malignancies and solid tumors.
Collapse
Affiliation(s)
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Khanali
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Dehghani Ghorbi
- Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wang B, Yin Y, Wang A, Liu W, Chen J, Li T. SMR-guided molecular subtyping and machine learning model reveals novel prognostic biomarkers and therapeutic targets in non-small cell lung adenocarcinoma. Sci Rep 2025; 15:1640. [PMID: 39794414 PMCID: PMC11723915 DOI: 10.1038/s41598-025-85471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Non-small cell lung adenocarcinoma (LUAD) is a markedly heterogeneous disease, with its underlying molecular mechanisms and prognosis prediction presenting ongoing challenges. In this study, we integrated data from multiple public datasets, including TCGA, GSE31210, and GSE13213, encompassing a total of 867 tumor samples. By employing Mendelian randomization (MR) analysis, machine learning techniques, and comprehensive bioinformatics approaches, we conducted an in-depth investigation into the molecular characteristics, prognostic markers, and potential therapeutic targets of LUAD. Our analysis identified 321 genes significantly associated with LUAD, with CENP-A, MCM7, and DLGAP5 emerging as highly connected nodes in network analyses. By performing correlation analysis and Cox regression analysis, we identified 26 prognostic genes and classified LUAD samples into two molecular subtypes with significantly distinct survival outcomes. The Random Survival Forest (RSF) model exhibited robust prognostic predictive capabilities across multiple independent cohorts (AUC > 0.75). Beyond merely predicting patient outcomes, this model also captures key features of the tumor immune microenvironment and potential therapeutic responses. Functional enrichment analysis revealed the complex interplay of cell cycle regulation, DNA repair, immune response, and metabolic reprogramming in the progression of LUAD. Furthermore, we observed a strong correlation between risk scores and the expression of specific cytokines, such as CCL17, CCR2, and CCL20, suggesting novel avenues for developing cytokine network-based therapeutic strategies. This study offers fresh insights into the molecular subtyping, prognostic prediction, and personalized therapeutic decision-making in LUAD, laying a critical foundation for future clinical applications and targeted therapy research.
Collapse
Affiliation(s)
- Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Yichen Yin
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Anqi Wang
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Weidi Liu
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Jing Chen
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China.
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China.
| | - Tao Li
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
33
|
Alizadeh J, da Silva Rosa SC, Cordani M, Ghavami S. Evaluation of Mitochondrial Phagy (Mitophagy) in Human Non-small Adenocarcinoma Tumor Cells. Methods Mol Biol 2025; 2879:261-273. [PMID: 38607594 DOI: 10.1007/7651_2024_532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer characterized by its aggressive nature and high mortality rate, primarily due to late-stage diagnosis and metastatic spread. Recent studies underscore the pivotal role of mitophagy, a selective form of autophagy targeting damaged or superfluous mitochondria, in cancer biology, including NSCLC. Mitophagy regulation may influence cancer cell survival, proliferation, and metastasis by modulating mitochondrial quality and cellular energy homeostasis. Herein, we present a comprehensive methodology developed in our laboratory for the evaluation of mitophagy in NSCLC tumor cells. Utilizing a combination of immunoblotting, immunocytochemistry, and fluorescent microscopy, we detail the steps to quantify early and late mitophagy markers and mitochondrial dynamics. Our findings highlight the potential of targeting mitophagy pathways as a novel therapeutic strategy in NSCLC, offering insights into the complex interplay between mitochondrial dysfunction and tumor progression. This study not only sheds light on the significance of mitophagy in NSCLC but also establishes a foundational approach for its investigation, paving way for future research in this critical area of cancer biology.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland.
