1
|
Liu X, Pan X. ALKBH3-mediated m1A demethylation promotes the malignant progression of acute myeloid leukemia by regulating ferroptosis through the upregulation of ATF4 expression. Hematology 2025; 30:2451446. [PMID: 39803678 DOI: 10.1080/16078454.2025.2451446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 05/02/2025] Open
Abstract
To investigate the role of ALKBH3 in acute myeloid leukemia (AML), we constructed an animal model of xenotransplantation of AML. Our study demonstrated that ALKBH3-mediated m1A demethylation inhibits ferroptosis in KG-1 cells by increasing ATF4 expression, thus promoting the development of AML. These findings suggest that reducing ALKBH3 expression may be a potential strategy to mitigate AML progression. Background: Acute myeloid leukemia (AML) is characterized by the unrestrained proliferation of myeloid cells. Studies have shown that ALKBH3 is upregulated in most tumors, but the role of ALKBH3 in AML remains unclear.Methods: In this study, we investigated the function of ALKBH3 in AML cells (KG-1) by immunofluorescence, ELISA, flow cytometry, HE staining, and Western blotting.Results: Our results revealed that ALKBH3 is upregulated in AML and that the downregulation of ALKBH3 inhibited KG-1 cell proliferation and promoted cell apoptosis; at the same time, ALKBH3 upregulated ATF4 expression through m1A demethylation, and the knockdown of ATF4 resulted in increased ferrous iron content; TFR1, ACSL4, and PTGS2 expression; and ROS and MDA levels, whereas SOD and GSH levels and the expression levels of ATF4, SLC7A11, GPX4, and FTH1 decreased in KG-1 cells, thereby promoting ferroptosis. Mechanistically, ALKBH3-mediated m1A demethylation suppressed ferroptosis in KG-1 cells by increasing ATF4 expression, thereby promoting the development of AML.Conclusions: Our study indicated that reducing the expression of ALKBH3 might be a potential target for improving AML symptoms.
Collapse
Affiliation(s)
- Xin Liu
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
2
|
Ahmad I, Hussein A, Kanabar B, Kumar A, Ramachandran T, Shankhyan A, Karthikeyan A, Thatoi DN, Aminov Z, Soleimani Samarkhazan H, Jafari Z. “Mesenchymal stem cell-derived exosomes (MSC-exosomes) in hematology: From mechanisms to clinical breakthroughs”. Cell Immunol 2025; 414:104986. [DOI: 10.1016/j.cellimm.2025.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
|
3
|
Zhu Y, Zhang J, Zhao X, Guo M, Chen C, Zhou Y, Xu L. MicroRNA-7 as a multifaceted regulator of tumor glycolytic metabolism: Mechanistic insights and therapeutic perspectives. Pharmacol Res 2025; 218:107822. [PMID: 40518088 DOI: 10.1016/j.phrs.2025.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/29/2025] [Accepted: 06/09/2025] [Indexed: 06/22/2025]
Abstract
Aberrant glycolysis is a hallmark of tumor and a key oncogenic driver. However, the complex regulatory networks and dynamic signaling interactions governing glycolysis within the tumor microenvironment (TME) remain incompletely understood, posing significant challenges for developing targeted metabolic therapies. MicroRNA-7 (miR-7), a highly conserved non-coding RNA, is broadly expressed across tissues and plays pivotal roles in development, immune regulation, and disease pathogenesis, including tumor. Recent evidence positions miR-7 as a multifaceted regulator of tumor glycolysis, capable of modulating glucose metabolism through diverse mechanisms. miR-7 inhibits glucose uptake and glycolytic flux in tumor cells by directly targeting glucose transporters and glycolytic enzymes. Additionally, it influences key signaling pathways that govern the expression of glycolysis-related genes. Notably, miR-7 regulates the HIF-1α/ENO2 axis and impacts immune checkpoint expression, such as PD-L1, thereby reshaping the immunosuppressive TME and facilitating metabolic-immune crosstalk. These findings underscore the unique role of miR-7 in tumor metabolic regulation and its potential as a therapeutic target. This review provides a comprehensive overview of the molecular mechanisms by which miR-7 modulates tumor glycolysis, offering new insights into tumorigenesis and informing the development of precision oncology strategies. We also highlight unresolved questions and future directions, including the potential of miR-7-based combinatorial approaches targeting metabolic and immune pathways in tumor.
Collapse
Affiliation(s)
- Yiling Zhu
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jiayi Zhang
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Xu Zhao
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Chao Chen
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| | - Ya Zhou
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China.
| | - Lin Xu
- Key Laboratory of Cancer Prevention and Treatment of Guizhou province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| |
Collapse
|
4
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Ni J, Yan D, Lu S, Xie Z, Liu Y, Zhang X. MiRS-HF: A Novel Deep Learning Predictor for Cancer Classification and miRNA Expression Patterns. IEEE J Biomed Health Inform 2025; 29:679-689. [PMID: 39383085 DOI: 10.1109/jbhi.2024.3476672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Cancer classification and biomarker identification are crucial for guiding personalized treatment. To make effective use of miRNA associations and expression data, we have developed a deep learning model for cancer classification and biomarker identification. We propose an approach for cancer classification called MiRNA Selection and Hybrid Fusion (MiRS-HF), which consists of early fusion and intermediate fusion. The early fusion involves applying a Layer Attention Graph Convolutional Network (LAGCN) to a miRNA-disease heterogeneous network, resulting in a miRNA-disease association degree score matrix. The intermediate fusion employs a Graph Convolutional Network (GCN) in the classification tasks, weighting the expression data based on the miRNA-disease association degree score. Furthermore, MiRS-HF can identify the important miRNA biomarkers and their expression patterns. The proposed method demonstrates superior performance in the classification tasks of six cancers compared to other methods. Simultaneously, we incorporated the feature weighting strategy into the comparison algorithm, leading to a significant improvement in the algorithm's results, highlighting the extreme importance of this strategy.
Collapse
|
6
|
Wang N, Ma F, Song H, He N, Zhang H, Li J, Liu Q, Xu C. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy. Cell Transplant 2025; 34:9636897241311019. [PMID: 39780320 PMCID: PMC11713979 DOI: 10.1177/09636897241311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage. There is an urgent need for developing medical countermeasures against radiation injury for tissue repair. Tissue repair involves the regeneration, proliferation, differentiation, and migration of tissue cells; imbalance of local tissue homeostasis, progressive chronic inflammation; decreased cell activity and stem cell function; and wound healing. Although many clinical treatments are currently available for tissue repair, they are expensive. The long recovery time and some unavoidable complications such as cell damage and the inflammatory reaction caused by radiotherapy have led to unsatisfactory results. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have similar tissue repair functions as MSCs. In tissue damage, EVs can be used as an alternative to stem cell therapy, thereby avoiding related complications such as immunological rejection. EVs play a major role in regulating tissue damage, anti-inflammation, pro-proliferation, and immune response, thus providing a diversified and efficient solution for the repair of disease- and radiotherapy-induced tissue damage. This article reviews the research progress of mesenchymal stem cell-derived EVs in promoting the repair of tissue including heart, lung, liver, intestine, skin, blood system, central nervous system, and tissue damage caused by radiotherapy, thereby aiming to offer new directions and ideas for the radiotherapy and regenerative applications.
