1
|
Afshan S, Kim YG, Mattsson J, Åkerfelt M, Härkönen P, Baumgartner M, Nees M. Targeting the cancer cells and cancer-associated fibroblasts with next-generation FGFR inhibitors in prostate cancer co-culture models. Cancer Med 2024; 13:e70240. [PMID: 39300962 PMCID: PMC11413502 DOI: 10.1002/cam4.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Inhibition of androgen receptor (AR) signaling is the main treatment strategy in advanced prostate cancer (PCa). A subset of castration resistant prostate cancer (CRPC) bypasses the AR blockade by increased fibroblast growth factor receptor (FGFR) signaling. The first- and second-generation, non-covalent FGFR inhibitors (FGFRis) have largely failed in the clinical trials against PCa. PURPOSE In this study, we tested the drug sensitivity of LNCaP, VCaP, and CWR-R1PCa cell lines to second-generation, covalent FGFRis (FIIN1, FIIN2) and a novel FGFR downstream molecule inhibitor (FRS2αi). METHODS 2D and 3D mono- and co-cultures of cancer cells, and cancer-associated fibroblasts (CAFs) were used to mimic tumor-stroma interactions in the extracellular matrix (ECM). The treatment responses of the FGFR signaling molecules, the viability and proliferation of cancer cells, and CAFs were determined through immunoblotting, migration assay, cell viability assay, and real-time imaging. Immunofluorescent and confocal microscopy images of control and treated cultures of cancer cells and CAFs, and their morphometric data were deduced. RESULTS The FGFRis were more effective in mono-cultures of the cancer cells compared with co-cultures with CAFs. The FRS2αi was specifically effective in co-cultures with CAFs but was not cytotoxic to CAF mono-cultures as in the case of FIIN1 and FIIN2. At the molecular level, FRS2αi decreased p-FRS2α, p-ERK1/2, and activated apoptosis as monitored by cleaved caspase-3 activity in a concentration-dependent manner in the co-cultures. We observed no synergistic drug efficacy in the combination treatment of the FGFRi with ARi, enzalutamide, and darolutamide. The FRS2αi treatment led to a decrease in proliferation of cancer cell clusters in co-cultures as indicated by their reduced size and Ki67 expression. CONCLUSIONS CAFs exert a protective effect on cancer cells and should be included in the in vitro models to make them physiologically more relevant in screening and testing of FGFRis. The FRS2αi was the most potent agent in reducing the viability and proliferation of the 3D organotypic co-cultures, mainly by disrupting the contact between CAFs and cancer cell clusters. The next-generation FGFRi, FRS2αi, may be a better alternative treatment option for overcoming ARi treatment resistance in advanced PCa.
Collapse
Affiliation(s)
- Syeda Afshan
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Yu Gang Kim
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Present address:
Korea Mouse Phenotyping Center (KMPC)Seoul National UniversitySeoulSouth Korea
| | - Jesse Mattsson
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Present address:
DelSiTech LtdTurkuFinland
| | - Malin Åkerfelt
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Cell Biology, Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
| | - Pirkko Härkönen
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Martin Baumgartner
- Pediatric Molecular Neuro‐Oncology Research LaboratoryUniversity Children's Hospital ZurichZurichSwitzerland
| | - Matthias Nees
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Department of Biochemistry and Molecular BiologyMedical University of LublinLublinPoland
| |
Collapse
|
2
|
Shete MV, Shete AV, Buva K, Channe PP, Sapkal R, Rajbhoj AN. Prognostic Ability of Expression of Myofibroblasts in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2024; 25:1477-1486. [PMID: 38809619 PMCID: PMC11318827 DOI: 10.31557/apjcp.2024.25.5.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
AIM To systematically review the existing scientific literature in providing a comprehensive, quantitative analysis on the prognostic ability of Cancer Associated Fibroblasts (CAFs) in Oral Squamous Cell Carcinoma (OSCC) a novel meta-analysis. METHODS Review was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and registered in PROSPERO - CRD CRD42023467899. Electronic databases were searched for studies having data on effect of CAFs on overall survival rate and disease prognosis in patients with OSCC, oral epithelial dysplasia (OED) compared to normal healthy controls. Quality assessment of included was evaluated through Newcastle Ottawa scale (NOS) for included studies through its domains. The hazard ratio (HR) and risk ratio (RR) was used as summary statistic measure with random effect model and p value <0.05 as statistically significant. RESULTS Twenty studies fulfilled the eligibility criteria and were included in qualitative synthesis and eighteen studies for meta -analysis. Included studies had moderate to low risk of bias. It was observed through the pooled estimate that overall survival rate - (HR) =2.30 (1.71 - 3.10) was lesser in group with high CAFs compared to low CAFs while pooled estimate through RR =1.53 (0.73 - 3.19) and RR = 5.72 (2.40 - 13.59) signified that overall survival rate was lower n OSCC patients with high CAF compared to patients with OED and healthy controls. Publication bias through the funnel plot showed asymmetric distribution with presence of systematic heterogeneity indicating presence of publication bias. CONCLUSION Abundance of CAFs in tumor stroma of OSCC patients is associated with overall poor survival rate and poor disease prognosis. CAFs acts as a good prognostic and therapeutic marker in disease progression and advancements and should be assessed early to reduce patient's mortality and morbidity.
Collapse
Affiliation(s)
- Mrinal V. Shete
- Department of Oral Pathology and Microbiology, D Y Patil Dental School, Pune.
| | - Anagha V. Shete
- Department of Oral Medicine and Radiology, D Y Patil Dental School, Pune.
| | - Kirti Buva
- Department of Oral Pathology and Microbiology, Bharti Vidyapeeth Deemed to be University Dental College and Hospital, Navi Mumbai, Pune.
| | - Pallavi Prakash Channe
- Department of Oral Medicine and Radiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri., Pune.
| | - Rashmi Sapkal
- Department of Oral Medicine and Radiology, M. A. Rangoonwala College of Dental Sciences and Research Centre, Pune.
| | | |
Collapse
|
3
|
Hu D, Zhuo W, Gong P, Ji F, Zhang X, Chen Y, Mao M, Ju S, Pan Y, Shen J. Biological differences between normal and cancer-associated fibroblasts in breast cancer. Heliyon 2023; 9:e19803. [PMID: 37810030 PMCID: PMC10559169 DOI: 10.1016/j.heliyon.2023.e19803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) constitute the primary constituents of the tumor microenvironment (TME) and exert significant influences on cancer progression. However, adequate comprehension of CAF profiles in breast cancer, as well as the precise mechanisms underlying their promotion of cancer, remains lacking. OBJECTIVES To discerns the biological differences between normal fibroblasts (NFs) and CAFs in breast cancer and explore the underlying mechanism. METHODS Three pairs of CAFs and NFs were isolated from breast cancer patients of diverse subtypes who had not undergone prior radiotherapy or chemotherapy. Morphological characteristics of CAFs and NFs were assessed through optical and electron microscopy, their biological attributes were examined using cell counting kits and transwell assays, and their impact on breast cancer cells was simulated using a coculture system. Furthermore, the miRNA profiles of CAFs and NFs were sequenced via an Illumina HiSeq 2500 platform. RESULTS CAFs exhibited higher growth rate and motility than NFs and a stronger potential to promote the malignancy of breast cancer cells. RNA sequencing of both NFs and CAFs revealed differentially expressed miRNAs with notable variability among distinct patients within their NFs and CAFs, while the enrichment of the target genes of differentially expressed miRNAs within both GO terms and KEGG pathways demonstrated significant similarity across patients with different profiles. CONCLUSION CAFs have greater malignancy and higher potential to influence the growth, migration, invasion and chemoresistance of cocultured breast cancer cells than NFs. In addition, the miRNAs that are differentially expressed in CAFs when compared to NFs display substantial variability across patients with distinct breast cancer subtypes, while the enrichment of target genes regulated by these miRNAs, within GO terms and KEGG pathways, remains remarkably consistent among patients with varying profiles.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Feiyang Ji
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xun Zhang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yongxia Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Misha Mao
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Siwei Ju
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Jun Shen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- , China (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| |
Collapse
|
4
|
Hussein HA, Khaphi FL. The Apoptotic Activity of Curcumin Against Oral Cancer Cells Without Affecting Normal Cells in Comparison to Paclitaxel Activity. Appl Biochem Biotechnol 2023; 195:5019-5033. [PMID: 37032374 DOI: 10.1007/s12010-023-04454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Until now, chemotherapy, which has a series of side effects, has been the most widely employed treatment for different types of cancer. However, bioactive products have been utilized as alternative medicines for tumors due to their bioactivities with low or no side effects in normal cells. This research reported for the first time that curcumin (CUR) and paclitaxel (PTX) have significant anti-cancer activity against normal human gingival fibroblast (HGF) and tongue squamous cell carcinoma fibroblast (TSCCF) cell lines. The results showed that CUR (13.85 µg mL-1) and PTX (8.17 µg mL-1) significantly inhibited TSCCF cell viability, with no significant effect on normal HGF cells. SEM showed morphological changes in cells treated with CUR and PTX, especially with TSCCF cells, compared to HGF normal cells. For TSCCF, the results showed the highest necrosis was achieved with CUR (58.8%) and PTX (39%) as compared to the control (2.99%). For normal HGF cells, the highest early and late apoptosis was achieved with PTX. Further, DCFH-DA analyses showed no significant ROS stimulation in TSCCF and HGF cell lines treated with CUR and PTX. The 1H NMR analysis results show the presence of methoxy and hydroxyl groups and aromatic hydrogens in the CUR structure. In conclusion, the results confirmed that CUR is more specific to the oral cancer cells but not normal cells by inducing apoptosis in a dose- and time-dependent manner, with decreased TSCCF cell viability, and the cytotoxicity of CUR and PTX is not through the ROS pathway.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq.
