1
|
Magpali L, Ramos E, Picorelli A, Freitas L, Nery MF. Molecular evolution of toothed whale genes reveals adaptations to echolocating in different environments. BMC Genomics 2024; 25:1049. [PMID: 39506652 PMCID: PMC11542384 DOI: 10.1186/s12864-024-10910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Echolocation was a key development in toothed whale evolution, enabling their adaptation and diversification across various environments. Previous bioacoustic and morphological studies suggest that environmental pressures have influenced the evolution of echolocation in toothed whales. This hypothesis demands further investigation, especially regarding the molecular mechanisms involved in the adaptive radiation of toothed whales across multiple habitats. Here we show that the coding sequences of four hearing genes involved in echolocation (CDH23, prestin, TMC1, and CLDN14) have different signatures of molecular evolution among riverine, coastal, and oceanic dolphins, suggesting that the evolutionary constraints of these habitats shaped the underlying genetic diversity of the toothed whale sonar. RESULTS Our comparative analysis across 37 odontocete species revealed patterns of accelerated evolution within coastal and riverine lineages, supporting the hypothesis that shallow habitats pose specific selective pressures to sonar propagation, which are not found in the deep ocean. All toothed whales with genes evolving under positive selection are shallow coastal species, including three species that have recently diverged from freshwater lineages (Cephalorhynchus commersonii, Sotalia guianensis, and Orcaella heinsohni - CDH23), and three species that operate specialized Narrow Band High Frequency (NBHF) Sonars (Phocoena sinus - prestin, Neophocaena phocaenoides - TMC1 and Cephalorhynchus commersonii - CDH23). For river dolphins and deep-diving toothed whales, we found signatures of positive selection and molecular convergence affecting specific sites on CDH23, TMC1, and prestin. Positively selected sites (PSS) were different in number, identity, and substitution rates (dN/dS) across riverine, coastal, and oceanic toothed whales. CONCLUSION Here we shed light on potential molecular mechanisms underlying the diversification of toothed whale echolocation. Our results suggest that toothed whale hearing genes changed under different selective pressures in coastal, riverine, and oceanic environments.
Collapse
Affiliation(s)
- L Magpali
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - E Ramos
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
- Zoological Institute, Department of Environmental Science, University of Basel, Basel, Switzerland
- Natural History Museum Basel, Basel, Switzerland
| | - A Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
| | - L Freitas
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
| | - M F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil.
| |
Collapse
|
2
|
Jung J, Jang SH, Won D, Gee HY, Choi JY, Jung J. Clinical Characteristics and Audiological Profiles of Patients with Pathogenic Variants of WFS1. J Clin Med 2024; 13:4851. [PMID: 39200993 PMCID: PMC11355604 DOI: 10.3390/jcm13164851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Mutations in Wolfram syndrome 1 (WFS1) cause Wolfram syndrome and autosomal dominant non-syndromic hearing loss DFNA6/14/38. To date, more than 300 pathogenic variants of WFS1 have been identified. Generally, the audiological phenotype of Wolfram syndrome or DFNA6/14/38 is characterized by low-frequency hearing loss; however, this phenotype is largely variable. Hence, there is a need to better understand the diversity in audiological and vestibular profiles associated with WFS1 variants, as this can have significant implications for diagnosis and management. This study aims to investigate the clinical characteristics, audiological phenotypes, and vestibular function in patients with DFNA6/14/38. Methods: Whole-exome or targeted deafness gene panel sequencing was performed to confirm the pathogenic variants in patients with genetic hearing loss. Results: We identified nine independent families with affected individuals who carried a heterozygous pathogenic variant of WFS1. The onset of hearing loss varied from the first to the fifth decade. On a pure-tone audiogram, hearing loss was symmetrical, and the severity ranged from mild to severe. Notably, either both low-frequency and high-frequency or all-frequency-specific hearing loss was observed. However, hearing loss was non-progressive in all types. In addition, vestibular impairment was identified in patients with DFNA6/14/38, indicating that impaired WFS1 may also affect the vestibular organs. Conclusions: Diverse audiological and vestibular profiles were observed in patients with pathogenic variants of WFS1. These findings highlight the importance of comprehensive audiological and vestibular assessments in patients with WFS1 mutations for accurate diagnosis and management.
Collapse
Affiliation(s)
- Joonho Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| | - Seung Hyun Jang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| |
Collapse
|
3
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Singh S, Penney C, Griffin A, Woodland G, Werdyani S, Benteau TA, Abdelfatah N, Squires J, King B, Houston J, Dyer MJ, Roslin NM, Vincent D, Marquis P, O'Rielly DD, Hodgkinson K, Burt T, Baker A, Stanton SG, Young TL. Highly variable hearing loss due to POU4F3 (c.37del) is revealed by longitudinal, frequency specific analyses. Eur J Hum Genet 2023:10.1038/s41431-023-01358-0. [PMID: 37072551 DOI: 10.1038/s41431-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Genotype-phenotype correlations add value to the management of families with hereditary hearing loss (HL), where age-related typical audiograms (ARTAs) are generated from cross-sectional regression equations and used to predict the audiogram phenotype across the lifespan. A seven-generation kindred with autosomal dominant sensorineural HL (ADSNHL) was recruited and a novel pathogenic variant in POU4F3 (c.37del) was identified by combining linkage analysis with whole exome sequencing (WES). POU4F3 is noted for large intrafamilial variation including the age of onset of HL, audiogram configuration and presence of vestibular impairment. Sequential audiograms and longitudinal analyses reveal highly variable audiogram features among POU4F3 (c.37del) carriers, limiting the utility of ARTAs for clinical prognosis and management of HL. Furthermore, a comparison of ARTAs against three previously published families (1 Israeli Jewish, 2 Dutch) reveals significant interfamilial differences, with earlier onset and slower deterioration. This is the first published report of a North American family with ADSNHL due to POU4F3, the first report of the pathogenic c.37del variant, and the first study to conduct longitudinal analysis, extending the phenotypic spectrum of DFNA15.
Collapse
Affiliation(s)
- Sushma Singh
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Cindy Penney
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Anne Griffin
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Geoffrey Woodland
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Salem Werdyani
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Tammy A Benteau
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nelly Abdelfatah
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Jessica Squires
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | | | - Jim Houston
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Matthew J Dyer
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, Canada
| | - Daniel Vincent
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Darren D O'Rielly
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Kathy Hodgkinson
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Taylor Burt
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Ashley Baker
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Terry-Lynn Young
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada.
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada.
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada.
| |
Collapse
|
5
|
Lim HD, Lee SM, Yun YJ, Lee DH, Lee JH, Oh SH, Lee SY. WFS1 autosomal dominant variants linked with hearing loss: update on structural analysis and cochlear implant outcome. BMC Med Genomics 2023; 16:79. [PMID: 37041640 PMCID: PMC10088283 DOI: 10.1186/s12920-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Wolfram syndrome type 1 gene (WFS1), which encodes a transmembrane structural protein (wolframin), is essential for several biological processes, including proper inner ear function. Unlike the recessively inherited Wolfram syndrome, WFS1 heterozygous variants cause DFNA6/14/38 and wolfram-like syndrome, characterized by autosomal dominant nonsyndromic hearing loss, optic atrophy, and diabetes mellitus. Here, we identified two WFS1 heterozygous variants in three DFNA6/14/38 families using exome sequencing. We reveal the pathogenicity of the WFS1 variants based on three-dimensional (3D) modeling and structural analysis. Furthermore, we present cochlear implantation (CI) outcomes in WFS1-associated DFNA6/14/38 and suggest a genotype-phenotype correlation based on our results and a systematic review. METHODS We performed molecular genetic test and evaluated clinical phenotypes of three WFS1-associated DFNA6/14/38 families. A putative WFS1-NCS1 interaction model was generated, and the impacts of WFS1 variants on stability were predicted by comparing intramolecular interactions. A total of 62 WFS1 variants associated with DFNA6/14/38 were included in a systematic review. RESULTS One variant is a known mutational hotspot variant in the endoplasmic reticulum (ER)-luminal domain WFS1(NM_006005.3) (c.2051 C > T:p.Ala684Val), and the other is a novel frameshift variant in transmembrane domain 6 (c.1544_1545insA:p.Phe515LeufsTer28). The two variants were pathogenic, based on the ACMG/AMP guidelines. Three-dimensional modeling and structural analysis show that non-polar, hydrophobic substitution of Ala684 (p.Ala684Val) destabilizes the alpha helix and contributes to the loss of WFS1-NCS1 interaction. Also, the p.Phe515LeufsTer28 variant truncates transmembrane domain 7-9 and the ER-luminal domain, possibly impairing membrane localization and C-terminal signal transduction. The systematic review demonstrates favorable outcomes of CI. Remarkably, p.Ala684Val in WFS1 is associated with early-onset severe-to-profound deafness, revealing a strong candidate variant for CI. CONCLUSIONS We expanded the genotypic spectrum of WFS1 heterozygous variants underlying DFNA6/14/38 and revealed the pathogenicity of mutant WFS1, providing a theoretical basis for WFS1-NCS1 interactions. We presented a range of phenotypic traits for WFS1 heterozygous variants and demonstrated favorable functional CI outcomes, proposing p.Ala684Val a strong potential marker for CI candidates.
