1
|
He Q, Yuan J, Yang H, Du T, Hu S, Ding L, Yan W, Chen P, Li J, Huang Z. Maternal exposure to fullerenols impairs placental development in mice by inhibiting estriol synthesis and reducing ERα. J Nanobiotechnology 2025; 23:30. [PMID: 39833883 PMCID: PMC11749090 DOI: 10.1186/s12951-025-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta. Furthermore, we found that fullerenols exposure reduced the levels of CYP3A4, ERα and estriol (E3), while increasing the levels of estradiol (E2) and oxidative stress both in mouse placenta and placental trophoblast cells, and exogenous supplementation with E3 and ER agonists was effective in restoring these changes in vitro. Moreover, CYP3A4 inhibition was effective in decreasing intracellular E3 levels, whereas overexpression of CYP3A4 resisted the fullerenols-induced decrease in E3 expression Additionally, we synthesized glutathione-modified fullerenols (C60-(OH)n-GSH), which demonstrated improved biocompatibility and reduced embryotoxicity by enhancing intracellular glutathione levels and mitigating oxidative stress. In summary, our results demonstrated that fullerenols exposure decreased E3 synthesis by inhibiting CYP3A4 and exacerbated oxidative stress through downregulation of estrogen receptor activation and decreased glutathione levels. These findings highlight the risks of fullerenols exposure during pregnancy and offer strategies for safer nanomaterial development.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huihui Yang
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Du
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Siqing Hu
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ling Ding
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wei Yan
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Panpan Chen
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Cui JQ, Tian Y, Wu Z, Zhang L, Cho WC, Yao S, Lin Y. Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice. NANO LETTERS 2024; 24:14522-14530. [PMID: 39495891 DOI: 10.1021/acs.nanolett.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.
Collapse
Affiliation(s)
- Johnson Q Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| | - Zhihao Wu
- The Hong Kong University of Science and Technology (Guangzhou), Function Hub Nansha, Guangzhou, Guangdong 511400, China
- Individualized Interdisciplinary Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lu Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon 999077, Hong Kong, China
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| |
Collapse
|
3
|
Lee YT, Wu SH, Wu CH, Lin YH, Lin CK, Chen ZA, Sun TC, Chen YJ, Chen P, Mou CY, Chen YP. Drug-Free Mesoporous Silica Nanoparticles Enable Suppression of Cancer Metastasis and Confer Survival Advantages to Mice with Tumor Xenografts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61787-61804. [PMID: 39448366 PMCID: PMC11565475 DOI: 10.1021/acsami.4c16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Despite advancements in nanomedicine for drug delivery, many drug-loaded nanoparticles reduce tumor sizes but often fail to prevent metastasis. Mesoporous silica nanoparticles (MSNs) have attracted attention as promising nanocarriers. Here, we demonstrated that MSN-PEG/TA 25, with proper surface modifications, exhibited unique antimetastatic properties. In vivo studies showed that overall tumor metastasis decreased in 4T1 xenografts mice treated with MSN-PEG/TA 25 with a notable reduction in lung tumor metastasis. In vitro assays, including wound-healing, Boyden chamber, tube-formation, and real-time cell analyses, showed that MSN-PEG/TA 25 could modulate cell migration of 4T1 breast cancer cells and interrupt tube formation by human umbilical vein endothelial cells (HUVECs), key factors in suppressing cancer metastasis. The synergistic effect of MSN-PEG/TA 25 combined with liposomal-encapsulated doxorubicin (Lipo-Dox) significantly boosted mouse survival rates, outperforming Lipo-Dox monotherapy. We attributed the improved survival to the antimetastatic capabilities of MSN-PEG/TA 25. Moreover, Dox-loaded MSN-PEG/TA 25 suppressed primary tumors while retaining the antimetastatic effect, thereby enhancing therapeutic outcomes and overall survival. Western blot and qPCR analyses revealed that MSN-PEG/TA 25 interfered with the phosphorylation of ERK, FAK, and paxillin, thus impacting focal adhesion turnover and inhibiting cell motility. Our findings suggest that drug-free MSN-PEG/TA 25 is highly efficient for cancer treatment via suppressing metastatic activity and angiogenesis.
Collapse
Affiliation(s)
- Yu-Tse Lee
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Yu-Han Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Cong-Kai Lin
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Zih-An Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Chung Sun
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Yin-Ju Chen
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y. Fullerene Derivatives for Tumor Treatment: Mechanisms and Application. Int J Nanomedicine 2024; 19:9771-9797. [PMID: 39345909 PMCID: PMC11430870 DOI: 10.2147/ijn.s476601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
Collapse
Affiliation(s)
- Wenjia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lan Shen
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yimin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xuanjia Wang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
5
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Seke M, Zivkovic M, Stankovic A. Versatile applications of fullerenol nanoparticles. Int J Pharm 2024; 660:124313. [PMID: 38857663 DOI: 10.1016/j.ijpharm.2024.124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia.
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| |
Collapse
|
7
|
Chand A, Le N, Kim K. CdSe/ZnS Quantum Dots' Impact on In Vitro Actin Dynamics. Int J Mol Sci 2024; 25:4179. [PMID: 38673765 PMCID: PMC11050122 DOI: 10.3390/ijms25084179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.
