1
|
Mazzoccoli L, Liu B. Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers (Basel) 2024; 16:2211. [PMID: 38927916 PMCID: PMC11201542 DOI: 10.3390/cancers16122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Among professional antigen-presenting cells, dendritic cells (DCs) orchestrate innate and adaptive immunity and play a pivotal role in anti-tumor immunity. DCs are a heterogeneous population with varying functions in the tumor microenvironment (TME). Tumor-associated DCs differentiate developmentally and functionally into three main subsets: conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs). There are two major subsets of cDCs in TME, cDC1 and cDC2. cDC1 is critical for cross-presenting tumor antigens to activate cytotoxic CD8+ T cells and is also required for priming earlier CD4+ T cells in certain solid tumors. cDC2 is vital for priming anti-tumor CD4+ T cells in multiple tumor models. pDC is a unique subset of DCs and produces type I IFN through TLR7 and TLR9. Studies have shown that pDCs are related to immunosuppression in the TME through the secretion of immunosuppressive cytokines and by promoting regulatory T cells. MoDCs differentiate separately from monocytes in response to inflammatory cues and infection. Also, MoDCs can cross-prime CD8+ T cells. In this review, we summarize the subsets and functions of DCs. We also discuss the role of different DC subsets in shaping T cell immunity in TME and targeting DCs for potential immunotherapeutic benefits against cancer.
Collapse
Affiliation(s)
- Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Möller M, Orth V, Umansky V, Hetjens S, Braun V, Reißfelder C, Hardt J, Seyfried S. Myeloid-derived suppressor cells in peripheral blood as predictive biomarkers in patients with solid tumors undergoing immune checkpoint therapy: systematic review and meta-analysis. Front Immunol 2024; 15:1403771. [PMID: 38855104 PMCID: PMC11157008 DOI: 10.3389/fimmu.2024.1403771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Immunotherapeutic approaches, including immune checkpoint inhibitor (ICI) therapy, are increasingly recognized for their potential. Despite notable successes, patient responses to these treatments vary significantly. The absence of reliable predictive and prognostic biomarkers hampers the ability to foresee outcomes. This meta-analysis aims to evaluate the predictive significance of circulating myeloid-derived suppressor cells (MDSC) in patients with solid tumors undergoing ICI therapy, focusing on progression-free survival (PFS) and overall survival (OS). Methods A comprehensive literature search was performed across PubMed and EMBASE from January 2007 to November 2023, utilizing keywords related to MDSC and ICI. We extracted hazard ratios (HRs) and 95% confidence intervals (CIs) directly from the publications or calculated them based on the reported data. A hazard ratio greater than 1 indicated a beneficial effect of low MDSC levels. We assessed heterogeneity and effect size through subgroup analyses. Results Our search yielded 4,023 articles, of which 17 studies involving 1,035 patients were included. The analysis revealed that patients with lower levels of circulating MDSC experienced significantly improved OS (HR=2.13 [95% CI 1.51-2.99]) and PFS (HR=1.87 [95% CI 1.29-2.72]) in response to ICI therapy. Notably, heterogeneity across these outcomes was primarily attributed to differences in polymorphonuclear MDSC (PMN-MDSC) subpopulations and varying cutoff methodologies used in the studies. The monocytic MDSC (M-MDSC) subpopulation emerged as a consistent and significant prognostic marker across various subgroup analyses, including ethnicity, tumor type, ICI target, sample size, and cutoff methodology. Conclusions Our findings suggest that standardized assessment of MDSC, particularly M-MDSC, should be integral to ICI therapy strategies. These cells hold the promise of identifying patients at risk of poor response to ICI therapy, enabling tailored treatment approaches. Further research focusing on the standardization of markers and validation of cutoff methods is crucial for integrating MDSC into clinical practice. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023420095, identifier CRD42023420095.
Collapse
Affiliation(s)
- Maximilian Möller
- Department of Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Vanessa Orth
- Department of Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ)-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Biometry and Statistics, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Volker Braun
- Department of Library and Information Sciences, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- Department of Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- German Cancer Research Center (DKFZ)-Hector Cancer Institute, University Medical Centre Mannheim, Mannheim, Germany
| | - Julia Hardt
- Department of Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Steffen Seyfried
- Department of Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Laheurte C, Seffar E, Gravelin E, Lecuelle J, Renaudin A, Boullerot L, Malfroy M, Marguier A, Lecoester B, Gaugler B, Saas P, Truntzer C, Ghiringhelli F, Adotevi O. Interplay between plasmacytoid dendritic cells and tumor-specific T cells in peripheral blood influences long-term survival in non-small cell lung carcinoma. Cancer Immunol Immunother 2023; 72:579-589. [PMID: 35989364 DOI: 10.1007/s00262-022-03271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 02/24/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a subset of antigen-presenting cells that play an ambivalent role in cancer immunity. Here, we investigated the clinical significance of circulating pDCs and their interaction with tumor-specific T cell responses in patients with non-small cell lung cancer (NSCLC, n = 126) . The relation between intratumoral pDC signature and immune checkpoint inhibitors efficacy was also evaluated. Patients with NSCLC had low level but activated phenotype pDC compared to healthy donors. In overall population, patients with high level of pDC (pDChigh) had improved overall survival (OS) compared to patients with pDClow, median OS 30.4 versus 20.7 months (P = 0.013). This clinical benefit was only observed in stage I to III patients, but not in metastatic disease. We showed that patients harboring pDChigh profile had high amount of Th1-diffentiation cytokine interleukin-12 (IL-12) in blood and had functional T cells directed against a broad range of tumor antigens. Furthermore, a high pDC signature in the tumor microenvironment was associated with improved clinical outcome in patients treated with anti-PD-(L)1 therapy. Overall, this study showed that circulating pDChigh is associated with long-term OS in NSCLC and highlighted the predictive value of intratumor pDC signature in the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Caroline Laheurte
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Evan Seffar
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Eléonore Gravelin
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Julie Lecuelle
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France.,UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Adeline Renaudin
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Laura Boullerot
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Marine Malfroy
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Amélie Marguier
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Benoit Lecoester
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Béatrice Gaugler
- INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - Philippe Saas
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France.,UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Francois Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France.,UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France. .,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France. .,Service Oncologie médicale, University Hospital of Besançon, 25000, Besançon, France. .,INSERM UMR1098, RIGHT Institute, EFS Bourgogne Franche-Comté, 8, rue du Docteur JF-Xavier Girod, BP 1937, 25020, Besançon Cedex, France.
| |
Collapse
|
4
|
Wu C, Zhou K, Zheng Y, Lv D, Zhao M, Hu Y, Qi F, Wang X, Feng H. Extremely high infiltration of CD8+PD-L1+ cells detected in a stage III non-small cell lung cancer patient exhibiting hyperprogression during anti-PD-L1 immunotherapy after chemoradiation: A case report. Front Oncol 2022; 12:969493. [DOI: 10.3389/fonc.2022.969493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs), represented by PD-1/PD-L1 monoclonal antibodies, have become a research hotspot in the field of oncology treatment. Immunotherapy has shown significant survival advantages in a variety of solid tumors. However, the phenomenon of hyperprogressive disease (HPD) in some patients treated with immunotherapy is gradually getting more attention and focus. An early understanding of the characteristics of HPD is crucial to optimize the treatment strategy. We report a patient with unresectable stage III lung adenocarcinoma who developed HPD with metastasis during consolidation therapy with durvalumab after chemoradiation. To further investigate the potential mechanism of HPD after anti-PD-L1 treatment, primary lung baseline tissue, baseline plasma, post-immunotherapy plasma, and liver metastasis samples of the patient were detected via next-generation sequencing (NGS). Then, multiplex immunohistochemistry (mIHC) was performed on primary lung baseline tissue and liver metastasis samples. KRAS and p.G12C were identified as the major driver mutation genes. With a low tumor mutation burden (TMB) value, the patient presented a very high percentage of CD8+PD-L1+ T cells that infiltrated in the baseline tissue, with 95.5% of all CD8+ cells expressing PD-L1 and a low percentage of CD8+ T cells expressing PD-1. After the emergence of HPD from immunotherapy, liver metastases were similarly infiltrated with an extremely high proportion of CD8+PD-L1+ T cells, with 85.6% of all CD8+ cells expressing PD-L1 and almost no CD8+ T cells expressing PD-1. The extreme infiltration of PD-L1+CD8+ T cells in the tumor microenvironment of baseline tissue might be associated with the aggressive tumor growth observed in anti-PD-L1 treatment for related HPD and could be a potential biomarker for HPD development.
