1
|
Street ME, Casadei F, Di Bari ER, Ferraboschi F, Montani AG, Shulhai AM, Esposito S. The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity-Part 1: Metabolic Changes. Nutrients 2025; 17:1630. [PMID: 40431370 PMCID: PMC12113821 DOI: 10.3390/nu17101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Childhood obesity is a growing global health issue. Its rising prevalence is linked to genetic, environmental, and lifestyle factors. Obesity in children could lead to different comorbidities and complications with an increased risk of metabolic disorders, such as insulin resistance, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). First-line treatment involves dietary modifications and lifestyle changes; however, adherence is often poor and remains a significant challenge. Pharmacotherapy, while a potential option, has limitations in availability and can cause side effects, leading to growing interest in alternative treatments, such as nutraceutical compounds. Derived from natural sources, these compounds have different anti-inflammatory, antiallergic, antioxidant, antibacterial, antifungal, neuroprotective, antiaging, antitumor, insulin-sensitizing, glucose, and lipid-lowering effects. This review describes commonly used nutraceutical compounds, such as omega-3 fatty acids, vitamin D, polyphenols (such as resveratrol and curcumin), berberine, white mulberry leaves and others, and pre- and probiotics in the management of obesity, evaluating the evidence on their mechanisms of action and efficacy in metabolic comorbidities. The evidence suggests that the integration of nutraceuticals into the diet may positively influence body mass index, glucose metabolism, lipid profiles, and gut microbiota composition and reduce inflammation in obese individuals. These effects may provide future practical guidance for clinical practice, contribute to metabolic health improvement, and potentially prevent obesity-related complications. In this first part, we discuss the effects of nutraceutical compounds on insulin sensitivity and insulin resistance, T2DM, dyslipidemia, and MASLD in addition to diet and lifestyle interventions.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
- Unit of Paediatrics, P. Barilla Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy
| | - Federica Casadei
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Erika Rita Di Bari
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Francesca Ferraboschi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Anna Giuseppina Montani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (E.R.D.B.); (F.F.); (A.G.M.); (A.-M.S.); (S.E.)
- Unit of Paediatrics, P. Barilla Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
Xu R, Molenaar AJ, Chen Z, Yuan Y. Mode and Mechanism of Action of Omega-3 and Omega-6 Unsaturated Fatty Acids in Chronic Diseases. Nutrients 2025; 17:1540. [PMID: 40362847 PMCID: PMC12073370 DOI: 10.3390/nu17091540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Unsaturated fatty acids, particularly omega-3 and omega-6 polyunsaturated fatty acids, have garnered increasing scientific interest due to their therapeutic potential in chronic disease management. Dietary sources such as milk provide essential unsaturated fatty acids, including linoleic acid and α-linolenic acid. Current evidence indicates that these compounds and their derivatives regulate critical physiological processes, such as neurodevelopment, visual function, immune modulation, and cardiovascular homeostasis. Their multifunctional roles encompass the structural maintenance of biological membranes, cardioprotective effects, anti-inflammatory and anti-tumor activities, and metabolic regulation. However, despite established associations between unsaturated fatty acids and chronic diseases, the mechanistic contributions of omega-3 and omega-6 polyunsaturated fatty acids to complex neuropsychiatric disorders remain poorly characterized. Furthermore, the controversial role of omega-6 polyunsaturated fatty acids in chronic disease pathogenesis necessitates urgent clarification. This review systematically examines the structural properties, molecular mechanisms, and therapeutic applications of omega-3 and omega-6 polyunsaturated fatty acids in cardiovascular diseases, diabetes, cancer, dermatological conditions, neurodegenerative disorders, and depression. By integrating recent advances in dietary science, this work aims to address knowledge gaps in their neuropsychiatric implications and refine evidence-based strategies for chronic disease intervention through optimized nutritional approaches.
Collapse
Affiliation(s)
- Runcen Xu
- Medical College, Yangzhou University, Yangzhou 225009, China;
| | - Adrian J. Molenaar
- Rumen Microbiology and Animal Nutrition and Physiology, Grasslands Research Centre, AgResearch, Fitzherbert, Palmerston North 4410, New Zealand;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Yavari M, Kalupahana NS, Harris BN, Ramalingam L, Zu Y, Kahathuduwa CN, Moustaid-Moussa N. Mechanisms Linking Obesity, Insulin Resistance, and Alzheimer's Disease: Effects of Polyphenols and Omega-3 Polyunsaturated Fatty Acids. Nutrients 2025; 17:1203. [PMID: 40218960 PMCID: PMC11990358 DOI: 10.3390/nu17071203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and behavioral changes. It poses a significant global health challenge. AD is associated with the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain, along with chronic inflammation, dysfunctional neurons, and synapse loss. While the prevalence of AD continues to rise, the current FDA-approved drugs offer only limited effectiveness. Emerging evidence suggests that obesity, insulin resistance (IR), and type 2 diabetes mellitus (T2DM) are also implicated in AD pathogenesis, with epidemiological studies and animal models confirming the impact of IR on Aβ accumulation, and high-fat diets also exacerbating Aβ accumulation. Since neuroinflammation activated by Aβ involves the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) pathway, the inhibition of NF-κB and NLRP3 inflammasome activation are potential therapeutic strategies in AD. Bioactive compounds, including polyphenols (resveratrol, epigallocatechin-3-gallate, curcumin, and quercetin), and omega-3 polyunsaturated fatty acids, show promising results in animal studies and clinical trials for reducing Aβ levels, improving cognition and modulating the signaling pathways implicated in AD. This review explores the interplay between obesity, IR, inflammation, and AD pathology, emphasizing the potential of dietary compounds and their role in reducing inflammation, oxidative stress, and cognitive decline, as viable strategies for AD prevention and treatment. By integrating epidemiological findings, observational studies, and clinical trials, this review aims to provide a comprehensive understating of how metabolic dysfunctions and bioactive compounds influence AD progression.
Collapse
Affiliation(s)
- Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.Y.); (L.R.); (Y.Z.)
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX 79409, USA; (B.N.H.); (C.N.K.)
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Breanna N. Harris
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX 79409, USA; (B.N.H.); (C.N.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Institute for One Health Innovation, Offices of Research & Innovation, Texas Tech University, Texas Tech Health Sciences Center, Lubbock, TX 79409, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.Y.); (L.R.); (Y.Z.)
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.Y.); (L.R.); (Y.Z.)
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX 79409, USA; (B.N.H.); (C.N.K.)
| | - Chanaka Nadeeshan Kahathuduwa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX 79409, USA; (B.N.H.); (C.N.K.)
- Department of Neurology, Texas Tech University Health Sciences Center, El Paso, TX 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.Y.); (L.R.); (Y.Z.)
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX 79409, USA; (B.N.H.); (C.N.K.)
- Institute for One Health Innovation, Offices of Research & Innovation, Texas Tech University, Texas Tech Health Sciences Center, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Wilar G, Suhandi C, Fukunaga K, Shigeno M, Kawahata I, Abdulah R, Sasaki T. Effects of nanocurcumin supplementation on metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2025; 213:107641. [PMID: 39894187 DOI: 10.1016/j.phrs.2025.107641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Metabolic syndrome (MetS) encompasses metabolic risk factors like elevated blood glucose, abnormal lipid levels, and hypertension. Nanocurcumin, a nanoscale formulation of curcumin, may offer therapeutic benefits for MetS management. This systematic review and meta-analysis evaluates the impact of nanocurcumin supplementation on key MetS parameters. METHODS A systematic literature search identified 20 randomized controlled trials (RCTs) with 1394 participants. Data were pooled using a random-effects model, and standardized mean differences (SMDs) were calculated for key outcomes. RESULTS Nanocurcumin supplementation significantly improved waist circumference (WC) (standardized mean difference (SMD): -0.30 cm), fasting blood sugar (FBS) (SMD: -0.34 mg/dL), HbA1c (SMD: -0.33 %), and quantitative insulin sensitivity check index (QUICKI) score (SMD: 0.73). Lipid profile parameters, including total cholesterol (SMD: -0.18 mg/dL), LDL-C (SMD: -0.16 mg/dL), and HDL-C (SMD: 0.32 mg/dL), also reduced significantly. Improvement in diastolic blood pressure (DBP) (SMD: -0.32 mmHg), total antioxidant capacity (TAC) (SMD: 0.44 mmol/L), malondialdehyde (MDA) (SMD: -0.37 mmol/L), tumor necrosis factor-α (TNF-α) (SMD: -2.30 ng/L), interleukin-6 (IL-6) (SMD: -1.07 ng/L), and high-sensitivity C-reactive protein (hs-CRP) (SMD: -0.34 mg/L) were observed. CONCLUSION Nanocurcumin supplementation significantly improves multiple MetS-related parameters, including anthropometric measures, glycemic control, lipid profile, blood pressure, oxidative stress markers, and inflammatory biomarkers. These findings highlight nanocurcumin's potential as an effective adjunctive therapy for managing MetS. However, the variability in study participant ages, treatment durations, and sample sizes suggests the need for further well-designed RCTs to establish optimal usage guidelines.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia.