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
34
|
Zhang W, Song L, Zhou Y, Sun J, Li C, Han B, Chang J, Han B, Wang T. Study on the inhibition of non-small cell lung cancer mediated by chitosan-based gene carrier delivering STAT3-shRNA. Int J Biol Macromol 2025; 284:138211. [PMID: 39617245 DOI: 10.1016/j.ijbiomac.2024.138211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Systemic chemotherapy and radiotherapy often yield poor effect in the postoperative treatment of non-small cell lung cancer (NSCLC) and induce drug resistance. Herein, we proposed a targeted therapeutic approach utilizing gene carrier-mediated specific shRNA method. Firstly, the targeted short hairpin shRNA sequence, designed based on the STAT3 gene sequence, was inserted into the eukaryotic expression vector pGPU6/GFP/Neo to form the recombinant plasmid STAT3-shRNA. Next, a novel gene carrier, Vitamin E Succinate-Chitosan-Histidine (VES-CTS-His, VCH), was synthesized through an acylation reaction. The VCH was combined with pGPU6/GFP/Neo STAT3-shRNA recombinant plasmid by electrostatic interactions to form stable particles. VCH/pDNA, with typical nanoscale dimensions, could accumulate in tumor tissues through the EPR effect and enter tumor cells via endocytosis. VCH exhibited good pH responsiveness and could dissociate in the acidic microenvironment of tumors, thereby releasing the plasmids. Subsequently, the plasmids could downregulate STAT3 expression through RNAi effect. Inhibiting or blocking the expression of the STAT3 gene could significantly enhance the apoptotic induction and growth inhibition effects on NSCLC cells through the PI3K and mTOR signaling pathways, thereby achieving the goal of tumor treatment. This study provides a novel method for the construction of novel non-viral gene carriers and clinical gene-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Wangwang Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Leyang Song
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China.
| | - Baosan Han
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Ting Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
35
|
Zhao D, Mu H, Yu P, Deng C. Changing trends in lung cancer disease burden between China and Australia from 1990 to 2019 and its predictions. Thorac Cancer 2025; 16:e15430. [PMID: 39665258 PMCID: PMC11739132 DOI: 10.1111/1759-7714.15430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 12/13/2024] Open
Abstract
PURPOSE Lung cancer (LC) is a leading cause of death and presents a substantial societal burden. This article compares its disease burden and risk factors between China and Australia to support health policymakers for LC prevention and treatment. MATERIALS AND METHODS The data from the 2019 Global Burden of Disease Study were used to analyze disease temporal trends using Joinpoint regression model. The Bayesian age-period-cohort model was used for prediction. The population-attributable fraction (PAF) was used to analyze LC risk factors. RESULTS In 2019, the age-standardized rates (ASR) of incidence and of mortality of LC in China were 41.71/100 000 and 38.70/100 000, while Australia's rates were 30.45/100 000 and 23.46/100 000. It showed an increasing trend in China but a decreasing trend in Australia. By 2030, the ASR of incidence and mortality are predicted to be 47.21/100 000 and 41.54/100 000 in China, while Australia's rates will reach 30.09/100 000 and 23.3/100 000, respectively. Smoking is the most common risk factor for LC, followed by particulate matter and occupational carcinogenesis. The PAF of smoking dropped in Australia (from 68.38% to 53.75% in females; 77.41% to 58.47% in males) but increased in China (from 19.56% to 26.58% in females; 80.45% to 82.03% in males) from 1990 to 2019. CONCLUSIONS The disease burden of LC in China is rising, whereas in Australia, it is declining. China still faces a heavy LC burden. Risk factor analysis supported for further improving the compliance and enforcement of polices on tobacco control and environmental management to reduce this disease burden.