| | - Fatin L Khaphi
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq
| |
Collapse
|
5
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Hu C, Zhang Y, Wu C, Huang Q. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discov 2023; 9:124. [PMID: 37055382 PMCID: PMC10102018 DOI: 10.1038/s41420-023-01428-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most severe and complex malignant diseases with a high level of heterogeneity and, as a result, a wide range of therapeutic responses, regardless of clinical stage. Tumor progression depends on ongoing co-evolution and cross-talk with the tumor microenvironment (TME). In particular, cancer-associated fibroblasts (CAFs), embedded in the extracellular matrix (ECM), induce tumor growth and survival by interacting with tumor cells. Origin of CAFs is quite varied, and the activation patterns of CAFs are also heterogeneous. Crucially, the heterogeneity of CAFs appears to play a key role in ongoing tumor expansion, including facilitating proliferation, enhancing angiogenesis and invasion, and promoting therapy resistance, through the production of cytokines, chemokines, and other tumor-promotive molecules in the TME. This review describes the various origin and heterogeneous activation mechanisms of CAFs, and biological heterogeneity of CAFs in HNSCC is also included. Moreover, we have highlighted versatility of CAFs heterogeneity in HNSCC progression, and have discussed different tumor-promotive functions of CAFs respectively. In the future, it is a promising strategy for the therapy of HNSCC that specifically targeting tumor-promoting CAF subsets or the tumor-promoting functional targets of CAFs.
Collapse
Affiliation(s)
- Chen Hu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, 100730, Beijing, China
| | - Yifan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| |
Collapse
|
7
|
Prieto-Fernandez L, Villaronga MDLA, Hermida-Prado F, Hijazi M, Montoro-Jimenez I, Pevida M, Llames S, Rodrigo JP, Cutillas P, Calvo F, Garcia-Pedrero JM, Alvarez-Teijeiro S. Driving role of head and neck cancer cell secretome on the invasion of stromal fibroblasts: Mechanistic insights by phosphoproteomics. Biomed Pharmacother 2023; 158:114176. [PMID: 36916400 DOI: 10.1016/j.biopha.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC). METHODS Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics. RESULTS Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability CONCLUSIONS: Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.
Collapse
Affiliation(s)
- Llara Prieto-Fernandez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria de Los Angeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Maruan Hijazi
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Irene Montoro-Jimenez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pevida
- Tissue engineering unit, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sara Llames
- Tissue engineering unit, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Fernando Calvo
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom; Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana Maria Garcia-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saul Alvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Kato K, Miyazawa H, Kawashiri S, Lambert DW. Tumour: Fibroblast Interactions Promote Invadopodia-Mediated Migration and Invasion in Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5277440. [PMID: 36471888 PMCID: PMC9719419 DOI: 10.1155/2022/5277440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023]
Abstract
OBJECTIVES In the progression of cancer, interactions between cancer cells and cancer-associated fibroblasts (CAFs) play important roles. Cancer cell invasion is facilitated by filamentous actin (F-actin)-rich membrane protrusions called invadopodia, and the relationship between CAFs and invadopodia has been unclear. We used oral squamous cell carcinoma (OSCC) to investigate CAFs' effects on the formation of invadopodia, and we assessed the expressions of invadopodia markers and CAF markers ex vivo and their relationship with clinical parameters and survival. MATERIALS AND METHODS We examined the effect of culture with normal oral fibroblast (NOF)-derived and CAF-derived conditioned medium on the migration and invasion of two OSCC-derived cell lines using Transwells in the absence/presence of Matrigel. Immunoblotting and immunocytochemistry were conducted to assess the expressions of the invadopodia markers tyrosine kinase substrate 5 (Tks5) and membrane type 1 matrix metalloproteinase (MT1-MMP). We also used immunohistochemistry to examine patients with OSCC for an evaluation of the relationship between the CAF marker alpha smooth muscle actin (αSMA) and the expression of Tks5. The patients' survival was also assessed. RESULTS Compared to the use of culture medium alone, NOF-CM and CAF-CM both significantly increased the OSCC cells' migration and invasion (p < 0.05), and they significantly increased the expressions of both Tks5 and MT1-MMP. After the depletion of Tks5, the OSCC cells' migration and invasion abilities decreased. The expression of Tks5 and that of αSMA were correlated with poor survival, and a high expression of both markers was associated with an especially poor prognosis. CONCLUSIONS These results indicate that the formation of invadopodia is (i) important for OSCC cells' migration and invasion and (ii) regulated by the interaction of OSCC cells and stromal fibroblasts.
Collapse
Affiliation(s)
- Koroku Kato
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara Machi, Kanazawa 9208641, Japan
| | - Hiroki Miyazawa
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara Machi, Kanazawa 9208641, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara Machi, Kanazawa 9208641, Japan
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| |
Collapse
|
9
|
Wang D, Tian M, Fu Y, Sun Y, Ding L, Zhang X, Jing Y, Sun G, Ni Y, Song Y. Halofuginone inhibits tumor migration and invasion by affecting cancer-associated fibroblasts in oral squamous cell carcinoma. Front Pharmacol 2022; 13:1056337. [PMID: 36506509 PMCID: PMC9726898 DOI: 10.3389/fphar.2022.1056337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the oral and maxillofacial regions, with a high rate of metastasis. Cancer-associated fibroblasts (CAFs) play critical roles in tumor growth, metastasis and invasion, making them attractive therapeutic targets for cancer treatment. As an old anti-coccidiosis drug for poultry, Halofuginone (HF) has also been reported to possess anti-fibrosis and anti-cancer activities in the recent decades. However, whether it works by targeting CAFs in OSCC, and the mechanisms involved remain unclear. In the present study, we observed HF dose-dependently inhibits OSCC-derived CAF viability and proliferation. Meanwhile, HF decreased the expressions of α-SMA, FSP-1 and PDGFRβ, markers of the malignant phenotype of CAFs, both at mRNA and protein levels. Furthermore, functional studies demonstrated that HF dramatically attenuates the promotion effect of CAFs on OSCC cell migration and invasion. Mechanistically, the inhibition of MMP2 secretion and the upstream TGF-β/Smad2/3 signaling pathway played an important role in these processes. In the orthotopic transplanted tongue carcinoma in mice model, we confirmed that HF administration inhibited tumor growth and lymph node metastasis (LNM) with reduced CAF population, MMP2 expression and collagen deposition in tumor. Altogether, these results indicate that HF can inhibit the migration and invasion of OSCC by targeting CAFs, which will provide new ideas for the treatment of OSCC.
Collapse
Affiliation(s)
- Danni Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Tian
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Fu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yawei Sun
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guowen Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Panda A, Mishra P, Mohanty A, Sundaragiri KS, Singh A, Jha K. Is Epithelial-Mesenchymal Transition a New Roadway in the Pathogenesis of Oral Submucous Fibrosis: A Comprehensive Review. Cureus 2022; 14:e29636. [PMID: 36321045 PMCID: PMC9606484 DOI: 10.7759/cureus.29636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) collectively refers to a series of episodes that reshape polarized, intact epithelial cells into discrete motile cells that can conquer the extracellular matrix (ECM). It performs a pivotal role in embryonic development, wound healing, and tissue repair. Surprisingly, the exact mechanism can also lead to the onset of malignancy and organ fibrosis contributing to scar formation and loss of function. transforming growth factor signaling, WNT signaling, Notch signaling, Hedgehog signaling, and receptor tyrosine kinase signaling, as well as non-transcriptional changes in response to extracellular cues, such as growth factors and cytokines, hypoxia, and contact with the surrounding ECM, are responsible for the initiation of EMT. Although the pathogenesis of oral submucous fibrosis (OSMF) is multifactorial, compelling evidence suggests that it results from collagen deregulation. EMT is one of the spotlight events in the pathogenesis of OSMF, with myofibroblasts and keratinocytes being the victim cells. EMT is an essential step in both physiological and pathological events. The importance of EMT in the malignant development of OSMF and the inflammatory reaction preceding fibrosis implies a new upcoming area of research. This review aims to focus on the EMT events that function as a double-edged sword between wound healing and fibrosis and further discuss the mechanisms along with the molecular pathways that direct changes in gene expression essential for the same in the oral cavity. As OSMF involves a risk of malignant transformation, understanding the cellular and molecular events will open more avenues for therapeutic breakthroughs targeting EMT.