| | - Cecep Suhandi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Chen L, Liu R, He X, Fang J, Zhou L, Qi Z, Tao M, Yuan H, Zhou Y. Synergistically effects of n-3 PUFA and B vitamins prevent diabetic cognitive dysfunction through promoting TET2-mediated active DNA demethylation. Clin Nutr 2025; 45:111-123. [PMID: 39798222 DOI: 10.1016/j.clnu.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Diabetic cognitive dysfunction (DCD) refers to the cognitive impairment observed in individuals with diabetes. Epidemiological studies have suggested that supplementation with n-3 polyunsaturated fatty acid (PUFA) or B vitamins may prevent the development of diabetic complications. Post hoc studies indicate a potential synergistic effect of n-3 PUFA and B vitamins in preventing cognitive impairment. However, the precise effect and underlying mechanism of this combination on DCD remain unclear. In case-control study, we compared fatty acid composition of erythrocyte membrane and serum homocysteine levels between diabetic individuals with and without DCD. We found that insufficient levels of n-3 PUFA, along with elevated serum homocysteine, significantly increase the risk of developing DCD. Treatment with a combination of fish oil, folate, and vitamin B12 improved cognitive impairment and aberrant neuronal morphology in streptozotocin-induced DCD mice. Folic acid and vitamin B12 enhanced the efficiency of exogenous docosahexaenoic acid (DHA) transportation to the brain by preventing the accumulation of homocysteine and S-adenosylhomocysteine, thereby inhibiting neuronal apoptosis in diabetic brains. Furthermore, folic acid and vitamin B12 supplementation can provide sufficient 5-methylcytosine for diabetic brains by promoting DNA methylation, while increased DHA levels maintain TET-mediated active DNA demethylation in diabetic brains through enhancing TET2 function. Overall, our study provides novel insights into molecular mechanisms underlying the synergistic preventive effects of the combined supplementation with fish oil, folic acid and vitamin B12 on DCD, suggests that combining n-3 PUFA and B vitamins could be a promising strategy for preventing DCD among individuals with diabetes.
Collapse
Affiliation(s)
- Lei Chen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Run Liu
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Xin He
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Jiacheng Fang
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Liyin Zhou
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Zhongshi Qi
- School of Public Health, Qingdao University, Qingdao, Shandong Province, China
| | - Mingzhu Tao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China.
| | - Yu Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Campagna R, Cecati M, Vignini A. The Multifaceted Role of the Polyphenol Curcumin: A Focus on Type 2 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e15733998313402. [PMID: 39620334 DOI: 10.2174/0115733998313402240726080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 04/23/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-ofart regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Scientific Direction, Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
7
|
Derosa G, D’Angelo A, Angelini F, Belli L, Cicero AFG, Da Ros R, De Pergola G, Gaudio GV, Lupi A, Sartore G, Vignati FA, Maffioli P. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients 2024; 17:14. [PMID: 39796448 PMCID: PMC11723399 DOI: 10.3390/nu17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/06/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025] Open
Abstract
Dysglycemia is a condition preceding diabetes mellitus. The two situations inherent in this condition are called impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). If one of these situations is found in the patient, after the advice of an appropriate diet and physical activity, the addition of nutraceuticals or supplements can be considered, which can stop or delay the progression to diabetes mellitus over time. The purpose was to compile a systematic review about the use of nutraceuticals for treating diabetes and prediabetes and to offer a valuable resource for colleagues working on this crucial subject, thereby improving patient health. The added value of the paper compared to other reviews is that it was written by experts appointed by five different scientific societies dealing with diabetes, nutrition, and complications.
Collapse
Affiliation(s)
- Giuseppe Derosa
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Aselli, 43/45, 27100 Pavia, Italy
| | - Angela D’Angelo
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| | - Fabrizio Angelini
- SINseB—Società Italiana Nutrizione, Sport e Benessere, Via Morimondo 26, 20143 Milano, Italy; (F.A.); (L.B.)
| | - Luca Belli
- SINseB—Società Italiana Nutrizione, Sport e Benessere, Via Morimondo 26, 20143 Milano, Italy; (F.A.); (L.B.)
| | - Arrigo F. G. Cicero
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| | - Roberto Da Ros
- AMD—Associazione Medici Diabetologi, Viale delle Milizie, 96, 00192 Roma, Italy; (R.D.R.); (G.S.)
| | - Giovanni De Pergola
- SIO—Società Italiana Obesità, Corso Italia, 115, 56125 Pisa, Italy; (G.D.P.); (F.A.V.)
| | - Giovanni V. Gaudio
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
| | - Alessandro Lupi
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
| | - Giovanni Sartore
- AMD—Associazione Medici Diabetologi, Viale delle Milizie, 96, 00192 Roma, Italy; (R.D.R.); (G.S.)
| | - Federico A. Vignati
- SIO—Società Italiana Obesità, Corso Italia, 115, 56125 Pisa, Italy; (G.D.P.); (F.A.V.)
| | - Pamela Maffioli
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| |
Collapse
|
8
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
9
|
Yu X, Pu H, Voss M. Overview of anti-inflammatory diets and their promising effects on non-communicable diseases. Br J Nutr 2024; 132:898-918. [PMID: 39411832 PMCID: PMC11576095 DOI: 10.1017/s0007114524001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 11/20/2024]
Abstract
An anti-inflammatory diet is characterised by incorporating foods with potential anti-inflammatory properties, including fruits, vegetables, whole grains, nuts, legumes, spices, herbs and plant-based protein. Concurrently, pro-inflammatory red and processed meat, refined carbohydrates and saturated fats are limited. This article explores the effects of an anti-inflammatory diet on non-communicable diseases (NCD), concentrating on the underlying mechanisms that connect systemic chronic inflammation, dietary choices and disease outcomes. Chronic inflammation is a pivotal contributor to the initiation and progression of NCD. This review provides an overview of the intricate pathways through which chronic inflammation influences the pathogenesis of conditions including obesity, type II diabetes mellitus, CVD, autoinflammatory diseases, cancer and cognitive disorders. Through a comprehensive synthesis of existing research, we aim to identify some bioactive compounds present in foods deemed anti-inflammatory, explore their capacity to modulate inflammatory pathways and, consequently, to prevent or manage NCD. The findings demonstrated herein contribute to an understanding of the interplay between nutrition, inflammation and chronic diseases, paving a way for future dietary recommendations and research regarding preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu610106, People’s Republic of China
| | - Haomou Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Margaret Voss
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY13244, USA
| |
Collapse
|
10
|
Mo L, Wan S, Zékány-Nagy T, Luo X, Yang X. The Effect of Curcumin on Glucolipid Metabolic Disorders: A Review. FOOD REVIEWS INTERNATIONAL 2024:1-35. [DOI: 10.1080/87559129.2024.2405654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Siyu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Tekla Zékány-Nagy
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoyi Luo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
11
|
Ali MY, Gao J, Zhang Z, Hossain MM, Sethupathy S, Zhu D. Directional co-immobilization of artificial multimeric-enzyme complexes as a robust biocatalyst for biosynthesis curcumin glucosides and regeneration of UDP-glucose. Int J Biol Macromol 2024; 278:135035. [PMID: 39182864 DOI: 10.1016/j.ijbiomac.2024.135035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Site-directed protein immobilization allows the homogeneous orientation of proteins while maintaining high activity, which is advantageous for various applications. In this study, the use of SpyCatcher/SpyTag technology and magnetic nickel ferrite (NiFe2O4 NPs) nanoparticles were used to prepare a site-directed immobilization of BsUGT2m from Bacillus subtilis and AtSUSm from Arabidopsis thaliana for enhancing curcumin glucoside production with UDP-glucose regeneration from sucrose and UDP. The immobilization of self-assembled multienzyme complex (MESAs) enzymes were characterized for immobilization parameters and stability, including thermal, pH, storage stability, and reusability. The immobilized MESAs exhibited a 2.5-fold reduction in UDP consumption, enhancing catalytic efficiency. Moreover, the immobilized MESAs demonstrated high storage and temperature stability over 21 days at 4 °C and 25 °C, outperforming their free counterparts. Reusability assays showed that the immobilized MESAs retained 78.7 % activity after 10 cycles. Utilizing fed-batch technology, the cumulative titer of curcumin 4'-O-β-D-glucoside reached 6.51 mM (3.57 g/L) and 9.45 mM (5.18 g/L) for free AtSUSm/BsUGT2m and immobilized MESAs, respectively, over 12 h. This study demonstrates the efficiency of magnetic nickel ferrite nanoparticles in co-immobilizing enzymes, enhancing biocatalysts' catalytic efficiency, reusability, and stability.