Collapse
|
5
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
6
|
Zhang S, Xiong Y, Zheng C, Long J, Zhou H, Zeng Z, Ouyang Y, Tang F. Crosstalk Between Four Types of RNA Modification Writers Characterizes the Tumor Immune Microenvironment Infiltration Patterns in Skin Cutaneous Melanoma. Front Cell Dev Biol 2022; 10:821678. [PMID: 35155433 PMCID: PMC8826580 DOI: 10.3389/fcell.2022.821678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The “writers” of four types of adenosine (A)-related RNA modifications (N6-methyladenosine, N1-methyladenosine, alternative polyadenylation, as well as A-to-inosine RNA editing) are closely related to the tumorigenesis and progression of many cancer types, including skin cutaneous melanoma (SKCM). However, the potential roles of the crosstalk between these RNA modification “writers” in the tumor microenvironment (TME) remain unclear. The RNA modification patterns were identified using an unsupervised clustering method. Subsequently, based on differentially expressed genes responsible for the aforementioned RNA modification patterns, an RNA modification “writer” scoring model (W_Score) was constructed to quantify the RNA modification-associated subtypes in individual patients. Moreover, a correlation analysis for W_Score and the TME characteristics, clinical features, molecular subtypes, drug sensitivities, immune responses, and prognosis was performed. We identified three RNA modification patterns, corresponding to distinct tumor immune microenvironment characteristics and survival outcomes. Based on the W_Score score, which was extracted from the RNA modification-related signature genes, patients with SKCM were divided into high- and low-W_Score groups. The low-W_Score group was characterized by better survival outcomes and strengthened immunocyte infiltration. Further analysis showed that the low-W_Score group was positively associated with higher tumor mutation burden and PD-L1 expression. Of note, two immunotherapy cohorts demonstrated that patients with low W_Score exhibited long-term clinical benefits and an enhanced immune response. This study is the first to systematically analyze four types of A-related RNA modifications in SKCM, revealing that these “writers” essentially contribute to TME complexity and diversity. We quantitatively evaluated the RNA modification patterns in individual tumors, which could aid in developing personalized immunotherapy strategies for patients.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Chaochao Zheng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Houming Zhou
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Fuzhou Tang, ; Yan Ouyang, ; Zhu Zeng,
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Fuzhou Tang, ; Yan Ouyang, ; Zhu Zeng,
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Fuzhou Tang, ; Yan Ouyang, ; Zhu Zeng,
| |
Collapse
|
7
|
Zhou B, Lawrence T, Liang Y. The Role of Plasmacytoid Dendritic Cells in Cancers. Front Immunol 2021; 12:749190. [PMID: 34737750 PMCID: PMC8560733 DOI: 10.3389/fimmu.2021.749190] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a special subtype of dendritic cells with the morphology of plasma cells. pDCs produce massive amounts of type I interferon (IFN-I), which was originally found to play an extremely pivotal role in antiviral immunity. Interestingly, accumulated evidence indicates that pDCs can also play an important role in tumorigenesis. In the human body, most of the IFN-α is secreted by activated pDCs mediated by toll-like receptor (TLR) stimulation. In many types of cancer, tumors are infiltrated by a large number of pDCs, however, these pDCs exhibit no response to TLR stimulation, and reduced or absent IFN-α production. In addition, tumor-infiltrating pDCs promote recruitment of regulatory T cells (Tregs) into the tumor microenvironment, leading to immunosuppression and promoting tumor growth. In this review, we discuss recent insights into the development of pDCs and their roles in a variety of malignancies, with special emphasis on the basic mechanisms.
Collapse
Affiliation(s)
- Binhui Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China
| | - Toby Lawrence
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan, China.,Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Yinming Liang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan, China
| |
Collapse
|
8
|
Sun SH, Benner B, Savardekar H, Lapurga G, Good L, Abood D, Nagle E, Duggan M, Stiff A, DiVincenzo MJ, Suarez-Kelly LP, Campbell A, Yu L, Wesolowski R, Howard H, Shah H, Kendra K, Carson WE. Effect of Immune Checkpoint Blockade on Myeloid-Derived Suppressor Cell Populations in Patients With Melanoma. Front Immunol 2021; 12:740890. [PMID: 34712230 PMCID: PMC8547308 DOI: 10.3389/fimmu.2021.740890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells that inhibit anti-tumor immunity and contribute to immune therapy resistance. MDSC populations were measured in melanoma patients receiving immune checkpoint inhibitors (ICI). Methods Patients with melanoma (n=128) provided blood samples at baseline (BL), and before cycles 2 and 3 (BC2, BC3). Peripheral blood mononuclear cells (PBMC) were analyzed for MDSC (CD33+/CD11b+/HLA- DRlo/-) and MDSC subsets, monocytic (CD14+, M-MDSC), granulocytic (CD15+, PMN-MDSC), and early (CD14-/CD15-, E-MDSC) via flow cytometry. Statistical analysis employed unpaired and paired t-tests across and within patient cohorts. Results Levels of MDSC as a percentage of PBMC increased during ICI (BL: 9.2 ± 1.0% to BC3: 23.6 ± 1.9%, p<0.0001), and patients who developed progressive disease (PD) had higher baseline MDSC. In patients who had a complete or partial response (CR, PR), total MDSC levels rose dramatically and plateaued (BL: 6.4 ± 1.4%, BC2: 26.2 ± 4.2%, BC3: 27.5 ± 4.4%; p<0.0001), whereas MDSC rose less sharply in PD patients (BL: 11.7 ± 2.1%, BC2: 18.3 ± 3.1%, BC3: 19.0 ± 3.2%; p=0.1952). Subset analysis showed that within the expanding MDSC population, PMN-MDSC and E-MDSC levels decreased, while the proportion of M-MDSC remained constant during ICI. In PD patients, the proportion of PMN-MDSC (as a percentage of total MDSC) decreased (BL: 25.1 ± 4.7%, BC2: 16.1 ± 5.2%, BC3: 8.6 ± 1.8%; p=0.0105), whereas a heretofore under-characterized CD14+/CD15+ double positive MDSC subpopulation increased significantly (BL: 8.7 ± 1.4% to BC3: 26.9 ± 4.9%; p=0.0425). Conclusions MDSC levels initially increased significantly in responders. PMN-MDSC decreased and CD14+CD15+ MDSC increased significantly in PD patients. Changes in MDSC levels may have prognostic value in ICI.
Collapse
Affiliation(s)
- Steven H Sun
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, OH, United States
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Himanshu Savardekar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Logan Good
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - David Abood
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Erin Nagle
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Megan Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mallory J DiVincenzo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | | | - Amanda Campbell
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lianbo Yu
- Center for Biostatistics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Harrison Howard
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Hiral Shah
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Kari Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - William E Carson
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
11
|
Sosa Cuevas E, Ouaguia L, Mouret S, Charles J, De Fraipont F, Manches O, Valladeau-Guilemond J, Bendriss-Vermare N, Chaperot L, Aspord C. BDCA1 + cDC2s, BDCA2 + pDCs and BDCA3 + cDC1s reveal distinct pathophysiologic features and impact on clinical outcomes in melanoma patients. Clin Transl Immunology 2020; 9:e1190. [PMID: 33282290 PMCID: PMC7684973 DOI: 10.1002/cti2.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Dendritic cells play a pivotal but still enigmatic role in the control of tumor development. Composed of specialised subsets (cDC1s, cDC2s, pDCs), DCs are critical in triggering and shaping antitumor immune responses. Yet, tumors exploit plasticity of DCs to subvert their functions and escape from immune control. This challenging controversy prompted us to explore the pathophysiological role of cDCs and pDCs in melanoma, where their precise and coordinated involvement remains to be deciphered. Methods We investigated in melanoma patients the phenotypic and functional features of circulating and tumor‐infiltrating BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s and assessed their clinical impact. Results Principal component analyses (PCA) based on phenotypic or functional parameters of DC subsets revealed intra‐group clustering, highlighting specific features of DCs in blood and tumor infiltrate of patients compared to healthy donors. DC subsets exhibited perturbed frequencies in the circulation and actively infiltrated the tumor site, while harbouring a higher activation status. Whereas cDC2s and pDCs displayed an altered functionality in response to TLR triggering, circulating and tumor‐infiltrating cDC1s preserved potent competences associated with improved prognosis. Notably, the proportion of circulating cDC1s predicted the clinical outcome of melanoma patients. Conclusion Such understanding uncovers critical and distinct impact of each DC subset on clinical outcomes and unveils fine‐tuning of interconnections between DCs in melanoma. Elucidating the mechanisms of DC subversion by tumors could help designing new therapeutic strategies exploiting the potentialities of these powerful immune players and their cross‐talks, while counteracting their skewing by tumors, to achieve immune control and clinical success.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Laurissa Ouaguia
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Stephane Mouret
- Dermatology clinic Grenoble University Hospital Grenoble F-38043 France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,Dermatology clinic Grenoble University Hospital Grenoble F-38043 France
| | - Florence De Fraipont
- Medical Unit of Molecular genetic (hereditary diseases and oncology) Grenoble University Hospital Grenoble F-38043 France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Jenny Valladeau-Guilemond
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon 69373 France
| | - Nathalie Bendriss-Vermare
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon 69373 France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| |
Collapse
|
12
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
13
|
Zahran AM, Hetta HF, Mansour S, Saad ES, Rayan A. Reviving up dendritic cells can run cancer immune wheel in non-small cell lung cancer: a prospective two-arm study. Cancer Immunol Immunother 2020; 70:733-742. [PMID: 32918587 DOI: 10.1007/s00262-020-02704-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Lung cancer is the number one cause of cancer-related deaths. Dendritic cells (DCs) are heterogeneous components of innate immunity that play a crucial role in the anti-tumor T cell immunity and may represent a promising approach for tumor immunotherapy. In this study, we aimed to evaluate the frequency of the two major subsets of DCs; plasmacytoid dendritic cells (pDCs) and monocytic dendritic cells (mDCs) in non-small cell lung cancer (NCSLC) and correlating them with different clinicopathologic features and survival outcomes. PATIENTS AND METHODS This study was a case-controlled one, included 50 patients with denovo pathologically confirmed NSCLC and 20 healthy controls of comparable age and gender. After diagnosis and staging of patients, the frequency of DCs was evaluated using flow cytometry. RESULTS We unveiled significantly reduced levels of pDCs (P = 0.024), and mDCs (P = 0.013) in NSCLC patients compared to controls. Furthermore, there was a significant accumulation of pDCs in non-metastatic patients compared to metastatic ones (P < 0.0001), while there was no significant (P = 0.6) differences in mDCs, and mDCs/pDCs ratio (P = 0.9). There was a Significant negative correlation (r = - 0.3, P = 0.04) between OS and mDCs. On the other hand, there was a significantly higher OS with pDCs ≥ 0.82 compared to patients with pDCs < 0.82, log rank Ch2 = 12.128, P < 0.0001. CONCLUSION Despite the controversy about the prognostic role of pDCs not only in NSCLC but also in other solid tumors, our study sheds light on the possible prognostic impact of pDCs and mDCs on treatment outcomes of NSCLC patients.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0595, USA.
