1
|
Kaspute G, Ramanavicius A, Prentice U. Natural drug delivery systems for the treatment of neurodegenerative diseases. Mol Biol Rep 2025; 52:217. [PMID: 39928236 DOI: 10.1007/s11033-025-10286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
Today, herbal drugs are prominent in the pharmaceutical industry due to their well-known therapeutic and side effects. Plant-based compounds often face limitations such as poor solubility, low bioavailability, and instability in physiological environments, restricting their therapeutic efficacy and delivery. Nanotechnology-based solutions, including nanoparticle formulations and advanced delivery systems like liposomes and transfersomes, address these issues by enhancing solubility, stability, bioavailability, and targeted delivery, thereby optimizing the therapeutic potential of phytoactive compounds. Neuroinflammation can be a cause of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, or amyotrophic lateral sclerosis. Consequently, there is a need for the optimal delivery of a pharmacological anti-inflammatory agents to the CNS. Thus, the non-invasive administration of a stable compound at a therapeutic concentration is needed to assure molecule crossing through the blood-brain barrier. Natural resources have more structural diversity and novelty than synthetic compounds, e.g. plant-derived drug products have higher molecular weights, incorporate more oxygen atoms, and are more complex. As a result, plant-derived products have unique features which can be used to effectively modulate neuroinflammation. Therefore, this review aims to identify herbal molecules capable of targeting neuroinflammation and present novel strategies for their efficient delivery.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
2
|
Kim H, Choi HS, Han K, Sim W, Suh HJ, Ahn Y. Ashwagandha (Withania somnifera (L.) dunal) root extract containing withanolide a alleviates depression-like behavior in mice by enhancing the brain-derived neurotrophic factor pathway under unexpected chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119224. [PMID: 39674356 DOI: 10.1016/j.jep.2024.119224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha (Withania somnifera (L.) Dunal) root or whole-plant extracts are used to treat anxiety, insomnia, and other nervous system disturbances. AIM OF THE STUDY We evaluated the neuroprotective and antidepressant effects of ashwagandha root extract (ARE) on corticosterone-exposed HT-22 cells and unpredictable chronic mild stress (UCMS)-challenged mice. MATERIALS AND METHODS The neuroprotective properties of ARE containing withanolide A were assessed in HT-22 cells subjected to corticosterone-induced oxidative stress. Additionally, the effects of ARE on depression-like behavior, stress-related hormones, and inflammatory cytokine levels were evaluated in a mouse model of UCMS. RESULTS In HT-22 cells, ARE (100 and 200 μg/mL) and its constituent, withanolide A (1.56 and 3.12 μg/mL), mitigated corticosterone-induced increases in MAO activity, ROS, and MDA levels. Treatment also reversed corticosterone-induced reductions in BDNF, TrkB, p-AKT, p-ERK, and p-CREB and normalized Nrf2 and Keap1 levels, thereby elevating HO-1 expression. In UCMS mice, ARE improved behavioral outcomes, increased sucrose preference, and reduced immobility in the forced swimming test while enhancing activity in the open field test and elevated plus maze. ARE decreased the levels of stress hormones (corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone) and increased the levels of neurotransmitters (L-DOPA, 5-HTP, and serotonin). Histological analysis revealed that ARE reduced hippocampal cell loss. Additionally, ARE (60 and 100 mg/kg) restored decreased levels of p-AKT, p-ERK, and p-CREB and lowered inflammation-related proteins (Cox2, iNOS, IL-6, IL-1β, TNF-α). CONCLUSION These results indicate that ARE containing withanolide A exhibits notable neuroprotective and antidepressant properties.
Collapse
Affiliation(s)
- Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Kisoo Han
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea.
| | - Wansup Sim
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea.
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun, Jeonbuk STATE 55365, Republic of Korea.
| |
Collapse
|
3
|
Lugtmeijer C, Bowtell JL, O’Leary M. Tissue-Level Effect of Andrographis and Ashwagandha Metabolites on Metabolic and Inflammatory Gene Expression in Skeletal Muscle and Adipose Tissue: An Ex Vivo/In Vitro Investigation. Nutrients 2024; 16:2291. [PMID: 39064738 PMCID: PMC11279956 DOI: 10.3390/nu16142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.