Collapse
Affiliation(s)
- Mohamed Yassin Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Jiayue Gao
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Md Muzammel Hossain
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
12
|
Li J, Zhang Z, Zhao J, Liu S, Feng C, Deng H, Liu D, Zeng J, Yu Q, Zhou D, Zhu M, Liu Y. Decoding potential targets and pharmacologic mechanisms of curcumin in treating non-small cell lung carcinoma via bioinformatics and molecular docking. Braz J Med Biol Res 2024; 57:e13550. [PMID: 39258670 PMCID: PMC11379430 DOI: 10.1590/1414-431x2024e13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Emerging evidence demonstrates that curcumin has an inhibitory effect on non-small cell lung cancer (NSCLC), and its targets and mechanism of action need further exploration. The goal of this study was to explore the potential targets and mechanism of curcumin against NSCLC by network pharmacology, bioinformatics, and experimental validation, thereby providing more insight into combination treatment with curcumin for NSCLC in preclinical and clinical research. Curcumin targets against NSCLC were predicted based on HIT2.0, STD, CTD, and DisGeNET, and the core targets were analyzed via protein-protein interaction network construction (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular docking. The gene expression levels of samples in A549 cells, NCI-H460, and curcumin treated groups were detected by real-time quantitative PCR. A total of 67 common targets between curcumin and NSCLC were collected by screening public databases. GO and KEGG analysis suggested that curcumin treatment of NSCLC mainly involves cancer-related pathways, such as PI3K-AKT signaling pathway, Foxo signaling pathway, microRNAs, MAPK signaling pathway, HIF-1 signaling pathway, etc. The targets with the highest degree were identified through the PPI network, namely CASP3, CTNNB1, JUN, IL6, MAPK3, HIF1A, STAT3, AKT1, TP53, CCND1, VEGFA, and EGFR. The results of the in vitro experiments showed that curcumin treatment of NSCLC down-regulated the gene expressions of CCND1, CASP3, HIF1A, IL-6, MAPK3, STAT3, AKT1, and TP53. Our findings revealed that curcumin functions as a potential therapeutic candidate for NSCLC by suppressing multiple signaling pathways and interacting with multiple gene targets.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhen Zhang
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Junchang Zhao
- Postgraduate Department, Mudanjiang Medical University, Mudanjiang, China
| | - Shilin Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Chenghong Feng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hong Deng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongwen Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jing Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qin Yu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dan Zhou
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Milin Zhu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yantao Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
13
|
Bayram SŞ, Kızıltan G. The Role of Omega- 3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr Nutr Rep 2024; 13:527-551. [PMID: 39031306 PMCID: PMC11327211 DOI: 10.1007/s13668-024-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is a group of metabolic illnesses characterized by elevated levels of glucose in the bloodstream as a result of abnormalities in the generation or function of insulin. Medical Nutrition Therapy (MNT) is an essential component of diabetes management. Dietary fats are essential in both the prevention and progression of chronic diseases. Omega-3 polyunsaturated fatty acids are recognized for their advantageous impact on health. They assist in controlling blood sugar levels and lipid profile in patients with all types of diabetes. Furthermore, they reduce the occurrence of cardiovascular events and death linked to DM. RECENT FINDINGS After evaluating the antioxidant, anti-inflammatory, antilipidemic, and antidiabetic mechanisms of omega-3 fatty acid supplements, as well as the results from randomized controlled studies, it is clear that these supplements have positive effects in both preventing and treating diabetes, as well as preventing and treating complications related to diabetes, specifically cardiovascular diseases. However, current evidence does not support the use of omega-3 supplementation in people with diabetes for the purpose of preventing or treating cardiovascular events. People with all types of diabetes are suggested to include fatty fish and foods high in omega-3 fatty acids in their diet twice a week, as is prescribed for the general population.
Collapse
Affiliation(s)
- Sümeyra Şahin Bayram
- Faculty of Health Sciences, Nutrition and Dietetics Department, Selcuk University, Konya, Turkey.
| | - Gül Kızıltan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Baskent University, Ankara, Turkey
| |
Collapse
|
14
|
Nunes YC, Mendes NM, Pereira de Lima E, Chehadi AC, Lamas CB, Haber JFS, dos Santos Bueno M, Araújo AC, Catharin VCS, Detregiachi CRP, Laurindo LF, Tanaka M, Barbalho SM, Marin MJS. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024; 16:2721. [PMID: 39203857 PMCID: PMC11357524 DOI: 10.3390/nu16162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Aging-related disorders pose significant challenges due to their complex interplay of physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dysfunction. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties, has emerged as a promising candidate for mitigating these age-related processes. However, gaps in understanding the precise mechanisms of curcumin's effects and the optimal dosages for different conditions necessitate further investigation. This systematic review synthesizes current evidence on curcumin's potential in addressing age-related disorders, emphasizing its impact on cognitive function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy, and mechanisms of action of curcumin supplementation, this review aims to provide insights into its therapeutic potential for promoting healthy aging. A systematic search across three databases using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic agent in combating age-related disorders. The findings of this review suggest that curcumin could offer a natural and effective approach to enhancing the quality of life of aging individuals. Further research and well-designed clinical trials are essential to validate these findings and optimize the use of curcumin in personalized medicine approaches for age-related conditions.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Nathalia M. Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Amanda Chabrour Chehadi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Manoela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Vitor C. Strozze Catharin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Lucas Fornari Laurindo
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordination, Hospital Beneficente (HBU), University of Marília (UNIMAR), Marília 17525-160, SP, Brazil
| | | |
Collapse
|
15
|
Tian W, Liu L, Wang R, Quan Y, Tang B, Yu D, Zhang L, Hua H, Zhao J. Gut microbiota in insulin resistance: a bibliometric analysis. J Diabetes Metab Disord 2024; 23:173-188. [PMID: 38932838 PMCID: PMC11196565 DOI: 10.1007/s40200-023-01342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024]
Abstract
Background Insulin resistance (IR) is considered the pathogenic driver of diabetes, and can lead to obesity, hypertension, coronary artery disease, metabolic syndrome, and other metabolic disorders. Accumulating evidence indicates that the connection between gut microbiota and IR. This bibliometric analysis aimed to summarize the knowledge structure of gut microbiota in IR. Methods Articles and reviews related to gut microbiota in IR from 2013 to 2022 were retrieved from the Web of Science Core Collection (WoSCC), and the bibliometric analysis and visualization were performed by Microsoft Excel, Origin, R package (bibliometrix), Citespace, and VOSviewer. Results A total of 4 749 publications from WoSCC were retrieved, including 3 050 articles and 1 699 reviews. The majority of publications were from China and USA. The University Copenhagen and Shanghai Jiao Tong University were the most active institutions. The journal of Nutrients published the most papers, while Nature was the top 1 co-cited journal, and the major area of these publications was molecular, biology, and immunology. Nieuwdorp M published the highest number of papers, and Cani PD had the highest co-citations. Keyword analysis showed that the most frequently occurring keywords were "gut microbiota", "insulin-resistance", "obesity", and "inflammation". Trend topics and thematic maps showed that serum metabolome and natural products, such as resveratrol, flavonoids were the research hotspots in this field. Conclusion This bibliometric analysis summarised the hotspots, frontiers, pathogenesis, and treatment strategies, providing a clear and comprehensive profile of gut microbiota in IR. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01342-x.
Collapse
Affiliation(s)
- Weiwei Tian
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Li Liu
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yunyun Quan
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Bihua Tang
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Dongmei Yu
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hua Hua
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Junning Zhao
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| |
Collapse
|
16
|
Lee YM, Kim Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024; 16:1728. [PMID: 38892660 PMCID: PMC11174746 DOI: 10.3390/nu16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This review aimed to examine the effects of curcumin on chronic inflammatory metabolic disease by extensively evaluating meta-analyses of randomized controlled trials (RCTs). We performed a literature search of meta-analyses of RCTs published in English in PubMed®/MEDLINE up to 31 July 2023. We identified 54 meta-analyses of curcumin RCTs for inflammation, antioxidant, glucose control, lipids, anthropometric parameters, blood pressure, endothelial function, depression, and cognitive function. A reduction in C-reactive protein (CRP) levels was observed in seven of ten meta-analyses of RCTs. In five of eight meta-analyses, curcumin intake significantly lowered interleukin 6 (IL-6) levels. In six of nine meta-analyses, curcumin intake significantly lowered tumor necrosis factor α (TNF-α) levels. In five of six meta-analyses, curcumin intake significantly lowered malondialdehyde (MDA) levels. In 14 of 15 meta-analyses, curcumin intake significantly reduced fasting blood glucose (FBG) levels. In 12 of 12 meta-analyses, curcumin intake significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR). In seven of eight meta-analyses, curcumin intake significantly reduced glycated hemoglobin (HbA1c) levels. In eight of ten meta-analyses, curcumin intake significantly reduced insulin levels. In 14 of 19 meta-analyses, curcumin intake significantly reduced total cholesterol (TC) levels. Curcumin intake plays a protective effect on chronic inflammatory metabolic disease, possibly via improved levels of glucose homeostasis, MDA, TC, and inflammation (CRP, IL-6, TNF-α, and adiponectin). The safety and efficacy of curcumin as a natural product support the potential for the prevention and treatment of chronic inflammatory metabolic diseases.
Collapse
Affiliation(s)
- Young-Min Lee
- Department of Practical Science Education, Gyeongin National University of Education, Gyesan-ro 62, Gyeyang-gu, Incheon 21044, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
17
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
18
|
Yakubu J, Pandey AV. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024; 16:637. [PMID: 38794299 PMCID: PMC11125045 DOI: 10.3390/pharmaceutics16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
19
|
Wang H, Zheng C, Tian F, Xiao Z, Sun Z, Lu L, Dai W, Zhang Q, Mei X. Improving the Dissolution Rate and Bioavailability of Curcumin via Co-Crystallization. Pharmaceuticals (Basel) 2024; 17:489. [PMID: 38675449 PMCID: PMC11053631 DOI: 10.3390/ph17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a natural polyphenolic compound with various pharmacological activities. Low water solubility and bioavailability limit its clinical application. In this work, to improve the bioavailability of CUR, we prepared a new co-crystal of curcumin and L-carnitine (CUR-L-CN) via liquid-assisted grinding. Both CUR and L-CN have high safe dosages and have a wide range of applications in liver protection and animal nutrition. The co-crystal was fully characterized and the crystal structure was disclosed. Dissolution experiments were conducted in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF). CUR-L-CN exhibited significantly faster dissolution rates than those of pure CUR. Hirshfeld surface analysis and wettability testing indicate that CUR-L-CN has a higher affinity for water and thus exhibits faster dissolution rates. Pharmacokinetic studies were performed in rats and the results showed that compared to pure CUR, CUR-L-CN exhibited 6.3-times-higher AUC0-t and 10.7-times-higher Cmax.