Collapse
Affiliation(s)
- Ning Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Feifei Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Huanteng Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jianguo Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Qiang Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
7
|
Shangguan X, Huang Y, Chen C, Wu W, Ma X, You C, Chen L, Huang J. Prognostic assessment value of immune escape-related genes in patients with acute myeloid leukemia. Leuk Lymphoma 2025; 66:72-83. [PMID: 39311489 DOI: 10.1080/10428194.2024.2404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Abstract
This study explores the prognostic value of immune escape-related genes in acute myeloid leukemia (AML) patients. Using TARGET_AML and GSE37642 datasets, we identified CEP55, DNAJC13, and EMC2 as significant prognostic indicators, with high transcript abundance correlating with poor outcomes. Consensus clustering divided patients into two groups, with Cluster 1 showing worse prognosis. A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the high-risk group experiencing worse outcomes. The risk score was an independent prognostic factor. Functional analysis revealed that high-risk genes could promote cell cycle progression. The selected genes were strongly associated with immune cells, particularly mast cells and CD8+ T cells. This study enriches the prognostic evaluation system for AML and suggests a new therapeutic direction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Female
- Male
- Tumor Escape/genetics
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiaohui Shangguan
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanhong Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Congjie Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihao Wu
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaomei Ma
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chongdeng You
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Longtian Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jianqing Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
8
|
Jalilivand S, Nabigol M, Bakhtiyaridovvombaygi M, Gharehbaghian A. Bone marrow mesenchymal stem cell exosomes suppress JAK/STAT signaling pathway in acute myeloid leukemia in vitro. Blood Res 2024; 59:43. [PMID: 39704857 PMCID: PMC11662102 DOI: 10.1007/s44313-024-00051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Despite advances in the treatment of acute myeloid leukemia (AML), refractory forms of this malignancy and relapse remain common. Therefore, development of novel, synergistic targeted therapies are needed urgently. Recently, mesenchymal stem cells (MSCs) have been shown to be effective in treating various diseases, with most of their therapeutic outcomes attributed to their exosomes. In the current study, we investigated the effects of bone marrow mesenchymal stem cell (BM-MSC) exosomes on the expression of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling genes involved in AML pathogenesis. MATERIAL AND METHODS Exosomes were isolated from BM-MSCs and confirmed using transmission electron microscopy, dynamic light scattering, and flow cytometry. Subsequently, the exosome concentration was estimated using the bicinchoninic acid assay, and HL-60 cells were cocultured with 100 µg/mL of BM-MSC exosomes. Finally, the JAK2, STAT3, and STAT5 expression levels were analyzed using qRT-PCR. RESULTS The exosome characterization results confirmed that most isolated nanoparticles exhibited a round morphology, expressed CD9, CD63, and CD81, which are specific protein markers for exosome identification, and ranged between 80 and 100 nm in diameter. Furthermore, qRT-PCR analysis revealed a significant downregulation of JAK2, STAT3, and STAT5 in HL-60 cells treated with 100 μg/mL of BM-MSC exosomes. CONCLUSION Since JAK/STAT signaling contributes to AML survival, our findings suggest that the downregulation of JAK/STAT genes by BM-MSC exosomes in leukemic cells may aid in designing a potent therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Sahar Jalilivand
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Jiang Y, Gao X, Zheng X, Lu Y, Zhang M, Yan W, Pan W, Li H, Zhang Y. Recent research progress on microRNAs from mesenchymal stem cell-derived exosomes for tumor therapy: A review. J Cancer Res Ther 2024; 20:1974-1982. [PMID: 39792406 DOI: 10.4103/jcrt.jcrt_540_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/28/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo). However, the role of MSC-Exo vesicles in tumors remains controversial. This review discusses the potential applications of microRNAs in exosomes derived from MSCs in treating tumors.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Gao
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xuezhen Zheng
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Lu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Minghan Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenxuan Yan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wentao Pan
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hengli Li
- Emergency Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yueying Zhang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
- Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Wang F. Mechanism of bone-marrow mesenchymal stem cell-derived exosomes mediating microRNA-139-5p to regulate β-catenin in the modulation of proliferation and apoptosis of acute myeloid leukemia cells. Hematology 2024; 29:2428482. [PMID: 39570105 DOI: 10.1080/16078454.2024.2428482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE Acute myeloid leukemia (AML) stands out as a malignancy of the stem cell precursors of the myeloid lineage. Bone-marrow mesenchymal stem cell-derived exosomes (BMSC-exos) affect AML progression. We explored the effects and mechanism of BMSC-exos on AML cell proliferation and apoptosis. METHODS Human AML cells (MOLM-16, MV-4-11) and normal human hematopoietic cells (GM12878) cultured in vitro were treated with exos extracted from BMSCs that transfected with microRNA (miR)-139-5p-mimics, ovβ-catenin, or miR-139-5p-inhibitor. BMSC morphology was observed by a microscopy, and its adipogenic and osteogenic differentiation abilities were assessed by oil red O staining and alizarin red S staining. BMSC-exos were extracted by ultracentrifugation, and their morphology was observed by a transmission electron microscopy. BMSC-exos were identified by nanoparticle tracking analysis and Western blot. The binding sites between miR-139-5p and β-catenin were predicted by TargetScan database, and then validated by dual-luciferase reporter assay. mRNA levels of miR-139-5p and β-catenin, cell proliferation, and apoptosis were evaluated by RT-qPCR, CCK-8, and flow cytometry. The expressions of CD63, CD81, TSG101, and GRP94 and the proteins of β-catenin, Bax, and Bcl-2 were determined by Western blot. RESULTS miR-139-5p was poorly expressed in AML cell lines. miR-139-5p overexpression reduced AML cell viability/proliferation/Bcl-2 level, and raised apoptosis/Bax level. BMSC-exos repressed AML cell proliferation and promoted apoptosis via miR-139-5p. miR-139-5p targeted to inhibit β-catenin expression. Subsequently, up-regulated β-catenin partially counteracted the effects of miR-139-5p in BMSC-exos on AML cell proliferation and apoptosis. CONCLUSION BMSC-exos targeted to repress β-catenin expression by miR-139-5p, limited AML cell proliferation and facilitated apoptosis.
Collapse
Affiliation(s)
- Fen Wang
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Mirzaei Z, Barati T, Ebrahimi A, Derakhshan SM, Khaniani MS. The role of mir-7-5p in cancer: function, prognosis, diagnosis, and therapeutic implications. Mol Biol Rep 2024; 52:12. [PMID: 39585455 DOI: 10.1007/s11033-024-10107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
One of the important and conserved microRNAs (miRNAs), miR-7-5p, is involved in several pathological mechanisms, including cell proliferation, apoptosis, migration, and metastasis. Dysregulation of this miRNA's expression is correlated with multiple diseases, especially cancer. Its role as a tumor suppressor has been demonstrated in various types of cancer, such as colorectal cancer, lung cancer, bladder cancer, breast cancer, and glioblastoma. Furthermore, several studies have highlighted the prognostic and diagnostic value of this miRNA, which could be valuable for the diagnosis and treatment of certain disorders. We present an overview of the latest findings regarding miR-7-5p's role in the development of cancer, its action mechanisms, and expression, based on in vivo, in vitro, and human research. Additionally, we discuss the function of miR-7-5p as a prognostic biomarker in cancer and explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zohreh Mirzaei
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Barati
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
12
|
Gil-Kulik P, Kluz N, Przywara D, Petniak A, Wasilewska M, Frączek-Chudzik N, Cieśla M. Potential Use of Exosomal Non-Coding MicroRNAs in Leukemia Therapy: A Systematic Review. Cancers (Basel) 2024; 16:3948. [PMID: 39682135 DOI: 10.3390/cancers16233948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies. Despite the enormous progress that has been made in the field of hemato-oncology in recent years, there are still many problems related to, among others, disease recurrence and drug resistance, which is why the search for ideal biomarkers with high clinical utility continues. Research shows that exosomes play a critical role in the biology of leukemia and are associated with the drug resistance, metastasis, and immune status of leukemias. Exosomes with their cargo of non-coding RNAs act as a kind of intermediary in intercellular communication and, at the same time, have the ability to manipulate the cell microenvironment and influence the reaction, proliferative, angiogenic, and migratory properties of cells. Exosomal ncRNAs (in particular, circRNAs and microRNAs) appear to be promising cell-free biomarkers for diagnostic, prognostic, and treatment monitoring of leukemias. This review examines the expression of exosomal ncRNAs in leukemias and their potential regulatory role in leukemia therapy but also in conditions such as disease relapse, drug resistance, metastasis, and immune status. Given the key role of ncRNAs in regulating gene networks and intracellular pathways through their ability to interact with DNA, transcripts, and proteins and identifying their specific target genes, defining potential functions and therapeutic strategies will provide valuable information.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Natalia Kluz
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Natalia Frączek-Chudzik
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
13
|
Zhang Y, Bai J, Xiao B, Li C. BMSC-derived exosomes promote osteoporosis alleviation via M2 macrophage polarization. Mol Med 2024; 30:220. [PMID: 39563244 PMCID: PMC11577737 DOI: 10.1186/s10020-024-00904-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoporosis is characterized by reduced bone mass due to imbalanced bone metabolism. Exosomes derived from bone mesenchymal stem cells (BMSCs) have been shown to play roles in various diseases. This study aimed to clarify the regulatory function and molecular mechanism of BMSCs-derived exosomes in osteogenic differentiation and their potential therapeutic effects on osteoporosis. Exosomes were extracted from BMSCs. Bone marrow-derived macrophages (BMDMs) were cultured and internalized with BMSCs-derived exosomes. Real-time quantitative PCR was used to detect the expression of macrophage surface markers and tripartite motif (TRIM) family genes. BMDMs were co-cultured with human osteoblasts to assess osteogenic differentiation. Western blot was performed to analyze the ubiquitination of triggering receptor expressed on myeloid cell 1 (TREM1) mediated by TRIM25. An ovariectomized mice model was established to evaluate the role of TRIM25 and exosomes in osteoporosis. Exosomes were successfully isolated from BMSCs. BMSCs-derived exosomes upregulated TRIM25 expression, promoting M2 macrophage polarization and osteogenic differentiation. TRIM25 facilitated the ubiquitination and degradation of TREM1. Overexpression of TREM1 reversed the enhanced M2 macrophage polarization and osteogenic differentiation caused by TRIM25 overexpression. TRIM25 enhanced the protective effect of BMSCs-derived exosomes against bone loss in mice. These findings suggested that BMSCs-derived exosomes promoted osteogenic differentiation by regulating M2 macrophage polarization through TRIM25-mediated ubiquitination and degradation of TREM1. This mechanism might provide a novel approach for treating osteoporosis.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Spine Surgery, National Center for Orthopaedics, Capital Medical University Affiliated Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Jing Bai
- Department of Trauma and Joint, The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Bin Xiao
- Department of Spine Surgery, National Center for Orthopaedics, Capital Medical University Affiliated Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Chunyan Li
- Department of Clinial Laboratory, Capital Medical University Affiliated Beijing Jishuitan Hospital, Xinjiekou No. 31 East Street, Xicheng District, Beijing, 100035, People's Republic of China.