Collapse
Affiliation(s)
| | | | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter EX1 2LU, UK; (C.L.); (J.L.B.)
| |
Collapse
|
4
|
Zajkowska I, Niczyporuk P, Urbaniak A, Tomaszek N, Modzelewski S, Waszkiewicz N. Investigating the Impacts of Diet, Supplementation, Microbiota, Gut-Brain Axis on Schizophrenia: A Narrative Review. Nutrients 2024; 16:2228. [PMID: 39064675 PMCID: PMC11279812 DOI: 10.3390/nu16142228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is a disease with a complex etiology that significantly impairs the functioning of patients. In recent years, there has been increasing focus on the importance of the gut microbiota in the context of the gut-brain axis. In our study, we analyzed data on the gut-brain axis in relation to schizophrenia, as well as the impacts of eating habits, the use of various supplements, and diets on schizophrenia. Additionally, the study investigated the impact of antipsychotics on the development of metabolic disorders, such as diabetes, dyslipidemia, and obesity. There may be significant clinical benefits to be gained from therapies supported by supplements such as omega-3 fatty acids, B vitamins, and probiotics. The results suggest the need for a holistic approach to the treatment of schizophrenia, incorporating both drug therapy and dietary interventions.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (I.Z.); (N.W.)
| | | |
Collapse
|
5
|
Abomosallam M, Hendam BM, Abdallah AA, Refaat R, El-Hak HNG. Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway. Inflammopharmacology 2024; 32:1903-1928. [PMID: 38630361 PMCID: PMC11136823 DOI: 10.1007/s10787-024-01461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 05/30/2024]
Abstract
Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-β1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-β1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amr A Abdallah
- Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, 10, Ismailia, 41522, Egypt.
| |
Collapse
|
6
|
Basudkar V, Gujrati G, Ajgaonkar S, Gandhi M, Mehta D, Nair S. Emerging Vistas for the Nutraceutical Withania somnifera in Inflammaging. Pharmaceuticals (Basel) 2024; 17:597. [PMID: 38794167 PMCID: PMC11123800 DOI: 10.3390/ph17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.
Collapse
Affiliation(s)
- Vivek Basudkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Gunjan Gujrati
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Manav Gandhi
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
7
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS-COV-2 targeting main protease and papain-like protease. IUBMB Life 2024; 76:228-241. [PMID: 38059400 DOI: 10.1002/iub.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
8
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS‐COV‐2 targeting main protease and papain‐like protease. IUBMB Life 2024; 76:228-241. [DOI: 10.1002/iub.2793 | pmid: 38059400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 05/15/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS‐CoV‐2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi‐organ failure. Thus, drug molecules targeting the SARS‐CoV‐2 virus‐specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain‐like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct‐acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti‐inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half‐maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti‐SARS‐CoV‐2 activity in cell‐based assays, with half‐maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti‐inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID‐19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type‐I interferon response (IFN‐α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS‐CoV‐2‐specific enzymes and also host immune pathways involved in virus‐mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ankur Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases) All India Institute of Medical Sciences (AIIMS) Rishikesh India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD) Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
9
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
10
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 352] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
11
|
Elsherbini AM, Sabra SA, Rashed SA, Abdelmonsif DA, Haroun M, Shalaby TI. Electrospun polyvinyl alcohol/ Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers. Nanomedicine (Lond) 2023; 18:1361-1382. [PMID: 37800462 DOI: 10.2217/nnm-2023-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Impaired inflammation and vascularization are common reasons for delayed diabetic wound healing. Nanoparticles (NPs)-in-nanofibers composites can manage diabetic wounds. A multifunctional scaffold was developed based on tadalafil (TDF)-loaded NPs incorporated into polyvinyl alcohol/Withania somnifera extract nanofibers. Materials & methods: TDF-loaded NPs were prepared and fully characterized in terms of their physicochemical properties. Extract of ashwagandha was prepared and a blend composed of TDF-loaded NPs, herbal extract and polyvinyl alcohol was used to prepare the whole composite. Results: The whole composite exhibited improved wound closure in a diabetic rat model in terms of reduced inflammation and enhanced angiogenesis. Conclusion: Results suggest that this multifunctional composite could serve as a promising diabetic wound dressing.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Shimaa A Rashed