Collapse
Affiliation(s)
- Hao Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Chenxuan Zheng
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fanyu Tian
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Ziyao Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Zhixiong Sun
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Liye Lu
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Wenjuan Dai
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Qi Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Xuefeng Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| |
Collapse
|
20
|
Asghari KM, Saleh P, Salekzamani Y, Dolatkhah N, Aghamohammadzadeh N, Hashemian M. The effect of curcumin and high-content eicosapentaenoic acid supplementations in type 2 diabetes mellitus patients: a double-blinded randomized clinical trial. Nutr Diabetes 2024; 14:14. [PMID: 38589346 PMCID: PMC11001914 DOI: 10.1038/s41387-024-00274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND/OBJECTIVES The present study investigated the effect of curcumin and eicosapentaenoic acid, as one the main components of omega-3 polyunsaturated fatty acids, on anthropometric, glucose homeostasis, and gene expression markers of cardio-metabolic risk in patients with type 2 diabetes mellitus. SUBJECTS/METHODS This clinical trial was conducted at the Endocrinology Clinic of Imam Reza Hospital in Tabriz. It aimed to determine the impact of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), and curcumin supplements on various health indicators in patients with Type 2 Diabetes Mellitus (DM2) from 2021.02.01 to 2022.02.01. The study was a randomized double-blinded clinical trial and conducted over 12 weeks with 100 participants randomly divided into four groups. Stratified randomization was used to assign participants to two months of supplementation based on sex and Body Mass Index (BMI). The study comprised four groups: Group 1 received 2 capsules of 500 mg EPA and 200 mg DHA, along with 1 nano-curcumin placebo; Group 2 received 1 capsule of 80 mg nano-curcumin and 2 omega 3 Fatty Acids placebos; Group 3 received 2 capsules of 500 mg EPA and 200 mg DHA, and 1 capsule of 80 mg nano-curcumin; Group 4, the control, received 2 omega 3 Fatty Acids placebos and 1 nano-curcumin placebo. RESULTS After twelve weeks of taking EPA + Nano-curcumin supplements, the patients experienced a statistically significant reduction in insulin levels in their blood [MD: -1.44 (-2.70, -0.17)]. This decrease was significantly greater than the changes observed in the placebo group [MD: -0.63 (-1.97, 0.69)]. The EPA + Nano-curcumin group also showed a significant decrease in High-Sensitivity C-Reactive Protein (hs-CRP) levels compared to the placebo group (p < 0.05). Additionally, the EPA + Nano-curcumin group had a significant increase in Total Antioxidant Capacity (TAC) levels compared to the placebo group (p < 0.01). However, there were no significant differences in Fasting Blood Sugar (FBS), Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index, Quantitative Insulin Sensitivity Check Index (QUICKI), or Hemoglobin A1c (HbA1C) levels between the four groups (all p > 0.05). There were significant differences between the Nano-curcumin and EPA groups [MD: -17.02 (-32.99, -1.05)], and between the Nano-curcumin and control groups [MD: -20.76 (-36.73, -4.79)] in terms of lowering the serum cholesterol level. The difference in Triglycerides (TG) serum levels between the EPA + Nano-curcumin and placebo groups were not statistically significant (p = 0.093). The Nano-curcumin group showed significant decreases in Low-Density Lipoprotein (LDL) levels compared to the EPA group [MD: -20.12 (-36.90, -3.34)] and the control group [MD: -20.79 (-37.57, -4.01)]. There was a near-to-significant difference in High-Density Lipoprotein (HDL) serum levels between the EPA + Nano-curcumin and EPA groups (p = 0.056). Finally, there were significant differences in the decrease of serum Vascular Endothelial Growth Factor (VEGF) levels between the EPA and Nano-curcumin groups [MD: -127.50 (-247.91, -7.09)], the EPA and placebo groups [MD: 126.25 (5.83, 246.66)], the EPA + Nano-curcumin and Nano-curcumin groups [MD: -122.76 (-243.17, -2.35)], and the EPA + Nano- curcumin and placebo groups [MD: 121.50 (1.09, 241.92)]. CONCLUSIONS The findings of the present study suggest that 12-week supplementation with EPA and Nano-curcumin may positively impact inflammation, oxidative stress, and metabolic parameters in patients with diabetes. The supplementation of EPA and Nano-curcumin may be a potential intervention to manage diabetes and reduce the risk of complications associated with diabetes. However, further research is needed to validate the study's findings and establish the long-term effects of EPA and Nano-curcumin supplementation in patients with diabetes.
Collapse
Affiliation(s)
- Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Saleh
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaghoub Salekzamani
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, NY, USA
| |
Collapse
|
21
|
Aldosari BN, Abdellatif AAH, Almurshedi AS, Alfagih IM, AlQuadeib BT, Abbas AYA, Hassan YA, Abdelfattah A, Tawfeek HM. Development of oral formulation of Lepidium seeds significantly decreases the high blood glucose levels in diabetic rats: in vitro formulation and in vivo antidiabetic performance. Drug Dev Ind Pharm 2024; 50:112-123. [PMID: 38156891 DOI: 10.1080/03639045.2023.2300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Lepidium sativum, Garden Cress (GC), seeds have a lot of natural molecules with a pronounced activity against different disorders. It was reported that GC seeds have the ability to lower the blood glucose level. AIM The aim of this work was to formulate GC seeds into oral tablets containing a fixed dose of the grounded seeds. Furthermore, the anti-diabetic performance of the prepared tablets was studied in the streptozotocin rats' model in comparison with positive control metformin. METHODS Micrometrics of GC grounded seeds with different excipients were investigated. Then, GC tablets were prepared via direct compression technique. GC tablets were characterized for their uniformity of dosage unit, friability, hardness, disintegration time, and in vitro release. The antidiabetic effect was studied in rats for a period of 28 days. Glycosylated hemoglobin, liver performance, and lipid levels include total cholesterol (TC), triglycerides (TGs), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were also estimated. In addition, histopathological study of liver and pancreas was also performed. RESULTS Prosolv®EasyTab produced tablets with higher hardness, lower disintegration time, and fast release. GC tablets significantly lower the elevated blood glucose level. In addition, they have antihyperlipidemic activity, hepatocellular protective role and restore the histology of the liver and pancreas. CONCLUSION GC tablets could be a promising alternative formulation to control the high blood glucose level in diabetic rats rather than chemically derivatized drugs.
Collapse
Affiliation(s)
- Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Iman Mohammed Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Asmaa Youssef A Abbas
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Abdelfattah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham M Tawfeek
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Wang Z, Yang Y, Tang F, Wu M. Recent applications and prospects of omega-3 fatty acids: A bibliometric study and visualization analysis in 2014-2023. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102615. [PMID: 38772049 DOI: 10.1016/j.plefa.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Omega-3 fatty acids are indispensable and crucial nutrients that are pivotal in promoting cardiovascular well-being, enhancing cognitive function, and regulating the body's inflammatory response. This study employed bibliometric analysis to investigate the progression of omega-3 fatty acids research. We used the Web of Science Core Collection (WoSCC) to find articles about omega-3 fatty acids published from January 1, 2014, to December 31, 2023. The bibliometric analysis and visualization were conducted using VOSviewer and CiteSpace. This analysis contained a total of 18,764 articles that were focused on omega-3 fatty acids. Among these articles, the nations with the highest number of publications were the United States, China, and Spain. The United States held the greatest influence. The journal Nutrients had the most publications related to this search. Upon analyzing the highly referenced literature, we discovered there is ongoing debate on the potential benefits of Omega-3 fatty acids for illnesses. Moreover, the time-overlapping network analysis of keywords finds investigating the impact of omega-3 fatty acids dietary supplementation on gut microbiota is a promising area of future research. Ultimately, bibliometrics could help researchers comprehend the trajectory of development, noticeable topics, and scholarly impact within omega-3 fatty acids linked domains, thereby offering substantial backing for future investigations of greater depth.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Yiqian Yang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Fengyan Tang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Menghuan Wu
- Department of Cardiology, Xuyi People's Hospital, Xuyi, Jiangsu, 211700, China.
| |
Collapse
|
23
|
Zhang M, Yang F, Feng Q, Ou Y, Zhang J, Wan H, Cao H, Ning P. Comparison of the efficacy of fish oil and probiotic supplementation on glucose and lipid metabolism in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetol Metab Syndr 2024; 16:25. [PMID: 38254166 PMCID: PMC10804729 DOI: 10.1186/s13098-024-01266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Abnormalities in glucose and lipid metabolism contribute to the progression and exacerbation of type 2 diabetes mellitus (T2DM). Fish oil and probiotics are dietary supplements that have the potential to improve glucose and lipid metabolism. However, their efficacy remains unclear in T2DM patients. METHODS PubMed, Embase, and the Cochrane Library were retrieved to collect randomized controlled trials (RCTs) on the efficacy of fish oil or probiotic supplementation in T2DM patients from the database inception to December 13, 2023. Primary outcome indicators encompassed glycated hemoglobin (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR) and blood lipid profile (triglyceride (TG) and total cholesterol (TC). Secondary outcome indicators included inflammatory markers such as tumor necrosis factor -α (TNF-α) and adipocytokine (including leptin and adiponectin). The R software was used for statistical analysis, and GraphPad Prism was used for figure rendering. RESULTS A total of 60 RCTs involving 3845 T2DM patients were included in the analysis. The results showed that the probiotics (Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium, etc.) were more effective in reducing HOMA-IR than fish oil (Surca = 0.935). Bifidobacterium demonstrated the highest efficacy in reducing HbA1c levels (Surca = 0.963). Regarding lipid metabolism, fish oil was superior to probiotics in lowering TG and TC levels (Surca values of 0.978 and 0.902, respectively). Furthermore, fish oil outperformed probiotics in reducing TNF-α (Surca = 0.839) and leptin (Surca = 0.712), and increasing adiponectin levels (Surca = 0.742). Node-splitting analysis showed good consistency (P > 0.05 for direct, indirect, and network comparison across various interventions). CONCLUSIONS In T2DM patients, fish oil was more effective than probiotics in regulating lipid metabolism. Probiotics outperformed fish oil in regulating glucose metabolism particularly; specifically, Bifidobacterium showed higher efficacy in reducing blood glucose.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Fan Yang
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Qiu Feng
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Yanghong Ou
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Jiaxing Zhang
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Haiyan Wan
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Hongyi Cao
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China
| | - Peng Ning
- Department of Endocrine and Metabolism, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Geriatric Diseases Institute of Chengdu, Chengdu, China.