Collapse
Affiliation(s)
| | | | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (A.C.); (N.L.)
| |
Collapse
|
8
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
9
|
Serda M, Korzuch J, Dreszer D, Krzykawska-Serda M, Musioł R. Interactions between modified fullerenes and proteins in cancer nanotechnology. Drug Discov Today 2023; 28:103704. [PMID: 37453461 DOI: 10.1016/j.drudis.2023.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Fullerenes have numerous properties that fill the gap between small molecules and nanomaterials. Several types of chemical reaction allow their surface to be ornamented with functional groups designed to change them into 'ideal' nanodelivery systems. Improved stability, and bioavailability are important, but chemical modifications can render them practically soluble in water. 'Buckyball' fullerene scaffolds can interact with many biological targets and inhibit several proteins essential for tumorigeneses. Herein, we focus on the inhibitory properties of fullerene nanomaterials against essential proteins in cancer nanotechnology, as well as the use of dedicated proteins to improve the bioavailability of these promising nanomaterials.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland.
| | - Julia Korzuch
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Dominik Dreszer
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | | | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
10
|
Du Q, Li N, Lian J, Guo J, Zhang Y, Zhang F. Dimensional effect of graphene nanostructures on cytoskeleton-coupled anti-tumor metastasis. SMART MEDICINE 2023; 2:e20230014. [PMID: 39188348 PMCID: PMC11235939 DOI: 10.1002/smmd.20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 08/28/2024]
Abstract
Interactions between inorganic materials and living systems can be strongly influenced by the dimensional property of the materials, which can in turn impact biological activities. Although the role of biomaterials at the molecular and cellular scales has been studied, research investigating the effects of biomaterials across multiple dimensional scales is relatively scarce. Herein, comparing the effectiveness of two-dimensional graphene oxide nanosheets (GOs) and three-dimensional graphene oxide quantum dots (GOQDs) (though not zero-dimensional because of their significant surface area) in cancer therapies, we have discovered that GOs, with the same mass concentration, exhibit stronger anti-cancer and anti-tumor metastasis properties than GOQDs. Our research, which employed liquid-phase atomic force microscopy, revealed that lower-dimensional GOs create a more extensive nano-bio interface that impedes actin protein polymerization into the cytoskeleton, leading to the prevention of tumor metastasis. These results help to better understand the underlying mechanisms and offer a dimensional perspective on the potential of optimizing the properties of graphene-based materials for clinical applications, e.g., cancer therapy.
Collapse
Affiliation(s)
- Qiqige Du
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Na Li
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jiaqi Lian
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jun Guo
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yi Zhang
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Feng Zhang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
11
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
12
|
Murashko AV, Frolova AA, Akovantseva AA, Kotova SL, Timashev PS, Efremov YM. The cell softening as a universal indicator of cell damage during cytotoxic effects. Biochim Biophys Acta Gen Subj 2023; 1867:130348. [PMID: 36977439 DOI: 10.1016/j.bbagen.2023.130348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
Cytotoxicity assays are essential tests in studies on the safety and biocompatibility of various substances and on the efficiency of anticancer drugs. The most frequently used assays commonly require application of externally added labels and read only collective response of cells. Recent studies show that the internal biophysical parameters of cells can be associated with the cellular damage. Therefore, using atomic force microscopy, we assessed the changes in the viscoelastic parameters of cells treated with eight different common cytotoxic agents to gain a more systematic view of the occurring mechanical changes. With the robust statistical analysis to account for both the cell-level variability and the experimental reproducibility, we have found that cell softening is a common response after each treatment. More precisely, the combined changes in the viscoelastic parameters of power-law rheology model led to a significant decrease of the apparent elastic modulus. The comparison with the morphological parameters (cytoskeleton and cell shape) demonstrated a higher sensitivity of the mechanical parameters versus the morphological ones. The obtained results support the idea of cell mechanics-based cytotoxicity tests and suggest a common way of a cell responding to damaging actions by softening.
Collapse
|
13
|
Zhang L, Pan K, Huang S, Zhang X, Zhu X, He Y, Chen X, Tang Y, Yuan L, Yu D. Graphdiyne Oxide-Mediated Photodynamic Therapy Boosts Enhancive T-Cell Immune Responses by Increasing Cellular Stiffness. Int J Nanomedicine 2023; 18:797-812. [PMID: 36814858 PMCID: PMC9939947 DOI: 10.2147/ijn.s392998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose Nanomaterial-based photodynamic therapy (PDT) has been commonly used for the treatment of cancerous tumors. Despite significant achievements made in this field, the intrinsic impact of nanomaterials-based PDT on the mechanical properties of oral squamous cell carcinoma (OSCC) cells is not entirely understood. Here, we used atomic force microscopy (AFM) to measure the stiffness of OSCC cells subjected to PDT in co-culture systems to evaluate the T cell-mediated cancer cell-killing effects. Methods In this study, AFM was used to assess the stiffness of PDT-subjected cells. The phototoxicity of graphdiyne oxide (GDYO) was assessed using confocal laser scanning microscopy (CLSM), measurements of membrane cholesterol levels, and assessments of the F-actin cytoskeleton. A co-culture system was used to evaluate the effects of CD8+ T cells (cytotoxic T lymphocytes), demonstrating how PDT modulates the mechanical properties of cancer cells and activates T cell responses. The antitumor immunotherapeutic effect of GDYO was further evaluated in a murine xenograft model. Results GDYO increased the mechanical stiffness of tumor cells and augmented T-cell cytotoxicity and inflammatory cytokine secretion (IFN-γ and TNF-α) under laser in vitro. Furthermore, GDYO-based PDT exerted inhibitory effects on OSCC models and elicited antitumor immune responses via specific cytotoxic T cells. Conclusion These results highlight that GDYO is a promising candidate for OSCC therapy, shifting the mechanical forces of OSCC cells and breaking through the barriers of the immunosuppressive tumor microenvironment. Our study provides a novel perspective on nanomaterial-based antitumor therapies.