| |
Collapse
|
14
|
Zhang H, Xia J, Wang X, Wang Y, Chen J, He L, Dai J. Recent Progress of Exosomes in Hematological Malignancies: Pathogenesis, Diagnosis, and Therapeutic Strategies. Int J Nanomedicine 2024; 19:11611-11631. [PMID: 39539968 PMCID: PMC11559222 DOI: 10.2147/ijn.s479697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Hematological malignancies originate from the hematopoietic system, including lymphoma, multiple myeloma, leukaemia, etc. They are highly malignant with a high incidence, a poor prognosis and a high mortality. Although the novel therapeutic strategies have partly improved the clinical efficacy of hematological malignancies, patients still face up with drug resistance, refractory disease and disease relapse. Many studies have shown that exosomes play an important role in hematological malignancies. Exosomes are nanoscale vesicles secreted by cells with a size ranging from 40 to 160 nm. They contain various intracellular components such as membrane proteins, lipids, and nucleic acids. These nanoscale vesicles transmit information between cells with the cargos. Thus, they participate in a variety of pathological processes such as angiogenesis, proliferation, metastasis, immunomodulation and drug resistance, which results in important role in the pathogenesis and progression of hematological malignancies. Furthermore, exosomes and the components carried in them can be used as potential biomarkers for the diagnosis, therapeutic sensitivity and prognosis in hematological malignancies. In the therapy of hematologic malignancies, certain exosome are potential to be used as therapeutic targets, meanwhile, exosomes are suitable drug carriers with lipid bilayer membrane and the nanostructure. Moreover, the tumor-derived exosomes of patients with hematologic malignancies can be developed into anti-tumor vaccines. The research and application of exosomes in hematological malignancies are summarized and discussed in this review.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jingyi Xia
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xueqing Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yifan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jie Chen
- Central Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jingying Dai
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| |
Collapse
|
15
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024; 103:4375-4400. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
16
|
Zhang X, Liang Y, Luo D, Li P, Chen Y, Fu X, Yue Y, Hou R, Liu J, Wang X. Advantages and disadvantages of various hydrogel scaffold types: A research to improve the clinical conversion rate of loaded MSCs-Exos hydrogel scaffolds. Biomed Pharmacother 2024; 179:117386. [PMID: 39241570 DOI: 10.1016/j.biopha.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes(MSCs-Exos) offer promising therapeutic potential for a wide range of tissues and organs such as bone/cartilage, nerves, skin, fat, and endocrine organs. In comparison to the application of mesenchymal stem cells (MSCs), MSCs-Exos address critical challenges related to rejection reactions and ethical concerns, positioning themselves as a promising cell-free therapy. As exosomes are extracellular vesicles, their effective delivery necessitates the use of carriers. Consequently, the selection of hydrogel materials as scaffolds for exosome delivery has become a focal point of contemporary research. The diversity of hydrogel scaffolds, which can take various forms such as injectable types, dressings, microneedles, and capsules, leads to differing choices among researchers for treating diseases within the same domain. This variability in hydrogel materials poses challenges for the translation of findings into clinical practice. The review highlights the potential of hydrogel-loaded exosomes in different fields and introduces the advantages and disadvantages of different forms of hydrogel applications. It aims to provide a multifunctional and highly recognized hydrogel scaffold option for tissue regeneration at specific sites, improve clinical translation efficiency, and benefit the majority of patients.
Collapse
Affiliation(s)
- Xinyao Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yi Liang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Dongmei Luo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Peiwen Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yurou Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xinyu Fu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yingge Yue
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ruxia Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Junyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiangyu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
17
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Wu X, Sun X, Deng W, Xu R, Zhao Q. Combination therapy of targeting CD20 antibody and immune checkpoint inhibitor may be a breakthrough in the treatment of B-cell lymphoma. Heliyon 2024; 10:e34068. [PMID: 39130438 PMCID: PMC11315150 DOI: 10.1016/j.heliyon.2024.e34068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/20/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Background CD20 is a membrane protein extensively expressed on the surface of B cells at various stages of development and differentiation. Herein, we conducted a bibliometrics analysis of the literature on CD20-targeting antibody therapy in lymphoma. Methods A total of 6663 articles were downloaded from the web of science core collection (WOSCC) from 1999 to July 23, 2022. Bibliometric.com was used for citation and annual publications analysis. VOSviewer was used to map countries/institutions/authors/journals nodes and links, extract hotspot keywords, and analyze the time trend of keywords. Citespace was employed to recognize the turning points based on the centrality value of countries, define the topic distribution of academics according to the map of dual-map overlay of journals, and characterize the emerging topics or landmark articles in a field based on references citation bursts. Results All articles were cited 225,032 times, averaging 33.77. The number of articles increased from 1999 to 2002, while the growth rate entered the platform after 2002. The USA was the most publication country, and China was the largest emerging country. Hotspots in this field still focus on the efficacy of rituximab in treating non-Hodgkin's lymphoma and the pathogenesis of lymphoma Application of generation CD-20 antibodies or molecule inhibitors in clinical research and cellular therapy/immunotherapy, such as CAR-T and PDL1/PD1 were the emerging research topics. Conclusion This study provides essential information and the tendency of the CD20-targeting antibody therapy in lymphoma by using bibliometric and visual methods, which would provide helpful references for clinical experiments and basic scientific research.
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiaoying Sun
- School of Nursing, Sun Yat-sen University, Guangzhou, 528406, China
- The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), Changde, 415003, Hunan, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, 545026, China
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, China
| |
Collapse
|
19
|
Yang B, Dai M. High-dimensional deconstruction of ovarian cancer at single-cell precision reveals HEBP2 that reshape the TIME and drive carboplatin resistance. Transl Oncol 2024; 44:101917. [PMID: 38554571 PMCID: PMC10998197 DOI: 10.1016/j.tranon.2024.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Single-cell sequencing was employed to analyze the tumor immune microenvironment in ovarian cancer (OC) patients, exploring the evolutionary roles of various macrophage subgroups in OC progression and their correlation with fatty acid metabolism-related genes in contributing to drug resistance. METHODS This study aimed to decipher the mechanisms underlying OC chemoresistance (OC-CR) and carboplatin resistance by integrating and analyzing multiple single-cell RNA sequencing datasets from OC patients. The tumor immune microenvironment in OC-CR patients exhibited notable alterations in cellular interactions and the proportions of different immune cell populations, in contrast to the cohort sensitive to OC chemotherapy. RESULTS The study demonstrates that the fatty acid-associated gene HEBP2 not only accelerates OC progression but also modifies the immune landscape of OC, driving the polarization from M0_TAM to M2_TAM. This shift results in a diminished efficacy of chemotherapy in OC. Furthermore, both in vitro and in vivo experiments underscored HEBP2's role in boosting the proliferation of OC-resistant cell lines and suppressing apoptosis, thereby facilitating carboplatin resistance. CONCLUSION In conclusion, the immune microenvironments of OC-CR significantly differ from those sensitive to chemotherapy, underscoring HEBP2's role in fostering OC resistance. This establishes HEBP2 as a promising prognostic marker and a novel target for therapeutic strategies against OC resistance.