- Department of Botany& Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt 4 Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Soliman MM, Elshehawei AM, Althobaiti S, Sayed SM. Protective impacts of Withania somnifera leaf extract from Taif area against diclofenac induced hepato-renal toxicity: role of antioxidants, inflammation, apoptosis, and anti-oxidative stress biomarkers. Toxicol Res (Camb) 2023; 12:685-692. [PMID: 37663806 PMCID: PMC10470349 DOI: 10.1093/toxres/tfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Current study examined the boosting impacts of Withania somnifera leaf extract from Taif area (high-altitude area) against hepatic and renal toxicity induced by diclofenac in experimental rats. Withania is highly grown on Taif area as environmental herb with multiple functions. Diclofenac is non-steroidal medication used for treatment of pain but over dose has severe side effects. Thirty-two adult Wistar rats of male type were subdivided into 4 groups. The control rats (group 1) received saline. Second group received diclofenac (50 mg/kg BW intraperitoneally) at days 4 and 5. Third group received W. somnifera leaf extract (250 mg /kg body weight) for 6 days. The fourth protective group, received W. somnifera leaf extract plus diclofenac for 6 days as shown in groups 2 and 3. Diclofenac significantly increased serum AST, ALT, and decreased albumin and total proteins levels. It also increased serum concentrations of uric acid and creatinine. In addition, it increased lipid peroxidation, and decreased reduced glutathione and superoxide dismutase levels. Diclofenac increased inflammatory cytokines secretion and up-regulated hepatic oxidative stress genes (HO-1; hemoxygenase-1 and Nrf2nuclear factor erythroid 2-related factor 2 (Nrf2) and renal inflammatory transcriptional markers (TGF-β1; transforming growth factor-beta1 and COX-2; cycloxygenas-2). In parallel, hepatic caspase-3 expression was up-regulated as an apoptotic marker, while Bcl2; (B-cell lymphoma 2) mRNA expression was down regulated as anti-apoptotic marker. W. somnifera pre-administration in the protective group ameliorated the altered parameters induced by diclofenac. In conclusion, W. somnifera leaf extract has the potential to antagonize side effects of diclofenac by regulating the pathways of oxidative stress, inflammation, and apoptosis/antiapoptosis.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M Elshehawei
- Department of Bitechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saed Althobaiti
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy M Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
13
|
KrishnaRaju AV, Somepalli V, Thanawala S, Shah R. Efficacy and Anti-Inflammatory Activity of Ashwagandha Sustained-Release Formulation on Depression and Anxiety Induced by Chronic Unpredictable Stress: in vivo and in vitro Studies. J Exp Pharmacol 2023; 15:291-305. [PMID: 37521489 PMCID: PMC10386834 DOI: 10.2147/jep.s407906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Background Stress is the psychological, physiological, and behavioral response of an individual's body when they perceive a lack of equilibrium between the demands placed upon them and their ability to meet those demands. Adaptogens are herbs that help with stress management, and Ashwagandha is one such safe and effective adaptogen. Objective We evaluated the anti-neuroinflammatory potential of Ashwagandha sustained-release formulation (AshwaSR) by estimating the in vitro expression of pro-inflammatory cytokines, and its efficacy on anxiety and depression in an in vivo study. Methods Our in vitro study investigated the anti-inflammatory potential of AshwaSR by estimating the expression of tumour necrosis factor [TNF]-α and interleukin [IL]-1β levels in LPS-induced THP-1 human monocytes, and the antioxidant effects by its potential to inhibit the superoxide [SO] generation in PMA-induced HL-60 human monocytic cells. The in vivo study assessed the efficacy of AshwaSR on chronic unpredictable stress (CUS)-induced comorbid anxiety and depression in Sprague Dawley rats. Antidepressant and anxiolytic effects of AshwaSR were evaluated by open field test (OFT), elevated plus maze (EPM), forced swim test (FST), and Morris water maze (MWM) test. Results AshwaSR inhibited TNF-α, IL-1β and superoxide production in a dose-dependent manner in the in vitro study. The in vivo CUS model induced depression-like and anxiety-like behaviour. Treatments with AshwaSR and escitalopram showed improvement in the EPM and MWM models compared to the CUS-group. Conclusion In vitro study demonstrated that AshwaSR inhibits expressions of pro-inflammatory cytokines, IL-1β and TNF-α, and superoxide production. Further, the in vivo study confirmed its anxiolytic and stress-relieving effects in the CUS model that confirmed AshwaSR's potential in managing stress and stress-related symptoms.