Collapse
Affiliation(s)
- Lejia Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Kuangwu Pan
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Siyuan Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Xiliu Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Xinyu Zhu
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Yi He
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Xun Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Yuquan Tang
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Lingyu Yuan
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China,Correspondence: Dongsheng Yu, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China, Email
| |
Collapse
|
14
|
Nejabat M, Samie A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. An Overview on Gold Nanorods as Versatile Nanoparticles in Cancer Therapy. J Control Release 2023; 354:221-242. [PMID: 36621644 DOI: 10.1016/j.jconrel.2023.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Gold nanorods (GNRs/AuNRs) are a group of gold nanoparticles which their simple surface chemistry allows for various surface modifications, providing the possibility of using them in the fabrication of biocompatible and functional nano-agents for cancer therapy. AuNRs, moreover, exhibit a maximum absorption of longitudinal localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region which overlaps with NIR bio-tissue 'window' suggesting that they are proper tools for thermal ablation of cancer cells. AuNRs can be used for induction of mono or combination therapies by administering various therapeutic approaches such as photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CT), radiotherapy (RT), and gene therapy (GT). In this review, anticancer therapeutic capacities of AuNRs along with different surface modifications are summarized comprehensively. The roles of AuNRs in fabrication of various nano-constructs are also discussed.
Collapse
Affiliation(s)
- Masoud Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Single-Cell Sequencing of Malignant Ascites Reveals Transcriptomic Remodeling of the Tumor Microenvironment during the Progression of Epithelial Ovarian Cancer. Genes (Basel) 2022; 13:genes13122276. [PMID: 36553542 PMCID: PMC9778425 DOI: 10.3390/genes13122276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the main cause of mortality among gynecological malignancies worldwide. Although patients with EOC undergo aggregate treatment, the prognosis is often poor. Peritoneal malignant ascites is a distinguishable clinical feature in EOC patients and plays a pivotal role in tumor progression and recurrence. The mechanisms of the tumor microenvironment (TME) in ascites in the regulation of tumor progression need to be explored. We comprehensively analyzed the transcriptomes of 4680 single cells from five EOC patients (three diagnostic samples and two recurrent samples) derived from Gene Expression Omnibus (GEO) databases. Batch effects between different samples were removed using an unsupervised deep embedding single-cell cluster algorithm. Subcluster analysis identified the different phenotypes of cells. The transition of a malignant cell state was confirmed using pseudotime analysis. The landscape of TME in malignant ascites was profiled during EOC progression. The transformation of epithelial cancer cells into mesenchymal cells was observed to lead to the emergence of related anti-chemotherapy and immune escape phenotypes. We found the activation of multiple biological pathways with the transition of tumor-associated macrophages and fibroblasts, and we identified the infiltration of CD4+CD25+ T regulatory cells in recurrent samples. The cell adhesion molecules mediated by integrin might be associated with the formation of the tumorsphere. Our study provides novel insights into the remodeling of the TME heterogeneity in malignant ascites during EOC progression, which provides evidence for identifying novel therapeutic targets and promotes the development of ovarian cancer treatment.