| | - Shimaa Mansour
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Ereny S Saad
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
14
|
Monti M, Vescovi R, Consoli F, Farina D, Moratto D, Berruti A, Specchia C, Vermi W. Plasmacytoid Dendritic Cell Impairment in Metastatic Melanoma by Lactic Acidosis. Cancers (Basel) 2020; 12:cancers12082085. [PMID: 32731406 PMCID: PMC7463681 DOI: 10.3390/cancers12082085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
The introduction of targeted therapies and immunotherapies has significantly improved the outcome of metastatic melanoma (MM) patients. These approaches rely on immune functions for their anti-melanoma response. Plasmacytoid dendritic cells (pDCs) exhibit anti-tumor function by production of effector molecules, type I interferons (I-IFNs), and cytokines. Tissue and blood pDCs result compromised in MM, although these findings are still partially conflicting. This study reports that blood pDCs were dramatically depleted in MM, particularly in patients with high lactate dehydrogenase (LDH) and high tumor burden; the reduced pDC frequency was associated with poor overall survival. Circulating pDCs resulted also in significant impairment in interferon alpha (IFN-α) and C-X-C motif chemokine 10 (CXCL10) production in response to toll-like receptor (TLR)-7/8 agonists; on the contrary, the response to TLR-9 agonist remained intact. In the BRAFV600+ subgroup, no recovery of pDC frequency could be obtained by BRAF and MEK inhibitors (BRAFi; MEKi), whereas their function was partially rescued. Mechanistically, in vitro exposure to lactic acidosis impaired both pDC viability and function. In conclusion, pDCs from MM patients were found to be severely impaired, with a potential role for lactic acidosis. Short-term responses to treatments were not associated with pDC recovery, suggesting long-lasting effects on their compartment.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
| | - Francesca Consoli
- Oncology Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.C.); (A.B.)
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Daniele Moratto
- Laboratory of Genetic Disorders of Childhood, Angelo Nocivelli Institute for Molecular Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Alfredo Berruti
- Oncology Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.C.); (A.B.)
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (C.S.)
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63101, USA
- Correspondence: ; Tel.: +39-030-399-8425
| |
Collapse
|
15
|
Zhu S, Yang N, Wu J, Wang X, Wang W, Liu YJ, Chen J. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res 2020; 159:104980. [PMID: 32504832 DOI: 10.1016/j.phrs.2020.104980] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs), as specialized antigen-presenting cells, are essential for the initiation of specific T cell responses in innate antitumor immunity and, in certain cases, support humoral responses to inhibit tumor development. Mounting evidence suggests that the DC system displays a broad spectrum of dysfunctional status in the tumor microenvironment (TME), which ultimately affects antitumor immune responses. DC-based therapy can restore the function of DCs in the TME, thus showing a promising potential in tumor therapy. In this review, we provide an overview of the DC deficiency caused by various factors in the TME and discuss proposed strategies to reverse DC deficiency and the applications of novel combinatorial DC-based therapy for immune normalization of the tumor.
Collapse
Affiliation(s)
- Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | | | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Agresta L, Lehn M, Lampe K, Cantrell R, Hennies C, Szabo S, Wise-Draper T, Conforti L, Hoebe K, Janssen EM. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. J Immunother Cancer 2020; 8:e000245. [PMID: 32217758 PMCID: PMC7174077 DOI: 10.1136/jitc-2019-000245] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Developing novel strategies to overcome the immunosuppressive tumor microenvironment is a critically important area of cancer therapy research. Here, we assess the therapeutic potential of CD244 (2B4/signaling lymphocyte activation molecule family 4), an immunoregulatory receptor found on a variety of immune cells, including exhausted CD8+ T cells, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs). METHODS Using de-identified human tumor and blood samples from patients with head and neck squamous cell carcinoma (HNSCC) and HNSCC models in WT and CD244-/- mice, we assessed the therapeutic potential of CD244 using flow cytometry, RT-PCR, Luminex immunoassays and histopathological analyses. RESULTS Compared with healthy tissues, tumor infiltrating CD8+ T cells from HNSCC patients and a HNSCC mouse model showed significant increased expression of CD244 expression that correlated with PD1 expression. Moreover, CD244 was increased on intratumoral DC and MDSC and high CD244 expression correlated with PD-L1 expression and increased spontaneous expression of immune-suppressive mediators. In addition, CD244 activation inhibited production of proinflammatory cytokines in human DC in vitro. Importantly, CD244-/- mice showed significantly impaired tumor growth of HNSCC and interventional treatment of WT mice with anti-CD244 monoclonal antibody significantly impaired the growth of established HNSCC tumors and increased tumor-infiltrating CD8+ T cells. CONCLUSIONS Together these data suggest that CD244 contributes to the overall immune-suppressive environment and therefore has potential as a new immunotherapy target in the treatment of malignancies.
Collapse
Affiliation(s)
- Laura Agresta
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maria Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Rachel Cantrell
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Cassandra Hennies
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Sara Szabo
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Trisha Wise-Draper
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Laura Conforti
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kasper Hoebe
- Immunology Discovery, Janssen Research and Development Spring House, Spring House, Pennsylvania, USA
| | - Edith M Janssen
- Immunology Discovery, Janssen Research and Development Spring House, Spring House, Pennsylvania, USA
| |
Collapse
|
17
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Tucci M, Stucci LS, Mannavola F, Passarelli A, D'Oronzo S, Lospalluti L, Giudice G, Silvestris F. Defective levels of both circulating dendritic cells and T-regulatory cells correlate with risk of recurrence in cutaneous melanoma. Clin Transl Oncol 2019; 21:845-854. [PMID: 30470990 DOI: 10.1007/s12094-018-1993-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immune markers in the peripheral blood of melanoma patients provide useful information for clinical management although there is poor consensus on circulating cells which could putatively reflect the disease activity and play a prognostic role. Here, we investigated both dendritic cells (DCs) and T-regulatory cells (Tregs). METHODS The number of DC subsets as myeloid (m) and plasmacytoid was measured by flowcytometry in 113 melanoma patients in different clinical stages and correlated with the disease activity to evaluate the recurrence free survival (RFS) calculated as difference between baseline and post-surgical values in relation to the criteria for the melanoma staging, as primary tumor removal, sentinel lymph node biopsy and completion of lymph node dissection. RESULTS Circulating mDC levels were significantly lower in metastatic melanoma than in other stages and inversely correlated to Treg values while both populations were similarly expressed in inactive disease at stage I-III. Furthermore, the levels of these cells after melanoma removal were apparently related to the disease activity since their persistent defect reflected high risk of recurrence and reduced the RFS. CONCLUSIONS This work highlighted the role of immune cell measurement for the management of melanoma activity and the identification of patients at potential risk of recurrence based on the mDC ratio.
Collapse
Affiliation(s)
- M Tucci
- Section of Oncology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, 70124, Bari, Italy.
| | - L S Stucci
- Section of Oncology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - F Mannavola
- Section of Oncology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - A Passarelli
- Section of Oncology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - S D'Oronzo
- Section of Oncology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - L Lospalluti
- Section of Dermatology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - G Giudice
- Section of Plastic and Reconstructive Surgery, Department of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Bari, Italy
| | - F Silvestris
- Section of Oncology, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
19
|
Unleashing Tumour-Dendritic Cells to Fight Cancer by Tackling Their Three A's: Abundance, Activation and Antigen-Delivery. Cancers (Basel) 2019; 11:cancers11050670. [PMID: 31091774 PMCID: PMC6562396 DOI: 10.3390/cancers11050670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in cancer immunotherapy have mainly focused on re-activating T-cell responses against cancer cells. However, both priming and activation of effector T-cell responses against cancer-specific antigens require cross-talk with dendritic cells (DCs), which are responsible for the capturing, processing and presentation of tumour-(neo)antigens to T cells. DCs consequently constitute an essential target in efforts to generate therapeutic immunity against cancer. This review will discuss recent research that is unlocking the cancer-fighting potential of tumour-infiltrating DCs. First, the complexity of DCs in the tumour microenvironment regarding the different subsets and the difficulty of translating mouse data into equivalent human data will be briefly touched upon. Mainly, possible solutions to problems currently faced in DC-based cancer treatments will be discussed, including their infiltration into tumours, activation strategies, and antigen delivery methods. In this way, we hope to put together a broad picture of potential synergistic therapies that could be implemented to harness the full capacity of tumour-infiltrating DCs to stimulate anti-tumour immune responses in patients.
Collapse
|
20
|
Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers (Basel) 2019; 11:cancers11040470. [PMID: 30987228 PMCID: PMC6520684 DOI: 10.3390/cancers11040470] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
The immune response, both innate and adaptive, is a key player in cancer development and progression. Plasmacytoid dendritic cells (pDCs) are a subset of dendritic cells that play one of the central roles in the immune system. They are known mostly as the major IFN type I-producing cells upon stimulation of Toll-like receptors 7 and 9. However, based on current knowledge, the functionality of pDCs is very complex, as they have the ability to affect many other cell types. In the context of the tumor tissue, pDCs were mostly described to show substantial functional defects and therefore contribute to the establishement of immunosuppressive tumor microenvironment. Immunotherapeutic approaches have proven to be one of the most promising treatment strategies in the last decade. In view of this fact, it is crucial to map the complexity of the tumor microenvironment in detail, including less numerous cell types. This review focuses on pDCs in relation to solid tumors. We provide a summary of current data on the role of pDCs in different tumor types and suggest their possible clinical applications.