Collapse
Affiliation(s)
- Hui Dong Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ye Jin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Hee Lee
- CTCELLS, Inc, 21, Yuseong-daero, 1205beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
6
|
A Novel Missense WFS1 Variant: Expanding the Mutational Spectrum Associated with Nonsyndromic Low-Frequency Sensorineural Hearing Loss. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5068869. [PMID: 36225977 PMCID: PMC9550458 DOI: 10.1155/2022/5068869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Nonsyndromic low-frequency sensorineural hearing loss (LFSNHL) is an uncommon form of hearing loss (HL) that typically affects frequencies at 2000 Hz and below. Heterozygous variants in the WFS1 gene at the DFNA6/14/38 locus are considered a common cause of LFSNHL. To date, 34 different pathogenic genetic variants have been reported to cause LFSNHL with seven of these variants identified in the Chinese population. However, limited reports are available on the association between WFS1 gene and LFSNHL. Here, we report a five-generation Chinese family with an autosomal dominant inheritance pattern of postlingual and progressive LFSNHL. Methods. Routine clinical and audiological examinations were performed on 16 affected and 7 healthy members in this family. The targeted next-generation sequencing of 127 known deafness genes was performed to identify variants in affected individuals. Sanger sequencing were further employed to confirm the pathogenic variant identified. Results. A novel heterozygous pathogenic genetic variant c.2530G > T (p.Ala844Ser) was identified in the WFS1 gene in all patients of this family. The mutated Ala residue is evolutionarily conserved and cosegregated with HL. The variant was predicted to be deleterious by MutationTaster, PolyPhen-2, LRT, and Fathmm software. Conservation analysis and 3D protein structure model indicated that the variant caused a structural change in the protein. Conclusions. Our present study identifies a novel heterozygous WFS1 variant associated with LFSNHL in a Chinese family.
Collapse
|
7
|
Kraatari-Tiri M, Haanpää MK, Willberg T, Pohjola P, Keski-Filppula R, Kuismin O, Moilanen JS, Häkli S, Rahikkala E. Clinical and Genetic Characteristics of Finnish Patients with Autosomal Recessive and Dominant Non-Syndromic Hearing Loss Due to Pathogenic TMC1 Variants. J Clin Med 2022; 11:jcm11071837. [PMID: 35407445 PMCID: PMC9000065 DOI: 10.3390/jcm11071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50−60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C>T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A>G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes.
Collapse
Affiliation(s)
- Minna Kraatari-Tiri
- Department of Clinical Genetics, Oulu University Hospital, 90029 Oulu, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90014 Oulu, Finland
| | - Maria K Haanpää
- Department of Clinical Genetics, Turku University Hospital, 20521 Turku, Finland
- Department of Genomics, Turku University Hospital, 20521 Turku, Finland
| | - Tytti Willberg
- Department of Otorhinolaryngology, Turku University Hospital, 20521 Turku, Finland
| | - Pia Pohjola
- Department of Genomics, Turku University Hospital, 20521 Turku, Finland
| | - Riikka Keski-Filppula
- Department of Clinical Genetics, Oulu University Hospital, 90029 Oulu, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90014 Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital, 90029 Oulu, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90014 Oulu, Finland
| | - Jukka S Moilanen
- Department of Clinical Genetics, Oulu University Hospital, 90029 Oulu, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90014 Oulu, Finland
| | - Sanna Häkli
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90014 Oulu, Finland
- Department of Otorhinolaryngology, Oulu University Hospital, 90029 Oulu, Finland
| | - Elisa Rahikkala
- Department of Clinical Genetics, Oulu University Hospital, 90029 Oulu, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
8
|
Robijn SMM, Smits JJ, Sezer K, Huygen PLM, Beynon AJ, van Wijk E, Kremer H, de Vrieze E, Lanting CP, Pennings RJE. Genotype-Phenotype Correlations of Pathogenic COCH Variants in DFNA9: A HuGE Systematic Review and Audiometric Meta-Analysis. Biomolecules 2022; 12:220. [PMID: 35204720 PMCID: PMC8961530 DOI: 10.3390/biom12020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogenic missense variants in COCH are associated with DFNA9, an autosomal dominantly inherited type of progressive sensorineural hearing loss with or without vestibular dysfunction. This study is a comprehensive overview of genotype-phenotype correlations using the PRISMA and HuGENet guidelines. Study characteristics, risk of bias, genotyping and data on the self-reported age of onset, symptoms of vestibular dysfunction, normative test results for vestibular function, and results of audiovestibular examinations were extracted for each underlying pathogenic COCH variant. The literature search yielded 48 studies describing the audiovestibular phenotypes of 27 DFNA9-associated variants in COCH. Subsequently, meta-analysis of audiometric data was performed by constructing age-related typical audiograms and by performing non-linear regression analyses on the age of onset and progression of hearing loss. Significant differences were found between the calculated ages of onset and progression of the audiovestibular phenotypes of subjects with pathogenic variants affecting either the LCCL domain of cochlin or the vWFA2 and Ivd1 domains. We conclude that the audiovestibular phenotypes associated with DFNA9 are highly variable. Variants affecting the LCCL domain of cochlin generally lead to more progression of hearing loss when compared to variants affecting the other domains. This review serves as a reference for prospective natural history studies in anticipation of mutation-specific therapeutic interventions.
Collapse
Affiliation(s)
- Sybren M. M. Robijn
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Jeroen J. Smits
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Kadriye Sezer
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
| | - Patrick L. M. Huygen
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
| | - Andy J. Beynon
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Cornelis P. Lanting
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Ronald J. E. Pennings
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| |
Collapse
|
9
|
De Novo ACTG1 Variant Expands the Phenotype and Genotype of Partial Deafness and Baraitser-Winter Syndrome. Int J Mol Sci 2022; 23:ijms23020692. [PMID: 35054877 PMCID: PMC8776155 DOI: 10.3390/ijms23020692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Actin molecules are fundamental for embryonic structural and functional differentiation; γ-actin is specifically required for the maintenance and function of cytoskeletal structures in the ear, resulting in hearing. Baraitser–Winter Syndrome (B-WS, OMIM #243310, #614583) is a rare, multiple-anomaly genetic disorder caused by mutations in either cytoplasmically expressed actin gene, ACTB (β-actin) or ACTG1 (γ-actin). The resulting actinopathies cause characteristic cerebrofrontofacial and developmental traits, including progressive sensorineural deafness. Both ACTG1-related non-syndromic A20/A26 deafness and B-WS diagnoses are characterized by hypervariable penetrance in phenotype. Here, we identify a 28th patient worldwide carrying a mutated γ-actin ACTG1 allele, with mildly manifested cerebrofrontofacial B-WS traits, hypervariable penetrance of developmental traits and sensorineural hearing loss. This patient also displays brachycephaly and a complete absence of speech faculty, previously unreported for ACTG1-related B-WS or DFNA20/26 deafness, representing phenotypic expansion. The patient’s exome sequence analyses (ES) confirms a de novo ACTG1 variant previously unlinked to the pathology. Additional microarray analysis uncover no further mutational basis for dual molecular diagnosis in our patient. We conclude that γ-actin c.542C > T, p.Ala181Val is a dominant pathogenic variant, associated with mildly manifested facial and cerebral traits typical of B-WS, hypervariable penetrance of developmental traits and sensorineural deafness. We further posit and present argument and evidence suggesting ACTG1-related non-syndromic DFNA20/A26 deafness is a manifestation of undiagnosed ACTG1-related B-WS.