Collapse
Affiliation(s)
- BiKang Yang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
20
|
Jalilivand S, Izadirad M, Vazifeh Shiran N, Gharehbaghian A, Naserian S. The effect of bone marrow mesenchymal stromal cell exosomes on acute myeloid leukemia's biological functions: a focus on the potential role of LncRNAs. Clin Exp Med 2024; 24:108. [PMID: 38777995 PMCID: PMC11111499 DOI: 10.1007/s10238-024-01364-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia represents a group of malignant blood disorders that originate from clonal over-proliferation and the differentiation failure of hematopoietic precursors, resulting in the accumulation of blasts in the bone marrow. Mesenchymal stromal cells (MSCs) have been shown to exert diverse effects on tumor cells through direct and indirect interaction. Exosomes, as one of the means of indirect intercellular communication, are released from different types of cells, including MSCs, and their various contents, such as lncRNAs, enable them to exert significant impacts on target cells. Our study aims to investigate the effects of BM-MSC exosomes on the cellular and molecular characterization of HL-60 AML cells, particularly detecting the alterations in the expression of lncRNAs involved in AML leukemogenesis, cell growth, drug resistance, and poor prognosis. BM-MSCs were cultured with serum-free culture media to isolate exosomes from their supernatants. The validation of exosomes was performed in three stages: morphological analysis using TEM, size evaluation using DLS, and CD marker identification using flow cytometry. Subsequently, the HL-60 AML cells were treated with isolated BM-MSC exosomes to determine the impact of their contents on leukemic cells. Cell metabolic activity was evaluated by the MTT assay, while cell cycle progression, apoptosis, ROS levels, and proliferation were assessed by flow cytometry. Furthermore, RT-qPCR was conducted to determine the expression levels of lncRNAs and apoptosis-, ROS-, and cell cycle-related genes. MTT assay and flow cytometry analysis revealed that BM-MSC exosomes considerably suppressed cell metabolic activity, proliferation, and cell cycle progression. Also, these exosomes could effectively increase apoptosis and ROS levels in HL-60 cells. The expression levels of p53, p21, BAX, and FOXO4 were increased, while the BCL2 and c-Myc levels decreased. MALAT1, HOTAIR, and H19 expression levels were also significantly decreased in treated HL-60 cells compared to their untreated counterparts. BM-MSC exosomes suppress cell cycle progression, proliferation, and metabolic activity while simultaneously elevating the ROS index and apoptosis ratio in HL-60 cells, likely by reducing the expression levels of MALAT1, HOTAIR, and H19. These findings suggest that BM-MSC exosomes might serve as potential supportive therapies for leukemia.
Collapse
Affiliation(s)
- Sahar Jalilivand
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Izadirad
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Vazifeh Shiran
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
21
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
22
|
He S, Zhao Z. Genetically engineered cell-derived nanovesicles for cancer immunotherapy. NANOSCALE 2024; 16:8317-8334. [PMID: 38592744 PMCID: PMC11075450 DOI: 10.1039/d3nr06565k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The emergence of immunotherapy has marked a new epoch in cancer treatment, presenting substantial clinical benefits. Extracellular vesicles (EVs), as natural nanocarriers, can deliver biologically active agents in cancer therapy with their inherent biocompatibility and negligible immunogenicity. However, natural EVs have limitations such as inadequate targeting capability, low loading efficacy, and unpredictable side effects. Through progress in genetic engineering, EVs have been modified for enhanced delivery of immunomodulatory agents and antigen presentation with specific cancer targeting ability, deepening the role of EVs in cancer immunotherapy. This review briefly describes typical EV sources, isolation methods, and adjustable targeting of EVs. Furthermore, this review highlights the genetic engineering strategies developed for delivering immunomodulatory agents and antigen presentation in EV-based systems. The prospects and challenges of genetically engineered EVs as cancer immunotherapy in clinical translation are also discussed.
Collapse
Affiliation(s)
- Shan He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA.
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA.
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Zhou Q, Li Z, Xi Y. EV-mediated intercellular communication in acute myeloid leukemia: Transport of genetic materials in the bone marrow microenvironment. Exp Hematol 2024; 133:104175. [PMID: 38311165 DOI: 10.1016/j.exphem.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Acute myeloid leukemia (AML) is a common hematological cancer. Cancer cells exchange information with the surrounding microenvironment, which can be transmitted by extracellular vesicles (EVs). In recent years, the genetic materials transported by EVs have attracted attention due to their important roles in different pathological processes. EV-derived ncRNAs (EV-ncRNAs) regulate physiological functions and maintain homeostasis, mainly including microRNAs, long noncoding RNAs, and circular RNAs. However, the mechanism of involvement and potential clinical application of EV-ncRNAs in AML have not been reported. Given the unique importance of the bone marrow microenvironment (BMME) for AML, a greater understanding of the communication between leukemic cells and the BMME is needed to improve the prognosis of patients and reduce the incidence of recurrence. Additionally, studies on leukemic EV-ncRNA transport guide the design of new diagnostic and therapeutic tools for AML. This review systematically describes intercellular communication in the BMME of AML and emphasizes the role of EVs. More importantly, we focus on the information transmission of EV-ncRNAs in the BMME to explore their clinical application as potential biomarkers and therapeutic targets.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Communication
- Tumor Microenvironment
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Animals
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
24
|
Liu C, Liu J, Chen H. Overexpression of miR-7-5p Promoted Fracture Healing Through Inhibiting LRP4 and Activating Wnt/β-Catenin Pathway. INT J LOW EXTR WOUND 2024; 23:86-91. [PMID: 36883209 DOI: 10.1177/15347346231157443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background. The bone healing after fracture had a great impact on the patients' life quality. However, how miR-7-5p participated in fracture healing has not been investigated. Methods. For in vitro studies, the pre-osteoblast cell line MC3T3-E1 was obtained. The male C57BL/6 mice were purchased for in vivo experiments, and the fracture model was constructed. Cell proliferation was determined by CCK8 assay, and alkaline phosphatase (ALP) activity was measured by commercial kit. Histological status was evaluated using H&E and TRAP staining. The RNA and protein levels were detected via RT-qPCR and western blotting, respectively. Results. Overexpression of miR-7-5p increased cell viability and ALP activity in vitro. Moreover, in vivo studies consistently indicated that transfection of miR-7-5p improved the histological status and increased the proportion of TRAP-positive cells. Overexpression of miR-7-5p suppressed LRP4 expression while upregulated Wnt/β-catenin pathway. Conclusion. MiR-7-5p decreased LRP4 level and further activated the Wnt/β-catenin signaling, facilitating the process of fracture healing.
Collapse
Affiliation(s)
- Changtie Liu
- The Orthopaedic Trauma, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Junlin Liu
- The Orthopaedic Trauma, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Hong Chen
- The Orthopaedic Trauma, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
25
|
Fan B, Wang L, Wang J. RAB22A as a predictor of exosome secretion in the progression and relapse of multiple myeloma. Aging (Albany NY) 2024; 16:4169-4190. [PMID: 38431306 PMCID: PMC10968671 DOI: 10.18632/aging.205565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable malignant plasma cell disease. We explored the role of RAB22A in exosome secretion, epithelial-mesenchymal transition (EMT) and immune regulation. METHODS We obtained MM samples from Gene Expression Omnibus (GEO) data sets. We downloaded the "IOBR" package, and used the "PCA" and "ssGSEA" algorithms to calculate the EMT scores and exosome scores. The "CIBERSORT" package was used to analyze the infiltration of immune cells. We extracted the exosomes of mesenchymal stem cell (MSC) to verify the biological function of RAB22A. RESULTS The expression level of RAB22A in smoldering multiple myeloma (SMM) and MM patients was significantly higher than that in normal people and monoclonal gammopathy of undetermined significance (MGUS) patients, and the expression level of RAB22A in relapse MM patients was significantly higher than that in newly diagnosed patients. The EMT scores and exosome scores of high RAB22A group were significantly higher than those of low RAB22A group, and the exosome scores of MSC in recurrent patients were significantly higher than those of newly diagnosed patients. In addition, the infiltration levels of monocyte, NK cells resting, eosinophils, T cells regulatory and T cells CD4 memory activated were positively correlated with RAB22A. After down-regulating the expression of RAB22A in MM-MSC, the secretion of exosomes decreased. Compared with the exosomes of MSC in si-RAB22A group, the exosomes in control group significantly promoted the proliferation of MM. CONCLUSIONS RAB22A is a potential therapeutic target to improve the prognosis of MM, which is closely related to exosome secretion, EMT and immune cell infiltration.