| |
Collapse
|
24
|
Werida RH, Ramzy A, Ebrahim YN, Helmy MW. Effect of coadministration of omega-3 fatty acids with glimepiride on glycemic control, lipid profile, irisin, and sirtuin-1 in type 2 diabetes mellitus patients: a randomized controlled trial. BMC Endocr Disord 2023; 23:259. [PMID: 38001474 PMCID: PMC10675938 DOI: 10.1186/s12902-023-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes mellitus (T2DM) is caused by insulin resistance or tissue insensitivity to insulin, as well as relative insulin insufficiency. Diabetes that is uncontrolled for an extended period of time is linked to substantial comorbidities and organ damage. The purpose of the current study is to assess the effect of coadministration of omega-3 fatty acids with glimepiride on blood glucose, lipid profile, serum irisin, and sirtuin-1 levels in T2DM patients. METHODS This clinical trial involved 70 type 2 diabetic patients randomly assigned to glimepiride 3 mg with either omega-3 capsules contained fish oil 1000 mg, 13% of eicosapentaenoic acid (EPA) and 9% docosahexaenoic acid (DHA) (omega-3 group, n = 35) or placebo capsules contained corn oil and linoleic acid (control group, n = 35) daily for three months. Blood samples were obtained at the start of the study and 12 weeks later for biochemical examination of HbA1c%, FBG, fasting insulin, and lipid profile. In addition, the atherogenic index of plasma (AIP) was calculated. Human enzyme-linked immunosorbent assay (ELISA) kits were utilized for assessing serum irisin and sirtuin-1 levels before and after the intervention. RESULTS Compared to the control group, omega-3 fatty acids decreased serum fasting blood glucose (FBG, p < 0.001), glycated hemoglobin percent (HbA1C%, p < 0.001), total cholesterol (TC, p < 0.001), triglycerides (TGs, p = 0.006), low density lipoprotein (LDL, p = 0.089), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, p = 0.021) after three months of intervention. However, a significant increase was reported in serum irisin and high density lipoprotein (HDL) between both groups after intervention (p = 0.026 and p = 0.007, respectively). The atherogenic index of plasma (AIP) increased in the control group but decreased in the omega-3 group, with significant differences between the two groups (p < 0.001). CONCLUSION The present study found that supplementing with omega-3 fatty acids might dramatically enhance blood irisin levels, as well as improve glycemic control and lipid profile in type 2 diabetes mellitus patients using glimepiride. TRIAL REGISTRATION This study is registered on ClinicalTrials.gov under identifier NCT03917940 . (The registration date: April 17, 2019).
Collapse
Affiliation(s)
- Rehab H Werida
- Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| | - Aalaa Ramzy
- Ministry of Health and Population, Damanhour City, Egypt
| | - Youssri Nassief Ebrahim
- Internal Medicine and Diabetes Department, Damanhour Medical National Institute, Damanhour City, Egypt
| | - Maged Wasfy Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
- Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abou Keer, Alexandria, Egypt
| |
Collapse
|
25
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
26
|
Godse S, Zhou L, Sakshi S, Singla B, Singh UP, Kumar S. Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood) 2023; 248:2151-2166. [PMID: 38058006 PMCID: PMC10800127 DOI: 10.1177/15353702231211863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swarna Sakshi
- Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on glycemic indices in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102855. [PMID: 37748368 DOI: 10.1016/j.dsx.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 μIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Kiani Z, Amini S, Askari G, Kesharwani P, Bagherniya M, Sahebkar A. The effect of phytochemicals in prediabetic patients: A systematic review of randomized controlled trials. Phytother Res 2023; 37:3239-3261. [PMID: 37246835 DOI: 10.1002/ptr.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
This study aimed to perform a systematic review to evaluate the effect of phytochemical consumption on the cardiometabolic parameters of prediabetic patients. A comprehensive search was conducted in PubMed, Scopus and ISI Web of Science, and Google Scholar up to June 2022 to find randomized controlled trials investigating the effects of phytochemicals alone or in combination with other nutraceuticals on prediabetic patients. Twenty-three studies with 31 treatment arms comprising 2177 individuals were included in this study. Totally, in 21 arms, phytochemicals had positive effects on at least one measured cardiometabolic factor. In 13 out of 25 arms, fasting blood glucose (FBG) and in 10 out of 22 arms, hemoglobin A1c (HbA1c) significantly decreased compared with the control group. Furthermore, phytochemicals had beneficial effects on 2-h postprandial and postprandial glucose, serum insulin, insulin sensitivity, and insulin resistance as well as inflammatory factors including high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6). Triglyceride (TG) was the abundant improved factor in the lipid profile. However, no sufficient evidence for notable positive effects of phytochemicals on blood pressure and anthropometry indices was observed. Phytochemical supplementation may have beneficial impacts on prediabetic patients by ameliorating glycemic status.
Collapse
Affiliation(s)
- Zahra Kiani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepide Amini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Pathomwichaiwat T, Jinatongthai P, Prommasut N, Ampornwong K, Rattanavipanon W, Nathisuwan S, Thakkinstian A. Effects of turmeric (Curcuma longa) supplementation on glucose metabolism in diabetes mellitus and metabolic syndrome: An umbrella review and updated meta-analysis. PLoS One 2023; 18:e0288997. [PMID: 37471428 PMCID: PMC10359013 DOI: 10.1371/journal.pone.0288997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS This study aims to comprehensively review the existing evidence and conduct analysis of updated randomized controlled trials (RCTs) of turmeric (Curcuma longa, CL) and its related bioactive compounds on glycemic and metabolic parameters in patients with type 2 diabetes (T2DM), prediabetes, and metabolic syndrome (MetS) together with a sub-group analysis of different CL preparation forms. METHODS An umbrella review (UR) and updated systematic reviews and meta-analyses (SRMAs) were conducted to evaluate the effects of CL compared with a placebo/standard treatment in adult T2DM, prediabetes, and MetS. The MEDLINE, Embase, The Cochrane Central Register of Control Trials, and Scopus databases were searched from inception to September 2022. The primary efficacy outcomes were hemoglobin A1C (HbA1C) and fasting blood glucose (FBG). The corrected covered area (CCA) was used to assess overlap. Mean differences were pooled across individual RCTs using a random-effects model. Subgroup and sensitivity analyses were performed for various CL preparation forms. RESULTS Fourteen SRMAs of 61 individual RCTs were included in the UR. The updated SRMA included 28 studies. The CCA was 11.54%, indicating high overlap across SRMAs. The updated SRMA revealed significant reduction in FBG and HbA1C with CL supplementation, obtaining a mean difference (95% confidence interval [CI]) of -8.129 (-12.175, -4.084) mg/dL and -0.134 (-0.304, -0.037) %, respectively. FBG and HbA1C levels decreased with all CL preparation forms as did other metabolic parameters levels. The results of the sensitivity and subgroup analyses were consistent with those of the main analysis. CONCLUSION CL supplementation can significantly reduce FBG and HbA1C levels and other metabolic parameters in T2DM and mitigate related conditions, including prediabetes and MetS. TRIAL REGISTRATION PROSPERO (CRD42016042131).
Collapse
Affiliation(s)
- Thanika Pathomwichaiwat
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Mahidol University, Bangkok, Thailand
| | - Peerawat Jinatongthai
- Faculty of Pharmaceutical Sciences, Pharmacy Practice Division, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Napattaoon Prommasut
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Kanyarat Ampornwong
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Surakit Nathisuwan
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ammarin Thakkinstian
- Faculty of Medicine Ramathibodi Hospital, Department of Clinical Epidemiology and Biostatistics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
31
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023; 164:156144. [PMID: 36804260 DOI: 10.1016/j.cyto.2023.156144] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Turmeric and its prominent bioactive compound, curcumin, have been the subject of many investigations with regard to their impact on inflammatory and oxidative balance in the body. In this systematic review and meta-analysis, we summarized the existing literature on randomized controlled trials (RCTs) which examined this hypothesis. Major databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were searched from inception up to October 2022. Relevant studies meeting our eligibility criteria were obtained. Main outcomes included inflammatory markers (i.e. C-reactive protein(CRP), tumour necrosis factorα(TNF-α), interleukin-6(IL-6), and interleukin 1 beta(IL-1β)) and markers of oxidative stress (i.e. total antioxidant capacity (TAC), malondialdehyde(MDA), and superoxide dismutase (SOD) activity). Weighted mean differences (WMDs) were reported. P-values < 0.05 were considered significant. Sixty-six RCTs were included in the final analysis. We observed that turmeric/curcumin supplementation significantly reduces levels of inflammatory markers, including CRP (WMD: -0.58 mg/l, 95 % CI: -0.74, -0.41), TNF-α (WMD: -3.48 pg/ml, 95 % CI: -4.38, -2.58), and IL-6 (WMD: -1.31 pg/ml, 95 % CI: -1.58, -0.67); except for IL-1β (WMD: -0.46 pg/ml, 95 % CI: -1.18, 0.27) for which no significant change was found. Also, turmeric/curcumin supplementation significantly improved anti-oxidant activity through enhancing TAC (WMD = 0.21 mmol/l; 95 % CI: 0.08, 0.33), reducing MDA levels (WMD = -0.33 µmol /l; 95 % CI: -0.53, -0.12), and SOD activity (WMD = 20.51 u/l; 95 % CI: 7.35, 33.67). It seems that turmeric/curcumin supplementation might be used as a viable intervention for improving inflammatory/oxidative status of individuals.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Panknin TM, Howe CL, Hauer M, Bucchireddigari B, Rossi AM, Funk JL. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int J Mol Sci 2023; 24:4476. [PMID: 36901908 PMCID: PMC10003109 DOI: 10.3390/ijms24054476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Medicinal properties of turmeric (Curcuma longa L.), a plant used for centuries as an anti-inflammatory, are attributed to its polyphenolic curcuminoids, where curcumin predominates. Although "curcumin" supplements are a top-selling botanical with promising pre-clinical effects, questions remain regarding biological activity in humans. To address this, a scoping review was conducted to assess human clinical trials reporting oral curcumin effects on disease outcomes. Eight databases were searched using established guidelines, yielding 389 citations (from 9528 initial) that met inclusion criteria. Half focused on obesity-associated metabolic disorders (29%) or musculoskeletal disorders (17%), where inflammation is a key driver, and beneficial effects on clinical outcomes and/or biomarkers were reported for most citations (75%) in studies that were primarily double-blind, randomized, and placebo-controlled trials (77%, D-RCT). Citations for the next most studied disease categories (neurocognitive [11%] or gastrointestinal disorders [10%], or cancer [9%]), were far fewer in number and yielded mixed results depending on study quality and condition studied. Although additional research is needed, including systematic evaluation of diverse curcumin formulations and doses in larger D-RCT studies, the preponderance of current evidence for several highly studied diseases (e.g., metabolic syndrome, osteoarthritis), which are also clinically common, are suggestive of clinical benefits.