Collapse
|
16
|
Sohrabi Kashani A, Larocque K, Piekny A, Packirisamy M. Gold Nano-Bio-Interaction to Modulate Mechanobiological Responses for Cancer Therapy Applications. ACS APPLIED BIO MATERIALS 2022; 5:3741-3752. [PMID: 35839330 DOI: 10.1021/acsabm.2c00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, we investigate the mechanobiological responses of human lung cancer that may occur through their interactions with two different types of gold nanoparticles: nanostars and nanospheres. Hyperspectral images of nanoparticle-treated cells revealed different spatial distributions of nanoparticles in cells depending on their morphology, with nanospheres being more uniformly distributed in cells than nanostars. Gold nanospheres were also found to be more effective in mechanobiological modulations. They significantly suppressed the migratory ability of cells under different incubation times while lowering the bulk stiffness and adhesion of cells. This in vitro study suggests the potential applications of gold nanoparticles to manage cell migration. Nano-bio-interactions appeared to impact the cytoskeletal organization of cells and consequently alter the mechanical properties of cells, which could influence the cellular functions of cells. According to the results and migratory index model, it is thought that nanoparticle-treated cells experience mechanical changes in their body, which largely reduces their migratory potentials. These findings provide a better understanding of nano-bio-interaction in terms of cell mechanics and highlight the importance of mechanobiological responses in designing gold nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Ahmad Sohrabi Kashani
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering of Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec, Canada, H3G 1M8
| | - Kevin Larocque
- Department of Biology, Concordia University, 7141 Sherbrooke Street W., Montreal, Quebec, Canada, H4B 1R6
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 Sherbrooke Street W., Montreal, Quebec, Canada, H4B 1R6
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering of Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec, Canada, H3G 1M8
| |
Collapse
|
17
|
Chen X, Fan Y, Sun J, Zhang Z, Xin Y, Li K, Tang K, Du P, Liu Y, Wang G, Yang M, Tan Y. Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomater 2021; 135:493-505. [PMID: 34492369 DOI: 10.1016/j.actbio.2021.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
As the driving force of tumor progression, cancer stem cells (CSCs) hold much lower cellular stiffness than bulk tumor cells across many cancer types. However, it remains unclear whether low cell stiffness can be harnessed in nanoparticle-based therapeutics for CSC targeting. We report that breast CSCs exhibit much lower stiffness but considerably higher uptake of nitrogen-doped graphene quantum dots (N-GQDs) than bulk tumor cells. Softening/stiffening cells enhances/suppresses nanoparticle uptake through activating/inhibiting clathrin- and caveolae-mediated endocytosis, suggesting that low cell stiffness mediates the elevated uptake in soft CSCs that may lead to the specific elimination. Further, soft CSCs enhance drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs by reducing intracellular pH and exocytosis. Remarkably, drug-loaded N-GQDs specifically eliminate soft CSCs both in vitro and in vivo, inhibit tumor but not animal growth, and reduce the tumorigenicity of xenograft cells. Our findings unveil a new mechanism by which low cellular stiffness can be harnessed in nanoparticle-based strategies for specific CSC elimination, opening a new paradigm of cancer mechanomedicine. STATEMENT OF SIGNIFICANCE: Low cell stiffness is associated with high malignancy of tumor cells and thus serves as a mechanical hallmark of CSCs. However, it remains unclear whether cellular stiffness can be exploited for specific targeting of soft CSCs. This work reports that soft CSCs exhibit high N-GQD uptake compared to stiff tumor cells, which is regulated by cellular stiffness. Further, soft CSCs have enhanced drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs, which enable the specific elimination of malignant CSCs both in vitro and in vivo with minimal side effect. In summary, our study demonstrates that CSC's low stiffness can be harnessed as a mechanical target for specific eradication, which provides a new paradigm of cancer mechanomedicine.
Collapse
Affiliation(s)
- Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jinghua Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Zhipeng Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Pengyu Du
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 518053, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518053, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Liu J, Kang L, Ratnayake I, Ahrenkiel P, Smith S, Wang C. Targeting cancer cell adhesion molecule, CD146, with low-dose gold nanorods and mild hyperthermia disrupts actin cytoskeleton and cancer cell migration. J Colloid Interface Sci 2021; 601:556-569. [PMID: 34090032 PMCID: PMC8349892 DOI: 10.1016/j.jcis.2021.05.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
Cluster of differentiation 146 (CD146), a cancer cell adhesion molecule, is over-expressed on the surfaces of melanoma, breast, ovarian, and prostate cancer cells, and its high expression indicates the migration tendency of these cancer cells and poor patient prognosis. Here, we hypothesize that targeting the CD146 with low-dose gold nanorods combined with mild hyperthermia can stop the migration of these cancer cells. Two metastatic cancer cells including a melanoma and a breast cancer cell line are selected as the model systems. Cell migration assays show that the migration of both cell lines can be completely stopped by the treatment. Atomic force microscopy and super resolution fluorescence microscopy reveal the alterations of actin cytoskeleton and cell morphology correspond to the inhibited cell migration. Further mechanistic analysis indicates the treatment disrupts the actin cytoskeleton by a synergistic mechanism including depleting membrane CD146 and interfering ezrin-radixin-moesin phosphorylation. As a result, we believe targeting CD146 with low-dose gold nanorods and mild hyperthermia could be a versatile, effective, and safe approach for stopping cancer metastasis. More broadly, the concept of targeting cancer cell surface markers that connect the underlying actin cytoskeleton, offers enormous potential in treating cancer metastasis, which accounts for more than 90% of cancer-associated mortality.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Lin Kang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Ishara Ratnayake
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Phil Ahrenkiel
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
19
|
Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021; 22:9587. [PMID: 34502495 PMCID: PMC8431109 DOI: 10.3390/ijms22179587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
With the advancement of nanotechnology, the nano-bio-interaction field has emerged. It is essential to enhance our understanding of nano-bio-interaction in different aspects to design nanomedicines and improve their efficacy for therapeutic and diagnostic applications. Many researchers have extensively studied the toxicological responses of cancer cells to nano-bio-interaction, while their mechanobiological responses have been less investigated. The mechanobiological properties of cells such as elasticity and adhesion play vital roles in cellular functions and cancer progression. Many studies have noticed the impacts of cellular uptake on the structural organization of cells and, in return, the mechanobiology of human cells. Mechanobiological changes induced by the interactions of nanomaterials and cells could alter cellular functions and influence cancer progression. Hence, in addition to biological responses, the possible mechanobiological responses of treated cells should be monitored as a standard methodology to evaluate the efficiency of nanomedicines. Studying the cancer-nano-interaction in the context of cell mechanics takes our knowledge one step closer to designing safe and intelligent nanomedicines. In this review, we briefly discuss how the characteristic properties of nanoparticles influence cellular uptake. Then, we provide insight into the mechanobiological responses that may occur during the nano-bio-interactions, and finally, the important measurement techniques for the mechanobiological characterizations of cells are summarized and compared. Understanding the unknown mechanobiological responses to nano-bio-interaction will help with developing the application of nanoparticles to modulate cell mechanics for controlling cancer progression.