Collapse
|
21
|
Paek SH, Kim HG, Lee JW, Woo J, Kwon H, Kim JB, Lim W, Kim JR, Moon BI, Paik NS. Circulating Plasmacytoid and Myeloid Dendritic Cells in Breast Cancer Patients: A Pilot Study. J Breast Cancer 2019; 22:29-37. [PMID: 30941231 PMCID: PMC6438830 DOI: 10.4048/jbc.2019.22.e15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose Dendritic cells (DC) are a class of bone marrow-derived cells found in the blood, epithelia, and lymphoid tissues, and are the most efficient antigen presenting cells. The number and function of DC can change dramatically in cancer patients. The aim of this study is to correlate the levels of circulating DC subsets with clinical characteristics in breast cancer patients. Methods Peripheral blood samples were collected from 53 untreated breast cancer patients before surgery between January 2013 and November 2013. Forty-one healthy, age-matched volunteers served as the control group. The phenotypes of circulating plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were determined using fluorescence activated cell sorting assays. Correlations between DCs immunophenotypes and clinicopathologic characteristics of these breast cancer patients were then determined. Results Patients with breast cancer had higher levels of pDCs (p = 0.046). No relationships were observed with tumor stage and intrinsic subtype. Estrogen receptor (ER) positive patients had higher levels of mDCs than ER negative patients (p = 0.025) and human epidermal growth factor receptor 2 (HER-2) positive patients had higher levels of pDCs than HER-2 (p = 0.040). No relationships were observed with T stage, N stage, Ki67 index, histologic grade, nuclear grade, and lymphovascular invasion. In multiple regression analysis, patients with HER-2 positive breast cancer had higher levels of pDCs than HER-2 negative patients (p = 0.026). Conclusion An increase of pDCs in the peripheral blood of breast cancer patients was observed and patients with HER-2 positive breast cancer had higher levels of circulating pDCs than did HER-2 negative patients. Our results suggest that expression of DCs can differ according to breast cancer subtype and indicate that, with further investigation, DC expression has the possibility of being presented as a prognostic factor.
Collapse
Affiliation(s)
- Se Hyun Paek
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyun Goo Kim
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jun Woo Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Joohyun Woo
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jong Bin Kim
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Je Ryong Kim
- Department of Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Nam-Sun Paik
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Wang M, Ping Y, Li Z, Li J, Zhang Z, Yue D, Chen X, Wang L, Huang L, Huang J, Yang L, Zhao X, Yang S, Li H, Shi J, Li J, Zhang Y. Polarization of granulocytic myeloid-derived suppressor cells by hepatitis C core protein is mediated via IL-10/STAT3 signalling. J Viral Hepat 2019; 26:246-257. [PMID: 30339295 PMCID: PMC7379525 DOI: 10.1111/jvh.13024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/31/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) have been described as suppressors of T-cell function in many malignancies. Impaired T-cell responses have been observed in patients with chronic hepatitis C virus infection (CHC), which is reportedly associated with the establishment of persistent HCV infection. Therefore, we hypothesized that MDSCs also play a role in chronic HCV infection. MDSCs in the peripheral blood of 206 patients with CHC and 20 healthy donors were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) of healthy donors cultured with hepatitis C virus core protein (HCVc) were stimulated with or without interleukin 10 (IL-10). Compared to healthy donors and certain CHC patients with sustained viral response (SVR), CHC patients without SVR presented with a dramatic elevation of G-MDSCs with the HLA-DR-/low CD33+ CD14- CD11b+ phenotype in peripheral blood. The frequency of G-MDSCs in CHC patients was positively correlated with serum HCVc, and G-MDSCs were induced from healthy PBMCs by adding exogenous HCVc. Furthermore, we revealed a potential mechanism by which HCVc mediates G-MDSC polarization; activation of ERK1/2 resulting in IL-10 production and IL-10-activated STAT3 signalling. Finally, we confirmed that HCVc-induced G-MDSCs suppress the proliferation and production of IFN-γ in autologous T-cells. We also found that the frequency of G-MDSCs in serum was associated with CHC prognosis. HCVc maintains immunosuppression by promoting IL-10/STAT3-dependent differentiation of G-MDSCs from PBMCs, resulting in the impaired functioning of T-cells. G-MDSCs may thus be a promising biomarker for predicting prognosis of CHC patients.
Collapse
Affiliation(s)
- Meng Wang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yu Ping
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhiqin Li
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jieyao Li
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhen Zhang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Dongli Yue
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xinfeng Chen
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liping Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lan Huang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jianmin Huang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Li Yang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xuan Zhao
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shuangning Yang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hong Li
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jijing Shi
- The First People's Hospital of ZhengzhouZhengzhouHenanChina
| | - Jiansheng Li
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yi Zhang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory for Tumor Immunology and BiotherapyZhengzhouHenanChina
| |
Collapse
|
23
|
Vescovi R, Monti M, Moratto D, Paolini L, Consoli F, Benerini L, Melocchi L, Calza S, Chiudinelli M, Rossi G, Bugatti M, Maio M, Fonsatti E, Farisoglio C, Simbolo M, Almici C, Verardi R, Scarpa A, Bergese P, Manganoni A, Facchetti F, Vermi W. Collapse of the Plasmacytoid Dendritic Cell Compartment in Advanced Cutaneous Melanomas by Components of the Tumor Cell Secretome. Cancer Immunol Res 2019; 7:12-28. [PMID: 30401679 DOI: 10.1158/2326-6066.cir-18-0141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022]
Abstract
Melanoma is an immunogenic neoplasm infiltrated by T cells, although these adaptive T cells usually fail to eradicate the tumor. Plasmacytoid dendritic cells (PDCs) are potent regulators of the adaptive immune response and can eliminate melanoma cells via TLR-mediated effector functions. The PDC compartment is maintained by progressively restricted bone marrow progenitors. Terminally differentiated PDCs exit the bone marrow into the circulation, then home to lymph nodes and inflamed peripheral tissues. Infiltration by PDCs is documented in various cancers. However, their role within the melanoma immune contexture is not completely known. We found that in locoregional primary cutaneous melanoma (PCM), PDC infiltration was heterogeneous, occurred early, and was recurrently localized at the invasive margin, the site where PDCs interact with CD8+ T cells. A reduced PDC density was coupled with an increased Breslow thickness and somatic mutations at the NRAS p.Q61 codon. Compared with what was seen in PCM, high numbers of PDCs were found in regional lymph nodes, as also identified by in silico analysis. In contrast, in metastatic melanoma patients, PDCs were mostly absent in the tumor tissues and were significantly reduced in the circulation, particularly in the advanced M1c group. Exposure of circulating PDCs to melanoma cell supernatant (SN-mel) depleted of extracellular vesicles resulted in significant PDC death. SN-mel exposure also resulted in a defect of PDC differentiation from CD34+ progenitors. These findings indicate that soluble components released by melanoma cells support the collapse of the PDC compartment, with clinical implications for refining TLR agonist-based trials.
Collapse
Affiliation(s)
- Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniele Moratto
- Laboratory of Genetic Disorders of Childhood, "Angelo Nocivelli" Institute for Molecular Medicine, Spedali Civili, Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Luisa Benerini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Melocchi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mariella Chiudinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda Romagna, Hospital Santa Maria delle Croci, Ravenna, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Ester Fonsatti
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | | | - Michele Simbolo
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, Università degli Studi di Verona, Verona, Italy
| | - Camillo Almici
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, Brescia, Italy
| | - Rosanna Verardi
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, Brescia, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, Università degli Studi di Verona, Verona, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Fabio Facchetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
24
|
Agresta L, Hoebe KHN, Janssen EM. The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment. Front Immunol 2018; 9:2809. [PMID: 30546369 PMCID: PMC6279924 DOI: 10.3389/fimmu.2018.02809] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
In cancer, immune exhaustion contributes to the immunosuppressive tumor microenvironment. Exhausted immune cells demonstrate poor effector function and sustained expression of certain immunomodulatory receptors, which can be therapeutically targeted. CD244 is a Signaling Lymphocyte Activation Molecule (SLAM) family immunoregulatory receptor found on many immune cell types—including NK cells, a subset of T cells, DCs, and MDSCs—that represents a potential therapeutic target. Here, we discuss the role of CD244 in tumor-mediated immune cell regulation.
Collapse
Affiliation(s)
- Laura Agresta
- Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH, United States
| | - Kasper H N Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
25
|
Chatterjee G, Pai T, Hardiman T, Avery-Kiejda K, Scott RJ, Spencer J, Pinder SE, Grigoriadis A. Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients. Breast Cancer Res 2018; 20:143. [PMID: 30458865 PMCID: PMC6247766 DOI: 10.1186/s13058-018-1070-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lymph node (LN) metastasis is an important prognostic parameter in breast carcinoma, a crucial site for tumour–immune cell interaction and a gateway for further dissemination of tumour cells to other metastatic sites. To gain insight into the underlying molecular changes from the pre-metastatic, via initial colonisation to the fully involved LN, we reviewed transcriptional research along the evolving microenvironment of LNs in human breast cancers patients. Gene expression studies were compiled and subjected to pathway-based analyses, with an emphasis on immune cell-related genes. Of 366 studies, 14 performed genome-wide gene expression comparisons and were divided into six clinical-biological scenarios capturing different stages of the metastatic pathway in the LN, as follows: metastatically involved LNs are compared to their patient-matched primary breast carcinomas (scenario 1) or the normal breast tissue (scenario 2). In scenario 3, uninvolved LNs were compared between LN-positive patients and LN-negative patients. Scenario 4 homed in on the residual uninvolved portion of involved LNs and compared it to the patient-matched uninvolved LNs. Scenario 5 contrasted uninvolved and involved LNs, whilst in scenario 6 involved (sentinel) LNs were assessed between patients with other either positive or negative LNs (non-sentinel). Gene lists from these chronological steps of LN metastasis indicated that gene patterns reflecting deficiencies in dendritic cells and hyper-proliferation of B cells parallel to tumour promoting pathways, including cell adhesion, extracellular matrix remodelling, cell motility and DNA repair, play key roles in the changing microenvironment of a pro-metastatic to a metastatically involved LN. Similarities between uninvolved LNs and the residual uninvolved portion of involved LNs hinted that LN alterations expose systemic tumour-related immune responses in breast cancer patients. Despite the diverse settings, gene expression patterns at different stages of metastatic colonisation in LNs were recognised and may provide potential avenues for clinical interventions to counteract disease progression for breast cancer patients.