Collapse
|
11
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
12
|
Osan C, Chira S, Nutu AM, Braicu C, Baciut M, Korban SS, Berindan-Neagoe I. The Connection between MicroRNAs and Oral Cancer Pathogenesis: Emerging Biomarkers in Oral Cancer Management. Genes (Basel) 2021; 12:genes12121989. [PMID: 34946938 PMCID: PMC8700798 DOI: 10.3390/genes12121989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is a common human malignancy that still maintains an elevated mortality rate despite scientific progress. Tumorigenesis is driven by altered gene expression patterns of proto-oncogenes and tumor-suppressor genes. MicroRNAs, a class of short non-coding RNAs involved in gene regulation, seem to play important roles in oral cancer development, progression, and tumor microenvironment modulation. As properties of microRNAs render them stable in diverse liquid biopsies, together with their differential expression signature in cancer cells, these features place microRNAs at the top of promising biomarkers for diagnostic and prognostic values. In this review, we highlight eight expression levels and functions of the most relevant microRNAs involved in oral cancer development, progression, and microenvironment sustainability. Furthermore, we emphasize the potential of using these small RNA species as non-invasive biomarkers for the early detection of oral cancerous lesions. Conclusively, we highlight the perspectives and limitations of microRNAs as novel diagnostic tools, as well as therapeutic models.
Collapse
Affiliation(s)
- Ciprian Osan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Andreea Mihaela Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400033 Cluj-Napoca, Romania;
| | - Schuyler S. Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
- Correspondence:
| |
Collapse
|
13
|
Singh K, Shishodia G, Koul HK. Pancreatic cancer: genetics, disease progression, therapeutic resistance and treatment strategies. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:60. [PMID: 38107772 PMCID: PMC10722911 DOI: 10.20517/2394-4722.2021.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Pancreatic cancer is a deadly disease and the third-highest cause of cancer-related deaths in the United States. It has a very low five-year survival rate (< 5%) in the United States as well as in the world (about 9%). The current gemcitabine-based therapy soon becomes ineffective because treatment resistance and surgical resection also provides only selective benefit. Signature mutations in pancreatic cancer confer chemoresistance by deregulating the cell cycle and promoting anti-apoptotic mechanisms. The stroma-rich tumor microenvironment impairs drug delivery and promotes tumor-specific immune escape. All these factors render the current treatment incompetent and prompt an urgent need for new, improved therapy. In this review, we have discussed the genetics of pancreatic cancer and its role in tumor evolution and treatment resistance. We have also evaluated new treatment strategies for pancreatic cancer, like targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Karnika Singh
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Gauri Shishodia
- Department of Otolaryngology/Head & Neck Cancer Surgery, LSU Health Sciences Center, Shreveport, LA 71103, USA
| | - Hari K. Koul
- Department of Biochemistry & Molecular Biology, Urology and Stanley S Scott Cancer Center School of Medicine LSU Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Shi X, Luo J, Weigel KJ, Hall SC, Du D, Wu F, Rudolph MC, Zhou H, Young CD, Wang XJ. Cancer-Associated Fibroblasts Facilitate Squamous Cell Carcinoma Lung Metastasis in Mice by Providing TGFβ-Mediated Cancer Stem Cell Niche. Front Cell Dev Biol 2021; 9:668164. [PMID: 34527666 PMCID: PMC8435687 DOI: 10.3389/fcell.2021.668164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been shown to enhance squamous cell carcinoma (SCC) growth, but it is unclear whether they promote SCC lung metastasis. We generated CAFs from K15.KrasG12D.Smad4-/- mouse SCCs. RNA expression analyses demonstrated that CAFs had enriched transforming growth factor-beta (TGFβ) signaling compared to normal tissue-associated fibroblasts (NAFs), therefore we assessed how TGFβ-enriched CAFs impact SCC metastasis. We co-injected SCC cells with CAFs to the skin, tail vein, or the lung to mimic sequential steps of lung metastasis. CAFs increased SCC volume only in lung co-transplantations, characterized with increased proliferation and angiogenesis and decreased apoptosis compared to NAF co-transplanted SCCs. These CAF effects were attenuated by a clinically relevant TGFβ receptor inhibitor, suggesting that CAFs facilitated TGFβ-dependent SCC cell seeding and survival in the lung. CAFs also increased tumor volume when co-transplanted to the lung with limiting numbers of SCC cancer stem cells (CSCs). In vitro, CSC sphere formation and invasion were increased either with co-cultured CAFs or with CAF conditioned media (which contains the highest TGFβ1 concentration) and these CAF effects were blocked by TGFβ inhibition. Further, TGFβ activation was higher in primary human oral SCCs with lung metastasis than SCCs without lung metastasis. Similarly, TGFβ activation was detected in the lungs of mice with micrometastasis. Our data suggest that TGFβ-enriched CAFs play a causal role in CSC seeding and expansion in the lung during SCC metastasis, providing a prognostic marker and therapeutic target for SCC lung metastasis.
Collapse
Affiliation(s)
- Xueke Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelsey J. Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Spencer C. Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Danfeng Du
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael C. Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Christian D. Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, United States
| |
Collapse
|
15
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
16
|
González-González R, Ortiz-Sarabia G, Molina-Frechero N, Salas-Pacheco JM, Salas-Pacheco SM, Lavalle-Carrasco J, López-Verdín S, Tremillo-Maldonado O, Bologna-Molina R. Epithelial-Mesenchymal Transition Associated with Head and Neck Squamous Cell Carcinomas: A Review. Cancers (Basel) 2021; 13:3027. [PMID: 34204259 PMCID: PMC8234594 DOI: 10.3390/cancers13123027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive, recurrent, and metastatic neoplasms with a high occurrence around the world and can lead to death when not treated appropriately. Several molecules and signaling pathways are involved in the malignant conversion process. Epithelial-mesenchymal transition (EMT) has been described in HNSCCs, a major type of aggressive carcinoma. EMT describes the development of epithelial cells into mesenchymal cells, which depends on several molecular interactions and signaling pathways that facilitate mesenchymal conversion. This is related to interactions with the microenvironment of the tumor, hypoxia, growth factors, matrix metalloproteinases, and the presence of viral infections. In this review, we focus on the main molecules related to EMT, their interactions with the tumor microenvironment, plasticity phenomena, epigenetic regulation, hypoxia, inflammation, their relationship with immune cells, and the inhibition of EMT in the context of HNSCCs.
Collapse
Affiliation(s)
- Rogelio González-González
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Gamaliel Ortiz-Sarabia
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Nelly Molina-Frechero
- Xochimilco Unit, Department of Health Care, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico; (N.M.-F.); (J.L.-C.)
| | - José Manuel Salas-Pacheco
- Scientific Research Institute, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, Durango 34000, Mexico; (J.M.S.-P.); (S.M.S.-P.)
| | - Sergio Manuel Salas-Pacheco
- Scientific Research Institute, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, Durango 34000, Mexico; (J.M.S.-P.); (S.M.S.-P.)
| | - Jesús Lavalle-Carrasco
- Xochimilco Unit, Department of Health Care, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico; (N.M.-F.); (J.L.-C.)
| | - Sandra López-Verdín
- Health Science Center, Dentistry Research Institute, Universidad de Guadalajara, Guadalajara 4430, Mexico;
| | - Omar Tremillo-Maldonado
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Ronell Bologna-Molina
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
17
|
Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression. Oncogenesis 2021; 10:30. [PMID: 33731705 PMCID: PMC7969781 DOI: 10.1038/s41389-021-00319-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
The activation of stromal fibroblasts into cancer-associated fibroblasts (CAFs) has been suggested to promote primary tumor growth and progression; however, the mechanisms underlying the crosstalk between tumors and fibroblasts that drives stromal heterogeneity remain unknown. Here, we show that high Wnt2B levels were positively correlated with the number of CAFs in cervical cancer (CC). More importantly, Wnt2B was characteristically enriched in CC cell-secreted exosomes and transferred into fibroblasts to promote fibroblast activation via Wnt/β-catenin signaling, and inhibiting exosomal release or the Wnt/β-catenin signaling pathway diminished the activation induced by exosomal Wnt2B. Moreover, circulating exosomal Wnt2B also promoted CAF conversion in vitro and its expression was significantly higher in CC patients. In conclusion, our findings indicate that CC cell-derived Wnt2B can induce the activation of fibroblasts into CAFs, mainly via exosome-dependent secretion, thus providing directions for the development of diagnostic and therapeutic targets for CC progression.