Collapse
Affiliation(s)
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada;
| |
Collapse
|
20
|
Ye L, Kollie L, Liu X, Guo W, Ying X, Zhu J, Yang S, Yu M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021; 26:molecules26113252. [PMID: 34071369 PMCID: PMC8198614 DOI: 10.3390/molecules26113252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The development of novel nanoparticles as a new generation therapeutic drug platform is an active field of chemistry and cancer research. In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity, which makes them have broad application prospects in the field of cancer therapy. Therefore, understanding the anti-tumor mechanism of fullerene nanoparticles is of great significance for the design and development of anti-tumor drugs with low toxicity and high targeting. This review has focused on various anti-tumor mechanisms of fullerene derivatives and discusses their toxicity and their distribution in organisms. Finally, the review points out some urgent problems that need solution before fullerene derivatives as a new generation of anti-tumor nano-drug platform enter clinical research.
Collapse
Affiliation(s)
- Lianjie Ye
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
| | - Larwubah Kollie
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xing Liu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Wei Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xiangxian Ying
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jun Zhu
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Shengjie Yang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Meilan Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Correspondence:
| |
Collapse
|
21
|
Terracciano R, Demarchi D, Ruo Roch M, Aiassa S, Pagana G. Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2760-2777. [PMID: 33653442 DOI: 10.1166/jnn.2021.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years the worldwide research community has highlighted innumerable benefits of nanomaterials in cancer detection and therapy. Nevertheless, the development of cancer nanomedicines and other bionanotechnology requires a huge amount of considerations about the interactions of nanomaterials and biological systems, since long-term effects are not yet fully known. Open issues remain the determination of the nanoparticles distributions patterns and the internalization rate into the tumor while avoiding their accumulation in internal organs or other healthy tissues. The purpose of this work is to provide a standard overview of the most recent advances in nanomaterials to fight cancer and to collect trends and future directions to follow according to some critical aspects still present in this field. Complementary to the very recent review of Wolfram and Ferrari which discusses and classifies successful clinically-approved cancer nanodrugs as well as promising candidates in the pipeline, this work embraces part of their proposed classification system based on the exploitation of multifunctionality and extends the review to peer-reviewed journal articles published in the last 3 years identified through international databases.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Simone Aiassa
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Guido Pagana
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| |
Collapse
|
22
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
23
|
Zhou W, Huo J, Yang Y, Zhang X, Li S, Zhao C, Ma H, Liu Y, Liu J, Li J, Zhen M, Li J, Fang X, Wang C. Aminated Fullerene Abrogates Cancer Cell Migration by Directly Targeting Myosin Heavy Chain 9. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56862-56873. [PMID: 33305958 DOI: 10.1021/acsami.0c18785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Functional fullerene derivatives exhibit fantastic inhibitory capabilities against cancer survival and metastasis, but the absence of clarified biological molecular targets and ambiguous regulation mechanisms set barriers for their clinical transformation. Cancer metastasis is the primary cause of mortality and initiated with increased cell migration, making cell motility regulation a high-value therapeutic target in precision medicine. Herein, a critical molecular target of the aminated fullerene derivative (C70-EDA), myosin heavy chain 9 (MYH9), was initially identified by a pull-down assay and MS screening. MYH9 is a cytoplasm-located protein and is responsible for cell motility and epithelial-mesenchymal transition regulation. Omics data from large-scale clinical samples reveals that MYH9 gets overexpressed in various cancers and correlates with unfavorable prognosis, indicating that it is a potential antineoplastic target. It is unveiled that C70-EDA binds to the C-terminal of MYH9, triggering the transport of MYH9 from the cytoplasm to the cell edge, blocking the MYH9-involved cell mobility, and inhibiting the metastasis-associated EMT process. This work provides a precise biological target and new strategies for fullerene applications in cancer therapy.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jiawei Huo
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Xiaoyan Zhang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Shumu Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chong Zhao
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Haijun Ma
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Yang Liu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Liu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jiao Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - MingMing Zhen
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jie Li
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chunru Wang
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| |
Collapse
|
24
|
Kermanizadeh A, Jacobsen NR, Murphy F, Powell L, Parry L, Zhang H, Møller P. A Review of the Current State of Nanomedicines for Targeting and Treatment of Cancers: Achievements and Future Challenges. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Fiona Murphy