Collapse
Affiliation(s)
- Gaurav Chatterjee
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Pathology, Tata Memorial Centre, 8th Floor, Annexe Building, Mumbai, India
| | - Trupti Pai
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Pathology, Tata Memorial Centre, 8th Floor, Annexe Building, Mumbai, India
| | - Thomas Hardiman
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kelly Avery-Kiejda
- Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Rodney J Scott
- Priority Research Centre for Cancer, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, 2nd Floor, Borough Wing, London, SE1 9RT, UK
| | - Sarah E Pinder
- School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Anita Grigoriadis
- Cancer Bioinformatics, King's College London, Innovation Hub, Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK. .,School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK. .,Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, King's College London, Faculty of Life Sciences and Medicine, London, SE1 9RT, UK.
| |
Collapse
|
26
|
Riemann D, Cwikowski M, Turzer S, Giese T, Grallert M, Schütte W, Seliger B. Blood immune cell biomarkers in lung cancer. Clin Exp Immunol 2018; 195:179-189. [PMID: 30246868 DOI: 10.1111/cei.13219] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Characterization of host immune cell parameters prior to treatment is expected to identify biomarkers predictive of clinical outcome as well as to elucidate why some patients fail to respond to immunotherapy. We monitored blood immune cells from 58 patients with non-small- cell lung cancer (NSCLC) undergoing surgery of the primary tumor and from 50 age-matched healthy volunteers. Complete leukocyte blood count, the number of circulating dendritic cells (DC), HLA-DRlow monocytes and several lymphocytic subpopulations were determined by eight-color flow cytometry. Furthermore, the prognostic value of the immune cell parameters investigated was evaluated by patients' survival analysis. Compared to the control group, blood of NSCLC patients contained more neutrophils resulting in a higher neutrophil-to-lymphocyte ratio (NLR), but a lower number of blood DC, in particular of plasmacytoid DC (pDC), natural killer (NK) cells and naive CD4+ and CD8+ T cells. Furthermore, a higher frequency of CD4+ regulatory T cells (Treg) and HLA-DRlow monocytes was detected, and smoking had a significant impact on these values. HLA-DRlow monocytes were positively correlated to the number of neutrophils, monocytes and NLR, but negatively associated with the number of pDC and naive CD4+ T cells. The frequency of Treg, HLA-DRlow monocytes and naive CD4+ and CD8+ T cells as well as the ratios of CD4/HLA-DRlow monocytes and HLA-DRlow monocytes/pDC correlated with patient's overall survival. Next to Treg, HLA-DRlow monocytes and naive T cells represent prognostic markers for NSCLC patients and might be useful for monitoring of patients' responses to immunotherapies in future studies.
Collapse
Affiliation(s)
- D Riemann
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - M Cwikowski
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - S Turzer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - T Giese
- Institute of Immunology, Heidelberg University Hospital, Germany
| | - M Grallert
- Department of Thorax Surgery of the Hospital Martha-Maria Halle-Dölau, Halle, Germany
| | - W Schütte
- Clinic of Internal Medicine, Hospital Martha-Maria Halle-Dölau, Halle, Germany
| | - B Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
27
|
Kwiatkowska-Borowczyk E, Czerwińska P, Mackiewicz J, Gryska K, Kazimierczak U, Tomela K, Przybyła A, Kozłowska AK, Galus Ł, Kwinta Ł, Dondajewska E, Gąbka-Buszek A, Żakowska M, Mackiewicz A. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology 2018; 7:e1509821. [PMID: 30377573 PMCID: PMC6205007 DOI: 10.1080/2162402x.2018.1509821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022] Open
Abstract
Allogeneic whole cell gene modified therapeutic melanoma vaccine (AGI-101H) comprising of two melanoma cell lines transduced with cDNA encoding fusion protein composed of IL-6 linked with the soluble IL-6 receptor (sIL-6R), referred to as H6 was developed. H6 served as a molecular adjuvant, however, it has altered vaccine cells phenotype towards melanoma stem cells (MSC)-like with high activity of aldehyde dehydrogenase isoenzyme (ALDH1A1). AGI-101H was applied in advanced melanoma patients with non-resected and resected disease. In the adjuvant setting, it was combined with surgery in case of recurring metastases, which were surgically removed and vaccination continued. A significant fraction of AGI-101H treated melanoma patients is still alive (11–19 years). Out of 106 living patients, 39 were HLA-A2 positive and were the subject of the study. Immunization of melanoma patients resulted in the generation of cytotoxic CD8+ T cells specific for ALDH1A1, which were detected in circulation by HLA-A0201 MHC dextramers loaded with ALDH1A188-96(LLYKLADLI) peptide. Phenotypically they were central memory CD8+ T cells. Re-stimulation with ALDH1A188-96ex vivo resulted in IFN-γ secretion and cells degranulation. Following each vaccine dose administration, the number of ALDH1A1-CD8+ T cells increased in circulation and returned to the previous level until next dose injection (one month). ALDH1A1-CD8+ T cells were also found, however in the lower number than in vaccinated patients, in the circulation of untreated melanoma with stage IV but were not found in stage II or III and healthy donors. Specific anti-ALDH1 antibodies were present in treated patients. Long-term survival suggests immuno-targeting of MSC in treated patients.
Collapse
Affiliation(s)
- Eliza Kwiatkowska-Borowczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Patrycja Czerwińska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Gryska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Urszula Kazimierczak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Przybyła
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Łukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Łukasz Kwinta
- Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Ewelina Dondajewska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Monika Żakowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
28
|
Wang PF, Song SY, Wang TJ, Ji WJ, Li SW, Liu N, Yan CX. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: A meta-analysis of 40 studies. Oncoimmunology 2018; 7:e1494113. [PMID: 30288362 PMCID: PMC6169582 DOI: 10.1080/2162402x.2018.1494113] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been shown to contribute to tumor progression, mainly through immune suppression. Inverse correlations have been observed between MDSC levels and patient survival for various malignancies. The purpose of this meta-analysis was to evaluate the prognostic value of pretreatment circulating MDSCs. We searched MEDLINE and EMBASE from their inceptions to September 2017 to identify relevant articles. Using a fixed or random effects model, pooled hazard ratios (HRs) were estimated for overall survival (OS) and combined disease-free survival, progression-free survival, and recurrence-free survival (DFS/PFS/RFS). A total of 40 studies comprising 2721 were included. For solid tumors, high levels of pretreatment circulating MDSCs were significantly associated with worse OS (HR = 1.796, 95% CI = 1.587-2.032) and DFS/PFS/RFS (HR = 2.459, 95% CI = 2.018-2.997). Breast cancer showed the largest association between high MDSC levels and worse OS (pooled HR = 3.053). Elevated MDSCs were also associated with worse OS for mixed-stage tumors (pooled HR = 1.659) and advanced-stage tumors (pooled HR = 2.337). Furthermore, both monocytic-MDSCs (M-MDSCs) and granulocytic or polymorphonuclear (PMN-MDSCs) showed negative associations with survival outcomes. Overall, high levels of pretreatment circulating MDSCs negatively influenced survival in most cancers. Pretreatment circulating MDSCs should be taken into account to further improve prognostic evaluation and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Si-Ying Song
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Jian Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Ji
- Department of Neurosurgery, Key Laboratory, The Second Hospital of Yulin, Xi’an Jiao tong University, Xi’an, China
| | - Shou-Wei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chang-Xiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Challenging PD-L1 expressing cytotoxic T cells as a predictor for response to immunotherapy in melanoma. Nat Commun 2018; 9:2921. [PMID: 30050132 PMCID: PMC6062523 DOI: 10.1038/s41467-018-05047-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/13/2018] [Indexed: 11/09/2022] Open
|
30
|
Okla K, Wertel I, Wawruszak A, Bobiński M, Kotarski J. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming? Crit Rev Clin Lab Sci 2018; 55:376-407. [PMID: 29927668 DOI: 10.1080/10408363.2018.1477729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.
Collapse
Affiliation(s)
- Karolina Okla
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Iwona Wertel
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Anna Wawruszak
- b Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Marcin Bobiński
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Jan Kotarski
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
31
|
Pucci M, Reclusa Asiáin P, Duréndez Sáez E, Jantus-Lewintre E, Malarani M, Khan S, Fontana S, Naing A, Passiglia F, Raez LE, Rolfo C, Taverna S. Extracellular Vesicles As miRNA Nano-Shuttles: Dual Role in Tumor Progression. Target Oncol 2018; 13:175-187. [DOI: 10.1007/s11523-018-0551-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Salvagno C, de Visser KE. Purification of Immune Cell Populations from Freshly Isolated Murine Tumors and Organs by Consecutive Magnetic Cell Sorting and Multi-parameter Flow Cytometry-Based Sorting. Methods Mol Biol 2018; 1458:125-35. [PMID: 27581019 DOI: 10.1007/978-1-4939-3801-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
It is well established that tumors evolve together with nonmalignant cells, such as fibroblasts, endothelial cells, and immune cells. These cells constantly entangle and interact with each other creating the tumor microenvironment. Immune cells can exert both tumor-promoting and tumor-protective functions. Detailed phenotypic and functional characterization of intra-tumoral immune cell subsets has become increasingly important in the field of cancer biology and cancer immunology. In this chapter, we describe a method for isolation of viable and pure immune cell subsets from freshly isolated murine solid tumors and organs. First, we describe a protocol for the generation of single-cell suspensions from tumors and organs using mechanical and enzymatic strategies. In addition, we describe how immune cell subsets can be purified by consecutive magnetic cell sorting and multi-parameter flow cytometry-based cell sorting.