Collapse
|
10
|
DFNA20/26 and Other ACTG1-Associated Phenotypes: A Case Report and Review of the Literature. Audiol Res 2021; 11:582-593. [PMID: 34698053 PMCID: PMC8544197 DOI: 10.3390/audiolres11040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Since the early 2000s, an ever-increasing subset of missense pathogenic variants in the ACTG1 gene has been associated with an autosomal-dominant, progressive, typically post-lingual non-syndromic hearing loss (NSHL) condition designed as DFNA20/26. ACTG1 gene encodes gamma actin, the predominant actin protein in the cytoskeleton of auditory hair cells; its normal expression and function are essential for the stereocilia maintenance. Different gain-of-function pathogenic variants of ACTG1 have been associated with two major phenotypes: DFNA20/26 and Baraitser-Winter syndrome, a multiple congenital anomaly disorder. Here, we report a novel ACTG1 variant [c.625G>A (p. Val209Met)] in an adult patient with moderate-severe NSHL characterized by a downsloping audiogram. The patient, who had a clinical history of slowly progressive NSHL and tinnitus, was referred to our laboratory for the analysis of a large panel of NSHL-associated genes by next generation sequencing. An extensive review of previously reported ACTG1 variants and their associated phenotypes was also performed.
Collapse
|
11
|
Lin YH, Wu PC, Tsai CY, Lin YH, Lo MY, Hsu SJ, Lin PH, Erdenechuluun J, Wu HP, Hsu CJ, Wu CC, Chen PL. Hearing Impairment with Monoallelic GJB2 Variants: A GJB2 Cause or Non-GJB2 Cause? J Mol Diagn 2021; 23:1279-1291. [PMID: 34325055 DOI: 10.1016/j.jmoldx.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
Recessive variants in GJB2 are the most common genetic cause of sensorineural hearing impairment. However, in many patients, only one variant in the GJB2 coding region is identified using conventional sequencing strategy (eg, Sanger sequencing), resulting in nonconfirmative diagnosis. Conceivably, there might be other unidentified pathogenic variants in the noncoding region of GJB2 or other deafness-causing genes in these patients. To address this, a next-generation sequencing-based diagnostic panel targeting the entire GJB2 gene and the coding regions of 158 other known deafness-causing genes was designed and applied to 95 patients with nonsyndromic sensorineural hearing impairment (including 81 Han Taiwanese and 14 Mongolian patients) in whom only a single GJB2 variant had been detected using conventional Sanger sequencing. The panel confirmed the genetic diagnosis in 24 patients (25.3%). Twenty-two of them had causative variants in several deafness-causing genes other than GJB2, including MYO15A, MYO7A, TECTA, POU4F3, KCNQ4, SLC26A4, OTOF, MT-RNR1, MITF, WFS1, and USH2A. The other two patients had causative variants in GJB2, including a Taiwanese patient with a mosaic maternal uniparental disomy c.235delC variant (approximately 69% mosaicism) and a Mongolian patient with compound heterozygous c.35dupG and c.35delG variants, which occurred at the same site. This study demonstrates the utility of next-generation sequencing in clarifying the genetic diagnosis of hearing-impaired patients with nonconfirmative GJB2 genotypes on conventional genetic examinations.
Collapse
Affiliation(s)
- Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ping-Che Wu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Yu Lo
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Jui Hsu
- Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia; The EMJJ Otolaryngology Hospital, Ulaanbaatar, Mongolia
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pei-Lung Chen
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan; Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
A Missense POU4F3 Variant Associated with Autosomal Dominant Midfrequency Hearing Loss Alters Subnuclear Localization and Transcriptional Capabilities. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574136. [PMID: 34250087 PMCID: PMC8238589 DOI: 10.1155/2021/5574136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Background The pathogenic variant, POU class 4 transcription factor 3 (POU4F3), is reported to cause autosomal dominant nonsyndromic hearing loss (ADNSHL). Previously, we have examined a four-generation midfrequency sensorineural hearing loss (MFSNHL) family (no. 6126) and established POU4F3 c.602T>C (p.Leu201Pro) as a potential disease-causing variant. Objectives We explored the structural and functional alterations that the c.602T>C (p.Leu201Pro) variant enforces on the POU4F3 protein. Methods We utilized wild-type (WT) and mutant (MUT) POU4F3 c.602T>C plasmid incorporation into HeLa cells to assess functional changes, by immunofluorescence and luciferase assays. To predict protein structural alterations in the MUT versus WT POU4F3, we also generated 3D structures to compare both types of POU4F3 proteins. Results The WT POU4F3 is ubiquitously present in the nucleus, whereas the MUT form of POU4F3 exhibits a more restricted nuclear presence. This finding is different from other publications, which report a cytoplasmic localization of the MUT POU4F3. We also demonstrated that, as opposed to WT POU4F3, the MUT POU4F3 had 40% reduced luciferase activity. Conclusions The reduced nuclear presence, combined with reduced transcriptional activity, suggests that the POU4F3 c.602T>C variant alters cellular activity and may contribute to the pathogenicity of POU4F3-related hearing loss. It, also, provides more evidence of the pathophysiological characteristics of MFSNHL.
Collapse
|
13
|
Zhu GJ, Gong S, Ma DB, Tao T, He WQ, Zhang L, Wang F, Qian XY, Zhou H, Fan C, Wang P, Chen X, Zhao W, Sun J, Chen H, Wang Y, Gao X, Zuo J, Zhu MS, Gao X, Wan G. Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genet 2020; 16:e1009040. [PMID: 32970669 PMCID: PMC7553308 DOI: 10.1371/journal.pgen.1009040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss. More than 50% of deafness cases are due to genetic defects with no treatment available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common types of autosomal dominant non-syndromic deafness. Here, we established a novel mouse model with the exact Pou4f3 mutation identified in human patients. The mutant mouse display similar auditory pathophysiology as human patients and exhibit multiple hair cell abnormalities. The onset and severity of hearing loss in the mouse model is highly modifiable to environmental factors, such as aging, noise exposure or genetic backgrounds. Using a new knockout mouse model, we found Pou4f3 haploinsufficiency as the underlying mechanism of human DFNA15. Importantly, we identified Aldh inhibitor as a potent small molecule for upregulation of Pou4f3 and treatment of hearing loss in the mutant mouse. The identification of Aldh inhibitor for treatment of DFNA15 deafness represents a major advance in the unmet medical need for this common form of progressive hearing loss.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Sihao Gong
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Deng-Bin Ma
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Tao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei-Qi He
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Linqing Zhang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Qian
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Han Zhou
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Chi Fan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Pei Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Huaqun Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ye Wang
- Nanjing MuCyte Biotechnology Co., Ltd., Nanjing, China
| | - Xiang Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, United States of America
| | - Min-Sheng Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Xia Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Guoqiang Wan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| |
Collapse
|
14
|
Gene therapy development in hearing research in China. Gene Ther 2020; 27:349-359. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Sensorineural hearing loss, the most common form of hearing impairment, is mainly attributable to genetic mutations or acquired factors, such as aging, noise exposure, and ototoxic drugs. In the field of gene therapy, advances in genetic and physiological studies and profound increases in knowledge regarding the underlying mechanisms have yielded great progress in terms of restoring the auditory function in animal models of deafness. Nonetheless, many challenges associated with the translation from basic research to clinical therapies remain to be overcome before a total restoration of auditory function can be expected. In recent years, Chinese research teams have promoted various developmental efforts in this field, including gene sequencing to identify additional potential loci that cause deafness, studies to elucidate the underlying molecular mechanisms, and research to optimize vectors and delivery routes. In this review, we summarize the state of the field and focus mainly on the progress of gene therapy in animal model studies and the optimization of therapeutic strategies in China.
Collapse
|
15
|
Four Novel Variants in POU4F3 Cause Autosomal Dominant Nonsyndromic Hearing Loss. Neural Plast 2020; 2020:6137083. [PMID: 32684921 PMCID: PMC7349627 DOI: 10.1155/2020/6137083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.