- Heriot Watt University School of Engineering and Physical Sciences Edinburgh EH14 4AS UK
| | - Leagh Powell
- Heriot Watt University School of Engineering and Physical Sciences Edinburgh EH14 4AS UK
| | - Lee Parry
- Cardiff University European Cancer Stem Cell Research Institute, School of Biosciences Cardiff CF24 4HQ UK
| | - Haiyuan Zhang
- Changchun Institute of Applied Chemistry Laboratory of Chemical Biology Changchun 130022 China
| | - Peter Møller
- University of Copenhagen Department of Public Health Copenhagen DK1014 Denmark
| |
Collapse
|
25
|
Kashani AS, Packirisamy M. Cancer cells optimize elasticity for efficient migration. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200747. [PMID: 33204453 PMCID: PMC7657900 DOI: 10.1098/rsos.200747] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Cancer progression is associated with alternations in the cytoskeletal architecture of cells and, consequently, their mechanical properties such as stiffness. Changing the mechanics of cells enables cancer cells to migrate and invade to distant organ sites. This process, metastasis, is the main reason for cancer-related mortality. Cell migration is an essential step towards increasing the invasive potential of cells. Although many studies have shown that the migratory speed and the invasion of cells can be inversely correlated to the stiffness of cells, some other investigations indicate opposing results. In the current work, based on the strain energy stored in cells due to the contractile forces, we defined an energy-dependent term, migratory index, to approximate how changes in the mechanical properties of cells influence cell migration required for cancer progression. Cell migration involves both cell deformation and force transmission within cells. The effects of these two parameters can be represented equally by the migratory index. Our mechanical modelling and computational study show that cells depending on their shape, size and other physical parameters have a maximum migratory index taking place at a specific range of cell bulk elasticity, indicating the most favourable conditions for invasive mobility. This approximate model could be used to explain why the stiffness of cells varies during cancer progression. We believe that the stiffness of cancer or malignant cells depending on the stiffness of their normal or non-malignant counterparts is either decreased or increased to reach the critical condition in which the mobility potential of cells is approximated to be maximum.
Collapse
Affiliation(s)
- Ahmad Sohrabi Kashani
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, Quebec, Canada H3G 1M8
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, Quebec, Canada H3G 1M8
| |
Collapse
|
26
|
Matysiak-Kucharek M, Czajka M, Jodłowska-Jędrych B, Sawicki K, Wojtyła-Buciora P, Kruszewski M, Kapka-Skrzypczak L. Two Sides to the Same Coin-Cytotoxicity vs. Potential Metastatic Activity of AgNPs Relative to Triple-Negative Human Breast Cancer MDA-MB-436 Cells. Molecules 2020; 25:E2375. [PMID: 32443890 PMCID: PMC7287686 DOI: 10.3390/molecules25102375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Silver nanoparticles (AgNPs) are used in many fields of industry and medicine. Despite the well-established antimicrobial activity, AgNPs are foreseen to be used as anticancer drugs due to the unusual feature-inability to induce drug resistance in cancer cells. The aim of the study was to assess biological activity of AgNPs against MDA-MB-436 cells. The cells were derived from triple-negative breast cancer, a type of breast cancer with poor prognosis and is particularly difficult to cure. AgNPs were toxic to MDA-MB-436 cells and the probable mechanism of toxicity was the induction of oxidative stress. These promising effects, giving the opportunity to use AgNPs as an anti-cancer agent should, however, be treated with caution in the light of further results. Namely, the treatment of MDA-MB-436 cells with AgNPs was associated with the increased secretion of several cytokines and chemokines, which were important in breast cancer metastasis. Finally, changes in the actin cytoskeleton of MDA-MB-436 cells under the influence of AgNPs treatment were also observed.
Collapse
Affiliation(s)
- Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Paulina Wojtyła-Buciora
- The President Stanisław Wojciechowski State University of Applied Sciences, 62-800 Kalisz, Poland;
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| |
Collapse
|
27
|
Chen K, Geng H, Liang W, Liang H, Wang Y, Kong J, Zhang J, Liang Y, Chen Z, Li J, Chang YN, Li J, Xing G, Xing G. Modulated podosome patterning in osteoclasts by fullerenol nanoparticles disturbs the bone resorption for osteoporosis treatment. NANOSCALE 2020; 12:9359-9365. [PMID: 32315013 DOI: 10.1039/d0nr01625j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Overactivation and excessive differentiation of osteoclasts (OCs) has been implicated in the course of bone metabolism-related diseases. Although fullerenol nanoparticles (fNPs) have been suggested to inhibit OC differentiation and OC function in our previous work, systemic studies on the effect of fNPs on bone diseases, e.g., osteoporosis (OP), in vivo remain elusive. Herein, it is demonstrated that fNPs significantly suppress the differentiation of OCs that derived from the murine bone marrow monocytes and inhibit the formation of the sealing zone by blocking the formation and patterning of podosomes in OCs spatiotemporally. In vivo, fNPs are supposed to be an efficient inhibitor of the overactivation of OCs in a LPS-induced bone erosion mouse model. The therapeutic effect of fNPs on osteoporosis is also investigated in an ovariectomy-induced osteoporosis rat model. The well-organized trabecular bone, the reduction in the number of TRAP positive cells, the improvement of bone-associated parameters, and the mechanical properties all demonstrate that fNPs, similar to diphosphonates, can be a promising candidate for the effective treatment of osteoporosis.