Collapse
Affiliation(s)
| | - Carol L. Howe
- The University of Arizona Health Science Library, Tucson, AZ 85724, USA
| | - Meg Hauer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Anthony M. Rossi
- Department of Physiology, Honors College, University of Arizona, Tucson, AZ 85724, USA
| | - Janet L. Funk
- Department of Medicine and School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
33
|
Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, Ferretti E, Migliaccio S, Izzo L, Ritieni A, Grosso M, Formichi C, Dotta F, Frigerio F, Barbiera E, Giusti AM, Ingallina C, Mannina L. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023; 15:640. [PMID: 36771347 PMCID: PMC9921449 DOI: 10.3390/nu15030640] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome's definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.
Collapse
Affiliation(s)
- Donatella Ambroselli
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabrizio Masciulli
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Enrico Romano
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Maria Chiara Massari
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Health Sciences Section, University “Foro Italico”, 00135 Rome, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- UNESCO, Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Frigerio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Eleonora Barbiera
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Giusti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
34
|
Kavyani Z, Dehghan P, Khani M, Khalafi M, Rosenkranz SK. The effects of camelina sativa oil and high-intensity interval training on liver function and metabolic outcomes in male type 2 diabetic rats. Front Nutr 2023; 10:1102862. [PMID: 36937342 PMCID: PMC10014722 DOI: 10.3389/fnut.2023.1102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives The purpose of this study was to evaluate the independent and combined effects of camelina sativa oil and high-intensity interval training (HIIT) on liver function, and metabolic outcomes in streptozotocin-induced diabetic rats. Methods Forty male Wistar rats were randomly assigned to five equal groups (8 per group): Normal control (NC), diabetic control (DC), diabetic + camelina sativa oil (300 mg/kg by oral gavage per day; D + CSO), diabetic + HIIT (running on a treadmill 5 days/week for 8 weeks; D + HIIT), diabetic + camelina sativa oil + HIIT (D + CSO + HIIT). Results In all three intervention groups (D + CSO, D + HIIT, and D + CSO + HIIT) compared to the DC, hepatic TNF-α, MDA, and histopathology markers, decreased and hepatic PGC-1α, and PPAR-γ increased (p < 0.05). However, the effect of D + CSO was greater than D + HIIT alone. Hepatic TG decreased significantly in D + HIIT and D + CSO + HIIT compared to other groups (p < 0.001). Fasting plasma glucose in all three intervention groups (D + CSO, D + HIIT, and D + CSO + HIIT) and HOMA-IR in D + CSO and D + CSO + HIIT were decreased compared to DC (p < 0.001). Only hepatic TAC and fasting plasma insulin remained unaffected in the three diabetic groups (p < 0.001). Overall, D + CSO + HIIT had the largest effect on all outcomes. Conclusions At the doses and treatment duration used in the current study, combination of CSO and HIIT was beneficial for reducing liver function and metabolic outcomes other than CSO and HIIT alone.
Collapse
Affiliation(s)
- Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Nutrition Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Parvin Dehghan,
| | - Mostafa Khani
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Sara K. Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
35
|
Saeedi F, Farkhondeh T, Roshanravan B, Amirabadizadeh A, Ashrafizadeh M, Samarghandian S. Curcumin and blood lipid levels: an updated systematic review and meta-analysis of randomised clinical trials. Arch Physiol Biochem 2022; 128:1493-1502. [PMID: 36264280 DOI: 10.1080/13813455.2020.1779309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to indicate the protective effects of curcumin on dyslipidemia. Main databases were searched to recognise randomised clinical trials evaluating the effect of curcumin on blood lipid profiles. The pooled odds ratio with a 95% confidence interval (CI) was used to evaluate the effect of curcumin on blood lipid parameters. HDL-C levels in the curcumin group were 0.04-fold lower than placebo (95% CI:-0.36-0.29; Z = 0.23; p = .82). LDL-C levels in the curcumin group reduced by 0.17 versus the placebo group (95% CI: -0.43-0.09; Z = 1.27; p = .2). TC levels in the curcumin group were 0.21 lower versus the placebo group (95% CI: -0.55-0.13; Z = 1.22; p = .22). TG level in the curcumin group were 0.05 lower versus the placebo (95% CI: -0.20-0.11; Z = 0.58; p = .56). This study suggests that curcumin may reduce blood lipid levels and can be used as a hypolipidemic agent.
Collapse
Affiliation(s)
- Farhad Saeedi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
36
|
Bozkurt O, Kocaadam-Bozkurt B, Yildiran H. Effects of curcumin, a bioactive component of turmeric, on type 2 diabetes mellitus and its complications: an updated review. Food Funct 2022; 13:11999-12010. [PMID: 36367124 DOI: 10.1039/d2fo02625b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a substantial issue in public health. Recently, there has been considerable interest in the effectiveness of using herbal supplements for T2DM. Among the herbal supplements, turmeric (Curcuma longa L.) has been attracting an avalanche of attention owing to its main component, curcumin. This review examines the physiological activities and mechanisms of action of curcumin associated with T2DM and its complications. The literature indicates that pro-inflammatory cytokines along with oxidative stress play a very important role in diabetes pathogenesis. Since inflammation is a main cause of disruption of the β cell structure, the anti-diabetic characteristic of curcumin is mainly attributed to its anti-inflammatory as well as anti-oxidant activities. In addition to these activities, curcumin has been developed as a promising prevention/treatment choice for diabetes complications by modulating various critical signal steps owing to the anti-hyperglycemic and anti-hyperlipidemic activities of curcumin. Studies on diabetic humans and animals have revealed that curcumin may have positive effects on oxidative stress and inflammation and may reduce fasting blood glucose levels, increase insulin sensitivity/secretion and regulate the lipid profile. Thus, it may prevent and treat diabetes by affecting various molecular targets.
Collapse
Affiliation(s)
- Osman Bozkurt
- Erzurum Technical University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Erzurum, 25050, Turkey.
| | - Betül Kocaadam-Bozkurt
- Erzurum Technical University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Erzurum, 25050, Turkey.
| | - Hilal Yildiran
- Gazi University Faculty of Health Sciences, Department of Nutrition and Dietetics, Emek Bişkek Cad. 6. Sokak, 06490, Ankara, Turkey.
| |
Collapse
|
37
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: a randomized clinical trial. Nutr J 2022; 21:62. [PMID: 36192751 PMCID: PMC9528102 DOI: 10.1186/s12937-022-00816-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background Metabolic syndrome (MetS) as a cluster of conditions including hyperlipidemia, hypertension, hyperglycemia, insulin resistance, and abdominal obesity is linked to cardiovascular diseases and type 2 diabetes. Evidence suggested that intake of curcumin and coenzyme Q10 may have therapeutic effects in the management of MetS. Aims We investigated the effects of curcumin and/or coenzyme Q10 supplementation on metabolic syndrome components including systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference (WC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-c) and fasting plasma glucose (FPG) as primary outcomes, and total cholesterol (TC), low density lipoprotein-cholesterol (LDL-c) and body mass index (BMI) as secondary outcomes in subjects with MetS. Methods In this 2 × 2 factorial, randomized, double-blinded, placebo-controlled study, 88 subjects with MetS were randomly assigned into four groups including curcumin plus placebo (CP), or coenzyme Q10 plus placebo (QP), or curcumin plus coenzyme Q10 (CQ), or double placebo (DP) for 12 weeks. Results The CP group compared with the three other groups showed a significant reduction in HDL-c (P = 0.001), TG (P < 0.001), TC (P < 0.001), and LDL-c (P < 0.001). No significant differences were seen between the four groups in terms of SBP, DBP, FPG, WC, BMI and weight. Conclusion Curcumin improved dyslipidemia, but had no effect on body composition, hypertension and glycemic control. Furthermore, coenzyme Q10 as well as the combination of curcumin and coenzyme Q10 showed no therapeutic effects in subjects with MetS. The trial was registered on 09/21/2018 at the Iranian clinical trials website (IRCT20180201038585N2), URL: https://www.irct.ir/trial/32518.