Collapse
Affiliation(s)
- Alluri Venkata KrishnaRaju
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals, Vijayawada, Andhra Pradesh, India
| | - Venkateswarlu Somepalli
- Department of Research and Development, Laila Nutraceuticals, Vijayawada, Andhra Pradesh, India
| | | | - Rajat Shah
- Medical Affairs, Nutriventia Limited, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
Correia EEM, Figueirinha A, Rodrigues L, Pinela J, Calhelha RC, Barros L, Fernandes C, Salgueiro L, Gonçalves T. The Chemical Profile, and Antidermatophytic, Anti-Inflammatory, Antioxidant and Antitumor Activities of Withania chevalieri A.E. Gonç. Ethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:2502. [PMID: 37447064 DOI: 10.3390/plants12132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, β-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.
Collapse
Affiliation(s)
| | - Artur Figueirinha
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lisa Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Chantal Fernandes
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
15
|
Dubey T, Kushwaha P, Thulasiram HV, Chandrashekar M, Chinnathambi S. Bacopa monnieri reduces Tau aggregation and Tau-mediated toxicity in cells. Int J Biol Macromol 2023; 234:123171. [PMID: 36716837 DOI: 10.1016/j.ijbiomac.2023.123171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive memory loss and behavioral impairments. In the present study, the ethanolic extract of Bacopa monnieri was studied for its potency to inhibit Tau aggregation and rescuing of the viability of Tau-stressed cells. Bacopa monnieri was observed to inhibit the Tau aggregation in vitro. The cells exposed to Bacopa monnieri were also observed to have a low level of ROS and caspase-3 activity. The immunoblot and immunofluorescence analysis showed that Bacopa monnieri acts as an antioxidant and restored the Nrf2 levels in Neuro2a cells. Bacopa monnieri treatment to Neuro2a cells was observed to reduce the phospho-Tau load in formaldehyde-stressed cells. Furthermore, the treatment of Bacopa monnieri reduced the phosphorylation of GSK-3β in formaldehyde-stressed cells. Ran and NUP358 are the key proteins involved in nuclear transport. It was observed that formaldehyde treatment impaired the nuclear transport by missorting the NUP358 arrangement in Neuro2a cells. On the contrary, Bacopa monnieri treatment restored the NUP358 arrangement in cells. The overall results of the present study suggested that Bacopa monnieri could be considered a potent herb against Tau phosphorylation and Tau aggregation, which projects it as a promising formulation for Alzheimer's disease.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Preeti Kushwaha
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
| | - H V Thulasiram
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Madhura Chandrashekar
- The School of Bioengineering Sciences and Research, Maharasthra Institute of Technology, Loni Kalbhor, 412201 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
16
|
Costa G, Serra M, Maccioni R, Casu MA, Kasture SB, Acquas E, Morelli M. Withania somnifera influences MDMA-induced hyperthermic, cognitive, neurotoxic and neuroinflammatory effects in mice. Biomed Pharmacother 2023; 161:114475. [PMID: 36905810 DOI: 10.1016/j.biopha.2023.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Withania somnifera (WS) is utilized in Ayurvedic medicine owing to its central and peripheral beneficial properties. Several studies have accrued indicating that the recreational amphetamine-related drug (+/-)- 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) targets the nigrostriatal dopaminergic system in mice, inducing neurodegeneration and gliosis, causing acute hyperthermia and cognitive impairment. This study aimed to investigate the effect of a standardized extract of W. somnifera (WSE) on MDMA-induced neurotoxicity, neuroinflammation, memory impairment and hyperthermia. Mice received a 3-day pretreatment with vehicle or WSE. Thereafter, vehicle- and WSE-pretreated mice were randomly divided into four groups: saline, WSE, MDMA alone, WSE plus MDMA. Body temperature was recorded throughout treatment, and memory performance was assessed by a novel object recognition (NOR) task at the end of treatment. Thereafter, immunohistochemistry was performed to evaluate in the substantia nigra pars compacta (SNc) and striatum the levels of tyrosine hydroxylase (TH), as marker of dopaminergic degeneration, and of glial fibrillary acidic protein (GFAP) and TMEM119, as markers of astrogliosis or microgliosis, respectively. MDMA-treated mice showed a decrease in TH-positive neurons and fibers in the SNc and striatum respectively, an increase in gliosis and body temperature, and a decrease in NOR performance, irrespective of vehicle or WSE pretreatment. Acute WSE plus MDMA counteracted the modifications in TH-positive cells in SNc, GFAP-positive cells in striatum, TMEM in both areas and NOR performance, as compared to MDMA alone, while no differences were observed as compared to saline. Results indicate that WSE acutely administered in combination with MDMA, but not as pretreatment, protects mice against the noxious central effects of MDMA.