Collapse
|
16
|
Han JY, Lee IG. Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability. Clin Exp Pediatr 2020; 63:195-202. [PMID: 32024334 PMCID: PMC7303420 DOI: 10.3345/kjp.2019.00808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy- guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a first-tier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Bai X, Zhang F, Xiao Y, Jin Y, Zheng Q, Wang H, Xu L. Identification of two novel mutations in POU4F3 gene associated with autosomal dominant hearing loss in Chinese families. J Cell Mol Med 2020; 24:6978-6987. [PMID: 32390314 PMCID: PMC7299729 DOI: 10.1111/jcmm.15359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant non‐syndromic hearing loss is genetically heterogeneous with 47 genes identified to date, including POU4F3. In this study, by using a next‐generation sequencing panel targeting 127 deafness genes, we identified a pathogenic frameshift mutation c.704_705del and a missense mutation c.593G>A in two three‐generation Chinese families with late‐onset progressive ADNSHL, respectively. The novel mutations of POU4F3 co‐segregated with the deafness phenotype in these two families. c.704_705del caused a frameshift p.T235fs and c.593G>A caused an amino acid substitution of p.R198H. Both mutations led to an abnormal and incomplete protein structure. POU4F3 with either of the two mutations was transiently transfected into HEI‐OC1 and HEK 293 cell lines and immunofluorescence assay was performed to investigate the subcellular localization of mutated protein. The results indicated that both c.704_705del (p.T235fs) and c.593G>A (p.R198H) could impair the nuclear localization function of POU4F3. The p.R198H POU4F3 protein was detected as a weak band of the correct molecular weight, indicating that the stability of p.R198H POU4F3 differed from that of the wild‐type protein. While, the p.T235fs POU4F3 protein was expressed with a smaller molecular weight, implying this mutation result in a frameshift and premature termination of the POU4F3 protein. In summary, we report two novel mutations of POU4F3 associated with progressive ADNSHL and explored their effects on POU4F3 nuclear localization. These findings expanded the mutation spectrum of POU4F3 and provided new knowledge for the pathogenesis of POU4F3 in hearing loss.
Collapse
Affiliation(s)
- Xiaohui Bai
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengguo Zhang
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Xiao
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jin
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Haibo Wang
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Xu
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Abstract
OBJECTIVE To describe the genetic and phenotypic spectrum of Usher syndrome after 6 years of studies by next-generation sequencing, and propose an up-to-date classification of Usher genes in patients with both visual and hearing impairments suggesting Usher syndrome, and in patients with seemingly isolated deafness. STUDY DESIGN The systematic review and meta-analysis protocol was based on Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed 1) a meta-analysis of data from 11 next-generation sequencing studies in 684 patients with Usher syndrome; 2) a meta-analysis of data from 21 next-generation studies in 2,476 patients with seemingly isolated deafness, to assess the involvement of Usher genes in seemingly nonsyndromic hearing loss, and thus the proportion of patients at high risk of subsequent retinitis pigmentosa (RP); 3) a statistical analysis of differences between parts 1) and 2). RESULTS In patients with both visual and hearing impairments, the biallelic disease-causing mutation rate was assessed for each Usher gene to propose a classification by frequency: USH2A: 50% (341/684) of patients, MYO7A: 21% (144/684), CDH23: 6% (39/684), ADGRV1: 5% (35/684), PCDH15: 3% (21/684), USH1C: 2% (17/684), CLRN1: 2% (14/684), USH1G: 1% (9/684), WHRN: 0.4% (3/684), PDZD7 0.1% (1/684), CIB2 (0/684). In patients with seemingly isolated sensorineural deafness, 7.5% had disease-causing mutations in Usher genes, and are therefore at high risk of developing RP. These new findings provide evidence that usherome dysfunction is the second cause of genetic sensorineural hearing loss after connexin dysfunction. CONCLUSION These results promote generalization of early molecular screening for Usher syndrome in deaf children.
Collapse
|
19
|
Comprehensive genetic testing of Chinese SNHL patients and variants interpretation using ACMG guidelines and ethnically matched normal controls. Eur J Hum Genet 2019; 28:231-243. [PMID: 31541171 PMCID: PMC6974605 DOI: 10.1038/s41431-019-0510-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Hereditary hearing loss is a monogenic disease with high genetic heterogeneity. Variants in more than 100 deafness genes underlie the basis of its pathogenesis. The aim of this study was to assess the ratio of SNVs in known deafness genes contributing to the etiology of both sporadic and familial sensorineural hearing loss patients from China. DNA samples from 1127 individuals, including normal hearing controls (n = 616), sporadic SNHL patients (n = 433), and deaf individuals (n = 78) from 30 hearing loss pedigrees were collected. The NGS tests included analysis of sequence alterations in 129 genes. The variants were interpreted according to the ACMG/AMP guidelines for genetic hearing loss combined with NGS data from 616 ethnically matched normal hearing adult controls. We identified a positive molecular diagnosis in 226 patients with sporadic SNHL (52.19%) and in patients from 17 deafness pedigrees (56.67%). Ethnically matched MAF filtering reduced the variants of unknown significance by 8.7%, from 6216 to 5675. Some complexities that may restrict causative variant identification are discussed. This report highlight the clinical utility of NGS panels identifying disease-causing variants for the diagnosis of hearing loss and underlines the importance of a broad data of control and ACMG/AMP standards for accurate clinical delineation of VUS variants.
Collapse
|
20
|
Gao B, Li S, Tan Z, Ma L, Liu J. ACTG1 and TLR3 are biomarkers for alcohol-associated hepatocellular carcinoma. Oncol Lett 2018; 17:1714-1722. [PMID: 30675230 PMCID: PMC6341811 DOI: 10.3892/ol.2018.9757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol consumption is a risk factor for the development of hepatocellular carcinoma (HCC); however, the association between alcohol and HCC remains unknown. The present study aimed to identify key genes related to alcohol-associated HCC to improve the current understanding of the pathology of this disease. Alcohol-associated and non-alcohol-associated HCC samples in the GSE50579 dataset of the Gene Omnibus Database were analyzed to investigate altered gene expression. Integrated bioinformatics methods were employed to clarify the biological functions of the differentially expressed genes (DEGs), including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interactions (PPIs). The present study reported that candidate biomarker micro (mi)RNAs via TargetScan Human 7.1. DEGs and their associated miRNAs (according to bioinformatics analysis) were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, 284 EGs from the GSE50579 dataset were revealed. In GO term analysis, DEGs were closely associated with the ‘regulation of nucleic acid metabolism’. KEGG pathway analysis indicated that the DEGs were tightly engaged in the ‘VEGF and VEGF receptor signaling network’, ‘proteoglycan syndecan-mediated signaling events’, ‘erbB receptor signaling’ and ‘β1 integrin cell surface interactions’. According to the results of PPI and heat map analysis, the main hub genes were centrin 3 (CETN3), Toll-like receptor 3 (TLR3), receptor tyrosine-protein kinase (ERBB4), heat shock protein family member 8, actin γ1 (ACTG1) and α-smooth muscle actin. it was demonstrated that the ACTG1, TLR3, miR-6819-3p and miRΝΑ (miR)-6877-3P had undefined associations. Furthermore, RT-qPCR analysis revealed that miR-6819-3p and miR-6877-3P may enhance the expression levels of ACTG1 and inhibit the expression levels of TLR3 in alcohol-associated HCC tissues. TLR3 and ACTG1 were proposed as potential biomarkers of alcohol-associated HCC. Investigation into the regulatory functions of miR-6819-3p and miR-6877-3P may provide novel insights into the treatment of alcohol-associated HCC.