Collapse
Affiliation(s)
- Bingjie Fan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- Clinical Medicine College of Guizhou Medical University, Guiyang, China
| | - Li Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- Clinical Medicine College of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- Clinical Medicine College of Guizhou Medical University, Guiyang, China
| |
Collapse
|
26
|
Salman DM, Mohammad TAM. Leukemia cancer cells and immune cells derived-exosomes: Possible roles in leukemia progression and therapy. Cell Biochem Funct 2024; 42:e3960. [PMID: 38424731 DOI: 10.1002/cbf.3960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Exosomes have a significant impact on tumor survival, proliferation, metastasis, and recurrence. They also open up new therapeutic options and aid in the pathological identification and diagnosis of cancers. Exosomes have been shown in numerous studies to be essential for facilitating cell-to-cell communication. In B-cell hematological malignancies, the proteins and RNAs that are encased by circulating exosomes are thought to represent prospective sources for therapeutic drugs as well as biomarkers for diagnosis and prognosis. Additionally, exosomes can offer a "snapshot" of the tumor and the metastatic environment at any given point in time. In this review study, we concluded that leukemia-derived exosomes could be utilized as prognostic, diagnostic, and therapeutic biomarkers for individuals suffering from leukemia. Moreover, clinical studies have demonstrated that immune cells like dendritic cells create exosomes, which have the ability to activate the immune system against leukemia.
Collapse
Affiliation(s)
- Dyar Mudhafar Salman
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
- Faculty of Pharmacy, Tishk International University, Kurdistan Region-Erbil, Iraq
| | - Talar Ahmad Merza Mohammad
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
| |
Collapse
|
27
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
28
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Liu M, Yu B, Tian Y, Li F. Regulatory function and mechanism research for m6A modification WTAP via SUCLG2-AS1- miR-17-5p-JAK1 axis in AML. BMC Cancer 2024; 24:98. [PMID: 38233760 PMCID: PMC10795285 DOI: 10.1186/s12885-023-11687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Acute myeloid leukemia (AML), characterized by the abnormal accumulation of immature marrow cells in the bone marrow, is a malignant tumor of the blood system. Currently, the pathogenesis of AML is not yet clear. Therefore, this study aims to explore the mechanisms underlying the development of AML. Firstly, we identified a competing endogenous RNA (ceRNA) SUCLG2-AS1-miR-17-5p-JAK1 axis through bioinformatics analysis. Overexpression of SUCLG2-AS1 inhibits proliferation, migration and invasion and promotes apoptosis of AML cells. Secondly, luciferase reporter assay and RIP assay validated that SUCLG2-AS1 functioned as ceRNA for sponging miR-17-5p, further leading to JAK1 underexpression. Additionally, the results of MeRIP-qPCR and m6A RNA methylation quantification indicted that SUCLG2-AS1(lncRNA) had higher levels of m6A RNA methylation compared with controls, and SUCLG2-AS1 is regulated by m6A modification of WTAP in AML cells. WTAP, one of the main regulatory components of m6A methyltransferase complexes, proved to be highly expressed in AML and elevated WTAP is associated with poor prognosis of AML patients. Taken together, the WTAP-SUCLG2-AS1-miR-17-5p-JAK1 axis played essential roles in the process of AML development, which provided a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Bingxin Yu
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Yong Tian
- Department of Human Anatomy, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China.
- The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, 130021, P.R. China.
- Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, 830017, P.R. China.
| |
Collapse
|
30
|
Fu P, Yin S, Cheng H, Xu W, Jiang J. Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application. Curr Drug Deliv 2024; 21:817-827. [PMID: 37438904 DOI: 10.2174/1567201820666230712103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.
Collapse
Affiliation(s)
- Peiwen Fu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Siqi Yin
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huiying Cheng
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
31
|
Ma S, Wu X, Wu Z, Zhao Q. Treatment-prognostication-adjustment a new therapeutic idea by analyzing T cell immune checkpoint in tumor microenvironment by algorithm: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2269788. [PMID: 37905399 PMCID: PMC10760387 DOI: 10.1080/21645515.2023.2269788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
To evaluate the temporal and spatial distribution of the knowledge network about tumor microenvironment and prognoses and explore new research hot spots and trends. Articles and reviews on tumor microenvironment and prognoses in the Web of Science journal from January 1999 to April 2022 were included. We used the CiteSpace and VOSviewer software to analyze the knowledge network composed of journals, institutions, countries, authors, and keywords. Frontiers in Immunology, Cancers, and Frontiers in Oncology have published more than 10% of articles in this field. China and the United States have contributed the most articles. Fudan University and Sun Yat-Sen University are the most active institutions. The authors in this field work closely; Zhang Wei and Douglas have made outstanding contributions. The three main research areas of tumor microenvironment and prognoses are microenvironment, prognosis, and immunotherapy. Until 2020, the main keywords were endothelial growth factor and adhesion. In the past three years, survival analysis, immune cell infiltration, and prediction model have been used. It can be seen that the focus in this field has shifted from tumor cell behavior and directly related molecules to prognosis prediction and non-tumor cells in the microenvironment. The future research trend may be to study the changes in the tumor microenvironment to predict the prognosis and guide the treatment. VOSviewer, CiteSpace, and Microsoft Excel 2019 were used to conduct a comprehensive visual analysis of the research on tumor environment and prognoses and provide valuable reference materials for researchers.
Collapse
Affiliation(s)
- Shiwei Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of spine surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhongguang Wu
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Qiangqiang Zhao
- Department of Hematology, The People’s Hospital of Liuzhou City, Guangxi, P. R. China
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
32
|
Li B, Can C, Liu W, Guo X, Wu H, Wei Y, Liu J, Yang X, Jia W, Ma D. Hematopoietic stem cells suppress proliferation and enhance differentiation of leukemia cells through regulating apoptotic and inflammatory genes. J Cancer Res Clin Oncol 2023; 149:17307-17318. [PMID: 37819582 DOI: 10.1007/s00432-023-05440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Stem cells are known to play an important role in tumor treatment and many of them have shown tumor-suppressing ability in different cancers; however, whether hematopoietic stem cells (HSCs) have growth-inhibiting effects on leukemia cells has not been fully evaluated. Herein, we aimed to demonstrate the growth-restraining function of HSCs in acute leukemia treatment. METHODS Cell fusion experiment was conducted by PEG-1500. The viability, proliferation, apoptosis and differentiation of leukemia cells were evaluated by cell counting, CCK-8 and flow cytometry analysis. The morphological changes were imaged using a fluorescence microscope. The expression of genes was detected by quantitative reverse transcription PCR (qRT-PCR). RESULTS We observed that HSCs and their lytic extracts had the capability to suppress leukemia cells proliferation, promote apoptosis and especially induce acute myelogenous leukemia (AML) cells differentiation, which might have an effect on differentiation therapy to leukemia especially AML treatment. The expression levels of Bcl-2, Survivin decreased and Bax increased following HSCs extracts treatment. Furthermore, the expression of inflammatory cytokines also changed in AML cells which might have to do with the mechanism of HSCs/extracts suppressing effect. CONCLUSION HSCs and their extracts can suppress the proliferation of leukemia cells and enhance the differentiation of AML cells and using the extracts of HSCs might be a probable therapeutic option for acute leukemia.
Collapse
Affiliation(s)
- Bo Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Can Can
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaodong Guo
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wenbo Jia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
33
|
Zhai L, Gao Y, Cui Z, Chen L, Yu L, Guo P, Zhu D, Tang H, Liu X, Luo H. MiR-7-5p targeted Rb regulating cell cycle is involved in hydroquinone-induced malignant progression in human lymphoblastoid TK6 cells. Food Chem Toxicol 2023; 182:114186. [PMID: 37951342 DOI: 10.1016/j.fct.2023.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
MiR-7-5p has been demonstrated to inhibit tumorigenesis by limiting tumor cell proliferation, migration and invasion. However, its role in countering hydroquinone (HQ)-induced malignant phenotype of TK6 cells has remained unclear. The present study aimed to investigate whether miR-7-5p overexpression could restrain the malignant phenotype in TK6 cells exposed to HQ. The results displayed that HQ suppressed the expression of miR-7-5p and promoted cell cycle progression. Further investigations confirmed that miR-7-5p could decelerate the cell cycle progression by targeting Rb after acute HQ exposure. Through the regulation of the Rb/E2F1 signaling pathway, the overexpression of miR-7-5p mitigated HQ-induced malignant phenotype in TK6 cells by impeding cell cycle progression. In conclusion, miR-7-5p overexpression appears to be involved in HQ-induced malignant transformation by suppressing Rb/E2F1 signaling pathway, resulting in a deceleration of the cell cycle progression.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Gao
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lingxue Yu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Pu Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Delong Zhu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xin Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
34
|
Du A, Yang Q, Sun X, Zhao Q. Exosomal circRNA-001264 promotes AML immunosuppression through induction of M2-like macrophages and PD-L1 overexpression. Int Immunopharmacol 2023; 124:110868. [PMID: 37657244 DOI: 10.1016/j.intimp.2023.110868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Exosomes can help to effectively regulate the crosstalk between cancer cells and normal cells in the tumor microenvironment. They also regulate cancer cell proliferation and apoptosis by virtue of their cargo molecules. Transmission electron microscopy (TEM) together with differential ultracentrifugation served for verifying the presence of exosomes. In vivo and in vitro assays served for determining the role of exosomal circ_001264. RNA pull-down and dual-luciferase reporter assays assisted in the classification of the mechanism of exosomal circ_001264-mediated regulation of the crosstalk between Acute myeloid leukemia (AML) cells and M2 macrophages. Furthermore, we adopted a programmed death ligand 1 antibody (aPD-L1) in combination with exosomal circ_001264 siRNA for antitumor treatment in vitro and in vivo mouse models served for validating the in vivo outcomes. Out study illustrated the aberrant overexpression of circ_001264 in AML patients and its correlation with poor patient prognosis. AML cell-derived exosomal circ_001264 regulated the RAF1 expression and activated the p38-STAT3 signaling pathway, thereby inducing the M2 macrophage polarization. Polarized M2 macrophages can induce PD-L1 overexpression by secreting PD-L1. Here, a programmed death ligand (aPD-L1) was adopted for preventing the immunosuppression, which was able to achieve the desired therapeutic effect at the tumor site. Indeed, in the mouse model, leukemia tumor load decreased remarkably in the exosomal circ_001264 siRNA plus aPD-L1 combination group. Taken together, our study contributed to a theoretical basis for AML treatment. The co-administration of exosomal circ_001264 siRNA and aPD-L1 exhibited an obvious anti-cancer effectiveness in AML.