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Sanjay B Kasture
- Rajarshi Shahu College of Pharmacy, Buldhana, Maharashtra, India
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
17
|
Atteeq M. Evaluating anticancer properties of Withaferin A—a potent phytochemical. Front Pharmacol 2022; 13:975320. [PMID: 36339589 PMCID: PMC9629854 DOI: 10.3389/fphar.2022.975320] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Withaferin A is a C28 steroidal lactone derived from the plant Withania somnifera, commonly known as Ashwagandha. Withaferin A has received great attention for its anticancer properties noted in cancer cells of various origins. Extracts of Withania somnifera have been used in traditional Ayurvedic and Unani Indian medicine for their various pharmacological benefits. In recent years, Withania somnifera or Ashwagandha extract has become popularized as a health supplement marketed for its stress and anxiety reducing effects. Withaferin A is one of the most studied withanolides extracted from Withania somnifera that has gained great attention for its anticancer, anti-inflammatory, metabolic, and pro-apoptotic effects. Extensive in vivo and in vitro studies have depicted Withaferin A’s interactions with key role players in cancerous activity of the cell to exert its pro-apoptotic effects. Withaferin A interactions with NF-κB, STAT, Hsp90, ER-α, p53, and TGF-β have noted inhibition in cancer cell proliferation and cell cycle arrest in G2/M stage, ultimately leading to apoptosis or cell death. This review highlights pro-apoptotic properties of Withaferin A including generation of reactive oxidative species, Par-4 activation, endoplasmic reticulum stress (ER) induction, and p53 activation. Analysis of Withaferin A’s involvement in various oncogenic pathways leading to malignant neoplasm and its pharmacologic activity in conjunction with various cancer drugs provides promising evidence in therapeutic potential of Withaferin A as a cancer treatment.
Collapse
|
18
|
Balkrishna A, Sinha S, Srivastava J, Varshney A. Withania somnifera (L.) Dunal whole-plant extract demonstrates acceptable non-clinical safety in rat 28-day subacute toxicity evaluation under GLP-compliance. Sci Rep 2022; 12:11047. [PMID: 35773300 PMCID: PMC9246939 DOI: 10.1038/s41598-022-14944-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Withania somnifera (L.) Dunal (Ashwagandha) is widely used in Ayurveda, Unani and Siddha systems of medicines due to its therapeutic application in numerous ailments. Traditionally, the medications prepared from the plant employ only its roots and based on the currently available scientific literature, their efficacy and safety is well established. Apart from the roots, the aerial parts also contain bioactive components and correspondingly certain marketed preparations also employ the leaves of the plant. Accordingly, Ministry of Ayush, Government of India has lately issued an advisory emphasizing the need for extensive efficacy and safety profiling of leaf-based products. Consequently, we have conducted the present GLP-driven study, in which the non-clinical safety of a hydromethanolic extract of the whole plant of Withania somnifera (WSWPE) has been assessed according to OECD guideline 407. In this study Sprague Dawley rats of either sex were orally administered with WSWPE for 28-consecutive days at the doses of 100, 300 and 1000 mg/kg/day. The study also included a satellite group of animals that received WSWPE for 28-days followed by a 14-days recovery period. Withania somnifera Whole Plant Extract was found to be safe up to the dose level of 1000 mg/kg/day as no toxicologically relevant findings could be detected.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, NH-58, Haridwar, Uttarakhand, 249405, India
- Patanjali UK Trust, Glasgow, UK
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249 405, India.