Collapse
Affiliation(s)
- Bing Gao
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Shicheng Li
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhen Tan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Leina Ma
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266021, P.R. China.,Qingdao Cancer Institute, Qingdao, Shandong 266021, P.R. China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
21
|
Tian T, Lu Y, Yao J, Cao X, Wei Q, Li Q. Identification of a novel MYO6 mutation associated with autosomal dominant non-syndromic hearing loss in a Chinese family by whole-exome sequencing. Genes Genet Syst 2018; 93:171-179. [PMID: 30175721 DOI: 10.1266/ggs.18-00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autosomal dominant non-syndromic hearing loss (ADNSHL) is characterized by postlingual progressive onset. Due to its high genetic heterogeneity, it is difficult to perform a molecular diagnosis for most patients with ADNSHL. In our study, whole-exome sequencing (WES) was used to screen pathogenic gene candidates by analyzing genomic DNA samples from a large Chinese family (JSNY-067), including the proband and her father, who suffered from non-syndromic hearing loss. The pathogenicity of candidate nonsynonymous variants in ADNSHL genes was evaluated by co-segregation analysis in family members by direct PCR and Sanger sequencing. Furthermore, multiple in silico analyses (SIFT, Polyphen2, PROVEAN and MutationTaster) and molecular dynamics simulation were used to assess the potential pathogenicity of the candidate mutations. We identified a novel causative mutation, c.622A>G in MYO6 (DFNA22), that resulted in a p.K208E substitution. This mutation co-segregated with the hearing loss phenotype in extended family members, and was predicted to be pathogenic by SIFT, PolyPhen2, PROVEAN and MutationTaster. Furthermore, molecular dynamics simulation analysis revealed that the p.K208E substitution had a limited influence on the whole protein structure and stability, but that it could affect the locations of the sidechains of nearby hydrophilic residues, which in turn resulted in the sidechains of Asn186 and Glu190 being exposed more frequently at the surface of the protein. WES has thus been shown to be a useful molecular diagnostic tool in screening uncommon gene mutations associated with hereditary hearing loss.
Collapse
Affiliation(s)
- Tao Tian
- Department of Otorhinolaryngology, Children's Hospital of Nanjing Medical University
| | - Yajie Lu
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University
| | - Jun Yao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University
| | - Xin Cao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University
| | - Qinjun Wei
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University
| | - Qi Li
- Department of Otorhinolaryngology, Children's Hospital of Nanjing Medical University
| |
Collapse
|
22
|
Wang F, Zhu L, Liu B, Zhu X, Wang N, Deng T, Kang D, Pan J, Yang W, Gao H, Guo Y. Noninvasive and Accurate Detection of Hereditary Hearing Loss Mutations with Buccal Swab Based on Droplet Digital PCR. Anal Chem 2018; 90:8919-8926. [PMID: 29987923 DOI: 10.1021/acs.analchem.8b01096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hereditary hearing loss is a common clinical neurosensory disorder in humans and has a high demand for genetic screening. Current screening techniques using peripheral blood or dried blood spots (DBSs) are invasive. Therefore, this study aims to develop a noninvasive and accurate detection method for eight hotspot deafness-associated mutations based on buccal swab and droplet digital PCR (ddPCR). First, this method was evaluated for analytic performance including specificity, detection limit, dynamic range using plasmid DNA. The specificity was 100% and the detection limit was 5 copies. The dynamic range of this ddPCR-based method was from 10 to 105 copies/μL. Next, the method was found to accurately quantify mitochondrial gene heteroplasmy rate as low as 1% for both m.1494C > T and m.1555A > G sites. Then, we demonstrated that buccal swab was a reliable sample. DNA can be extracted and accurately quantified after a buccal swab had been stored for 90 days at either room temperature or -20 °C. Finally, clinical samples (23 DBSs and 42 buccal swabs) were tested to further evaluate the accuracy and clinical applicability of this method. All clinical samples were accurately quantified and genotyped. This noninvasive and accurate method is highly promising as a genetic screening method for deafness-associated mutations due to its high sensitivity and accuracy.
Collapse
Affiliation(s)
- Fang Wang
- Human Genetic Resource Center , National Research Institute for Health and Family Planning , 12 Da Huisi Raod , Beijing 100081 , People's Republic of China.,Chinese Academy of Medical Sciences , Graduate School of Peking Union Medical College , 9 Dongdan Three Road , Beijing 100730 , People's Republic of China
| | - Lingxiang Zhu
- Human Genetic Resource Center , National Research Institute for Health and Family Planning , 12 Da Huisi Raod , Beijing 100081 , People's Republic of China.,Chinese Academy of Medical Sciences , Graduate School of Peking Union Medical College , 9 Dongdan Three Road , Beijing 100730 , People's Republic of China
| | - Baoxia Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Tsinghua University , 30 Shuangqing Road , Beijing 100084 , People's Republic of China
| | - Xiurui Zhu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Tsinghua University , 30 Shuangqing Road , Beijing 100084 , People's Republic of China
| | - Nan Wang
- Human Genetic Resource Center , National Research Institute for Health and Family Planning , 12 Da Huisi Raod , Beijing 100081 , People's Republic of China.,Chinese Academy of Medical Sciences , Graduate School of Peking Union Medical College , 9 Dongdan Three Road , Beijing 100730 , People's Republic of China
| | - Tao Deng
- Beijing CapitalBio Medical Laboratory , 88 Kechuang Six Street , Beijing 101111 , People's Republic of China
| | - Dongyang Kang
- Department of Otorhinolaryngology Head Neck Surgery , Chinese PLA General Hospital , 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Junmin Pan
- Human Genetic Resource Center , National Research Institute for Health and Family Planning , 12 Da Huisi Raod , Beijing 100081 , People's Republic of China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , 30 Shuangqing Road , Beijing 100084 , People's Republic of China
| | - Wenjun Yang
- TargetingOne Corporation , 268 Chengfu Road , Beijing 100190 , People's Republic of China
| | - Huafang Gao
- Human Genetic Resource Center , National Research Institute for Health and Family Planning , 12 Da Huisi Raod , Beijing 100081 , People's Republic of China.,Chinese Academy of Medical Sciences , Graduate School of Peking Union Medical College , 9 Dongdan Three Road , Beijing 100730 , People's Republic of China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Tsinghua University , 30 Shuangqing Road , Beijing 100084 , People's Republic of China
| |
Collapse
|
23
|
STRC Deletion is a Frequent Cause of Slight to Moderate Congenital Hearing Impairment in the Czech Republic. Otol Neurotol 2018; 38:e393-e400. [PMID: 28984810 DOI: 10.1097/mao.0000000000001571] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to clarify the molecular epidemiology of hearing loss by identifying the responsible genes in patients without GJB2 mutations. STUDY DESIGN Prospective genetic study. SETTING Tertiary referral hospital. PATIENTS Fifty one patients with bilateral sensorineural hearing loss, 20 men, and 31 women, mean age 24.9 years, range 3 to 64 years, from 49 families. GJB2 and deltaGJB6-D13S1830 mutations were excluded previously. INTERVENTION Diagnostic. Sixty-nine genes reported to be causative of hearing loss were analyzed. Sequence capture technology, next-generation sequencing, and multiplex ligation-dependent probe amplification (MLPA) were used. Coverage of STRC was screened in Integrative Genomics Viewer software. MAIN OUTCOME MEASURE Identification of causal pathogenic mutations in genes related to deafness. RESULTS Five families (10%) had recessive STRC deletions or mutations. Five unrelated patients (10%) had recessive mutations in TMPRSS3, USH2A, PCDH15, LOXHD1, and MYO15A. Three families (6%) had autosomal dominant mutations in MYO6A, KCNQ4, and SIX1. One family (2%) had an X-linked POU3F4 mutation. Thus, we identified the cause of hearing loss in 28% of the families studied. CONCLUSIONS Following GJB2, STRC was the second most frequently mutated gene in patients from the Czech Republic with hearing loss. To decrease the cost of testing, we recommend STRC deletion screening with MLPA before next-generation sequencing. The existence of a pseudogene and polymorphic STRC regions can lead to false-positive or false-negative results when copy number variation analysis is based on next-generation sequencing data.