Collapse
Affiliation(s)
- Ashuai Du
- Department of Infection, Guizhou Provincial People's Hospital, Guiyang 550002, PR China
| | - Qinglong Yang
- Department of General Surgery, Guizhou Provincial people's Hospital, Guiyang 550002, PR China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, PR China
| | - Xiaoying Sun
- The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; School of Nursing, Sun Yat-sen University, Guangzhou 528406, China.
| | - Qiangqiang Zhao
- Department of Hematology, The People's Hospital of Liuzhou City, Liuzhou 545026, PR China; Department of Hematology, the Qinghai Provincial People's Hospital, Xining 810007, PR China.
| |
Collapse
|
35
|
Wu X, Wu Z, Deng W, Xu R, Ban C, Sun X, Zhao Q. Spatiotemporal evolution of AML immune microenvironment remodeling and RNF149-driven drug resistance through single-cell multidimensional analysis. J Transl Med 2023; 21:760. [PMID: 37891580 PMCID: PMC10612211 DOI: 10.1186/s12967-023-04579-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The composition of the bone marrow immune microenvironment in patients with acute myeloid leukaemia (AML) was analysed by single-cell sequencing and the evolutionary role of different subpopulations of T cells in the development of AML and in driving drug resistance was explored in conjunction with E3 ubiquitin ligase-related genes. METHODS To elucidate the mechanisms underlying AML-NR and Ara-C resistance, we analyzed the bone marrow immune microenvironment of AML patients by integrating multiple single-cell RNA sequencing datasets. When compared to the AML disease remission (AML-CR) cohort, AML-NR displayed distinct cellular interactions and alterations in the ratios of CD4+T, Treg, and CD8+T cell populations. RESULTS Our findings indicate that the E3 ubiquitin ligase RNF149 accelerates AML progression, modifies the AML immune milieu, triggers CD8+T cell dysfunction, and influences the transformation of CD8+ Navie.T cells to CD8+TExh, culminating in diminished AML responsiveness to chemotherapeutic agents. Experiments both in vivo and in vitro revealed RNF149's role in enhancing AML drug-resistant cell line proliferation and in apoptotic inhibition, fostering resistance to Ara-C. CONCLUSION In essence, the immune microenvironments of AML-CR and AML-NR diverge considerably, spotlighting RNF149's tumorigenic function in AML and cementing its status as a potential prognostic indicator and innovative therapeutic avenue for countering AML resistance.
Collapse
Affiliation(s)
- Xin Wu
- Department of spine surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhongguang Wu
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, Guangdong, P.R. China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Rong Xu
- Department of Pathology, The First People's Hospital of Changde City, Changde, 415003, Hunan, China
| | - Chunmei Ban
- Department of Hematology, The People's Hospital of Liuzhou City, Guangxi, 545026, People's Republic of China
| | - Xiaoying Sun
- The First Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- School of Nursing, Sun Yat-sen University, Guangzhou, 528406, China.
| | - Qiangqiang Zhao
- Department of Hematology, The People's Hospital of Liuzhou City, Guangxi, 545026, People's Republic of China.
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China.
| |
Collapse
|
36
|
Van Morckhoven D, Dubois N, Bron D, Meuleman N, Lagneaux L, Stamatopoulos B. Extracellular vesicles in hematological malignancies: EV-dence for reshaping the tumoral microenvironment. Front Immunol 2023; 14:1265969. [PMID: 37822925 PMCID: PMC10562589 DOI: 10.3389/fimmu.2023.1265969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Following their discovery at the end of the 20th century, extracellular vesicles (EVs) ranging from 50-1,000 nm have proven to be paramount in the progression of many cancers, including hematological malignancies. EVs are a heterogeneous group of cell-derived membranous structures that include small EVs (commonly called exosomes) and large EVs (microparticles). They have been demonstrated to participate in multiple physiological and pathological processes by allowing exchange of biological material (including among others proteins, DNA and RNA) between cells. They are therefore a crucial way of intercellular communication. In this context, malignant cells can release these extracellular vesicles that can influence their microenvironment, induce the formation of a tumorigenic niche, and prepare and establish distant niches facilitating metastasis by significantly impacting the phenotypes of surrounding cells and turning them toward supportive roles. In addition, EVs are also able to manipulate the immune response and to establish an immunosuppressive microenvironment. This in turn allows for ideal conditions for heightened chemoresistance and increased disease burden. Here, we review the latest findings and reports studying the effects and therapeutic potential of extracellular vesicles in various hematological malignancies. The study of extracellular vesicles remains in its infancy; however, rapid advances in the analysis of these vesicles in the context of disease allow us to envision prospects to improve the detection and treatment of hematological malignancies.
Collapse
Affiliation(s)
- David Van Morckhoven
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Departement of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Departement of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
37
|
Yang X, Zheng M, Ning Y, Sun J, Yu Y, Zhang S. Prognostic risk factors of serous ovarian carcinoma based on mesenchymal stem cell phenotype and guidance for therapeutic efficacy. J Transl Med 2023; 21:456. [PMID: 37434173 PMCID: PMC10334653 DOI: 10.1186/s12967-023-04284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer is the leading cause of death from gynecologic cancer, in which serous ovarian carcinoma (SOC) is the most common histological subtype. Although PARP inhibitors (PARPi) and antiangiogenics have been accepted as maintenance treatment in SOC, response to immunotherapy of SOC patients is limited. METHODS The source of transcriptomic data of SOC was from the Cancer Genome Atlas database and Gene Expression Omnibus. The abundance scores of mesenchymal stem cells (MSC scores) were estimated for each sample by xCell. Weighted correlation network analysis is correlated the significant genes with MSC scores. Based on prognostic risk model construction with Cox regression analysis, patients with SOC were divided into low- and high-risk groups. And distribution of immune cells, immunosuppressors and pro-angiogenic factors in different risk groups was achieved by single-sample gene set enrichment analysis. The risk model of MSC scores was further validated in datasets of immune checkpoint blockade and antiangiogenic therapy. In the experiment, the mRNA expression of prognostic genes related to MSC scores was detected by real-time polymerase chain reaction, while the protein level was evaluated by immunohistochemistry. RESULTS Three prognostic genes (PER1, AKAP12 and MMP17) were the constituents of risk model. Patients classified as high-risk exhibited worse prognosis, presented with an immunosuppressive phenotype, and demonstrated high micro-vessel density. Additionally, these patients were insensitive to immunotherapy and would achieve a longer overall survival with antiangiogenesis treatment. The validation experiments showed that the mRNA of PER1, AKAP12, and MMP17 was highly expressed in normal ovarian epithelial cells compared to SOC cell lines and there was a positive correlation between protein levels of PER1, AKAP12 and MMP17 and metastasis in human ovarian serous tumors. CONCLUSION This prognostic model established on MSC scores can predict prognosis of patients and provide the guidance for patients receiving immunotherapy and molecular targeted therapy. Because the number of prognostic genes was fewer than other signatures of SOC, it will be easily accessible on clinic.