Collapse
Affiliation(s)
- Camilla Salvagno
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Abstract
The relatively high DNA mutational burden in melanoma allows for the creation of potentially "foreign," immune-stimulating neoantigens, and leads to its exceptional immunogenicity. Brisk tumor-infiltrating lymphocytes, a marker of immune editing, confer improved overall survival in melanoma, possibly due to reduced sentinel lymph node spread. Meanwhile, T-cell-stimulating drugs, so-called T-cell checkpoint inhibitors, which reverse peripheral tolerance-dependent tumor escape, have demonstrated unparalleled clinical success in metastatic melanoma. Markers to predict response to immunotherapy are currently imperfect, and the subject of intense research, which will guide the future of ancillary pathologic testing in this setting.
Collapse
Affiliation(s)
- Jennifer S Ko
- Department of Anatomic Pathology, Cleveland Clinic, 9500 Euclid Avenue, L2-150, Cleveland, OH 44195, USA.
| |
Collapse
|
34
|
Indoleamine 2,3-Dioxygenase Expression in Primary Cutaneous Melanoma Correlates with Breslow Thickness and Is of Significant Prognostic Value for Progression-Free Survival. J Invest Dermatol 2017; 138:679-687. [PMID: 29054599 DOI: 10.1016/j.jid.2017.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
The enzyme indoleamine 2,3-dioxygenase (IDO) is emerging as a facilitator of cancer development through its effects on cancer-associated inflammation. Recent studies report a significant improvement of the response rates in melanoma patients to PD-1 antibodies when IDO inhibitors were added to the regimen. Data on IDO expression in primary human melanomas are, however, incomplete and conflicting. Here, we show that the level of IDO expression in primary human melanoma cells significantly correlates with Breslow thickness (P = 0.003), the presence of tumor-infiltrating lymphocytes (P = 0.029), and the intensity of the peritumoral inflammatory infiltrate (P = 0.001). The expression of IDO in melanoma cells predicted independently of Breslow thickness and tumor stage (P = 0.04). We further show that CD11c+ dendritic cells and CD68+ macrophages in the microenvironment of melanomas express IDO. The level of IDO expression in antigen-presenting cells correlated positively to peritumoral inflammation (P = 0.001) but not to tumor-infiltrating lymphocytes. Significant negative correlation with progression-free survival was found for patients for whom antigen-presenting cells were very strongly IDO positive. These results suggest that IDO induction within melanoma cells may directly reflect tumor progression, whereas IDO in antigen-presenting cells may determine immune surveillance with impact on local and systemic tolerance.
Collapse
|
35
|
Li S, Wu J, Zhu S, Liu YJ, Chen J. Disease-Associated Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:1268. [PMID: 29085361 PMCID: PMC5649186 DOI: 10.3389/fimmu.2017.01268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
36
|
Gao XH, Tian L, Wu J, Ma XL, Zhang CY, Zhou Y, Sun YF, Hu B, Qiu SJ, Zhou J, Fan J, Guo W, Yang XR. Circulating CD14 + HLA-DR -/low myeloid-derived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery. Hepatol Res 2017; 47:1061-1071. [PMID: 27764536 DOI: 10.1111/hepr.12831] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
Abstract
AIM Myeloid-derived suppressor cells (MDSCs) play an important role in tumor progression. The aim of the present study was to investigate the prognostic value of MDSCs for early recurrence of hepatocellular carcinoma (HCC) in patients undergoing curative resection. METHODS Myeloid-derived suppressor cells were measured by flow cytometry. The correlation between MDSCs and tumor recurrence was analyzed using a cohort of 183 patients who underwent curative resection between February 2014 and July 2015. Prognostic significance was further assessed using Kaplan-Meier survival estimates and log-rank tests. RESULTS In vivo, CD14+ HLA-DR-/low MDSCs inhibit T cell proliferation and secretion. The frequency of CD14+ HLA-DR-/low MDSCs was significantly higher in HCC patients (3.7 ± 5.3%, n = 183) than in chronic hepatitis patients (1.4 ± 0.6%, n = 25) and healthy controls (1.1 ± 0.5%, n = 50). High frequency of MDSCs was significantly correlated with recurrence (time to recurrence) (P < 0.001) and overall survival (P = 0.034). Patients with HCC in the high MDSC group were prone to more vascular invasion (P = 0.018) and high systemic immune-inflammation index (SII) (P = 0.009) than those in the low MDSC group. Scatter-plot analyses revealed a significant positive correlation between the SII level and the frequency of MDSCs (r = 0.188, P = 0.011). Patients with HCC with a high MDSC frequency and high SII level had significantly shorter time to recurrence (P < 0.001) and overall survival (P = 0.028) than those with a low MDSC frequency and low SII. CONCLUSIONS An increased frequency of MDSCs was correlated with early recurrence and predicted the prognosis of patients with HCC undergoing curative resection. The HCC patients with high frequency of MDSCs should be provided more advanced management and frequent monitoring.
Collapse
Affiliation(s)
- Xing-Hui Gao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Fan Sun
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Roussel M, Ferrell PB, Greenplate AR, Lhomme F, Le Gallou S, Diggins KE, Johnson DB, Irish JM. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 2017; 102:437-447. [PMID: 28400539 PMCID: PMC6608074 DOI: 10.1189/jlb.5ma1116-457r] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
The monocyte phagocyte system (MPS) includes numerous monocyte, macrophage, and dendritic cell (DC) populations that are heterogeneous, both phenotypically and functionally. In this study, we sought to characterize those diverse MPS phenotypes with mass cytometry (CyTOF). To identify a deep phenotype of monocytes, macrophages, and DCs, a panel was designed to measure 38 identity, activation, and polarization markers, including CD14, CD16, HLA-DR, CD163, CD206, CD33, CD36, CD32, CD64, CD13, CD11b, CD11c, CD86, and CD274. MPS diversity was characterized for 1) circulating monocytes from healthy donors, 2) monocyte-derived macrophages further polarized in vitro (i.e., M-CSF, GM-CSF, IL-4, IL-10, IFN-γ, or LPS long-term stimulations), 3) monocyte-derived DCs, and 4) myeloid-derived suppressor cells (MDSCs), generated in vitro from bone marrow and/or peripheral blood. Known monocyte subsets were detected in peripheral blood to validate the panel and analysis pipeline. Then, using various culture conditions and stimuli before CyTOF analysis, we constructed a multidimensional framework for the MPS compartment, which was registered against historical M1 or M2 macrophages, monocyte subsets, and DCs. Notably, MDSCs generated in vitro from bone marrow expressed more S100A9 than when generated from peripheral blood. Finally, to test the approach in vivo, peripheral blood from patients with melanoma (n = 5) was characterized and observed to be enriched for MDSCs with a phenotype of CD14+HLA-DRlowS100A9high (3% of PBMCs in healthy donors, 15.5% in patients with melanoma, P < 0.02). In summary, mass cytometry comprehensively characterized phenotypes of human monocyte, MDSC, macrophage, and DC subpopulations in both in vitro models and patients.
Collapse
Affiliation(s)
- Mikael Roussel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France; and
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison R Greenplate
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Simon Le Gallou
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France; and
| | - Kirsten E Diggins
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Sundahl N, De Wolf K, Rottey S, Decaestecker K, De Maeseneer D, Meireson A, Goetghebeur E, Fonteyne V, Verbeke S, De Visschere P, Reynders D, Van Gele M, Brochez L, Ost P. A phase I/II trial of fixed-dose stereotactic body radiotherapy with sequential or concurrent pembrolizumab in metastatic urothelial carcinoma: evaluation of safety and clinical and immunologic response. J Transl Med 2017; 15:150. [PMID: 28662677 PMCID: PMC5492401 DOI: 10.1186/s12967-017-1251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/21/2017] [Indexed: 02/10/2023] Open
Abstract
Background Current first-line standard of therapy for metastatic urothelial carcinoma is platinum-based combination chemotherapy. Pembrolizumab in phase III has demonstrated a promising overall response rate of 21.1% in patients with progression or recurrence after platinum-based chemotherapy. Preclinical and clinical evidence suggests that radiotherapy has a systemic anti-cancer immune effect and can increase the level of PD-L1 and tumor infiltrating lymphocytes in the tumor microenvironment. These findings gave rise to the hypothesis that the combination of radiotherapy with anti-PD1 treatment could lead to a synergistic effect, hereby enhancing response rates. Methods The phase I part will assess the dose limiting toxicity of the combination treatment of stereotactic body radiotherapy (SBRT) with four cycles of pembrolizumab (200 mg intravenously, every 3 weeks) in patients with metastatic urothelial carcinoma. The dose of both pembrolizumab and SBRT will be fixed, yet the patients will be randomized to receive SBRT either before the first cycle of pembrolizumab or before the third cycle of pembrolizumab. SBRT will be delivered (24 Gy in 3 fractions every other day) to the largest metastatic lesion. Secondary objectives include response rate according to RECIST v1.1 and immune related response criteria, progression-free survival and overall survival. The systemic immune effect triggered by the combination therapy will be monitored on various time points during the trial. The PD-L1/TIL status of the tumors will be analyzed via immunohistochemistry and response rates in the subgroups will be analyzed separately. A Simon’s two-stage optimum design is used to select the treatment arm associated with the best response rate and with acceptable toxicity to proceed to the phase II trial. In this phase, 13 additional patients will be accrued to receive study treatment. Discussion The progress made in the field of immunotherapy has lead to promising breakthroughs in various solid malignancies. Unfortunately, the majority of patients do not respond. The current trial will shed light on the toxicity and potential anti-tumor activity of the combination of radiotherapy with anti-PD1 treatment and may identify potential new markers for response and resistance to therapy. Trial registration this trial is registered on clinicaltrials.gov (NCT02826564). Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Sundahl
- Department of Radiation-Oncology and Experimental Cancer Research, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium. .,Immuno-Oncology Network Ghent (ION Ghent), Ghent, Belgium.