Collapse
|
24
|
Wang L, Yan D, Qin L, Li T, Liu H, Li W, Mittal R, Yong F, Chapagain P, Liao S, Liu X. Amino acid 118 in the Deafness Causing (DFNA20/26) ACTG1 gene is a Mutational Hot Spot. GENE REPORTS 2018; 11:264-269. [PMID: 30599039 DOI: 10.1016/j.genrep.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Hearing loss is an economically and socially important cause of human morbidity, affecting 360 million people (over 5% of the world's population), of whom 32 million are children. Of the estimated minimum of 50% of hereditary hearing loss, non-syndromic hearing loss (NSHL) accounts for more than 70%. The autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous. To date, 67 ADNSHL loci (DFNA1-67) have been mapped; however, only 35 causative genes have been cloned since 1997 (http://hereditaryhearingloss.org/). Methods To identify the genetic basis of hereditary hearing loss in a Chinese family with ADNSHL, we undertook a targeted sequencing of 180 genes using a custom capture panel (MiamiOtoGenes). Results The onset of hearing loss in the family occurred between the ages of 15 and 18 years. Hearing loss was bilateral, started in the high frequency and progressed to lower frequencies. The c.353A>T (K118M) in the AC TG1 gene was identified by panel and was confirmed by Sanger sequencing and was present in all affected family members. So far, five of the 23 DFNA20/26 families worldwide have been found to carry mutation involving the residue K118. Conclusions This is the first report of K118M mutation in the ACTG1 gene causing hearing loss in the Chinese population. The present data are in line with previous evidence to suggest that codon K118 of ACTG1 may represent a mutational hot spot that justifies a mutation screen for diagnostic purpose in the genetically heterogeneous group of DFNA20/26.
Collapse
Affiliation(s)
- Li Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Litao Qin
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan Li
- Department of Otorhinolaryngology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rahul Mittal
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Yong
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Shixiu Liao
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
25
|
A Missense Mutation in POU4F3 Causes Midfrequency Hearing Loss in a Chinese ADNSHL Family. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5370802. [PMID: 29850532 PMCID: PMC5904794 DOI: 10.1155/2018/5370802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022]
Abstract
Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the POU class 4 transcription factor 3 (POU4F3) are known to cause autosomal dominant nonsyndromic hearing loss linked to the loci of DFNA15. In this study, we describe a pathogenic missense mutation in POU4F3 in a four-generation Chinese family (6126) with midfrequency, progressive, and postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 129 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified POU4F3 c.602T>C (p.Leu201Pro) as the disease-causing variant. This variant cosegregated with hearing loss in other family members but was not detected in 580 normal controls or the ExAC database and could be classified as a “pathogenic variant” according to the American College of Medical Genetics and Genomics guidelines. We conclude that POU4F3 c.602T>C (p.Leu201Pro) is related to midfrequency hearing loss in this family. Routine examination of POU4F3 is necessary for the genetic diagnosis of midfrequency hearing loss.
Collapse
|
26
|
Kobayashi M, Miyagawa M, Nishio SY, Moteki H, Fujikawa T, Ohyama K, Sakaguchi H, Miyanohara I, Sugaya A, Naito Y, Morita SY, Kanda Y, Takahashi M, Ishikawa K, Nagano Y, Tono T, Oshikawa C, Kihara C, Takahashi H, Noguchi Y, Usami SI. WFS1 mutation screening in a large series of Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis. PLoS One 2018. [PMID: 29529044 PMCID: PMC5846739 DOI: 10.1371/journal.pone.0193359] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A heterozygous mutation in the Wolfram syndrome type 1 gene (WFS1) causes autosomal dominant nonsyndromic hereditary hearing loss, DFNA6/14/38, or Wolfram-like syndrome. To date, more than 40 different mutations have been reported to be responsible for DFNA6/14/38. In the present study, WFS1 variants were screened in a large series of Japanese hearing loss (HL) patients to clarify the prevalence and clinical characteristics of DFNA6/14/38 and Wolfram-like syndrome. Massively parallel DNA sequencing of 68 target genes was performed in 2,549 unrelated Japanese HL patients to identify genomic variations responsible for HL. The detailed clinical features in patients with WFS1 variants were collected from medical charts and analyzed. We successfully identified 13 WFS1 variants in 19 probands: eight of the 13 variants were previously reported mutations, including three mutations (p.A684V, p.K836N, and p.E864K) known to cause Wolfram-like syndrome, and five were novel mutations. Variants were detected in 15 probands (2.5%) in 602 families with presumably autosomal dominant or mitochondrial HL, and in four probands (0.7%) in 559 sporadic cases; however, no variants were detected in the other 1,388 probands with autosomal recessive or unknown family history. Among the 30 individuals possessing variants, marked variations were observed in the onset of HL as well as in the presence of progressive HL and tinnitus. Vestibular symptoms, which had been rarely reported, were present in 7 out of 30 (23%) of the affected individuals. The most prevalent audiometric configuration was low-frequency type; however, some individuals had high-frequency HL. Haplotype analysis in three mutations (p.A716T, p.K836T, and p.E864K) suggested that the mutations occurred at these mutation hot spots. The present study provided new insights into the audiovestibular phenotypes in patients with WFS1 mutations.
Collapse
Affiliation(s)
- Masafumi Kobayashi
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taro Fujikawa
- Department of Otolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ohyama
- Department of Otorhinolaryngology, Tohoku Rosai Hospital, Sendai, Japan
| | - Hirofumi Sakaguchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuyo Miyanohara
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Sugaya
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Naito
- Department of Otolaryngology, Kobe City Medical Center, Kobe, Japan
| | - Shin-ya Morita
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yukihiko Kanda
- Kanda ENT Clinic, Nagasaki Bell Hearing Center, Nagasaki, Japan
| | - Masahiro Takahashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kotaro Ishikawa
- Department of Otolaryngology, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Yuki Nagano
- Department of Otolaryngology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tetsuya Tono
- Department of Otolaryngology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Chie Oshikawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiharu Kihara
- Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruo Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshihiro Noguchi
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| |
Collapse
|
27
|
Lin YH, Lin YH, Lu YC, Liu TC, Chen CY, Hsu CJ, Chen PL, Wu CC. A novel missense variant in the nuclear localization signal of POU4F3 causes autosomal dominant non-syndromic hearing loss. Sci Rep 2017; 7:7551. [PMID: 28790396 PMCID: PMC5548901 DOI: 10.1038/s41598-017-08236-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 02/01/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (ADNSHL) is genetically heterogeneous with more than 35 genes identified to date. Using a massively parallel sequencing panel targeting 159 deafness genes, we identified a novel missense variant of POU4F3 (c.982A>G, p.Lys328Glu) which co-segregated with the deafness phenotype in a three-generation Taiwanese family with ADNSHL. This variant could be classified as a "pathogenic variant" according to the American College of Medical Genetics and Genomics guidelines. We then performed subcellular localization experiments and confirmed that p.Lys328Glu compromised transportation of POU4F3 from the cytoplasm to the nucleus. POU3F4 p.Lys328Glu was located within a bipartite nuclear localization signal (NLS), and was the first missense variant in bipartite NLS of POU4F3 validated in functional studies. These findings expanded the mutation spectrum of POU4F3 and provided insight into the pathogenesis associated with aberrant POU4F3 localization.
Collapse
Affiliation(s)
- Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Otolaryngology, Taichung Tzu-Chi Hospital, Taichung, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Kitano T, Miyagawa M, Nishio SY, Moteki H, Oda K, Ohyama K, Miyazaki H, Hidaka H, Nakamura KI, Murata T, Matsuoka R, Ohta Y, Nishiyama N, Kumakawa K, Furutate S, Iwasaki S, Yamada T, Ohta Y, Uehara N, Noguchi Y, Usami SI. POU4F3 mutation screening in Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis identified novel variants associated with autosomal dominant hearing loss. PLoS One 2017; 12:e0177636. [PMID: 28545070 PMCID: PMC5435223 DOI: 10.1371/journal.pone.0177636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/01/2017] [Indexed: 11/18/2022] Open
Abstract
A variant in a transcription factor gene, POU4F3, is responsible for autosomal dominant nonsyndromic hereditary hearing loss, DFNA15. To date, 14 variants, including a whole deletion of POU4F3, have been reported to cause HL in various ethnic groups. In the present study, genetic screening for POU4F3 variants was carried out for a large series of Japanese hearing loss (HL) patients to clarify the prevalence and clinical characteristics of DFNA15 in the Japanese population. Massively parallel DNA sequencing of 68 target candidate genes was utilized in 2,549 unrelated Japanese HL patients (probands) to identify genomic variations responsible for HL. The detailed clinical features in patients with POU4F3 variants were collected from medical charts and analyzed. Novel 12 POU4F3 likely pathogenic variants (six missense variants, three frameshift variants, and three nonsense variants) were successfully identified in 15 probands (2.5%) among 602 families exhibiting autosomal dominant HL, whereas no variants were detected in the other 1,947 probands with autosomal recessive or inheritance pattern unknown HL. To obtain the audiovestibular configuration of the patients harboring POU4F3 variants, we collected audiograms and vestibular symptoms of the probands and their affected family members. Audiovestibular phenotypes in a total of 24 individuals from the 15 families possessing variants were characterized by progressive HL, with a large variation in the onset age and severity with or without vestibular symptoms observed. Pure-tone audiograms indicated the most prevalent configuration as mid-frequency HL type followed by high-frequency HL type, with asymmetry observed in approximately 20% of affected individuals. Analysis of the relationship between age and pure-tone average suggested that individuals with truncating variants showed earlier onset and slower progression of HL than did those with non-truncating variants. The present study showed that variants in POU4F3 were a common cause of autosomal dominant HL.