Collapse
|
18
|
Tokuda K, Morine Y, Miyazaki K, Yamada S, Saito Y, Nishi M, Tokunaga T, Ikemoto T, Imura S, Shimada M. The interaction between cancer associated fibroblasts and tumor associated macrophages via the osteopontin pathway in the tumor microenvironment of hepatocellular carcinoma. Oncotarget 2021; 12:333-343. [PMID: 33659044 PMCID: PMC7899554 DOI: 10.18632/oncotarget.27881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer-tumor associated macrophage (TAM)-cancer associated fibroblast (CAF) interactions are an important factor in the tumor microenvironment of hepatocellular carcinoma. MATERIALS AND METHODS Hepatic stellate cells (HSCs) were cultured with cancer cell-conditioned medium (Ca.-CM), TAM-CM and CAF-CM, and the expression of CAF markers were evaluated by RT-PCR. Whether HSCs cultured with Ca.-CM, TAM-CM and CAF-CM contributed to the enhanced malignancy of cancer cells was examined using proliferation, invasion and migration assays. Furthermore, the differences between these three types of CM were evaluated using cytokine arrays. RESULTS HSCs cultured with Ca.-CM, TAM-CM and CAF-CM showed significantly increased mRNA expression of αSMA, FAP and IL-6. All HSCs cultured with each CM exhibited significantly increased proliferation, invasion and migration of cancer cells. The osteopontin concentration was significantly higher in HSCs cultured with TAM-CM than the other CAF-CMs. Osteopontin inhibition significantly reduced osteopontin secretion from HSCs cultured with TAM-CM and suppressed the proliferation and invasion of cancer cells enhanced by HSCs cultured with TAM-CM. CONCLUSIONS We observed enhanced osteopontin secretion from TAMs, and this increased osteopontin further promoted osteopontin secretion from HSCs cultured with TAM-CM, leading to increased malignancy. For the first time, we demonstrated the importance of cancer-TAM-CAF interactions via osteopontin in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kazunori Tokuda
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Katsuki Miyazaki
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masaaki Nishi
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takuya Tokunaga
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Satoru Imura
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
19
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
20
|
Custódio M, Biddle A, Tavassoli M. Portrait of a CAF: The story of cancer-associated fibroblasts in head and neck cancer. Oral Oncol 2020; 110:104972. [PMID: 33011636 DOI: 10.1016/j.oraloncology.2020.104972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Complex interactions take place during cancer formation and progression. In this regard, there has been increasing focus on the non-malignant cells that make up the tumour microenvironment (TME), and how they interact with malignant tumour cells. TME is highly heterogeneous and has a major influence on tumour behaviour and therapy response. Cancer-associated fibroblasts (CAFs), one of the main components of the TME, establish dangerous liaisons with cancer cells and other components of the TME to shape a tumour-supportive environment in many types of cancer. Head and neck squamous cell carcinoma (HNSCC) encompass the malignant neoplasms arising from the mucosal lining of the oral cavity, pharynx and larynx. The TME of HNSCC contributes to tumour progression and this stromal compartment may be an interesting target for treatment. There is an emerging picture of the behaviour of CAFs in HNSCC; how they affect and are affected by the TME. We aim to summarise and discuss the current understanding of CAFs in head and neck cancer, exploring CAF activation and heterogeneity, and interaction with cancer cells and other cells within the TME.
Collapse
Affiliation(s)
- Marcos Custódio
- Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
21
|
Head and Neck Cancer Metastasis and the Effect of the Local Soluble Factors, from the Microenvironment, on Signalling Pathways: Is It All about the Akt? Cancers (Basel) 2020; 12:cancers12082093. [PMID: 32731484 PMCID: PMC7463947 DOI: 10.3390/cancers12082093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 01/13/2023] Open
Abstract
The signalling pathways involved in metastasis of oral adenoid cancer cells (TYS) in response to cancer-associated fibroblasts (COM D24) and normal oral mucosal fibroblasts (MM1) was examined. Metastatic cell behaviour was observed by cell-scatter, 3-D-collagen gel migration, and 3-D-spheroid invasion assays. Akt (v-Akt murine thymoma viral oncogene), MAPK(Mitogen activated protein kinase), EGFR (Epidermal growth factor receptor), TGFβRI (Transforming growth factor beta receptor 1), and CXCR4 (C-X-C chemokine receptor 4) inhibitors were used to identify the signalling pathways involved. Signalling pathway protein expression and activation were assessed by SDS-PAGE and Western blotting. COM-CM (conditioned medium from COM D24 cells) and MM1-CM (conditioned medium from MM1 cells) stimulated cancer cell scattering, which was blocked only by the Akt inhibitor. COM-CM-induced scattered cancer cells showed higher levels of Akt phosphorylation than the negative control and MM1-CM. Migration and invasion of TYS cells into collagen gels from the spheroids was stimulated by CM from both fibroblast cell lines, compared to the negative control. COM cells stimulated TYS invasion into the collagen more than MM1 and the control. Akt and EGFR inhibitors effectively blocked CM and COM cell-induced invasion. Akt-silenced cancer cells were not stimulated to migrate and invade by fibroblast-CM and did not survive the addition of an EGFR inhibitor. This suggests that CAFs stimulate head and neck cancer cell migration and invasion in an Akt- dependent manner. Akt may represent a potential target for inhibitor design to treat metastatic head and neck cancer.
Collapse
|
22
|
Wondergem NE, Nauta IH, Muijlwijk T, Leemans CR, van de Ven R. The Immune Microenvironment in Head and Neck Squamous Cell Carcinoma: on Subsets and Subsites. Curr Oncol Rep 2020; 22:81. [PMID: 32602047 PMCID: PMC7324425 DOI: 10.1007/s11912-020-00938-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To understand why some patients respond to immunotherapy but many do not, a clear picture of the tumor microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC) is key. Here we review the current understanding on the immune composition per HNSCC subsite, the importance of the tumor's etiology and the prognostic power of specific immune cells. RECENT FINDINGS Large cohort data are mostly based on deconvolution of transcriptional databases. Studies focusing on infiltrate localization often entail small cohorts, a mixture of HNSCC subsites, or focus on a single immune marker rather than the interaction between cells within the TME. Conclusions on the prognostic impact of specific immune cells in HNSCC are hampered by the use of heterogeneous or small cohorts. To move forward, the field should focus on deciphering the immune composition per HNSCC subsite, in powered cohorts and considering the molecular diversity in this disease.
Collapse
Affiliation(s)
- Niels E Wondergem
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Irene H Nauta
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Tara Muijlwijk
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - C René Leemans
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University medical center, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Dean T, Li NT, Cadavid JL, Ailles L, McGuigan AP. A TRACER culture invasion assay to probe the impact of cancer associated fibroblasts on head and neck squamous cell carcinoma cell invasiveness. Biomater Sci 2020; 8:3078-3094. [PMID: 32347842 DOI: 10.1039/c9bm02017a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer associated fibroblasts (CAFs) are a major cellular component of the tumour stroma and have been shown to promote tumour cell invasion and disease progression. CAF-cancer cell interactions are bi-directional and occur via both soluble factor dependent and extracellular matrix (ECM) remodelling mechanisms, which are incompletely understood. Previously we developed the Tissue Roll for Analysis of Cellular Environment and Response (TRACER), a novel stacked paper tumour model in which cells embedded in a hydrogel are infiltrated into a porous cellulose scaffold that is then rolled around an aluminum core to generate a multi-layered 3D tissue. Here, we use the TRACER platform to explore the impact of CAFs derived from three different patients on the invasion of two head and neck squamous cell carcinoma (HNSCC) cell lines (CAL33 and FaDu). We find that co-culture with CAFs enhances HNSCC tumour cell invasion into an acellular collagen layer in TRACER and this enhanced migration occurs independently of proliferation. We show that CAF-enhanced invasion of CAL33 cells is driven by a soluble factor independent mechanism, likely involving CAF mediated ECM remodelling via matrix metalloprotenases (MMPs). Furthermore, we find that CAF-enhanced tumour cell invasion is dependent on the spatial pattern of collagen density within the culture. Our results highlight the utility of the co-culture TRACER platform to explore soluble factor independent interactions between CAFs and tumour cells that drive increased tumour cell invasion.
Collapse
Affiliation(s)
- Teresa Dean
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| | | | | | | | | |
Collapse
|
24
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
25
|
Immunohistochemical Characterization of Cancer-associated Fibroblasts in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2019; 26:640-647. [PMID: 28968269 DOI: 10.1097/pai.0000000000000486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myofibroblasts are differentiated contractile cells that can secrete extracellular matrix components, cytokines, proteases, and proangiogenic factors. In neoplastic processes such as oral squamous cell carcinoma (OSCC), myofibroblasts are recognized as cancer-associated fibroblasts (CAFs) and actively participate in tumor progression. As the presence of myofibroblasts in the stroma may be an important parameter of invasion and proliferation, the aim of this study was to evaluate the presence of CAFs in OSCC by immunophenotyping and their association with histologic classification and clinicopathologic parameters. A total of 34 formalin-fixed, paraffin-embedded samples of OSCC were analyzed for CAF histology and immunophenotype established on the basis of the simultaneous immunohistochemical expression of α-SMA, fibronectin, FSP1, HHF35, and vimentin. According to the histologic classification of CAFs, 16 (47%) cases were classified as the mature subtype and 18 (53%) as the immature subtype. CAF immunophenotype was detected in 19 (56%) cases, and the immunophenotype was variable in 15 (44%) cases. The CAFs immunophenotype was significantly associated with the immature histologic subtype. Immunohistochemical expression of α-SMA, fibronectin, FSP1, HHF35, and vimentin represents a suitable CAF immunophenotype in OSCC. The CAF immunophenotype is associated with the immature histologic subtype. The characterization of CAFs may identify tumors with a distinct biological profile in OSCC. Studies extending the investigation of CAFs to OSCC are needed to determine the actual role of this cell population as a possible prognostic marker.