Collapse
|
39
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
40
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Mechanistic Investigation of Curcuma Protection against Oral Submucous Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3891598. [PMID: 35982996 PMCID: PMC9381205 DOI: 10.1155/2022/3891598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Objective Oral submucous fibrosis (OSMF) is a chronic, fibrotic disease that affects the oral cavity, showing a high rate of malignant transformation. Curcuma exerts therapeutic potentials in many diseases including OSMF. However, the potential targets and pathways to explain the therapeutic effects of curcuma on OSMF are outside the scope of present knowledge. Herein we intend to reveal the predictive targets and potential pathways of curcuma against OSMF by a network pharmacology-based approach followed by molecular docking technology. Methods We searched the SymMap, GeneCards, and OMIM database to obtain curcuma and OSMF common targets. The protein-protein interaction (PPI) of curcuma and OSMF common targets were then analyzed, followed by functional enrichment analysis. The best binding mode of curcuma and target proteins was analyzed by molecular docking technology. Results We collected 290 putative targets of curcuma molecules and 600 known therapeutic targets of OSMF, with 64 curcuma and OSMF common targets sorted out. In the PPI network, there were 63 nodes with 922 edges. The node indicates protein and the line indicates PPI relation. The most enriched GO term in the BP level is “gland development”, followed by “cellular response to chemical stress”, and then “response to oxygen levels”, while the most enriched GO term in CC and MF is “membrane raft” and “cytokine receptor binding”, respectively. We also found 131 KEGG pathways significantly enriched by curcuma and OSMF common targets. The binding energy of curcuma to ALB, TNF, TP53, IL6, and VEGFA was −9.5 kcal/mol, −3.9 kcal/mol, −3.5 kcal/mol, −3.6 kcal/mol, and −8.9 kcal/mol, respectively, which suggested ALB and VEGFA were regarded as main targets involving in the potential mechanism of curcuma against OSMF. Conclusion The present study illustrated that the therapeutic effects of curcuma on OSMF were achieved by targeting ALB and VEGFA, which giving reference to further drug design and development for OSMF.
Collapse
|
42
|
Xiao Y, Zhang Q, Liao X, Elbelt U, Weylandt KH. The effects of omega-3 fatty acids in type 2 diabetes: A systematic review and meta-analysis. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102456. [PMID: 35717726 DOI: 10.1016/j.plefa.2022.102456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular risk modification in type 2 diabetes and related complications remain unclear. We aim to assess the published effects of n-3 PUFA interventions on lipid risk factors in type 2 diabetes. METHODS We searched the literature on Pubmed, Embase, CENTRAL, and Web of Science databases in order to perform a pooled analysis of randomized clinical trials (RCTs) assessing n-3 PUFA interventions in type 2 diabetes. The primary outcomes analyzed were the effect of n -3 PUFAs on metabolic biomarkers in type 2 diabetes. RESULTS 46 RCTs involving 4991 patients with type 2 diabetes were identified for further analysis. Analysis of results showed that n-3 PUFAs interventions significantly improved total cholesterol (TC, WMD = -0.22; 95% CI: -0.32∼ -0.11), triglyceride (TG,WMD = -0.36; 95% CI: -0.48∼-0.25), high-density lipoprotein cholesterol (HDL-C,WMD = 0.05; 95% CI: 0.02∼ 0.08), hemoglobin A1c (HbA1c, WMD = -0.19; 95% CI: -0.31∼-0.06) and C-reactive protein (CRP,WMD = -0.40; 95% CI: -0.74∼-0.07) levels compared to controls (p < 0.05). There was no significant effect on renal function, fasting blood sugar (FBS), insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), adiponectin and leptin (p > 0.05). CONCLUSIONS The results of this systematic review suggest that n-3 PUFAs can improve cardiovascular risk factors in type 2 diabetes.
Collapse
Affiliation(s)
- Yanan Xiao
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin 16816, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 12203, Germany
| | - Qifang Zhang
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, China
| | - Xueling Liao
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Department of Nephrology, Affiliated Hospital of Guilin Medical College, Guilin 541001, China
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin 16816, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 12203, Germany
| | - Karsten H Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin 16816, Germany; Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam 14467, Germany.
| |
Collapse
|
43
|
Thota RN, Chatterjee P, Pedrini S, Hone E, Ferguson JJA, Garg ML, Martins RN. Association of Plasma Neurofilament Light Chain With Glycaemic Control and Insulin Resistance in Middle-Aged Adults. Front Endocrinol (Lausanne) 2022; 13:915449. [PMID: 35795150 PMCID: PMC9251066 DOI: 10.3389/fendo.2022.915449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Aims This study aimed to determine the association of plasma neurofilament light (NfL), a marker of neurodegeneration, with diabetes status and glycaemic parameters in people with normal glycaemia (NG), pre-diabetes (PD) and type 2 diabetes (T2D). Methods Clinical and descriptive data for the diagnostic groups, NG (n=30), PD (n=48) and T2D (n=29), aged between 40 and 75 years were included in this cross-sectional analysis. Plasma NfL levels were analyzed using the ultra-sensitive single-molecule array (Simoa) platform. Results A positive correlation was evident between plasma NfL and fasting glucose (r = 0.2824; p = 0.0032). Plasma NfL levels were not correlated with fasting insulin and insulin resistance. Plasma Nfl levels were significantly different across the diabetes groups (T2D >PD >NG, p=0.0046). Post-hoc analysis indicated significantly higher plasma NfL levels in the T2D [12.4 (5.21) pg/mL] group than in the PD [10.2 (4.13) pg/mL] and NG [8.37 (5.65) pg/mL] groups. The relationship between diabetes status and NfL remained significant after adjusting for age, sex, BMI, HOMA-IR and physical activity (adjusted r2 = 0.271, p = 0.035). Conclusions These results show biomarker evidence of neurodegeneration in adults at risk or with T2D. Larger sample size and longitudinal analysis are required to better understand the application of NfL in people with risk and overt T2D.
Collapse
Affiliation(s)
- Rohith N. Thota
- Macquarie Medical School, Macquarie University, North Ryde, NSW, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Macquarie University, North Ryde, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jessica J. A. Ferguson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Manohar L. Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Macquarie University, North Ryde, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- The KaRa Institute of Neurological Disease, Macquarie Park, NSW, Australia
| |
Collapse
|
44
|
Surma S, Sahebkar A, Urbański J, Penson PE, Banach M. Curcumin - The Nutraceutical With Pleiotropic Effects? Which Cardiometabolic Subjects Might Benefit the Most? Front Nutr 2022; 9:865497. [PMID: 35662932 PMCID: PMC9159377 DOI: 10.3389/fnut.2022.865497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Despite continuous advances in pharmacotherapy, atherosclerotic cardiovascular disease remains the world's leading killer. Atherosclerosis relates not only to an increased level of cholesterol, but involves the development of atherosclerotic plaques, which are formed as a result of processes including inflammation and oxidative stress. Therefore, in addition to the classical risk factors for ASCVD (such as type 2 diabetes, overweight, obesity, hypertension and metabolic syndrome), residual risk factors such as inflammation and oxidative stress should also be reduced. The most important intervention in ASCVD is prevention, which includes promoting a healthy diet based on products of natural origin. Curcumin, which is often present in the diet, has been demonstrate to confer several benefits to health. It has been shown in numerous clinical trials that curcumin exhibited anti-diabetic, lipid-lowering, antihypertensive, antioxidant and anti-inflammatory effects, as well as promoting weight loss. All this means that curcumin has a comprehensive impact on the most important risk factors of ASCVD and may be a beneficial support in the treatment of these diseases. Recently, it has also been shown that curcumin may have a beneficial effect on the course of SARS-CoV-2 infection and might be helpful in the prevention of long-COVID complications. The aim of this review is to summarize the current knowledge regarding the safety and efficacy of curcumin in the prevention and treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Gdańsk, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Peter E. Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Góra, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
- *Correspondence: Maciej Banach
| |
Collapse
|
45
|
Sun Z, Wei X, Bai J, Li W, Yang J, Deng Z, Wu M, Ying T, He G. The effects of curcumin on anthropometric and cardiometabolic parameters of patients with metabolic related diseases: a systematic review and dose-effect meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:9282-9298. [PMID: 35475714 DOI: 10.1080/10408398.2022.2067826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective:To perform a meta-analysis of published randomized controlled trials (RCTs) to assess the effects of curcumin supplementation with different formulations on anthropometric and cardiometabolic indices in patients with metabolism-related diseases (MRDs). Methods: Six databases, including PubMed, Embase, Web of Science, China national knowledge internet (CNKI), Wanfang and China Biology Medicine (CBM), were systematically searched to find relevant articles from 2011 to July 2021. The effect sizes were expressed as weighted mean difference (WMD) with 95% confidence intervals (CI). Between-study heterogeneity was assessed using I2. Subgroup analysis was conducted to find possible sources of heterogeneity. Curcumin formulations in this study were divided as low bioavailability, high bioavailability and nanocurcumin. Results: Of the retrieved 1585 articles, 31 were included in the final analysis. Combined effect sizes suggested a significant effect of curcumin supplementation on reduced body weight (BW) (WMD: -0.94 kg, 95% CI: -1.40, -0.47) and body mass index (BMI) (WMD: -0.40 kg/m2, 95% CI: -0.60, -0.19), respectively. The results also showed significant improvements of fasting plasma glucose (FPG) (WMD: -0.50 mg/dL, 95% CI: -0.72, -0.28), glycosylated hemoglobin (Hb1Ac) (WMD: -0.42%, 95% CI: -0.57, -0.26), insulin (INS) (WMD: -1.70 μIU/mL, 95%CI: -2.03, -1.38), homeostasis model assessment-insulin resistance (HOMA-IR) (WMD: -0.71, 95%CI: -1.11, -0.31), high-density lipoprotein cholesterol (HDL-C) (WMD: 1.73 mg/dL, 95%CI: 0.78, 2.68) and high sensitivity C-reactive protein (Hs-CRP) (WMD: -1.11, 95%CI: -2.16, -0.05). Nanocurcumin showed a greater reduction in FPG (WMD: -1.78 mg/dL, 95% CI: -2.49, -1.07), INS (WMD: -1.66 μIU/mL, 95% CI: -3.21, -0.11), TC (WMD: -12.64 mg/dL (95% CI: -23.72, -1.57) and LDL-C (WMD: -8.95 mg/dL, 95% CI: -16.51, -1.38). The dose-effect analysis showed that there were trends of first rising and then falling between the supplemented curcumin dose and BW, BMI, LDL-C, Hb1Ac, which were clearly distinguished at 80 mg/d due to the strong effect of nanocurcumin on outcomes. A slow upward trend between the dose of curcumin supplementation and HDL-C. No relationships between dose and outcomes were found for FPG and insulin, except for nanocurcumin at 80 mg/d. Conclusions: Our study showed some significant beneficial effects of curcumin supplementation on improving BW, BMI, and the levels of FPG, Hb1Ac, HOMA-IR, HDL-C and Hs-CRP in patients with MRDs. Nanocurcumin may have a greater effect on the reduction of FPG, INS, TC and LDL-C than other curcumin formulations. Considering the potential bias and limitations of studies included, further quality studies with larger sample sizes are needed to confirm these results.