Collapse
Affiliation(s)
- Tomohiro Kitano
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kiyoshi Oda
- Department of Otorhinolaryngology, Tohoku Rosai Hospital, Sendai, Japan
| | - Kenji Ohyama
- Department of Otorhinolaryngology, Tohoku Rosai Hospital, Sendai, Japan
| | - Hiromitsu Miyazaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroshi Hidaka
- Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Ken-ichi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Takaaki Murata
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rina Matsuoka
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoko Ohta
- Department of Otorhinolaryngology Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiro Nishiyama
- Department of Otorhinolaryngology Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kozo Kumakawa
- Department of Otorhinolaryngology, Toranomon Hospital, Tokyo, Japan
| | - Sakiko Furutate
- Department of Otorhinolaryngology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Satoshi Iwasaki
- Department of Otorhinolaryngology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Yoshihiro Noguchi
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| |
Collapse
|
29
|
Mutation in the Hair Cell Specific Gene POU4F3 Is a Common Cause for Autosomal Dominant Nonsyndromic Hearing Loss in Chinese Hans. Neural Plast 2016; 2016:9890827. [PMID: 28053790 PMCID: PMC5178374 DOI: 10.1155/2016/9890827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022] Open
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL) is extremely heterogeneous. So far the genetic etiological contribution of the gene POU4F3 associated with ADNSHL has been rarely reported. In our previous study, a c.603_604delGG mutation in the hair cell specific gene POU4F3 has been identified as the pathogenic cause in one of the seven Chinese Han ADNSHL families. In the present study, we performed targeted next-generation sequencing of 144 known deafness genes in another nine Chinese Han ADNSHL families and identified two more novel mutations in POU4F3, p.Leu311Pro and c.120+1G>C, as the pathogenic cause. Clinical characterization of the affected individuals in these three families showed that the three POU4F3 mutations may lead to progressive hearing loss with variable ages of onset and degrees of severity. Our results suggested that mutations in POU4F3 are a relatively common cause (3/16) for ADNSHL in Chinese Hans, which should be routinely screened in such cases during genetic testing.
Collapse
|
30
|
A Novel Nonsense Mutation of POU4F3 Gene Causes Autosomal Dominant Hearing Loss. Neural Plast 2016; 2016:1512831. [PMID: 27999687 PMCID: PMC5143711 DOI: 10.1155/2016/1512831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
POU4F3 gene encodes a transcription factor which plays an essential role in the maturation and maintenance of hair cells in cochlea and vestibular system. Several mutations of POU4F3 have been reported to cause autosomal dominant nonsyndromic hearing loss in recent years. In this study, we describe a pathogenic nonsense mutation located in POU4F3 in a four-generation Chinese family. Target region capture sequencing was performed to search for the candidate mutations from 81 genes related to nonsyndromic hearing loss in this family. A novel nonsense mutation of POU4F3, c.337C>T (p. Gln113⁎), was identified in a Chinese family characterized by late-onset progressive nonsyndromic hearing loss. The novel mutation cosegregated with hearing loss in this family and was absent in 200 ethnicity-matched controls. The mutation led to a stop codon and thus a truncated protein with no functional domains remained. Transient transfection and immunofluorescence assay revealed that the subcellular localization of the truncated protein differed markedly from normal protein, which could be the underlying reason for complete loss of its normal function. Here, we report the first nonsense mutation of POU4F3 associated with progressive hearing loss and explored the possible underlying mechanism. Routine examination of POU4F3 is necessary for the genetic diagnosis of hereditary hearing loss in the future.
Collapse
|
31
|
Qin T, An Y, Liu C, Wu J, Dai R, Liu D, Li X, Jiang L, Wu D, Tang X, Song W, Wang T, Zhao X. Novel DOCK8 gene mutations lead to absence of protein expression in patients with hyper-IgE syndrome. Immunol Res 2016; 64:260-71. [PMID: 26659092 DOI: 10.1007/s12026-015-8745-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Autosomal recessive hyper-immunoglobulin E syndrome (AR-HIES) caused by DOCK8 defects is characterized by recurrent elevated serum IgE level, elevated peripheral eosinophil count, severe atopy, recurrent viral and bacterial infections, and early-onset malignancy. The clinical, genetic, and immunologic characteristics of DOCK8 mutations in Chinese patients have not been characterized in detail. In this research, we screened seven Chinese candidate patients for mutations within the DOCK8 gene and identified three large novel homozygous deletions and four novel point mutations by targeted deep sequencing. The homozygous deletions displayed autosomal recessive inheritance, and the point mutations were sporadic. Absence of DOCK8 protein was confirmed using flow cytometry and western blotting. Besides the typical clinical features and immunologic impairments of DIDS, proliferation of lymphocytes, cytotoxic function of NK cells, and expression of IL-10 in regulatory B cells were severely impaired in DOCK8 mutant patients which may be associated with abnormal immune responses in DIDS. These findings will contribute to the early diagnosis and treatment of DOCK8 patients.
Collapse
Affiliation(s)
- Tao Qin
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yunfei An
- Division of Immunology; Research Center for Immunologic and Infectious Diseases; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chaohong Liu
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junfeng Wu
- Division of Immunology; Research Center for Immunologic and Infectious Diseases; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rongxin Dai
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dawei Liu
- Division of Immunology; Research Center for Immunologic and Infectious Diseases; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohui Li
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Liping Jiang
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daoqi Wu
- Division of Immunology; Research Center for Immunologic and Infectious Diseases; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Division of Immunology; Research Center for Immunologic and Infectious Diseases; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Tao Wang
- Division of Immunology, Fujian Provincial Hospital, Fujian, 350001, China.
| | - Xiaodong Zhao
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Division of Immunology; Research Center for Immunologic and Infectious Diseases; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China.
| |
Collapse
|
32
|
Abstract
With a population of 1.4 billion, China shares the largest burden of rare genetic diseases worldwide. Current estimates suggest that there are over ten million individuals afflicted with chromosome disease syndromes and well over one million individuals with monogenic disease. Care of patients with rare genetic diseases remains a largely unmet need due to the paucity of available and affordable treatments. Over recent years, there is increasing recognition of the need for affirmative action by government, health providers, clinicians and patients. The advent of new next generation sequencing (NGS) technologies such as whole genome/exome sequencing, offers an unprecedented opportunity to provide large-scale population screening of the Chinese population to identify the molecular causes of rare genetic diseases. As a surrogate for lack of effective treatments, recent development and implementation of noninvasive prenatal testing (NIPT) in China has the greatest potential, as a single technology, for reducing the number of children born with rare genetic diseases.