Collapse
|
26
|
Graizel D, Zlotogorski-Hurvitz A, Tsesis I, Rosen E, Kedem R, Vered M. Oral cancer-associated fibroblasts predict poor survival: Systematic review and meta-analysis. Oral Dis 2019; 26:733-744. [PMID: 31179584 DOI: 10.1111/odi.13140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To perform systematic review and meta-analysis on correlations between cancer-associated fibroblasts (CAFs) and the risk of death for patients with oral squamous cell carcinoma. SUBJECTS AND METHODS English literature (1966-2018) was systematically analyzed for studies that immunohistochemically assessed CAF density by alpha-smooth muscle actin and presented 5 year survival rates by Kaplan-Meier plots. Mean age of patients, proportion of male/female patients, and male/female majority (>50% male/female patients) per study were also collected. Significance level for statistical models was p < 0.05. RESULTS Meta-analysis comprised 11 studies/1,040 patients. Univariate Cox regressions showed that high CAF density was a negative prognostic factor in studies with female and male majority [OR 5.329 (95% CI 3.223-8.811), p < 0.001, and OR 2.208 (95% CI 1.717-2.839), p < 0.001, respectively]. High CAF density with male majority was associated with a more favorable prognosis [OR 0.996 (95% CI 0.979-1.013), p < 0.001]. Multivariate Cox regressions showed that death risk was significantly higher among patients with high CAF density compared to low CAF [OR 2.741 (95% CI 2.220-3.384) p < 0.001]. High mean age and male proportion were significantly protective [OR 0.940 (95% CI 0.925-9.955), p < 0.001, OR 0.125 (95% CI 0.018-0.867), p = 0.035), respectively]. CONCLUSIONS CAFs increased death risk, male majority, and higher mean age were protective. A clinically validated cutoff for CAF density could serve as a reliable prognostic tool.
Collapse
Affiliation(s)
- Diana Graizel
- Department of Oral Rehabilitation, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology, Oral Medicine and Oral and Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,The Department of Oral and Maxillofacial Surgery, Beilinson Medical Center, Rabin Campus, Petah Tikva, Israel
| | - Igor Tsesis
- Department of Endodontology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Rosen
- Department of Endodontology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Kedem
- Private Practice in Statistics, Ramat Hasharon, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine and Oral and Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,The Institute of Pathology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
27
|
Wang Y, Jing Y, Ding L, Zhang X, Song Y, Chen S, Zhao X, Huang X, Pu Y, Wang Z, Ni Y, Hu Q. Epiregulin reprograms cancer-associated fibroblasts and facilitates oral squamous cell carcinoma invasion via JAK2-STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:274. [PMID: 31234944 PMCID: PMC6591968 DOI: 10.1186/s13046-019-1277-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/12/2019] [Indexed: 01/12/2023]
Abstract
Background Local resident normal fibroblasts (NFs) are the major source of cancer-associated fibroblasts (CAFs), which are distinguishable from NFs by their tumor-supportive properties. However, the mechanism and the effects underlying the transition of NFs to CAFs in oral squamous cell carcinoma (OSCC) remain unclear. Methods Five pairs of matching primary NFs and CAFs derived from OSCC patients were sent for RNA sequencing. Epiregulin (EREG) expression was analyzed by IHC in fibroblasts from OSCC patients. The role of EREG in the NF-CAF transition and the consequential effects on OSCC progression were examined by upregulation/downregulation of EREG in NFs/CAFs both in vitro and in vivo. Results Here, we identified epiregulin (EREG) as the most remarkably upregulated gene in CAFs. High EREG expression in CAFs correlated with higher T stage, deeper invasion and inferior worst pattern of invasion (WPOI) in OSCC patients and predicted shorter overall survival. Overexpression of EREG in NFs activated the CAF phenotype. Mechanistically, the JAK2/STAT3 pathway was enhanced by EREG in parallel with increased IL-6 expression, which could be inhibited by the JAK2 inhibitor AG490. Recombinant IL-6 upregulated the JAK2/STAT3/EREG pathway in a feedback loop. Moreover, EREG-induced CAF activation promoted the epithelial-mesenchymal transition (EMT) necessary for migration and invasion, which was dependent on JAK2/STAT3 signaling and IL-6. In vivo, EREG expression in stroma fibroblasts promoted tumor growth with high stromal α-SMA, phospho-JAK2/STAT3, and IL-6 expression and upregulated EMT in HSC3 cells. Conclusions EREG is essential for the NF-CAF transformation needed to induce EMT of tumor cells in a JAK2-STAT3- and IL-6-dependent manner in OSCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1277-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Oral & Maxillofacial Surgery Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.,Department of Oral & Maxillofacial Surgery Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Jing
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Liang Ding
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiaoxin Zhang
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yuxian Song
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Sheng Chen
- Department of Oral Pathology Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingxing Zhao
- Department of Oral & Maxillofacial Surgery Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiaofeng Huang
- Department of Oral Pathology Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yumei Pu
- Department of Oral & Maxillofacial Surgery Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhiyong Wang
- Department of Oral & Maxillofacial Surgery Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yanhong Ni
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Qingang Hu
- Department of Oral & Maxillofacial Surgery Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
28
|
Xie C, Ji N, Tang Z, Li J, Chen Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer 2019; 18:83. [PMID: 30954079 PMCID: PMC6451295 DOI: 10.1186/s12943-019-0985-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The proliferation and metastasis ability of tumors are mediate by the "mutual dialogue" between cells in the tumor microenvironment (TME). Extracellular vesicles (EVs), mainly exosomes and microvesicles, play an important role in achieving intercellular substance transport and information transfer in the TME. Initially considered "garbage dumpsters" and later referred to as "signal boxes", EVs carry "cargo" (proteins, lipids, or nucleic acids) that can redirect the function of a recipient cell. Currently, the molecular mechanisms and clinical applications of EVs in head and neck cancers (HNCs) are still at an early stage and need to be further investigate. In this review, we provide insight into the TME of HNCs, classifying and summarizing EVs derived from different cell types and illuminating their complex signaling networks involved in mediating tumor proliferation, invasion and metastasis, vascular angiogenesis and cancer drug resistance. In addition, we highlight the application of EVs in HNCs, underlining the special pathological and physiological environment of HNCs. The application of tumor heterogeneous EVs in saliva and circulating blood diagnostics will provide a new perspective for the early screening, real-time monitoring and prognostic risk assessment of HNCs. Given the concept of precise and individual therapy, nanostructured EVs are equipped with superior characteristics of biocompatibility, low immunogenicity, loadability and modification ability, making these molecules one of the new strategies for HNCs treatment.
Collapse
Affiliation(s)
- Changqing Xie
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
29
|
Li BL, Lu W, Qu JJ, Ye L, Du GQ, Wan XP. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol 2019; 234:2943-2953. [PMID: 30146796 DOI: 10.1002/jcp.27111] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play crucial roles in tumor progression, given the dependence of cancer cells on stromal support. Therefore, understanding how CAFs communicate with endometrial cancer cell in tumor environment is important for endometrial cancer therapy. Exosomes, which contain proteins and noncoding RNA, are identified as an important mediator of cell-cell communication. However, the function of exosomes in endometrial cancer metastasis remains poorly understood. In the current study we found that CAF-derived exosomes significantly promoted endometrial cancer cell invasion comparing to those from normal fibroblasts (NFs). We identified a significant decrease of miR-148b in CAFs and CAFs-derived exosomes. By exogenously transfect microRNAs, we demonstrated that miR-148b could be transferred from CAFs to endometrial cancer cell through exosomes. In vitro and in vivo studies further revealed that miR-148b functioned as a tumor suppressor by directly binding to its downstream target gene, DNMT1 to suppress endometrial cancer metastasis. In endometrial cancer DNMT1 presented a potential role in enhancing cancer cell metastasis by inducing epithelial-mesenchymal transition (EMT). Therefore, downregulated miR-148b induced EMT of endometrial cancer cell as a result of relieving the suppression of DNMT1. Taken together, these results suggest that CAFs-mediated endometrial cancer progression is partially related to the loss of miR-148b in the exosomes of CAFs and promoting the transfer of stromal cell-derived miR-148b might be a potential treatment to prevent endometrial cancer progression.