Collapse
Affiliation(s)
- Dan Zhao
- School of Medical TechnologyQiqihar Medical UniversityQiqiharChina
| | - Haijun Mu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated HospitalQiqihar Medical UniversityQiqiharChina
| | - Ping Yu
- School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular HorizonsUniversity of WollongongWollongongAustralia
| |
Collapse
|
36
|
Kong W, Feng X, Yu Z, Qi X, Zhao Z. USP8-mediated PTK7 promotes PIK3CB-related pathway to accelerate the malignant progression of non-small cell lung cancer. Thorac Cancer 2025; 16:e15485. [PMID: 39552193 PMCID: PMC11729734 DOI: 10.1111/1759-7714.15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Protein tyrosine kinase 7 (PTK7) has been found to be highly expressed in non-small cell lung cancer (NSCLC), but its specific molecular mechanism needs to be further explored. METHODS PTK7 mRNA expression in NSCLC tumor tissues was examined by quantitative real-time PCR. The protein levels of PTK7, ubiquitin-specific peptidase 8 (USP8), PIK3CB, and PI3K/AKT were determined by western blot. Human monocytes (THP-1) were induced into macrophages and then co-cultured with the conditioned medium of NSCLC cells. Macrophage M2 polarization was assessed by detecting CD206+ cells using flow cytometry. The interaction between PTK7 and USP8 or PIK3CB was assessed by Co-IP assay. Animal study was performed to evaluate the effects of PTK7 knockdown and PIK3CB on NSCLC tumorigenesis in vivo. RESULTS PTK7 expression was higher in NSCLC tumor tissues and cells. After silencing of PTK7, NSCLC cell proliferation, invasion, and macrophage M2 polarization were inhibited, while cell apoptosis was promoted. USP8 enhanced PTK7 protein expression by deubiquitination, and the repressing effects of USP8 knockdown on NSCLC cell growth, invasion, and macrophage M2 polarization were reversed by PTK7 overexpression. PTK7 interacted with PIK3CB, and PIK3CB overexpression could abolish the regulation of PTK7 silencing on NSCLC cell progression. USP8 positively regulated PIK3CB expression by PTK7, thus activating PI3K/AKT pathway. Downregulation of PTK7 reduced NSCLC tumorigenesis by decreasing PIK3CB expression. CONCLUSION USP8-deubiquitinated PTK7 facilitated NSCLC malignant behavior via activating the PIK3CB/PI3K/AKT pathway, providing new idea for NSCLC treatment.
Collapse
Affiliation(s)
- Wencui Kong
- Department of RespiratoryFuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLAFuzhouChina
| | - Xuegang Feng
- Department of Cardio‐Thoracic SurgeryFuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLAFuzhouChina
| | - Zongyang Yu
- Department of RespiratoryFuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLAFuzhouChina
| | - Xingfeng Qi
- Department of PathologyFuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLAFuzhouChina
| | - Zhongquan Zhao
- Department of RespiratoryFuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLAFuzhouChina
| |
Collapse
|
37
|
Hu H, Luo H, Deng Z. PCAT19: the role in cancer pathogenesis and beyond. Front Cell Dev Biol 2024; 12:1435717. [PMID: 39744012 PMCID: PMC11688190 DOI: 10.3389/fcell.2024.1435717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025] Open
Abstract
PCAT19, a long non-coding RNA, has attracted considerable attention due to its diverse roles in various malignancies. This work compiles current research on PCAT19's involvement in cancer pathogenesis and progression. Abnormal expression of PCAT19 has been observed in various cancers, and its correlation with clinical features and prognosis positions it as a promising prognostic biomarker. Additionally, its ability to effectively differentiate between tumor and normal tissues suggests significant diagnostic value. PCAT19 exhibits a dual nature, functioning either as an oncogene or a tumor suppressor, depending on the cancer type. It is implicated in a range of tumor-related activities, including cell proliferation, apoptosis, invasion, migration, metabolism, as well as tumor growth and metastasis. PCAT19 acts as a competing endogenous RNA (ceRNA) or interacts with proteins to regulate critical cancer-related pathways, such as MELK signaling, p53 signaling, and cell cycle pathways. Furthermore, emerging evidence suggests that PCAT19 plays a role in the modulation of neuropathic pain, adding complexity to its functional repertoire. By exploring the molecular mechanisms and pathways associated with PCAT19, we aim to provide a comprehensive understanding of its multifaceted roles in human health and disease, highlighting its potential as a therapeutic target for cancer and pain management.