| | - Katrien De Wolf
- Department of Radiation-Oncology and Experimental Cancer Research, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium.,Immuno-Oncology Network Ghent (ION Ghent), Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG Ghent), Ghent, Belgium
| | - Karel Decaestecker
- Department of Urology, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Daan De Maeseneer
- Department of Medical Oncology, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Annabel Meireson
- Department of Dermatology and Dermatology Research Unit, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Els Goetghebeur
- Department of Applied Mathematics, Computer Science and Statistics and Stat-Gent CRESCENDO consortium, Ghent University, Krijgslaan 281 S9, 9000, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Radiation-Oncology and Experimental Cancer Research, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Sofie Verbeke
- Department of Pathology, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Pieter De Visschere
- Department of Radiology, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Dries Reynders
- Department of Applied Mathematics, Computer Science and Statistics and Stat-Gent CRESCENDO consortium, Ghent University, Krijgslaan 281 S9, 9000, Ghent, Belgium
| | - Mireille Van Gele
- Department of Dermatology and Dermatology Research Unit, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Lieve Brochez
- Immuno-Oncology Network Ghent (ION Ghent), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG Ghent), Ghent, Belgium.,Department of Dermatology and Dermatology Research Unit, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Piet Ost
- Department of Radiation-Oncology and Experimental Cancer Research, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium.,Immuno-Oncology Network Ghent (ION Ghent), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG Ghent), Ghent, Belgium
| |
Collapse
|
39
|
Buschow SI, Ramazzotti M, Reinieren-Beeren IMJ, Heinzerling LM, Westdorp H, Stefanini I, Beltrame L, Hato SV, Ellebaek E, Gross S, Nguyen VA, Weinlich G, Ragoussis J, Baban D, Schuler-Thurner B, Svane IM, Romani N, Austyn JM, De Vries IJM, Schuler G, Cavalieri D, Figdor CG. Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein. Oncotarget 2017; 8:67439-67456. [PMID: 28978044 PMCID: PMC5620184 DOI: 10.18632/oncotarget.18698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (PEBP1)/Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low PEBP1 expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Gastroenterology and Hepatology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Inge M J Reinieren-Beeren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucie M Heinzerling
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Harm Westdorp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irene Stefanini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luca Beltrame
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Stanleyson V Hato
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Ellebaek
- CCIT, Center for Cancer Immune Therapy, Department of Hematology and Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stefanie Gross
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Van Anh Nguyen
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Weinlich
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jiannis Ragoussis
- Genomics Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Current address: McGill University and Genome Quebec Innovation Centre, McGill University, Quebec, Canada
| | - Dilair Baban
- Genomics Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Beatrice Schuler-Thurner
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Inge M Svane
- CCIT, Center for Cancer Immune Therapy, Department of Hematology and Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nikolaus Romani
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonathan M Austyn
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - I Jolanda M De Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Luo K, Zavala F, Gordy J, Zhang H, Markham RB. Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine. Vaccine 2017; 35:2358-2364. [DOI: 10.1016/j.vaccine.2017.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
|
41
|
Bosisio FM, van den Oord JJ. Immunoplasticity in cutaneous melanoma: beyond pure morphology. Virchows Arch 2017; 470:357-369. [PMID: 28054151 DOI: 10.1007/s00428-016-2058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/03/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Francesca Maria Bosisio
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium.
- Università degli studi di Milano-Bicocca, Milan, Italy.
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium
| |
Collapse
|
42
|
Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer 2017; 76:167-182. [PMID: 28324751 DOI: 10.1016/j.ejca.2017.01.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO, also referred to as IDO1) has been demonstrated to be a normal endogenous mechanism of acquired peripheral immune tolerance in vivo. In the field of oncology, IDO expression and/or activity has been observed in several cancer types and has usually been associated with negative prognostic factors and worse outcome measures. This manuscript reviews current available data on the role of IDO in cancer and the current results obtained with IDO inhibition, both in animal models and in phase 1 and 2 clinical trials in humans. Preliminary results with IDO inhibitors, usually combined with other anti-cancer drugs, seem encouraging. Further studies are needed to clarify the conditions in which IDO inhibitors can be of value as an anti-cancer strategy. In addition, further research should address whether the expression of IDO in tissue or blood can be a marker to select patients who can benefit most from IDO inhibition.
Collapse
Affiliation(s)
- Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Belgium; Dermatology Research Unit, Ghent, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium; Cancer Research Institute Ghent (CRIG), Belgium.
| | - Ines Chevolet
- Department of Dermatology, Ghent University Hospital, Belgium; Dermatology Research Unit, Ghent, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium
| | - Vibeke Kruse
- Department of Medical Oncology, Ghent University Hospital, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium
| |
Collapse
|
43
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
44
|
De Wolf K, Kruse V, Sundahl N, van Gele M, Chevolet I, Speeckaert R, Brochez L, Ost P. A phase II trial of stereotactic body radiotherapy with concurrent anti-PD1 treatment in metastatic melanoma: evaluation of clinical and immunologic response. J Transl Med 2017; 15:21. [PMID: 28137295 PMCID: PMC5282822 DOI: 10.1186/s12967-017-1123-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Background Antibodies blocking programmed cell death 1 (PD-1) have encouraging responses in patients with metastatic melanoma. Response to anti-PD-1 treatment requires pre-existing CD8+ T cells that are negatively regulated by PD-1-mediated adaptive immune resistance. Unfortunately, less than half of melanoma tumours have these characteristics. Combining anti-PD-1 treatment with other immunomodulating treatments to activate CD8+ T cells is therefore of vital importance to increase response rates and long-term survival benefit in melanoma patients. Both preclinical and retrospective clinical data support the hypothesis that radiotherapy increases the response rates to anti-PD-1 treatment by stimulating the accumulation and activation of CD8+ T cells in the tumour microenvironment. Combining radiotherapy with a PD-1 blocking antibody might therefore increase response rates and even induce long-term survival. The current phase II study will be testing these hypotheses and aims to improve local and distant tumour responses by exploiting the pro-immunogenic effects of radiotherapy in addition to anti-PD-1 treatment. Methods The trial will be conducted in patients with metastatic melanoma. Nivolumab or pembrolizumab, both antibodies that target PD-1, will be administrated according to the recommended dosing schedule. Prior to the 2nd cycle, radiotherapy will be delivered in three fractions of 8 Gy to the largest FDG-avid metastatic lesion. The primary endpoint is the proportion of patients with a partial or complete response in non-irradiated metastases according to RECIST v1.1. Secondary endpoints include response rate according to immune related response criteria, metabolic response, local control and survival. To identify peripheral blood biomarkers, peripheral blood mononuclear cells and serum samples will be collected prospectively before, during and after treatment and subjected to flow cytometry and cytokine measurement. Discussion The current phase II trial aims at exploring the suggested benefits of combining anti-PD-1 treatment and radiotherapy. The translational focus on immunologic markers might be suitable for predicting efficacy and monitoring the effect so to improve patient selection for future clinical applications. ClinicalTrials.gov Identifier NCT02821182
Collapse
Affiliation(s)
- Katrien De Wolf
- Department of Radiation-Oncology, University Hospital Ghent, De pintelaan 185, 9000, Ghent, Belgium.