Collapse
Affiliation(s)
- Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Jie Sun
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yongjun Yu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
38
|
Li Q, Wang M, Liu L. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia. Biochem Pharmacol 2023; 212:115539. [PMID: 37024061 DOI: 10.1016/j.bcp.2023.115539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid hematopoietic cells, which is characterized by the aberrant clonal proliferation of immature myeloblasts and compromised hematopoiesis. The leukemic cell population is strongly heterogeneous. Leukemic stem cells (LSCs) are an important leukemic cell subset with stemness characteristics and self-renewal ability, which contribute to the development of refractory or relapsed AML. It is now acknowledged that LSCs develop from hematopoietic stem cells (HSCs) or phenotypically directed cell populations with transcriptional stemness characteristics under selective pressure from the bone marrow (BM) niche. Exosomes are extracellular vesicles containing bioactive substances involved in intercellular communication and material exchange under steady state and pathological conditions. Several studies have reported that exosomes mediate molecular crosstalk between LSCs, leukemic blasts, and stromal cells in the BM niche, promoting LSC maintenance and AML progression. This review briefly describes the process of LSC transformation and the biogenesis of exosomes, highlighting the role of leukemic-cell- and BM-niche-derived exosomes in the maintenance of LSCs and AML progression. In addition, we discuss the potential application of exosomes in the clinic as biomarkers, therapeutic targets, and carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
39
|
Tian K, Ying Y, Huang J, Wu H, Wei C, Li L, Chen L, Wu L. The expression, immune infiltration, prognosis, and experimental validation of OSBPL family genes in liver cancer. BMC Cancer 2023; 23:244. [PMID: 36918840 PMCID: PMC10015719 DOI: 10.1186/s12885-023-10713-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Liver cancer is the third most deadly malignant tumor in the world with poor prognosis and lacks early diagnostic markers. It is urgent need to explore new biomarkers and prognostic factors. The oxysterol-binding protein-like family proteins (OSBPLs) are essential mediators of lipid transportation and cholesterol balancing which has been reported to participate in cancer progression. So far, the expression, immune infiltration, and prognosis of OSBPLs have not been elucidated in liver cancer. METHODS The differential expressions of OSBPLs between liver tumor and normal tissues were assessed by analyzing RNA-seq data from TCGA and protein data from CPTAC, respectively. Subsequently, genetic variations, potential functional enrichment analysis, and immune cell infiltration were analyzed. Further, the prognostic effects of OSBPLs were identified via constructing lasso models and performing receiver operating characteristic curve (ROC) analysis. Moreover, 10 local liver cancer specimens were involved to validate the expression of OSBPL3 via immunohistochemistry (IHC) assay. Finally, CCK-8, cell cycle, apoptosis, transwell assays, real time qPCR (RT-qPCR), and western blot assays were conducted to explore the function of OSBPL3 in liver cancer cells. RESULTS The mRNA of OSBPL2, OSBPL3, and OSBPL8 were highly expressed while OSBPL6 was lowly expressed in liver cancer samples compared with normal samples. As to the protein expression, OSBPL2 and OSBPL3 were significantly elevated and OSBPL5, OSBPL6, OSBPL9, OSBPL10, OSBPL11 were downregulated in tumor samples. A positive correlation was found between copy number variations (CNV) and the expression of OSBPL2, OSBPL8, OSBPL9, OSBPL11, while DNA methylation was negatively associated with the expressions of OSBPLs. Of these, CNV amplification mainly contributed to the overexpression of OSBPL2 and DNA methylation may be responsible for the high expression of OSBPL3. Interestingly, OSBPL3, OSBPL5, SOBPL7, and OSBPL10 were significantly positively correlated with immune infiltration. Notably, OSBPL3 was identified correlated to overall survival (OS) and disease specific survival (DSS) in liver cancer. Functionally, knocking down OSBPL3 reduced liver cancer cell viability, induced a G2/M cell cycle arrest, promoted apoptosis, and restrained cell migration. CONCLUSION In aggregate, we reported a heretofore undescribed role of OSBPLs in liver cancer by analyzing multi-omics data. Importantly, we identified OSBPL3 was overexpressed in liver tumor compared with normal and its high expression was correlated with poor OS and DSS. Inhibition of OSBPL3 resulted in a pronounced decrease in cell proliferation and migration.
Collapse
Affiliation(s)
- Kunpeng Tian
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yongling Ying
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jingjing Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, 530200, China.,Guangxi Key Laboratory of Translational Medicine of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, 530200, China.,Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Hao Wu
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chengyue Wei
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China
| | - Liang Li
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China
| | - Longjun Chen
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lichuan Wu
- School of Medicine, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
40
|
Chen L, Xie T, Wei B, Di DL. Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 2023; 25:126. [PMID: 36845960 PMCID: PMC9947586 DOI: 10.3892/etm.2023.11825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Exosomes are small vesicles with a diameter of ~40-100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Dr Da-Lin Di, Department of Immunology, Weifang Medical University, 7166 Baotongxi Street, Weifang, Shandong 261053, P.R. China . com
| |
Collapse
|
41
|
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal 2023; 21:20. [PMID: 36690996 PMCID: PMC9869323 DOI: 10.1186/s12964-022-01017-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.
Collapse
Affiliation(s)
- Elham Oveili
- Department of Pharmaceutical Science, Azad Islamic University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Bazavar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mamaghanizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Yasamineh
- Department of Biotechnology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Xu R, Wu X, Zhao Q, Yang Q. Ferroptosis synergistically sensitizes wee1 inhibitors: a bibliometric study. Am J Transl Res 2022; 14:8473-8488. [PMID: 36628201 PMCID: PMC9827303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023]
Abstract
Synthetic lethality (SL) is a lethal phenomenon with an important role in cancer treatment. This study was conducted to analyze the hotspots and frontiers in SL research. The Web of Science Core Collection (WOSCC) was used to identify the 100 top-cited articles related to SL research. Additionally, wee1 inhibitors combined with erastin were used to determine the effectiveness of SL in vitro and in vivo. Relevant articles were published mainly from 2009 to 2021, reaching a peak in 2020; articles published in 2010 were most frequently cited among the 100-top cited papers. Most studies (54%) were performed in the United States. Articles in Nature Chemical Biology were cited more frequently than articles in other journals, whereas Nature published the largest number of reports on SL. Among the 88 corresponding authors, CJ Lord was the most productive. Overlay visualization of keyword analysis revealed that the hotspots in SL research were PARP inhibitors, BRCA mutations, DNA damage repair, and carcinogenesis. CRISPR, ferroptosis, wee1, double-strand break (dsb) repair, myc, immunotherapy, and replication stress are emerging topics in SL research, whereas ovarian cancer, prostate stress, acute myeloid leukemia, and other topics have been used as disease models in recent years. The application and therapeutic strategy of SL in cancer is an emerging trend. Significantly, experiments verified that the wee1 inhibitor AZD1775 and ferroptosis activator erastin have synergistic effects on ovarian cancer in vitro and in vivo. Combining bibliometric analysis with experimental verification is a useful approach for SL research.
Collapse
Affiliation(s)
- Rong Xu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China,Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Wu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China,Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Qinglong Yang
- Department of General Surgery, Guizhou Provincial People’s HospitalGuiyang 550000, Guizhou, China
| |
Collapse
|
43
|
Wang C, Deng Z, Zang L, Shu Y, He S, Wu X. Immune cells regulate matrix metalloproteinases to reshape the tumor microenvironment to affect the invasion, migration, and metastasis of pancreatic cancer. Am J Transl Res 2022; 14:8437-8456. [PMID: 36628243 PMCID: PMC9827340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2022] [Indexed: 01/12/2023]
Abstract
This study aimed to identify author, country, institutional, and journal collaborations and assess their impact, along with knowledge base, as well as identify existing trends, and uncover emerging topics related to matrix metalloproteinase and pancreatic-cancer research. A total of 1474 Articles and reviews were obtained from the Web of Science Core Collection and analyzed by Citespace and Vosviewer. CANCER RESEARCH, CLINICAL CANCER RESEARCH, and FRONTIERS IN IMMUNOLOGY are the most influential journals. The three main aspects of research in matrix metalloproteinases-pancreatic cancer-related fields included the pathogenesis mechanism of pancreatic cancer, how matrix metalloproteinases affect the metastasis of pancreatic cancer, and what role matrix metalloproteinases play in pancreatic cancer treatment. Tumor microenvironment, pancreatic stellate cells, drug resistance, and immune cells have recently emerged as research hot spots. In the future, exploring how immune cells affect matrix metalloproteinases and reshape the tumor microenvironment may be the key to curing pancreatic cancer. This study thus offers a comprehensive overview of the matrix metalloproteinases-pancreatic cancer-related field using bibliometrics and visual methods, providing a valuable reference for researchers interested in matrix metalloproteinases-pancreatic cancer.