Collapse
Affiliation(s)
- Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Wang J, Liu B, Zheng Q, Xiao R, Chen J. Newly emerged ROS1 rearrangement in a patient with lung adenocarcinoma following resistance to immune checkpoint inhibitors: a case report. Front Oncol 2024; 14:1507658. [PMID: 39723367 PMCID: PMC11668661 DOI: 10.3389/fonc.2024.1507658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background ROS1, a member of the sevenless subfamily of tyrosine kinase insulin receptors, promotes tumor cell survival, proliferation, and metastasis by activating the JAK/STAT, PI3K/AKT, and MAPK/ERK pathways. It only accounts for about 2% of total NSCLC cases. No cases of acquired ROS-1 rearrangement have been reported worldwide. Case presentation We reported a case of lung adenocarcinoma without driver alteration that developed resistance to pembrolizumab and newly emerged CD74-ROS1 fusion, and achieved a partial response after entrectinib treatment. Conclusions We hypothesize that the newly emerged ROS1 rearrangement occurs as the subset of cells harboring ROS1 gradually becomes the predominant pathological type of adenocarcinoma following pembrolizumab treatment. We propose that new therapeutic targets may emerge for this patient population following long-term immunotherapy. Thus, we advocate for regular monitoring of tumor genetic status, which could yield unexpected benefits.
Collapse
Affiliation(s)
- Jian Wang
- Department of Medical Oncology, International Ward, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- Jinhua Joint Training Base, The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingyue Liu
- Department of Orthopaedics, Hangzhou Zhanshi Traditional Chinese Hospital of Orthopaedics, Hangzhou, China
| | - Qinhong Zheng
- Department of Medical Oncology, International Ward, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Ruoshui Xiao
- Jinhua Joint Training Base, The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianxin Chen
- Department of Medical Oncology, International Ward, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
39
|
Ganina A, Askarov M, Kozina L, Karimova M, Shayakhmetov Y, Mukhamedzhanova P, Brimova A, Berikbol D, Chuvakova E, Zaripova L, Baigenzhin A. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Adv Respir Med 2024; 92:504-525. [PMID: 39727496 PMCID: PMC11673795 DOI: 10.3390/arm92060045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer. Investigations are also exploring the factors that influence the success of T-cell therapy and the methods used to stimulate them. Achieving a comprehensive understanding of the characteristics of activated lymphocytes and deciphering the mechanisms underlying their activation of innate anti-tumor immunity will pave the way for numerous clinical trials and the development of innovative strategies for cancer therapy like combined immunotherapy and radiation therapy.
Collapse
Affiliation(s)
- Anastasia Ganina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Manarbek Askarov
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Larissa Kozina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Madina Karimova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Yerzhan Shayakhmetov
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Perizat Mukhamedzhanova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Aigul Brimova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Daulet Berikbol
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Elmira Chuvakova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Lina Zaripova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Abay Baigenzhin
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| |
Collapse
|
40
|
Yoon S, Yoon H, Cho J, Lee K. AEmiGAP: AutoEncoder-Based miRNA-Gene Association Prediction Using Deep Learning Method. Int J Mol Sci 2024; 25:13075. [PMID: 39684787 DOI: 10.3390/ijms252313075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in gene regulation and are strongly linked to various diseases, including cancer. This study presents AEmiGAP, an advanced deep learning model that integrates autoencoders with long short-term memory (LSTM) networks to predict miRNA-gene associations. By enhancing feature extraction through autoencoders, AEmiGAP captures intricate, latent relationships between miRNAs and genes with unprecedented accuracy, outperforming all existing models in miRNA-gene association prediction. A thoroughly curated dataset of positive and negative miRNA-gene pairs was generated using distance-based filtering methods, significantly improving the model's AUC and overall predictive accuracy. Additionally, this study proposes two case studies to highlight AEmiGAP's application: first, a top 30 list of miRNA-gene pairs with the highest predicted association scores among previously unknown pairs, and second, a list of the top 10 miRNAs strongly associated with each of five key oncogenes. These findings establish AEmiGAP as a new benchmark in miRNA-gene association prediction, with considerable potential to advance both cancer research and precision medicine.