Collapse
Affiliation(s)
- Zhuo Sun
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaohui Wei
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Jianan Bai
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Jiaqi Yang
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Zequn Deng
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Min Wu
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Tao Ying
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- China-DRIs Expert Committee on Other Food Substances, Chinese Nutrition Society, Beijing, China
| |
Collapse
|
46
|
Omega-3 Fatty Acids and Their Interaction with the Gut Microbiome in the Prevention and Amelioration of Type-2 Diabetes. Nutrients 2022; 14:nu14091723. [PMID: 35565691 PMCID: PMC9104474 DOI: 10.3390/nu14091723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Type-2 diabetes mellitus (T2DM) is often linked with hyperglycemia, disturbed lipid profiles, inflammation, and gut dysbiosis. Omega-3 fatty acid supplementation has a vital role in the management of T2DM. As a result, a better understanding of the potential role of omega-3 fatty acids in the development and progression of T2DM by influencing the intestinal microflora will help to improve the therapeutic intervention for T2DM and related complications. Focusing on the molecular mechanisms and signaling pathways induced by omega-3 fatty acids, this paper attempts to comprehensively review and discuss the putative associations between omega-3 fatty acids, gut dysbiosis, and the pathophysiology of T2DM and its related comorbidities. In addition, we contemplate the importance of gut microbiota in T2DM prevention and treatment and ponder the role of omega-3 fatty acids in T2DM by positively modulating gut microbiota, which may lead to discovery of novel targets and therapeutic strategies thereby paving way for further comprehensive, mechanistic, and clinical studies.
Collapse
|
47
|
Microbial, immune and antioxidant responses of Nile tilapia with dietary nano-curcumin supplements under chronic low temperatures. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Deane CS, Din USU, Sian TS, Smith K, Gates A, Lund JN, Williams JP, Rueda R, Pereira SL, Atherton PJ, Phillips BE. Curcumin Enhances Fed-State Muscle Microvascular Perfusion but Not Leg Glucose Uptake in Older Adults. Nutrients 2022; 14:nu14061313. [PMID: 35334969 PMCID: PMC8953570 DOI: 10.3390/nu14061313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Therapeutic interventions aimed at enhancing blood flow may combat the postprandial vascular and metabolic dysfunction that manifests with chronological ageing. We compared the effects of acute curcumin (1000 mg) coupled with an oral nutritional supplement (ONS, 7.5 g protein, 24 g carbohydrate and 6 g fat) versus a placebo and ONS (control) on cerebral and leg macrovascular blood flow, leg muscle microvascular blood flow, brachial artery endothelial function, and leg insulin and glucose responses in healthy older adults (n = 12, 50% male, 73 ± 1 year). Curcumin enhanced m. tibialis anterior microvascular blood volume (MBV) at 180 and 240 min following the ONS (baseline: 1.0 vs. 180 min: 1.08 ± 0.02, p = 0.01 vs. 240 min: 1.08 ± 0.03, p = 0.01), and MBV was significantly higher compared with the control at both time points (p < 0.05). MBV increased from baseline in the m. vastus lateralis at 240 min after the ONS in both groups (p < 0.05), and there were no significant differences between groups. Following the ONS, leg blood flow and leg vascular conductance increased, and leg vascular resistance decreased similarly in both conditions (p < 0.05). Brachial artery flow-mediated dilation and middle cerebral artery blood flow were unchanged in both conditions (p > 0.05). Similarly, the curcumin and control groups demonstrated comparable increases in glucose uptake and insulin in response to the ONS. Thus, acute curcumin supplementation enhanced ONS-induced increases in m. tibialis anterior MBV without potentiating m. vastus lateralis MBV, muscle glucose uptake, or systemic endothelial or macrovascular function in healthy older adults.
Collapse
Affiliation(s)
- Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ushnah S. U. Din
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Tanvir S. Sian
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Jonathan N. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - John P. Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 18004 Granada, Spain;
| | | | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| |
Collapse
|
49
|
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci 2022; 23:ijms23042056. [PMID: 35216172 PMCID: PMC8875143 DOI: 10.3390/ijms23042056] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor that leads to the development of other diseases such as dyslipidemia and diabetes. These three metabolic disorders can occur simultaneously, hence, the treatment requires many drugs. Antioxidant compounds have been reported to have activities against obesity, dyslipidemia and diabetes via several mechanisms. This review aims to discuss the antioxidant compounds that have activity against obesity, dyslipidemia and diabetes together with their molecular signaling mechanism. The literature discussed in this review was obtained from the PUBMED database. Based on the collection of literature obtained, antioxidant compounds having activity against the three disorders (obesity, dyslipidemia and diabetes) were identified. The activity is supported by various molecular signaling pathways that are influenced by these antioxidant compounds, further study of which would be useful in predicting drug targets for a more optimal effect. This review provides insights on utilizing one of these antioxidant compounds as opposed to several drugs. It is hoped that in the future, the number of drugs in treating obesity, dyslipidemia and diabetes altogether can be minimized consequently reducing the risk of side effects.
Collapse
Affiliation(s)
- Chindiana Khutami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia
- Correspondence:
| |
Collapse
|
50
|
Karandish M, Mozaffari-Khosravi H, Mohammadi SM, Cheraghian B, Azhdari M. Curcumin and zinc co-supplementation along with a loss-weight diet can improve lipid profiles in subjects with prediabetes: a multi-arm, parallel-group, randomized, double-blind placebo-controlled phase 2 clinical trial. Diabetol Metab Syndr 2022; 14:22. [PMID: 35090529 PMCID: PMC8796182 DOI: 10.1186/s13098-022-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes is one of the major public health concerns. Prediabetes can increase the risk of developing some non-communicable diseases such as type 2 diabetes. Given the increasing trend of prediabetes, it is critical to control it and prevent its complications. Curcumin is a major bioactive component of turmeric. Zinc is an antioxidant nutrient. The present trial aimed to evaluate the effect of curcumin and zinc co-supplementation along with a loss-weight diet on serum lipid profiles in overweight or obese patients with prediabetes. METHODS Eighty-four participants were randomized to four groups (curcumin (500 mg/day), zinc (30 mg/day), "curcumin and zinc", and placebo) for 90 days. Serum total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), non-HDL, HDL/LDL ratio, weight, BMI, waist circumstance (WC), hip circumstance (HC), physical activity (PA) and dietary intake were determined pre and post-intervention. This study will be conducted at Yazd Diabetes Research Clinic, Shahid Sadoughi University of Medical Sciences. RESULTS Totally, 82 participants were included in the final analysis. After the adjusted PA effect, changes in serum TG (adjusted p = 0.001), LDL (adjusted p = 0.035), non-HDL (adjusted p = 0.003), HDL/LDL ratio (adjusted p = 0.002), and HDL (adjusted p < 0.0001) revealed a significant difference between the groups. However, the changes in weight (adjusted p = 0.004) and BMI (adjusted p = 0.006) were significant but the changes in dietary intake, PA, WC, and HC were non-significant (adjusted p ≥ 0.05). Despite that there was a significant difference for post-intervention HDL levels (adjusted p = 0.016), other lipid profiles showed no significant difference (adjusted p ≥ 0.05). CONCLUSION The beneficial effects of "curcumin and zinc" co-supplementation was reported for the changes of some lipid profiles (TG, LDL, HDL, non-HDL, and HDL to LDL ratio), BMI, and weight with no positive effects on TC, dietary intake, PA, WC, and HC. Therefore, it may play a potential role in the prevention of macro and microvascular complications. Trial registration The project is a registered clinical trial (Registration number: IRCT20190902044671N1, Iranian Registry of Clinical Trials (IRCT), registered October 11, 2019.
Collapse
Affiliation(s)
- Majid Karandish
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Mohammadi
- Associate Professor of Endocrinology & Metabolism, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Bahman Cheraghian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Health Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Azhdari
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|