Collapse
Affiliation(s)
- Bi-Lan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun-Jie Qu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Ye
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gui-Qiang Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Woolman M, Tata A, Dara D, Meens J, D'Arcangelo E, Perez CJ, Saiyara Prova S, Bluemke E, Ginsberg HJ, Ifa D, McGuigan A, Ailles L, Zarrine-Afsar A. Rapid determination of the tumour stroma ratio in squamous cell carcinomas with desorption electrospray ionization mass spectrometry (DESI-MS): a proof-of-concept demonstration. Analyst 2018; 142:3250-3260. [PMID: 28799592 DOI: 10.1039/c7an00830a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Squamous cell carcinomas constitute a major class of head & neck cancers, where the tumour stroma ratio (TSR) carries prognostic information. Patients affected by stroma-rich tumours exhibit a poor prognosis and a higher chance of relapse. As such, there is a need for a technology platform that allows rapid determination of the tumour stroma ratio. In this work, we provide a proof-of-principle demonstration that Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) can be used to determine tumour stroma ratios. Slices from three independent mouse xenograft tumours from the human FaDu cell line were subjected to DESI-MS imaging, staining and detailed analysis using digital pathology methods. Using multivariate statistical methods we compared the MS profiles with those of isolated stromal cells. We found that m/z 773.53 [PG(18:1)(18:1) - H]-, m/z 835.53 [PI(34:1) - H]- and m/z 863.56 [PI(18:1)(18:0) - H]- are biomarker ions that can distinguish FaDu cancer from cancer associated fibroblast (CAF) cells. A comparison with DESI-MS analysis of controlled mixtures of the CAF and FaDu cells showed that the abundance of the biomarker ions above can be used to determine, with an error margin of close to 5% compared with quantitative pathology estimates, TSR values. This proof-of-principle demonstration is encouraging and must be further validated using human samples and a larger sample base. At maturity, DESI-MS thus may become a stand-alone molecular pathology tool providing an alternative rapid cancer assessment without the need for time-consuming staining and microscopy methods, potentially further conserving human resources.
Collapse
Affiliation(s)
- Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hussein AA, Forouzanfar T, Bloemena E, de Visscher J, Brakenhoff RH, Leemans CR, Helder MN. A review of the most promising biomarkers for early diagnosis and prognosis prediction of tongue squamous cell carcinoma. Br J Cancer 2018; 119:724-736. [PMID: 30131545 PMCID: PMC6173763 DOI: 10.1038/s41416-018-0233-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND There is a great interest in developing biomarkers to enhance early detection and clinical management of tongue squamous cell carcinoma (TSCC). However, the developmental path towards a clinically valid biomarker remains extremely challenging. Ideally, the initial key step in moving a newly discovered biomarker towards clinical implementation is independent replication. Therefore, the focus of this review is on biomarkers that consistently showed clinical relevance in two or more publications. METHODS We searched PubMed database for relevant papers across different TSCC sample sources, i.e., body fluids (saliva, serum/plasma) and tissues. No restriction regarding the date of publication was applied except for immunohistochemistry (IHC); only studies published between 2010 and June 2017 were included. RESULTS The search strategy identified 1429 abstracts, of which 96 papers, examining 150 biomarkers, were eventually included. Of these papers, 66% were exploratory studies evaluating single or a panel of biomarkers in one publication. Ultimately, based on studies that had undergone validation for their clinical relevance in at least two independent studies, we identified 10 promising candidates, consisting of different types of molecules (IL-6, IL-8, and Prolactin in liquid samples; HIF-1α, SOX2, E-cadherin, vimentin, MALAT1, TP53, and NOTCH1 in tissue biopsies) CONCLUSIONS: Although more exploratory research is needed with newer methods to identify biomarkers for TSCC, rigorous validation of biomarkers that have already shown unbiased assessment in at least two publications should be considered a high priority. Further research on these promising biomarkers or their combination in multi-institutional studies, could provide new possibilities to develop a specific panel for early diagnosis, prognosis, and individualized treatments.
Collapse
Affiliation(s)
- Aisha A Hussein
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Jgam de Visscher
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - C René Leemans
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Domingues CSDC, Serambeque BP, Laranjo Cândido MS, Marto CMM, Veiga FJDB, Sarmento Antunes Cruz Ribeiro AB, Figueiras ARR, Botelho MFR, Dourado MDARF. Epithelial-mesenchymal transition and microRNAs: Challenges and future perspectives in oral cancer. Head Neck 2018; 40:2304-2313. [PMID: 30120853 DOI: 10.1002/hed.25381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Head and neck cancer is the sixth most common cancer worldwide, with oral squamous cell carcinoma (OSCC) being the most representative type. OSCC is a public health problem with high morbidity and poor survival rate. Epithelial-mesenchymal transition is emerging as a hallmark in OSCC. METHODS In this study, we described the role of microRNAs in epithelial-mesenchymal transition regulation in OSCC based on a PubMed search using articles published in English between January 1, 2010, and January 31, 2018. RESULTS MicroRNA's regulatory networks seem to be a hallmark of epithelial-mesenchymal transition in OSCC pathophysiology becoming a growing challenge to design new studies and strategies from biology to clinical applications. CONCLUSION Therefore, we propose that targeting therapies to epithelial-mesenchymal transition-type cells, namely, coordinating microRNAs and/or hydrophobic drugs, such as conventional therapy, could be a promising strategy to improve the outcomes of patients with OSCC.
Collapse
Affiliation(s)
- Cátia Sofia da Costa Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Beatriz Prazeres Serambeque
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Sofia Laranjo Cândido
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos Miguel Machado Marto
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal.,Experimental Pathology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco José de Baptista Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento Antunes Cruz Ribeiro
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Ramalho Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria Filomena Roque Botelho
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marília de Assunção Rodrigues Ferreira Dourado
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Pathophysiology Course Unit, Dentistry Area, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Okuyama K, Suzuki K, Yanamoto S, Naruse T, Tsuchihashi H, Yamashita S, Umeda M. Anaplastic transition within the cancer microenvironment in early-stage oral tongue squamous cell carcinoma is associated with local recurrence. Int J Oncol 2018; 53:1713-1720. [PMID: 30085337 DOI: 10.3892/ijo.2018.4515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/29/2018] [Indexed: 11/06/2022] Open
Abstract
The cancer microenvironment (CME) promotes malignant progression of cancer cells by stimulating cell growth, migration and invasion. Cancer-associated fibroblasts (CAFs), prominent features of the CME, interact directly with cancer cells and facilitate epithelial-mesenchymal transition (EMT). The present study examined the spatial distribution of CAFs and EMT on cancer cells in patients with early-stage tongue squamous cell carcinoma (TSCC) and their association with local recurrence. The present study included 14 patients with early-stage TSCC who had undergone glossectomy between 2006 and 2015, of which 7 experienced local recurrence (LR group) and 7 did not (control group). Multiple immunofluorescent analysis (MIA) of PCNA, αSMA, vimentin, E-cadherin and cytokeratin 14 (CK14) was performed on slides obtained from surgical specimens to identify the expression of various cell-specific markers. The number of CAFs in the CME was significantly increased in the LR group (P=0.001). Furthermore, the neighbouring cancer cells were positive for vimentin expression, indicating EMT. However, the present study also identified concurrent expression of CK14 in all vimentin-positive cancer cells, whilst epithelial markers, including E-cadherin, were expressed in certain vimentin-positive cancer cells. Concurrent expression of CK14 and vimentin is not defined as EMT or partial EMT. Therefore, the present study proposed a novel mechanism of anaplastic transition (APT), in which epithelial cancer cells concurrently develop mesenchymal features, which is achieved by pathways other than EMT. APT is characterized such that epithelial cancer cells differentiate into more primitive states, which is different from EMT or partial EMT, and it may be associated with LR. The concept aids in improving knowledge regarding tumor recurrence in patients with early-stage TSCC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Souichi Yanamoto
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Tomofumi Naruse
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Hiroki Tsuchihashi
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| |
Collapse
|
34
|
Yu Y, Ke L, Lv X, Ling YH, Lu J, Liang H, Qiu W, Huang X, Liu G, Li W, Guo X, Xia W, Xiang Y. The prognostic significance of carcinoma-associated fibroblasts and tumor-associated macrophages in nasopharyngeal carcinoma. Cancer Manag Res 2018; 10:1935-1946. [PMID: 30022852 PMCID: PMC6042505 DOI: 10.2147/cmar.s167071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Tumor stroma cells play an important role in the carcinogenesis and progression of cancer. The aim of the present investigation was to explore the predictive role of carcinoma-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) in nasopharyngeal carcinoma (NPC). Patients and methods The densities of CAFs and TAMs were measured by immunohistochemistry staining for α-smooth muscle actin (α-SMA), CD68, and CD163 in two sets of tissue microarrays including 260 pretreatment NPC tissues, that is, a training test comprising of 152 patients and a validation set comprising of 108 patients. Chi-square tests were performed for comparisons among the groups. Survival rates were estimated by using the Kaplan–Meier method and compared with log-rank tests. Cox proportional hazards models were used to identify significant independent variables. Results Patients older than 50 years showed a lower expression of CD68, and there was a positive relationship between the densities of CAFs and CD163+ TAMs (p=0.001). In the multivariate analysis of the training test, both α-SMA and CD163 were independent prognostic factors for overall survival and progression-free survival (all p<0.05). Based on the expression levels of α-SMA and CD163, patients were categorized into three groups: high-risk, intermediate-risk, and low-risk groups according to both high, either high, and both low, respectively. Survival analysis and Cox multivariate analysis showed that the risk groups based on α-SMA and CD163 expression were independent predictors for the survival of patients with NPC in the training test, which was also confirmed by the validation test. Conclusion A patient’s risk group based on the level of CD163+ TAMs and CAFs was an independent predictor of survival, which may facilitate patient counseling and individualized treatment.