Collapse
Affiliation(s)
- Seungwon Yoon
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Hyewon Yoon
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Jaeeun Cho
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Kyuchul Lee
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| |
Collapse
|
41
|
Martínez-Espinosa I, Serrato JA, Cabello-Gutiérrez C, Carlos-Reyes Á, Ortiz-Quintero B. Exosome-Derived miRNAs in Liquid Biopsy for Lung Cancer. Life (Basel) 2024; 14:1608. [PMID: 39768316 PMCID: PMC11678223 DOI: 10.3390/life14121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Exosome-derived microRNAs (miRNAs) are potential biomarkers for lung cancer detection and monitoring through liquid biopsy. These small, non-coding RNA molecules are found within exosomes, which are extracellular vesicles released from cells. Their stability in biofluids, such as blood, positions them as candidates for minimally invasive diagnostics. Multiple studies have shown that lung cancer patients exhibit distinct miRNA profiles compared to healthy individuals. This finding suggests that exosome-derived miRNAs could serve as valuable biomarkers for diagnosis, prognosis, and evaluating therapeutic responses. This review summarizes recent research on exosome-derived miRNAs in liquid biopsies, including blood, pleural effusion, and pleural lavage, as biomarkers for lung cancer, focusing on publications from the last five years.
Collapse
Affiliation(s)
- Israel Martínez-Espinosa
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - José A. Serrato
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Carlos Cabello-Gutiérrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángeles Carlos-Reyes
- Laboratory of Onco-Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
42
|
Dan A, Burtavel LM, Coman MC, Focsa IO, Duta-Ion S, Juganaru IR, Zaruha AG, Codreanu PC, Strugari IM, Hotinceanu IA, Bohiltea LC, Radoi VE. Genetic Blueprints in Lung Cancer: Foundations for Targeted Therapies. Cancers (Basel) 2024; 16:4048. [PMID: 39682234 DOI: 10.3390/cancers16234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Lung cancer, a malignant neoplasm originating from the epithelial cells of the lung, is characterized by its aggressive growth and poor prognosis, making it a leading cause of cancer-related mortality globally [...].
Collapse
Affiliation(s)
- Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia-Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin-Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina-Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra-Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia-Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Irina-Maria Strugari
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian-Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu-Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica-Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
43
|
Kim SH, Lee SH, Lee H. Determinants of immune checkpoint inhibitor use and factors linked to neurological adverse events in Korean lung cancer. Future Oncol 2024; 20:3245-3256. [PMID: 39453025 DOI: 10.1080/14796694.2024.2416378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Studies on immune checkpoint inhibitor (ICI)-related potential neurological adverse events (pNAEs) in Korean lung cancer (LC) patients are scarce. We aimed to examine ICI prescription trends from 2018 to 2022, patient characteristics and factors associated with ICI prescription or concurrent pNAEs in LC.Research design & methods: This observational, cross-sectional study of Korean LC patients investigated four ICIs (pembrolizumab, nivolumab, atezolizumab and durvalumab). The annual ICI prescription rate was calculated by dividing the number of LC patients prescribed ICIs with the total annual number of LC patients. Factors associated with ICI prescriptions or concurrent pNAEs were assessed.Results: The annual ICI prescription rate increased from 3.29% to 9.74% (average: 6.20%). Higher Charlson Comorbidity Index (CCI) scores were associated with more ICI prescriptions (odds ratio [OR], 1.08; 95% confidence interval [CI], 1.07-1.08). Targeted therapy was associated with fewer prescriptions (OR: 0.45; 95% CI: 0.41-0.49). The anti-programmed cell death protein 1 (anti-PD-1) prescription rate was higher in patients with concurrent pNAEs than those without pNAEs (53.09% vs. 50.84%), and this was associated with higher pNAEs prevalence (OR: 1.10; 95% CI: 1.03-1.18).Conclusion: ICI prescription for LC has increased in Korea, CCI and anti-PD-1 increased pNAEs prevalence.