Collapse
Affiliation(s)
- Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huan Geng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, P.R. China.
| | - Wei Liang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, P.R. China.
| | - Haojun Liang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, P.R. China.
| | - Yujiao Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jianglong Kong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jiaxin Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuelan Liang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Ziteng Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiacheng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China. and University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ya-Nan Chang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Gengyan Xing
- Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, P.R. China.
| | - Gengmei Xing
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
28
|
Irreversible disruption of the cytoskeleton as induced by non-cytotoxic exposure to titanium dioxide nanoparticles in lung epithelial cells. Chem Biol Interact 2020; 323:109063. [PMID: 32224134 DOI: 10.1016/j.cbi.2020.109063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Exposure to TiO2 NPs induces several cellular alterations after NPs uptake including disruption of cytoskeleton that is crucial for lung physiology but is not considered as a footprint of cell damage. We aimed to investigate cytoskeleton disturbances and the impact on cell migration induced by an acute TiO2 NPs exposure (24 h) and the recovery capability after 6 days of NPs-free treatment, which allowed investigating if cytoskeleton damage was reversible. Exposure to TiO2 NPs (10 μg/cm2) for 24 h induced a decrease 20.2% and 25.1% in tubulin and actin polymerization. Exposure to TiO2 NPs (10 μg/cm2) for 24 h followed by 6 days of NPs-free had a decrease of 26.6% and 21.3% in tubulin and actin polymerization, respectively. The sustained exposure for 7 days to 1 μg/cm2 and 10 μg/cm2 induced a decrease of 22.4% and 30.7% of tubulin polymerization respectively, and 28.7% and 46.2% in actin polymerization. In addition, 24 h followed 6 days of NPs-free exposure of TiO2 NPs (1 μg/cm2 and 10 μg/cm2) decreased cell migration 40.7% and 59.2%, respectively. Cells exposed (10 μg/cm2) for 7 days had a decrease of 65.5% in cell migration. Ki67, protein surfactant B (SFTPB) and matrix metalloprotease 2 (MMP2) were analyzed as genes related to lung epithelial function. The results showed a 20% of Ki67 upregulation in cells exposed for 24 h to 10 μg/cm2 TiO2 NPs while a downregulation of 20% and 25.8% in cells exposed to 1 μg/cm2 and 10 μg/cm2 for 24 h followed by 6 days of NPs-free exposure. Exposure to 1 μg/cm2 and 10 μg/cm2 for 24 h and 7 days upregulates SFTPB expression in 53% and 59% respectively, MMP2 expression remain unchanged. In conclusion, exposure of TiO2 NPs affected cytoskeleton of lung epithelial cells irreversibly but this damage was not cumulative.
Collapse
|
29
|
Jung DW, Ro HJ, Kim J, Kim SI, Yi GR, Lee G, Jun S. Biophysical restriction of growth area using a monodispersed gold sphere nanobarrier prolongs the mitotic phase in HeLa cells. RSC Adv 2019; 9:37497-37506. [PMID: 35542263 PMCID: PMC9075507 DOI: 10.1039/c9ra08410j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles are widely exploited for biological and biotechnical applications owing to their stability, biocompatibility, and known effects on cellular behaviors. Many studies have focused on nanoparticles that are internalized into cells, but extracellular nanoparticles also can regulate cell behavior, a practice known as in-plane surface nanotopography. We demonstrated that nanobarriers composed of morphologically homogeneous gold nanospheres prolonged the mitotic (M) phase in the cervical cancer cell line HeLa without inducing apoptosis. The nanobarrier was formed by electrostatic deposition of nanospheres on a negatively charged, fibronectin-coated substrate. We tested the effects of differently sized nanospheres. Gold nanospheres 42 nm in diameter were found to be non-toxic, while 111 nm nanospheres induced the production of reactive oxygen species, resulting in apoptotic cell death and arrest of cytokinesis. When exposed to sufficient 83 nm gold nanospheres to fabricate a surface nanobarrier, the M phase was delayed but cells proceeded to cytokinesis and the G1 phase. Live-cell imaging showed that the M phase increased by 2.9 h, 2.4 times longer than in control cells. Biophysical analyses indicated that this could be attributed to the specific size of the nanobarrier that physically limited the growth area around the cell.