| | - Vibeke Kruse
- Department of Medical Oncology, University Hospital Ghent, Ghent, Belgium
| | - Nora Sundahl
- Department of Radiation-Oncology, University Hospital Ghent, De pintelaan 185, 9000, Ghent, Belgium
| | - Mireille van Gele
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Ines Chevolet
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | | | - Lieve Brochez
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Piet Ost
- Department of Radiation-Oncology, University Hospital Ghent, De pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
45
|
Wistuba-Hamprecht K, Martens A, Weide B, Teng KWW, Zelba H, Guffart E, Chen J, Garbe C, Newell EW, Larbi A, Pawelec G. Establishing High Dimensional Immune Signatures from Peripheral Blood via Mass Cytometry in a Discovery Cohort of Stage IV Melanoma Patients. THE JOURNAL OF IMMUNOLOGY 2016; 198:927-936. [PMID: 27986910 DOI: 10.4049/jimmunol.1600875] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023]
Abstract
The identification of blood-borne biomarkers correlating with melanoma patient survival remains elusive. Novel techniques such as mass cytometry could help to identify melanoma biomarkers, allowing simultaneous detection of up to 100 parameters. However, the evaluation of multiparametric data generated via time-of-flight mass cytometry requires novel analytical techniques because the application of conventional gating strategies currently used in polychromatic flow cytometry is not feasible. In this study, we have employed 38-channel time-of-flight mass cytometry analysis to generate comprehensive immune cell signatures using matrix boolean analysis in a cohort of 28 stage IV melanoma patients and 17 controls. Clusters of parameters were constructed from the abundance of cellular phenotypes significantly different between patients and controls. This approach identified patient-specific combinatorial immune signatures consisting of high-resolution subsets of the T cell, NK cell, B cell, and myeloid compartments. An association with superior survival was characterized by a balanced distribution of myeloid-derived suppressor cell-like and APC-like myeloid phenotypes and differentiated NK cells. The results of this study in a discovery cohort of melanoma patients suggest that multifactorial immune signatures have the potential to allow more accurate prediction of individual patient outcome. Further investigation of the identified immune signatures in a validation cohort is now warranted.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, University Medical Center, 72072 Tübingen, Germany.,Department of Dermatology, University Medical Center, 72076 Tübingen, Germany
| | - Alexander Martens
- Department of Internal Medicine II, University Medical Center, 72072 Tübingen, Germany.,Department of Dermatology, University Medical Center, 72076 Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, 72076 Tübingen, Germany
| | - Karen Wei Weng Teng
- Singapore Immunology Network, Biopolis, Agency for Science, Technology and Research, 138648 Singapore
| | - Henning Zelba
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Elena Guffart
- Department of Dermatology, University Medical Center, 72076 Tübingen, Germany
| | - Jinmiao Chen
- Singapore Immunology Network, Biopolis, Agency for Science, Technology and Research, 138648 Singapore
| | - Claus Garbe
- Department of Dermatology, University Medical Center, 72076 Tübingen, Germany
| | - Evan William Newell
- Singapore Immunology Network, Biopolis, Agency for Science, Technology and Research, 138648 Singapore;
| | - Anis Larbi
- Singapore Immunology Network, Biopolis, Agency for Science, Technology and Research, 138648 Singapore;
| | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, 72072 Tübingen, Germany; .,John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; and.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
46
|
Shipp C, Speigl L, Janssen N, Martens A, Pawelec G. A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell Mol Life Sci 2016; 73:4043-61. [PMID: 27236468 PMCID: PMC11108339 DOI: 10.1007/s00018-016-2278-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
Considering the large number of studies focused on myeloid-derived suppressor cells (MDSCs) to date, only a handful of well-defined relationships in human cancer have been established. The difficulty of assessing the impact of MDSCs in human cancer is partly due to the relatively small number of studies performed in humans. This is compounded in the literature by a common lack of clear indication of which species is being referred to for each characteristic described. These aspects may result in inappropriate extrapolation of animal studies to those in the human setting. This is especially the case for studies focused on investigating therapies which can be used to target MDSCs or those aimed at understanding their mechanism. Here, we attempt to rectify this by reviewing only studies on MDSC performed in humans. We survey studies which explore (1) whether MDSC levels are altered in cancer patients and if this is correlated with patient survival, (2) the so far identified mechanisms employed by MDSC to exert immune suppression, and (3) whether therapeutic agents can be used to target MDSCs by either altering their level, influencing their differentiation or inhibiting their suppressive function. Despite the fact that these studies clearly show that MDSCs are important in human cancer, the clinical employment of agents intended to target them has not yet been accomplished. We identify factors which have contributed to this and propose steps which may facilitate the translation of these therapies to the clinic in future.
Collapse
Affiliation(s)
- Christopher Shipp
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany.
| | - Lisa Speigl
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | - Nicole Janssen
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | - Alexander Martens
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 24, 72076, Tübingen, Germany
| | - Graham Pawelec
- Second Department of Internal Medicine, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany.
- School of Science and Technology, College of Arts and Science, Nottingham Trent University, Burton St, Nottingham, NG1 4BU, UK.
| |
Collapse
|
47
|
Kini Bailur J, Gueckel B, Pawelec G. Prognostic impact of high levels of circulating plasmacytoid dendritic cells in breast cancer. J Transl Med 2016; 14:151. [PMID: 27234566 PMCID: PMC4884426 DOI: 10.1186/s12967-016-0905-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
Background Identifying immune markers in blood that are informative for breast cancer patient survival would not only be useful for prognosis but might also provide mechanistic insights into processes facilitating survival. Methods We phenotyped circulating plasmacytoid dendritic cells (pDCs), myeloid-derived suppressor cells (MDSCs) and regulatory T-cells in relation to T-cell responses to Her-2 in vitro in 75 untreated breast cancer patients 28–87 years of age at diagnosis. Results Patients with later stage tumors had lower levels of circulating pDCs (p = 0.008). There was a positive association between 5-year survival and higher than median levels of circulating pDCs (p = 0.03). We confirmed that 5-year survival correlated with CD8+ but not CD4+ T-cell responsiveness to Her-2 peptides in this cohort of younger and older patients (p = 0.04). Including pDCs in the analysis of previously-established parameters revealed that patients who had a CD8+ T-cell response to Her-2 together with a low ratio of MDSCs:pDCs had 100 % 5-year survival. High levels of pDCs and the presence of a CD8+ T-cell response to Her-2 were independent positive survival indicators according to multivariate Cox analysis. Conclusions Our new results suggest that circulating pDCs could be a positive prognostic indicator in breast cancer patients of all ages, together with the previously established CD8+ T-cell reactivity to Her-2 antigens in older patients only. These two prognostic indicators were independent and emphasize the important role of immunity in ensuring breast cancer patient survival, even in those not undergoing immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0905-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jithendra Kini Bailur
- Department of Internal Medicine II, Centre for Medical Research, University Hospital Tübingen, Waldhoernlestr. 22, 72072, Tübingen, Germany. .,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Brigitte Gueckel
- Radiology Clinic, Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University Hospital Tübingen, Waldhoernlestr. 22, 72072, Tübingen, Germany.,School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, UK.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Kersten K, Salvagno C, de Visser KE. Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy. Front Immunol 2015; 6:516. [PMID: 26500653 PMCID: PMC4595807 DOI: 10.3389/fimmu.2015.00516] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
Cancer immunotherapy is gaining momentum in the clinic. The current challenge is to understand why a proportion of cancer patients do not respond to cancer immunotherapy, and how this can be translated into the rational design of combinatorial cancer immunotherapy strategies aimed at maximizing success of immunotherapy. Here, we discuss how tumors orchestrate an immunosuppressive microenvironment, which contributes to their escape from immune attack. Relieving the immunosuppressive networks in cancer patients is an attractive strategy to extend the clinical success of cancer immunotherapy. Since the clinical availability of drugs specifically targeting immunosuppressive cells or mediators is still limited, an alternative strategy is to use conventional chemotherapy drugs with immunomodulatory properties to improve cancer immunotherapy. We summarize the preclinical and clinical studies that illustrate how the anti-tumor T cell response can be enhanced by chemotherapy-induced relief of immunosuppressive networks. Treatment strategies aimed at combining chemotherapy-induced relief of immunosuppression and T cell-boosting checkpoint inhibitors provide an attractive and clinically feasible approach to overcome intrinsic and acquired resistance to cancer immunotherapy, and to extend the clinical success of cancer immunotherapy.
Collapse
Affiliation(s)
- Kelly Kersten
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| | - Camilla Salvagno
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| |
Collapse
|
49
|
Chevolet I, Schreuer M, Speeckaert R, Neyns B, Hoorens I, van Geel N, Krüse V, Hennart B, Allorge D, Van Gele M, Brochez L. Systemic immune changes associated with adjuvant interferon-α2b-therapy in stage III melanoma patients: failure at the effector phase? Melanoma Res 2015; 25:357-61. [PMID: 26050145 DOI: 10.1097/cmr.0000000000000171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interferon-α (IFN-α) is the only approved adjuvant treatment for high-risk melanoma patients in Europe, but the impact on overall survival is low. Although it is believed that IFN-α exerts its effects through immunomodulation, data on its impact on circulating immune cells are scarce. Flow cytometry was performed on peripheral blood mononuclear cells of eight IFN-α2b-treated stage III melanoma patients and 26 untreated stage III melanoma patients as controls to enumerate myeloid and plasmacytoid dendritic cells (mDC and pDC), monocytic and polymorphonuclear myeloid-derived suppressor cells (mMDSC and pmnMDSC) and cytotoxic and regulatory T-cells (Tregs). The expression of several immunosuppressive markers [indoleamine 2,3-dioxygenase (IDO), programmed-death ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA4)] was explored. IDO activity in the blood was confirmed by ultra-performance liquid chromatography. Compared with controls, IFN-α2b treatment was associated with increased IDO expression by pDCs (P=0.021) and an increased kynurenine/tryptophan ratio in the serum (P=0.004), compatible with IDO enzyme activity. Furthermore, IFN-α2b-treated patients had a decreased mDC/DC ratio (P=0.002), decreased CD3+ lymphocytes (P=0.034) and increased circulating Treg (P<0.001) and PD-L1+cytotoxic T-cell (P=0.001) frequencies. IDO expression is upregulated in circulating pDCs of high-risk melanoma patients treated with adjuvant IFN-α2b. This is associated with tryptophan consumption in the patients' serum and higher Treg and PD-L1+cytotoxic T-cell frequencies. We hypothesize that in IFN-α2b-treated patients, IDO activity acts as a negative feedback mechanism and might limit the clinical efficacy of IFN-α2b therapy. The underlying mechanism should be explored as this could lead to more efficient immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- B7-H1 Antigen/biosynthesis
- CTLA-4 Antigen/biosynthesis
- Dendritic Cells/immunology
- Europe
- Female
- Flow Cytometry
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/blood
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-alpha/therapeutic use
- Leukocytes, Mononuclear/immunology
- Male
- Melanoma/drug therapy
- Melanoma/immunology
- Middle Aged
- Myeloid Cells/immunology
- Neoplasm Staging
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Ines Chevolet
- Departments of aDermatology bMedical Oncology, Ghent University Hospital, Ghent cDepartment of Medical Oncology, UZ-Brussel, Brussels, Belgium dToxicology Laboratory, CHU Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Melnik BC. MiR-21: an environmental driver of malignant melanoma? J Transl Med 2015; 13:202. [PMID: 26116372 PMCID: PMC4482047 DOI: 10.1186/s12967-015-0570-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/10/2015] [Indexed: 01/04/2023] Open
Abstract
Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|