Collapse
Affiliation(s)
- Sang Hee Kim
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Seung Hyeun Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hankil Lee
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
44
|
Srinivasan S, Mohanprasanth A, Nadeem A, Saravanan M. Exploring the anti-cancer and antimetastatic effect of Silymarin against lung cancer. Toxicol Rep 2024; 13:101746. [PMID: 39431222 PMCID: PMC11490676 DOI: 10.1016/j.toxrep.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer metastasis remains a significant challenge in cancer therapy, necessitating the exploration of novel treatment modalities. Silymarin, a natural compound derived from milk thistle, has demonstrated promising anticancer properties. This work explored the inhibitory effects of silymarin on lung cancer metastasis and revealed the underlying processes, focusing on matrix metalloproteinase (MMP) 2 and MMP-9 activities. Using a combination of in vitro and molecular docking analyses, we found that silymarin effectively reducing the lung cancer cells' motility and invasion by modulation of expression of MMP-2 and MMP-9. Furthermore, MTT assays revealed a dose-dependent inhibition of cell proliferation upon silymarin treatment and found the IC50 value at 58 μM. We observe that apoptotic morphology characteristic in silymarin treated groups. Cell cycle analysis exhibit the cell cycle arrest at G1 phase, 25.8 % increased apoptosis in silymarin treated groups, as evidenced by Annexin V staining. Moreover, silymarin treatment shows the lipid peroxidation in elevated level and reduced in enzymatic antioxidant level, indicating its potential role in mitigating oxidative stress induce cell death. Gelatin zymography assay indicates the silymarin has ability to inhibit the MMP-2 and MMP-9 expression in lung cancer. Additionally, cell migration assays and colony formation assays demonstrated impaired migratory and colony-forming abilities of lung cancer cells when treated with silymarin. Molecular docking studies further supported the binding affinity of silymarin with MMP-2 and MMP-9, demonstrate the -10.26 and -6.69 kcal/mol of binding energy. Collectively, our findings highlight the multifaceted anticancer properties of silymarin against lung cancer metastasis, providing insights into its therapeutic potential as an adjuvant treatment strategy.
Collapse
Affiliation(s)
- Srithika Srinivasan
- Saveetha Medical College, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| | - Aruchamy Mohanprasanth
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, king Saud University, Riyadh, Saudi Arabia
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, India
| |
Collapse
|
45
|
Kurzrock R, Chaudhuri AA, Feller-Kopman D, Florez N, Gorden J, Wistuba II. Healthcare disparities, screening, and molecular testing in the changing landscape of non-small cell lung cancer in the United States: a review. Cancer Metastasis Rev 2024; 43:1217-1231. [PMID: 38750337 PMCID: PMC11554720 DOI: 10.1007/s10555-024-10187-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 11/13/2024]
Abstract
Inequitable access to care continues to hinder improvements in diagnosis and treatment of lung cancer. This review describes healthcare disparities in the changing landscape of non-small cell lung cancer (NSCLC) in the United States, focusing on racial, ethnic, sex-based, and socioeconomic trends. Furthermore, strategies to address disparities, overcome challenges, and improve patient outcomes are proposed. Barriers exist across lung cancer screening, diagnosis, and treatment regimens, varying by sex, age, race and ethnicity, geography, and socioeconomic status. Incidence and mortality rates of lung cancer are higher among Black men than White men, and incidences in young women are substantially greater than in young men. Disparities may be attributed to geographic differences in screening access, with correlating higher incidence and mortality rates in rural versus urban areas. Lower socioeconomic status is also linked to lower survival rates. Several strategies could help reduce disparities and improve outcomes. Current guidelines could improve screening eligibility by incorporating sex, race, and socioeconomic status variables. Patient and clinician education on screening guidelines and patient-level barriers to care are key, and biomarker testing is critical since ~ 70% of patients with NSCLC have an actionable biomarker. Timely diagnosis, staging, and comprehensive biomarker testing, including cell-free DNA liquid biopsy, may provide valuable treatment guidance for patients with NSCLC. Efforts to improve lung cancer screening and biomarker testing access, decrease bias, and improve education about screening and testing are needed to reduce healthcare disparities in NSCLC.