Collapse
Affiliation(s)
- Dae-Woong Jung
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Department of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyun-Joo Ro
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Bio-Analytical Science, University of Science & Technology Daejeon 34113 Republic of Korea
| | - Junmin Kim
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Department of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Bio-Analytical Science, University of Science & Technology Daejeon 34113 Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Gaehang Lee
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
| | - Sangmi Jun
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Bio-Analytical Science, University of Science & Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
30
|
Wang S, Shao J, Li Z, Ren Q, Yu XF, Liu S. Black Phosphorus-Based Multimodal Nanoagent: Showing Targeted Combinatory Therapeutics against Cancer Metastasis. NANO LETTERS 2019; 19:5587-5594. [PMID: 31260628 DOI: 10.1021/acs.nanolett.9b02127] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In breast cancer chemophotothermal therapy, it is a great challenge for the development of multifunctional nanoagents for precision targeting and the effective treatment of tumors, especially for metastasis. Herein, we successfully design and synthesize a multifunctional black phosphorus (BP)-based nanoagent, BP/DTX@PLGA, to address this challenge. In this composite nanoagent, BP quantum dots (BPQDs) are loaded into poly(lactic-co-glycolic acid) (PLGA) with additional conjugation of a chemotherapeutic agent, docetaxel (DTX). The in vivo distribution results demonstrate that BP/DTX@PLGA shows striking tropism for targeting both primary tumors and lung metastatic tumors. Moreover, BP/DTX@PLGA exhibits outstanding controllable chemophotothermal combinatory therapeutics, which dramatically improves the efficacy of photothermal tumor ablation when combined with near-light irradiation. Mechanistically, accelerated DTX release from the nanocomplex upon heating and thermal treatment per se synergistically incurs apoptosis-dependent cell death, resulting in the elimination of lung metastasis. Meanwhile, in vitro and in vivo results further confirm that BP/DTX@PLGA possesses good biocompatibility. This study provides a promising BP-based multimodal nanoagent to constrain cancer metastasis.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jundong Shao
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Zhibin Li
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xue-Feng Yu
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
31
|
Li J, Chen L, Su H, Yan L, Gu Z, Chen Z, Zhang A, Zhao F, Zhao Y. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. NANOSCALE 2019; 11:14528-14539. [PMID: 31364651 DOI: 10.1039/c9nr04129j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, cancer continues to afflict humanity. The direct destruction and killing of tumor cells by surgery, radiation and chemotherapy gives rise to many side effects and compromised efficacy. Encouragingly, the rapid development of nanotechnology offers attractive opportunities to revolutionize the current situation of cancer therapy. Metallofullerenol Gd@C82(OH)22, in contrast to chemotherapeutics that directly kill tumor cells, demonstrates anti-tumor behavior with high efficiency and low toxicity by modulating the tumor microenvironment. Furthermore, Gd@C82(OH)22 has been recently reported to specifically target cancer stem cells. In this review, we give a concise introduction to the development of the fullerene family and then report the anti-tumor activity of Gd@C82(OH)22 based on its unique physicochemical characteristics, followed by a comprehensive summary of the anti-tumor biological mechanisms which target different components of the tumor microenvironment as well as the biodistribution and toxicity of Gd@C82(OH)22. Finally, we describe Gd@C82(OH)22 as a "particulate medicine" to highlight its distinctions from conventional "molecular medicine", with considerable emphasis on the advantages of nanomedicine. The in-depth investigation of Gd@C82(OH)22 undoubtedly provides a constructive reference for the development of other nanomedicines, especially in the fullerene family. The application of nanotechnology in the medical field definitely provides a promising and favorable future for improving the current status of cancer therapy.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sharma A, McCarron P, Matchett K, Hawthorne S, El-Tanani M. Anti-Invasive and Anti-Proliferative Effects of shRNA-Loaded Poly(Lactide-Co-Glycolide) Nanoparticles Following RAN Silencing in MDA-MB231 Breast Cancer Cells. Pharm Res 2018; 36:26. [PMID: 30560466 PMCID: PMC6297200 DOI: 10.1007/s11095-018-2555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Overexpression of the RAN GTP (RAN) gene has been shown to be linked to metastatic activity of MDA-MB231 human breast cancer cells by increasing Ras/MEK/ERK and PI3K/Akt/mTORC1 signalling. The aim of this study was to investigate the potential of polymeric nanoparticles to deliver two novel shRNA sequences, targeted against the RAN gene, to MDA-MB231 cells grown in culture and to assess their effects in a range of biological assays. METHODS Biodegradable PLGA nanoparticles, loaded with shRNA-1 and shRNA-4, were fabricated using a double emulsion solvent evaporation technique and characterised for size, zeta potential and polydispersity index before testing on the MDA-MB231 cell line in a range of assays including cell viability, migration, invasion and gene knock down. RESULTS shRNA-loaded nanoparticles were successfully fabricated and delivered to MDA-MB231 cells in culture, where they effectively released their payload, causing a decrease in both cell invasion and cell migration by knocking down RAN gene expression. CONCLUSION Results indicate the anti-RAN shRNA-loaded nanoparticles deliver and release biological payload to MDA-MB231 cells in culture. This works paves the way for further investigations into the possible use of anti-RAN shRNA-loaded NP formulations for the treatment of breast cancer in vivo.
Collapse
Affiliation(s)
- Ankur Sharma
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Kyle Matchett
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, ICT building, University of Bradford, Richmond Road, Bradford, England, BD7 1DP, UK
| |
Collapse
|
33
|
Deng X, Xiong F, Li X, Xiang B, Li Z, Wu X, Guo C, Li X, Li Y, Li G, Xiong W, Zeng Z. Application of atomic force microscopy in cancer research. J Nanobiotechnology 2018; 16:102. [PMID: 30538002 PMCID: PMC6288943 DOI: 10.1186/s12951-018-0428-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022] Open
Abstract
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research.
Collapse
Affiliation(s)
- Xiangying Deng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Department of Chemistry, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|