Collapse
Affiliation(s)
- Yahui Yu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Radiation Oncology, Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Liangru Ke
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Diagnostic Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xing Lv
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yi Hong Ling
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jiabin Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Hu Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Wenze Qiu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Xinjun Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Guoying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Wangzhong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Xiang Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Weixiong Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yanqun Xiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China, ; .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China, ;
| |
Collapse
|
35
|
Lopes-Coelho F, Gouveia-Fernandes S, Serpa J. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumour Biol 2018; 40:1010428318756203. [DOI: 10.1177/1010428318756203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Sofia Gouveia-Fernandes
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
36
|
Effectiveness of radiotherapy + ozone on tumoral tissue and survival in tongue cancer rat model. Auris Nasus Larynx 2018; 45:128-134. [DOI: 10.1016/j.anl.2017.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/27/2017] [Accepted: 03/14/2017] [Indexed: 01/22/2023]
|
37
|
Dourado MR, Guerra ENS, Salo T, Lambert DW, Coletta RD. Prognostic value of the immunohistochemical detection of cancer-associated fibroblasts in oral cancer: A systematic review and meta-analysis. J Oral Pathol Med 2017; 47:443-453. [DOI: 10.1111/jop.12623] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Mauricio Rocha Dourado
- Department of Oral Diagnosis; School of Dentistry; University of Campinas; Piracicaba-SP Brazil
- Unit of Cancer Research and Translational Medicine; Faculty of Medicine; Medical Research Center Oulu; Oulu University Hospital; University of Oulu; Oulu Finland
| | - Eliete N. S. Guerra
- Laboratory of Oral Histopathology; Health Sciences Faculty; University of Brasília; Brasília Brazil
| | - Tuula Salo
- Department of Oral Diagnosis; School of Dentistry; University of Campinas; Piracicaba-SP Brazil
- Unit of Cancer Research and Translational Medicine; Faculty of Medicine; Medical Research Center Oulu; Oulu University Hospital; University of Oulu; Oulu Finland
- Department of Pathology; Institute of Oral and Maxillofacial Disease; HUSLAB; Helsinki University Hospital; University of Helsinki; Helsinki Finland
| | - Daniel W. Lambert
- Integrated Biosciences; School of Clinical Dentistry and Sheffield Cancer Centre; University of Sheffield; Sheffield UK
| | - Ricardo D. Coletta
- Department of Oral Diagnosis; School of Dentistry; University of Campinas; Piracicaba-SP Brazil
| |
Collapse
|
38
|
Gupta S, Roy A, Dwarakanath BS. Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy. Front Oncol 2017; 7:68. [PMID: 28447025 PMCID: PMC5388702 DOI: 10.3389/fonc.2017.00068] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resistance to therapies. Thus, the metabolic cooperation and competition among the different TME components besides the inherent alterations in the tumor cells arising out of genetic as well as epigenetic changes supports growth, metastasis, and therapeutic resistance. This review focuses on the metabolic remodeling achieved through an active cooperation and competition among the three principal components of the TME—the tumor cells, the T cells, and the cancer-associated fibroblasts while discussing about the current strategies that target metabolism of TME components. Further, we will also consider the probable therapeutic opportunities targeting the various metabolic pathways as well as the signaling molecules/transcription factors regulating them for the development of novel treatment strategies for cancer.
Collapse
Affiliation(s)
- Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Amrita Roy
- School of Life Sciences, B. S. Abdur Rahman Crescent University, Chennai, India
| | | |
Collapse
|
39
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
40
|
Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups. Br J Cancer 2017; 116:640-648. [PMID: 28095396 PMCID: PMC5344290 DOI: 10.1038/bjc.2016.455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Oral tongue squamous cell carcinoma (OTSCC) metastasises early, especially to regional lymph nodes. There is an ongoing debate on which early stage (T1-T2N0) patients should be treated with elective neck dissection. We need prognosticators for early stage tongue cancer. Methods: Mice immunisation with human mesenchymal stromal cells resulted in production of antibodies against tenascin-C (TNC) and fibronectin (FN), which were used to stain 178 (98 early stage), oral tongue squamous cell carcinoma samples. Tenascin-C and FN expression in the stroma (negative, moderate or abundant) and tumour cells (negative or positive) were assessed. Similar staining was obtained using corresponding commercial antibodies. Results: Expression of TNC and FN in the stroma, but not in the tumour cells, proved to be excellent prognosticators both in all stages and in early stage cases. Among early stages, when stromal TNC was negative, the 5-year survival rate was 88%. Correspondingly, when FN was negative, no cancer deaths were observed. Five-year survival rates for abundant expression of TNC and FN were 43% and 25%, respectively. Conclusions: Stromal TNC and, especially, FN expressions differentiate patients into low- and high-risk groups. Surgery alone of early stage primary tumours might be adequate when stromal FN is negative. Aggressive treatments should be considered when both TNC and FN are abundant.
Collapse
|
41
|
Li X, Fan Q, Li J, Song J, Gu Y. MiR-124 down-regulation is critical for cancer associated fibroblasts-enhanced tumor growth of oral carcinoma. Exp Cell Res 2017; 351:100-108. [PMID: 28077301 DOI: 10.1016/j.yexcr.2017.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/01/2017] [Accepted: 01/07/2017] [Indexed: 02/03/2023]
Abstract
Cancer associated fibroblasts (CAFs) are known to be involved in initiation, progression and metastasis of various cancers. However, the molecular mechanism of how CAFs affects the biological function of oral cancer (OC) has not been fully-addressed. In this study, we demonstrated that miR-124 was downregulated in oral CAFs and oral cancer cells (OCCs) when compared with matched normal fibroblasts (NFs). Hypermethylation in the promoter region of miR-124 genes was accounted for its downregulation. Interestingly, CAFs but not NFs exerted promotion effect on OCCs cell proliferation, migration and tumor growth in CAFs/NFs-OCCs co-culture. Furthermore, we identified Chemokine (C-C motif) ligand 2 (CCL2) and Interleukin 8 (IL-8) as two direct targets of miR-124. Over-expression of miR-124 in CAFs-OCCs co-culture abrogated CAFs-promoted OCCs cell growth and migration, and this inhibitory effect can be rescued by addition of CCL2 and IL-8. Finally, we showed that restoration of miR-124 expression by lentiviral infection or formulated miR-124 injection inhibited oral tumor growth in vivo suggesting miR-124 rescue could be a potential rationale for therapeutic applications in oral cancer in the future.
Collapse
Affiliation(s)
- Xia Li
- Department of Stomatology, School of Stomatology and medicine, Foshan Stomatology Hospital, Foshan University, Foshan 528000, PR China.
| | - Qinqiao Fan
- Department of Hepatobiliary Surgery, Cancer Center, Chenzhou No.1 People's Hospital, Chenzhou 423000, PR China
| | - Jinyun Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Center South University, Changsha 410013, PR China
| | - Jing Song
- Department of Stomatology, School of Stomatology and medicine, Foshan Stomatology Hospital, Foshan University, Foshan 528000, PR China
| | - Yangcong Gu
- Department of Stomatology, School of Stomatology and medicine, Foshan Stomatology Hospital, Foshan University, Foshan 528000, PR China
| |
Collapse
|
42
|
Metabolic hijacking: A survival strategy cancer cells exploit? Crit Rev Oncol Hematol 2017; 109:1-8. [DOI: 10.1016/j.critrevonc.2016.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
|
43
|
Karpathiou G, Giroult JB, Forest F, Fournel P, Monaya A, Froudarakis M, Dumollard JM, Prades JM, Gavid M, Peoc'h M. Clinical and Histologic Predictive Factors of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma. Am J Clin Pathol 2016; 146:546-553. [PMID: 27694130 DOI: 10.1093/ajcp/aqw145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Induction chemotherapy (IC) is occasionally used in head and neck cancer, leading to less extensive surgery and reduced need for irradiation. Factors predicting the response to IC have not been determined. In this study, we investigated the clinical and histopathologic factors that predict the response to IC. METHODS Head and neck squamous cell carcinomas from 81 patients were analyzed; clinical factors, histologic parameters, and expression of p16 and p53 were correlated with response to chemotherapy and prognosis. RESULTS Factors predicting a good response to IC were the nonoropharyngeal localization, a rich lymphocytic tissue response, and a low platelet-to-lymphocyte blood ratio before treatment. Response to IC did not correlate with prognosis, whereas a low neutrophil-to-lymphocyte ratio (NLR), the absence of a desmoplastic reaction, a rich lymphocytic tissue response, and the overexpression of p53 were associated with better prognosis. CONCLUSIONS Lymphocytic tissue response, NLR, and nonoropharyngeal localization are factors predictive of response to IC.