Collapse
Affiliation(s)
- Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Froedtert and Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David Feller-Kopman
- Geisel School of Medicine, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Narjust Florez
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave - DA1230, Boston, MA, 02215, USA
| | - Jed Gorden
- Department of Thoracic Surgery and Interventional Pulmonology, Swedish Cancer Institute, 1101 Madison St, Suite 900, Seattle, WA, 98104, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
46
|
Kim Y, Hwang JY, Na K, Kim DK, Lee S, Kang SS, Baek S, Yang SM, Kim MH, Han H, Jeong SS, Lee CY, Han YJ, Sohn JO, Ye SK, Pyo KH. Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis. Yonsei Med J 2024; 65:683-694. [PMID: 39609084 PMCID: PMC11605048 DOI: 10.3349/ymj.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. MATERIALS AND METHODS The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. RESULTS Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. CONCLUSION Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Youngtaek Kim
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Yeon Hwang
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangmin Na
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-San Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Korea
| | - Sujeong Baek
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Yang
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Hyun Kim
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Heekyung Han
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Su Jeong
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chai Young Lee
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jin Han
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jie-Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Sang-Kyu Ye
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Sultan I, Waterhouse DM, Chopra D, Lonshteyn A, Weycker D, Delea TE, Stollenwerk B. Real-World Evaluation of Treatment Patterns, Healthcare Costs, and Healthcare Resource Utilization Among Patients with Non-small Cell Lung Cancer in the US Receiving Sotorasib. Adv Ther 2024; 41:4648-4659. [PMID: 39470877 PMCID: PMC11550276 DOI: 10.1007/s12325-024-03020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION Sotorasib was the first drug approved for adults with Kirsten rat sarcoma G12C-mutated locally advanced/metastatic non-small cell lung cancer (NSCLC) who received prior systemic therapy in the US. This study aimed to provide initial real-world evidence on patient characteristics, treatment patterns, healthcare resource utilization (HCRU), and healthcare costs (HCC) associated with sotorasib in US clinical practice. METHODS A retrospective observational study was conducted using the Optum Clinformatics® Data Mart US claims database spanning January 2016 to March 2023. The study population included adults with a diagnosis of lung cancer (diagnosis (Dx) date), claims for sotorasib on/post-Dx date (index date), Continuous enrollment for medical/pharmacy benefits from 180 days pre-Dx date to ≥ 30 days post-index date was required. Patients receiving treatments for small-cell lung cancer (SCLC) pre-index were excluded. Outcomes were analyzed for patients receiving sotorasib as second or subsequent line (2L+) treatment and included adherence [proportion of days covered (PDC)], treatment duration, time to next treatment (TTNT), HCRU, and HCC during sotorasib treatment. RESULTS Among 169 patients with lung cancer that met all inclusion criteria, 140 patients received sotorasib as 2L+ treatment (mean age: 71 years; 67.1% females). Mean PDC for sotorasib was 94.9%. Kaplan-Meier median treatment duration was 4.3 months. Median TTNT in patients with subsequent treatment (n = 31) was 6.8 months. During sotorasib treatment, patients had a mean 3.87 outpatient, 0.09 inpatient, and 0.11 emergency visits per month. Mean monthly HCC during sotorasib treatment were US$23,063 versus $25,541 during the 180-day pre-index period. CONCLUSIONS Patients in the US receiving sotorasib as 2L+ therapy for NSCLC in real-world clinical practice showed high adherence, TTNT comparable to progression-free survival observed in clinical trials, and HCC similar to those immediately prior to treatment demonstrating real-world benefits with no additional impact on healthcare resources with sotorasib.
Collapse
Affiliation(s)
- Ihtisham Sultan
- Health Economics and Outcomes Research, Amgen, Thousand Oaks, CA, USA
| | - David M Waterhouse
- SCRI Research Network, OHC (Oncology Hematology Care), Cincinnati, OH, USA
| | - Divyan Chopra
- Health Economics and Outcomes Research, Amgen, Thousand Oaks, CA, USA
| | | | | | | | - Björn Stollenwerk
- Health Economics and Outcomes Research, Amgen (EUROPE) GmbH, Rotkreuz, Switzerland.