Collapse
Affiliation(s)
- Chunqiu Wang
- Department of Gastroenterology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zhen Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Longjun Zang
- Department of General Surgery, Taiyuan Central HospitalTaiyuan 030000, Shanxi, China
| | - Yufeng Shu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Suifang He
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
44
|
Nuclear factor Nrf2 promotes glycosidase OGG1 expression by activating the AKT pathway to enhance leukemia cell resistance to cytarabine. J Biol Chem 2022; 299:102798. [PMID: 36528059 PMCID: PMC9823221 DOI: 10.1016/j.jbc.2022.102798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.
Collapse
|
45
|
Luo F, Guo W, Liu W. Exosomes derived from bone marrow mesenchymal stem cells inhibit human aortic vascular smooth muscle cells calcification via the miR-15a/15b/16/NFATc3/OCN axis. Biochem Biophys Res Commun 2022; 635:65-76. [DOI: 10.1016/j.bbrc.2022.09.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
|
46
|
Wang R, Zhao C, Jiang S, Zhang Z, Ban C, Zheng G, Hou Y, Jin B, Shi Y, Wu X, Zhao Q. Advanced nanoparticles that can target therapy and reverse drug resistance may be the dawn of leukemia treatment: A bibliometrics study. Front Bioeng Biotechnol 2022; 10:1027868. [PMID: 36299285 PMCID: PMC9588980 DOI: 10.3389/fbioe.2022.1027868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanomedicine, more and more nanoparticles are used in the diagnosis and treatment of leukemia. This study aimed to identify author, country, institutional, and journal collaborations and their impacts, assess the knowledge base, identify existing trends, and uncover emerging topics related to leukemia research. 1825 Articles and reviews were obtained from the WoSCC and analyzed by Citespace and Vosviewer. INTERNATIONAL JOURNAL OF NANOMEDICINE is the journal with the highest output. The contribution of FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY is also noteworthy. The three main aspects of research in Nanoparticles-leukemia-related fields included nanoparticles for the diagnosis and treatment of leukemia, related to the type and treatment of leukemia, the specific molecular mechanism, and existing problems of the application of nanoparticles in leukemia. In the future, synthesize nano-drugs that have targeted therapy and chemotherapy resistance according to the mechanism, which may be the dawn of the solution to leukemia. This study offers a comprehensive overview of the Nanoparticles-leukemia-related field using bibliometrics and visual methods for the first time, providing a valuable reference for researchers interested in Nanoparticles-leukemia.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hematology, Shandong Second Provincial General Hospital, Jinan, China
| | - Changming Zhao
- Department of Hematology, Shandong Second Provincial General Hospital, Jinan, China
| | - Shuxia Jiang
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| | - Zhaohua Zhang
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| | - Chunmei Ban
- Department of Hematology, Hematology Department, The People’s Hospital of Liuzhou City, Liuzhou, China
| | - Guiping Zheng
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| | - Yan Hou
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| | - Bingjin Jin
- Department of Pharmacy, The Qinghai Provincial People’s Hospital, Xining, China
| | - Yannan Shi
- Department of General Medicine, Ganmei Hospital, Kunming First People’s Hospital, Kunming, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
47
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
48
|
Hu L, Wu X, Chen D, Cao Z, Li Z, Liu Y, Zhao Q. The hypoxia-related signature predicts prognosis, pyroptosis and drug sensitivity of osteosarcoma. Front Cell Dev Biol 2022; 10:814722. [PMID: 36204682 PMCID: PMC9532009 DOI: 10.3389/fcell.2022.814722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common types of solid sarcoma with a poor prognosis. Solid tumors are often exposed to hypoxic conditions, while hypoxia is regarded as a driving force in tumor recurrence, metastasis, progression, low chemosensitivity and poor prognosis. Pytoptosis is a gasdermin-mediated inflammatory cell death that plays an essential role in host defense against tumorigenesis. However, few studies have reported relationships among hypoxia, pyroptosis, tumor immune microenvironment, chemosensitivity, and prognosis in OS. In this study, gene and clinical data from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases were merged to develop a hypoxia risk model comprising four genes (PDK1, LOX, DCN, and HMOX1). The high hypoxia risk group had a poor prognosis and immunosuppressive status. Meanwhile, the infiltration of CD8+ T cells, activated memory CD4+ T cells, and related chemokines and genes were associated with clinical survival outcomes or chemosensitivity, the possible crucial driving forces of the OS hypoxia immune microenvironment that affect the development of pyroptosis. We established a pyroptosis risk model based on 14 pyroptosis-related genes to independently predict not only the prognosis but also the chemotherapy sensitivities. By exploring the various connections between the hypoxic immune microenvironment and pyroptosis, this study indicates that hypoxia could influence tumor immune microenvironment (TIM) remodeling and promote pyroptosis leading to poor prognosis and low chemosensitivity.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Cao
- Department of Orthopedics, The Qinghai Provincial People's Hospital, Xining, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Yanmin Liu
- Department of Cardiovascular Medicine, The Qinghai Provincial People's Hospital, Xining, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
49
|
Karantanou C, Minciacchi VR, Karantanos T. Extracellular Vesicles in Myeloid Neoplasms. Int J Mol Sci 2022; 23:ijms23158827. [PMID: 35955960 PMCID: PMC9369333 DOI: 10.3390/ijms23158827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid neoplasms arise from malignant primitive cells, which exhibit growth advantage within the bone marrow microenvironment (BMM). The interaction between these malignant cells and BMM cells is critical for the progression of these diseases. Extracellular vesicles (EVs) are lipid bound vesicles secreted into the extracellular space and involved in intercellular communication. Recent studies have described RNA and protein alterations in EVs isolated from myeloid neoplasm patients compared to healthy controls. The altered expression of various micro-RNAs is the best-described feature of EVs of these patients. Some of these micro-RNAs induce growth-related pathways such as AKT/mTOR and promote the acquisition of stem cell-like features by malignant cells. Another well-described characteristic of EVs in myeloid neoplasms is their ability to suppress healthy hematopoiesis either via direct effect on healthy CD34+ cells or via alteration of the differentiation of BMM cells. These results support a role of EVs in the pathogenesis of myeloid neoplasms. mainly through mediating the interaction between malignant and BMM cells, and warrant further study to better understand their biology. In this review, we describe the reported alterations of EV composition in myeloid neoplasms and the recent discoveries supporting their involvement in the development and progression of these diseases.
Collapse
Affiliation(s)
- Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Valentina René Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, The Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD 21218, USA
- Correspondence:
| |
Collapse
|
50
|
Wu X, Li S, Chen D, Zheng G, Zhang Z, Li Z, Sun X, Zhao Q, Xu J. An inflammatory response-related gene signature associated with immune status and prognosis of acute myeloid leukemia. Am J Transl Res 2022; 14:4898-4917. [PMID: 35958446 PMCID: PMC9360836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the prognostic significance of inflammatory response-associated genes in acute myeloid leukemia (AML). METHODS Transcriptomic profiles and related clinical information of AML patients were acquired from a public database. To establish a multi-gene prognosis signature, we performed least absolute shrinkage and selection operator Cox analysis for the TCGA cohort and evaluated the ICGC cohort for verification. Subsequently, Kaplan-Meier analysis was carried out to compare the overall survival (OS) rates between high- and low-risk groups. Biological function and single-sample gene set enrichment (ssGSEA) analyses were employed to investigate the association of risk score with immune status and the tumor microenvironment. Prognostic gene expression levels in AML samples and normal controls were confirmed by qRT-PCR and immunofluorescence. RESULTS We identified a potential inflammatory response-related signature comprising 11 differentially expressed genes, including ACVR2A, CCL22, EBI3, EDN1, FFAR2, HRH1, ICOSLG, IL-10, INHBA, ITGB3, and LAMP3, and found that AML patients with high expression levels in the high-risk group had poor OS rates. Biological function analyses revealed that prognostic genes mainly participated in inflammation and immunity signaling pathways. Analyses of cancer-infiltrating immunocytes indicated that in high-risk patients, the immune suppressive microenvironment was significantly affected. The expression of the inflammation reaction-associated signature was found to be associated with susceptibility to chemotherapy. There was a significant difference in prognostic gene expression between AML and control tissues. CONCLUSION A novel inflammatory response-related signature was developed with 11 candidate genes to predict prognosis and immune status in AML patients.
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Shiqin Li
- Department of Cell Biology, School of Life Sciences, Central South UniversityChangsha 410013, Hunan, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Guiping Zheng
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zhaohua Zhang
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Xiaoying Sun
- Department of Emergency, The Qinghai Provincial People’s HospitalXining 810007, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Jingjuan Xu
- Department of Outpatient, The First People’s Hospital of ChangzhouChangzhou 213000, Jiangsu, China
| |
Collapse
|