Collapse
Affiliation(s)
| | | | | | | | | | - Marios Froudarakis
- Department of Pneumonology, North Hospital, University Hospital of St-Étienne, St-Étienne, France; and
| | | | | | | | | |
Collapse
|
44
|
Ren ZH, Lin CZ, Cao W, Yang R, Lu W, Liu ZQ, Chen YM, Yang X, Tian Z, Wang LZ, Li J, Wang X, Chen WT, Ji T, Zhang CP. CD73 is associated with poor prognosis in HNSCC. Oncotarget 2016; 7:61690-61702. [PMID: 27557512 PMCID: PMC5308683 DOI: 10.18632/oncotarget.11435] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/28/2016] [Indexed: 02/05/2023] Open
Abstract
CD73 is a cell surface immunosuppressive enzyme involved in tumor progression and metastasis. While patients whose cancer cells express elevated CD73 are typically associated with an unfavorable outcome, the clinical impact of CD73 expression in patients with Head and neck squamous cell carcinoma (HNSCC) remains unclear. In the present study, we investigated the prognostic significance of CD73 in HNSCC using gene and protein expression analyses. Our results demonstrate that high levels of CD73 are significantly associated with reduced overall survival in patients with HNSCC. We also investigated the functional role of CD73 in vitro and demonstrated that CD73 promotes HNSCC migration and invasion through adenosine A3R stimulation and the activation of EGF/EGFR signaling. Moreover, in vivo xenograft studies demonstrated that CD73 promotes tumorigenesis. In conclusion, our study highlights a role for CD73 as a poor prognostic marker of patient survival and also as a candidate therapeutic target in HNSCCs.
Collapse
Affiliation(s)
- Zhen-Hu Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Cheng-Zhong Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Rong Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Lu
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhe-Qi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yi-Ming Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhen Tian
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Li-Zhen Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiang Li
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xu Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wan-Tao Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Tong Ji
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chen-Ping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
45
|
Sun S, Pan X, Zhao L, Zhou J, Wang H, Sun Y. The Expression and Relationship of CD68-Tumor-Associated Macrophages and Microvascular Density With the Prognosis of Patients With Laryngeal Squamous Cell Carcinoma. Clin Exp Otorhinolaryngol 2016; 9:270-7. [PMID: 27337949 PMCID: PMC4996099 DOI: 10.21053/ceo.2015.01305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/05/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Objectives. We sought to identify the expression of CD68-tumor-associated macrophages (TAMs) and CD34-microvascular density (MVD) in laryngeal squamous cell carcinoma (LSCC), to study the relationship with clinical pathological parameters and to determine whether their expression is predictive of disease. Methods. Pathologically confirmed 45 LSCC tissue and 20 peritumoral non-tumor tissue were examined. Immunohistochemical studies were used to detect the expression of CD68-TAMs and CD34-MVD. Results. The positive expression rate of CD68 in LSCC tissue was 82% (37/45), which was higher than the 10% (2/20) expression rate of the peritumoral tissue (P<0.05). The CD34-MVD positive expression rate in the LSCC tissue was 26.5±6.4, which obviously higher than 12.2±4.0 expression rate of the peritumoral tissue (P<0.05). The positive expression rates of both CD68 and CD34-MVD were higher in the lymph node metastasis (LNM) positive group than in the LNM negative group. The expression of CD68 had positive correlation with CD34-MVD. The 5-year disease-free survival rate in the group with the low CD68 expression was significantly higher than that in the group with high CD68 expression (76% vs. 42%, respectively). Conclusion. The high expression of CD68-TAMs in LSCC and its positive correlation with CD34-MVD illustrates that both play an important role in promoting the metastasis and angiogenesis of this cancer. Their expression was also positively correlated with the prognoses of these patients, suggesting that they could be used as important prognostic markers for LSCC.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinliang Pan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Limin Zhao
- Department of Otorhinolaryngology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jianming Zhou
- Department of Otorhinolaryngology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongzeng Wang
- Department of Otorhinolaryngology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yonghong Sun
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
46
|
CAF cellular glycolysis: linking cancer cells with the microenvironment. Tumour Biol 2016; 37:8503-14. [PMID: 27075473 DOI: 10.1007/s13277-016-5049-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Cancers have long being hallmarked as cells relying heavily on their glycolysis for energy generation in spite of having functional mitochondria. The metabolic status of the cancer cells have been revisited time and again to get better insight into the overall carcinogenesis process which revealed the apparent crosstalks between the cancer cells with the fibroblasts present in the tumour microenvironment. This review focuses on the mechanisms of transformations of normal fibroblasts to cancer-associated fibroblasts (CAF), the participation of the CAF in tumour progression with special interest to the role of CAF cellular glycolysis in the overall tumorigenesis. The fibroblasts, when undergoes the transformation process, distinctly switches to a more glycolytic phenotype in order to provide the metabolic intermediates necessary for carrying out the mitochondrial pathways of ATP generation in cancer cells. This review will also discuss the molecular mechanisms responsible for this metabolic make over promoting glycolysis in CAF cells. A thorough investigation of the pathways and molecules involved will not only help in understanding the process of activation and metabolic reprogramming in CAF cells but also might open up new targets for cancer therapy.
Collapse
|
47
|
Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, Gao C, Xue FX. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol 2016; 9:8. [PMID: 26851944 PMCID: PMC4744391 DOI: 10.1186/s13045-015-0231-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are believed to play an essential role in cancer initiation and development. However, little research has been undertaken to evaluate the role of CAFs in endometrial cancer (EC) progression. We aim to detect the functional contributions of CAFs to promote progression of EC. Methods Stromal fibroblasts were isolated from endometrioid adenocarcinomas and normal endometrial tissues. The conditioned media of cultured CAFs and normal fibroblasts (NFs) were collected to detect the level of stromal cell-derived factor-1alpha (SDF-1α), macrophage chemoattractant protein-1 (MCP-1), migration inhibitory factor (MIF), colony stimulating factor-1 (CSF-1), and interleukin-1 (IL-1) by ELISA. The CAFs or NFs were cocultured with EC cell lines to determine the proliferation, migration, and invasion by MTT assays and transwell chambers. Xenograft models were used to observe tumor growth. Matrix metalloproteinases (MMP)-2 and MMP-9 activity was evaluated by zymography. AMD3100 (a chemokine receptor 4 (CXCR4) antagonist) was used to block the SDF-1/CXCR4 axis. Neutralizing antibodies were used to detect PI3K/Akt and MAPK/Erk pathways by western blotting. SDF-1α and CXCR4 expressions were analyzed in xenotransplanted tumors and 348 cases by immunohistochemistry. Results CAFs promoted proliferation, migration, and invasion as well as in vivo tumorigenesis of admixed EC cells significantly more than NFs by secreting SDF-1α. These effects were significantly inhibited by AMD3100. CAFs promoted EC progression via the SDF-1α/CXCR4 axis to activate the PI3K/Akt and MAPK/Erk signalings in a paracrine-dependent manner or increase MMP-2 and MMP-9 secretion in an autocrine-dependent manner. SDF-1α and CXCR4 expression upregulation accompanied clinical EC development and progression. High SDF-1α expression levels were associated with deep myometrial invasion, lymph node metastasis, and poor prognosis in EC. Conclusions Our data indicated that CAFs derived from EC tissues promoted EC progression via the SDF-1/CXCR4 axis in a paracrine- or autocrine-dependent manner. SDF-1α is a novel independent poor prognostic factor for EC patients’ survival. Targeting the SDF-1/CXCR4 axis might provide a novel therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Wen-Yan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Ying-Mei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Yan-Fang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Fei Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Jing Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Feng-Xia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| |
Collapse
|
48
|
Kajihara M, Takakura K, Ohkusa T, Koido S. The impact of dendritic cell-tumor fusion cells on cancer vaccines - past progress and future strategies. Immunotherapy 2015; 7:1111-22. [PMID: 26507578 DOI: 10.2217/imt.15.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that can be used in cancer vaccines. Thus, various strategies have been developed to deliver tumor-associated antigens via DCs. One strategy includes administering DC-tumor fusion cells (DC-tumor FCs) to induce antitumor immune responses in cancer patients. However, clinical trials using this strategy have fallen short of expectations. Several factors might limit the efficacy of these anticancer vaccines. To induce efficient antitumor immune responses and enhance potential clinical benefits, DC-tumor FC-based cancer vaccines require manipulations that improve immunogenicity for both DCs and whole tumor cells. This review addresses recent progress in improving clinical outcomes using DC-tumor FC-based cancer vaccines.
Collapse
Affiliation(s)
- Mikio Kajihara
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuki Takakura
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeo Koido
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|