| |
Collapse
|
48
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
49
|
Oriakhi K, Erharuyi O, Orumwensodia KO, Essien EE, Falodun A, Uadia PO, Bernhard F, Engel N. Pro-apoptotic and anti-proliferative activities of cassane diterpenoids on squamous carcinoma cells: An in vitro and in silico study. Toxicol Rep 2024; 13:101833. [PMID: 39717850 PMCID: PMC11665704 DOI: 10.1016/j.toxrep.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Squamous carcinoma of the head and neck is characterized by aberrant apoptosis that prolongs the proliferative capacity of the cells and by uncontrolled cell growth. This study aimed to examine the pro-apoptotic and antiproliferative effects of Caesalpinia pulcherrima cassane diterpenoids on squamous carcinoma cells in vitro. The cytotoxicity of four (4) cassane diterpenoids {Six-cinnamoyl- 7-hydroxyvouacapen-5-ol(1), pulcherrimin A(2), C(3), and E(4)} isolated from C. pulcherrima was determined in squamous carcinoma cell lines (CAL33, FaDu, and Detroit 562) and in non tumorigenic fibroblast cells. The results showed that compounds 1 and 4 had the highest cytotoxic potential, significantly reducing cell viability in all squamous cell lines in a concentration dependent manner. Compounds 1 and 4 may inhibit the proliferation of CAL33 cells by reducing their ability to divide, decreasing PCNA expression, and suppressing migration. Additionally, treatment with compounds 1 and 4 led to an activation of Caspase 3 expression in FaDu cells. Molecular docking analysis revealed strong binding affinities of compounds 1 and 4 to the Caspase 3 receptor, with values of -8.5 and -8.8 kcal/mol, respectively. These results suggest that Pulcherrimin E and 6-cinnamoyl-7-hydroxylvouacapen-5-ol have potential antitumor effects based on their selective cytotoxic effect on squamous carcinoma cells in vitro.
Collapse
Affiliation(s)
- Kelly Oriakhi
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Nigeria
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, USA
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany
| | - Osayemwenre Erharuyi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Nigeria
| | | | | | - Abiodun Falodun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Nigeria
| | - Patrick O. Uadia
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Nigeria
| | - Frerich Bernhard
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany
| |
Collapse
|
50
|
Rischke N, Kanbach J, Haug U. Utilization of EGFR, ALK, and BRAF Inhibitors in the Treatment of Lung Cancer in Germany. Cancer Rep (Hoboken) 2024; 7:e70060. [PMID: 39693368 DOI: 10.1002/cnr2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND There is a lack of real-world data on the use of targeted cancer drugs requiring molecular tumor diagnostics in the treatment of lung cancer in Germany. AIMS We aimed to characterize the use of such drugs in lung cancer patients based on longitudinal analyses. METHODS AND RESULTS Using the GePaRD database (claims data from ~20% of the German population) we identified lung cancer patients diagnosed in 2016 based on a previously developed algorithm and followed them until death, end of continuous insurance, or end of 2019. We determined the proportion of patients treated with at least one of the drugs under study (EGFR, ALK, and BRAF inhibitors). We described these patients regarding demographic characteristics, treatment patterns, and overall survival. We included 7833 incident lung cancer patients. Of these, 392 (5%) were treated with one of the drugs under study, the majority (62%) being female. In 314 out of the 392 patients (80%), the first dispensation was an EGFR inhibitor (afatinib: 54%, erlotinib: 33%), and in 72 patients (18%), it was an ALK inhibitor (crizotinib: 90%). The proportion of patients treated with these drugs was 4.8% in West Germany and 6.2% in East Germany. About half of these patients had chemotherapy before targeted therapy. Median overall survival after the first targeted therapy was 22 months. CONCLUSION One twentieth of lung cancer patients diagnosed in 2016 in Germany received at least one EGFR, ALK, or BRAF inhibitor during follow-up. The proportion was higher in East than in West Germany. As the development and availability of new cancer drugs is a dynamic area, regularly updated utilization studies-ideally as cross-country-comparisons-are required.
Collapse
Affiliation(s)
- Nikolaj Rischke
- Department of Clinical Epidemiology, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Josephine Kanbach
- Department of Clinical Epidemiology, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Ulrike Haug
- Department of Clinical Epidemiology, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|