Collapse
Affiliation(s)
- David S Cram
- Berry Genomics Corporation, Beijing, China
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Dr. David S Cram, Berry Genomics Corporation, Building 9, No. 6 Court, Jingshun East Rd, Chaoyang District, Beijing 100015, China. E-mail:
| | | |
Collapse
|
33
|
Li-Yang MN, Shen XF, Wei QJ, Yao J, Lu YJ, Cao X, Xing GQ. IVS8+1 DelG, a Novel Splice Site Mutation Causing DFNA5 Deafness in a Chinese Family. Chin Med J (Engl) 2016; 128:2510-5. [PMID: 26365971 PMCID: PMC4725571 DOI: 10.4103/0366-6999.164980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Nonsyndromic hearing loss (NSHL) is highly heterogeneous, in which more than 90 causative genes have currently been identified. DFNA5 is one of the deafness genes that known to cause autosomal dominant NSHL. Until date, only five DFNA5 mutations have been described in eight families worldwide. In this study, we reported the identification of a novel pathogenic mutation causing DFNA5 deafness in a five-generation Chinese family. METHODS After detailed clinical evaluations of this family, the genomic DNA of three affected individuals was selected for targeted exome sequencing of 101 known deafness genes, as well as mitochondrial DNA and microRNA regions. Co-segregation analysis between the hearing loss and the candidate variant was confirmed in available family members by direct polymerase chain reaction (PCR)-Sanger sequencing. Real-time PCR (RT-PCR) was performed to investigate the potential effect of the pathogenic mutation on messenger RNA splicing. RESULTS Clinical evaluations revealed a similar deafness phenotype in this family to that of previously reported DFNA5 families with autosomal dominant, late-onset hearing loss. Molecular analysis identified a novel splice site mutation in DFNA5 intron 8 (IVS8+1 delG). The mutation segregated with the hearing loss of the family and was absent in 120 unrelated control DNA samples of Chinese origin. RT-PCR showed skipping of exon 8 in the mutant transcript. CONCLUSIONS We identified a novel DFNA5 mutation IVS8+1 delG in a Chinese family which led to skipping of exon 8. This is the sixth DFNA5 mutation relates to hearing loss and the second one in DFNA5 intron 8. Our findings provide further support to the hypothesis that the DFNA5-associated hearing loss represents a mechanism of gain-of-function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guang-Qian Xing
- Department of Otolaryngology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
34
|
Kim SY, Kim AR, Kim NKD, Lee C, Kim MY, Jeon EH, Park WY, Choi BY. Unraveling of Enigmatic Hearing-Impaired GJB2 Single Heterozygotes by Massive Parallel Sequencing: DFNB1 or Not? Medicine (Baltimore) 2016; 95:e3029. [PMID: 27057829 PMCID: PMC4998745 DOI: 10.1097/md.0000000000003029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The molecular etiology of nonsyndromic sensorineural hearing loss (SNHL) in subjects with only one detectable autosomal recessive GJB2 mutation is unclear. Here, we report GJB2 single heterozygotes with various final genetic diagnoses and suggest appropriate diagnostic strategies. A total of 160 subjects with SNHL without phenotypic markers were screened for GJB2 mutations. Single-nucleotide variants or structural variations within the DFNB1 locus or in other deafness genes were examined by Sanger sequencing, breakpoint PCR, and targeted exome sequencing (TES) of 129 deafness genes. We identified 27 subjects with two mutations and 10 subjects with only one detectable mutation in GJB2. The detection rate of the single GJB2 mutation among the 160 SNHL subjects in the present study (6.25%) was higher than 2.58% in normal hearing controls in Korean. The DFNB1 was clearly excluded as a molecular etiology in four (40%) subjects: other recessive deafness genes (N = 3) accounted for SNHL and the causative gene for the other non-DFNB1 subject (N = 1) was not identified. The etiology of additional two subjects was potentially explained by digenic etiology (N = 2) of GJB2 with MITF and GJB3, respectively. The contribution of the single GJB2 mutation in the four remaining subjects is unclear. Comprehensive diagnostic testing including TES is prerequisite for understanding GJB2 single heterozygotes.
Collapse
Affiliation(s)
- So Young Kim
- From the Department of Otorhinolaryngology-Head and Neck Surgery, CHA medical center, CHA university, Seongnam (SYK), Department of Otorhinolaryngology-Head and Neck Surgery (SYK, ARK), Seoul National University Hospital, Seoul National University College of Medicine; Samsung Genome Institue (NKDK, CL), Samsung Medical Center, Seoul, Korea; Department of Health Sciences and Technology (CL), SAIHST, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery (MYK, E-HJ, BYC), Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam; Samsung Genome Institute (W-YP), Samsung Medical Center; Department of Molecular Cell Biology, School of Medicine (W-YP), Sungkyunkwan University; Sensory Organ Research Institute (BYC), Seoul National University Medical Research Center, Seoul, Korea; and Wide River Institute of Immunology (BYC), Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shearer AE, Smith RJH. Massively Parallel Sequencing for Genetic Diagnosis of Hearing Loss: The New Standard of Care. Otolaryngol Head Neck Surg 2015; 153:175-82. [PMID: 26084827 PMCID: PMC4743024 DOI: 10.1177/0194599815591156] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To evaluate the use of new genetic sequencing techniques for comprehensive genetic testing for hearing loss. DATA SOURCES Articles were identified from PubMed and Google Scholar databases using pertinent search terms. REVIEW METHODS Literature search identified 30 studies as candidates that met search criteria. Three studies were excluded, and 8 studies were found to be case reports. Twenty studies were included for review analysis, including 7 studies that evaluated controls and 16 studies that evaluated patients with unknown causes of hearing loss; 3 studies evaluated both controls and patients. CONCLUSIONS In the 20 studies included in the review analysis, 426 control samples and 603 patients with unknown causes of hearing loss underwent comprehensive genetic diagnosis for hearing loss using massively parallel sequencing. Control analysis showed a sensitivity and specificity >99%, sufficient for clinical use of these tests. The overall diagnostic rate was 41% (range, 10%-83%) and varied based on several factors, including inheritance and prescreening prior to comprehensive testing. There were significant differences in platforms available with regard to the number and type of genes included and whether copy number variations were examined. Based on these results, comprehensive genetic testing should form the cornerstone of a tiered approach to clinical evaluation of patients with hearing loss along with history, physical examination, and audiometry and can determine further testing that may be required, if any. IMPLICATIONS FOR PRACTICE Comprehensive genetic testing has become the new standard of care for genetic testing for patients with sensorineural hearing loss.
Collapse
Affiliation(s)
- A Eliot Shearer
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Richard J H Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA Interdepartmental PhD Program in Genetics, University of Iowa, Iowa City, Iowa, USA Department of Molecular Physiology & Biophysics, University of Iowa College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
36
|
A novel mutation in the TMC1 gene causes non-syndromic hearing loss in a Moroccan family. Gene 2015; 574:28-33. [PMID: 26226225 DOI: 10.1016/j.gene.2015.07.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 01/28/2023]
Abstract
Autosomal recessive non-syndromic hearing loss (ARNSHL) is one of the most common genetic diseases in human and is subject to important genetic heterogeneity, rendering molecular diagnosis difficult. Whole-exome sequencing is thus a powerful strategy for this purpose. After excluding GJB2 mutation and other common mutations associated with hearing loss in Morocco, whole-exome sequencing was performed to study the genetic causes of one sibling with ARSHNL in a consanguineous Moroccan family. After filtering data and Sanger sequencing validation, one novel pathogenic homozygous mutation c.1810C>G (p.Arg604Gly) was identified in TMC1, a gene reported to cause deafness in various populations. Thus, we identified here the first mutation in the TMC1 gene in the Moroccan population causing non-syndromic hearing loss.
Collapse
|
37
|
Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Hum Mutat 2015; 36:815-22. [PMID: 25973577 PMCID: PMC4755152 DOI: 10.1002/humu.22813] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/30/2015] [Indexed: 01/20/2023]
Abstract
For next‐generation sequencing technologies, sufficient base‐pair coverage is the foremost requirement for the reliable detection of genomic variants. We investigated whether whole‐genome sequencing (WGS) platforms offer improved coverage of coding regions compared with whole‐exome sequencing (WES) platforms, and compared single‐base coverage for a large set of exome and genome samples. We find that WES platforms have improved considerably in the last years, but at comparable sequencing depth, WGS outperforms WES in terms of covered coding regions. At higher sequencing depth (95x–160x), WES successfully captures 95% of the coding regions with a minimal coverage of 20x, compared with 98% for WGS at 87‐fold coverage. Three different assessments of sequence coverage bias showed consistent biases for WES but not for WGS. We found no clear differences for the technologies concerning their ability to achieve complete coverage of 2,759 clinically relevant genes. We show that WES performs comparable to WGS in terms of covered bases if sequenced at two to three times higher coverage. This does, however, go at the cost of substantially more sequencing biases in WES approaches. Our findings will guide laboratories to make an informed decision on which sequencing platform and coverage to choose.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Malte Spielmann
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joris A Veltman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| |
Collapse
|