- Department of Allied and Applied Sciences, University of Patanjali, NH-58, Haridwar, Uttarakhand, 249405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Tessema Desta G, Andargie Ferede Y, Sisay Zewdu W, Adela Alemu M. Evaluation of Antidiarrheal Activity of 80% Methanol Extract and Solvent Fractions of the Leaves of Withania somnifera (L.) Dunal in Swiss Albino Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7968973. [PMID: 35586684 PMCID: PMC9110169 DOI: 10.1155/2022/7968973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
Abstract
Background Withaniasomnifera is an important medicinal plant for the treatment of diarrhea in Ethiopian folklore medicine. The aim of this study was to evaluate the antidiarrheal activity of Withania somnifera leaves in Swiss albino mice. Materials and Methods Hydromethanolic crude extraction and solvent fractionation were done using cold maceration technique. 80% methanol was used as a solvent in crude extraction, while distilled water, n-butanol, and chloroform were employed during fractionation. Castor oil-induced diarrhea, enteropooling, and gastrointestinal motility models were employed to evaluate antidiarrheal activity. Mice were randomly divided into five groups (six mice per group): negative control, which received 2% Tween 80 in distilled water; positive control, which received 3 mg/kg loperamide; and three test groups (III, IV, and V), which were treated with 100 mg/kg, 200 mg/kg, and 400 mg/kg of crude extract and solvent fractions, respectively. Results The crude extract, aqueous, and n-butanol fractions significantly delayed the onset of diarrhea at 200 mg/kg and 400 mg/kg dose. There was a significant reduction in the number and weight of stools at all tested doses of the crude extract and aqueous fraction, and at 200 mg/kg and 400 mg/kg of n-butanol fraction. Significant reduction in volume and weight of intestinal contents was observed at all tested doses of the crude extract, and at 200 mg/kg and 400 mg/kg of aqueous and n-butanol fractions. All tested doses of the crude extract and 200 mg/kg and 400 mg/kg of the aqueous and n-butanol fractions significantly reduced the motility of charcoal meal. Conclusion This study demonstrated that the crude extract and solvent fractions of the Withania somnifera leaves have antidiarrheal activity and supported the folklore use of the plant.
Collapse
Affiliation(s)
- Getaye Tessema Desta
- School of Pharmacy, College of Health Sciences, Debre Tabor University, P.O. Box 272, Debre Tabor, Ethiopia
| | - Yared Andargie Ferede
- School of Pharmacy, College of Health Sciences, Debre Tabor University, P.O. Box 272, Debre Tabor, Ethiopia
| | - Woretaw Sisay Zewdu
- School of Pharmacy, College of Health Sciences, Debre Tabor University, P.O. Box 272, Debre Tabor, Ethiopia
| | - Muluken Adela Alemu
- School of Pharmacy, College of Health Sciences, Debre Tabor University, P.O. Box 272, Debre Tabor, Ethiopia
| |
Collapse
|
20
|
Akhtar MA. Anti-Inflammatory Medicinal Plants of Bangladesh—A Pharmacological Evaluation. Front Pharmacol 2022; 13:809324. [PMID: 35401207 PMCID: PMC8987533 DOI: 10.3389/fphar.2022.809324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases are considered major threats to human health worldwide. In Bangladesh, a number of medicinal plants have been used in traditional medicine from time immemorial in the treatment of diverse diseases, including inflammatory disorders. This assignment aims at providing the status of the medicinal plants of Bangladesh which are traditionally used in the management of inflammatory disorders and are investigated for their anti-inflammatory prospects using different preclinical studies and future research directions. The information of medicinal plants assembled in this review was obtained from a literature search of electronic databases such as Google Scholar, PubMed, Scopus, Web of Science and ScienceDirect up to December, 2020 from publications on plants investigated for their anti-inflammatory activities, in which the place of plant sample collection was identified as Bangladesh. Keywords for primary searches were “anti-inflammatory,” “Bangladeshi,” and “medicinal plants.” Criteria followed to include plant species were plants that showed significant anti-inflammatory activities in 1) two or more sets of experiments in a single report, 2) same or different sets of experiments in two or more reports, and, 3) plants which are traditionally used in the treatment of inflammation and inflammatory disorders. In this study, 48 species of medicinal plants have been reviewed which have been used in traditional healing practices to manage inflammatory disorders in Bangladesh. The mechanistic pathways of the in vivo and in vitro study models used for the evaluation of anti-inflammatory properties of plant samples have been discussed. Selected plants were described in further detail for their habitat, anti-inflammatory studies conducted in countries other than Bangladesh, and anti-inflammatory active constituents isolated from these plants if any. Medicinal plants of Bangladesh have immense significance for anti-inflammatory activity and have potential to contribute toward the discovery and development of novel therapeutic approaches to combat diseases associated with inflammation. However, the plants reviewed in this article had chiefly undergone preliminary screening and require substantial investigations including identification of active molecules, understanding the mechanism of action, and evaluation for safety and efficacy to be followed by the formulation of safe and effective drug products.
Collapse
|
21
|
Moustafa EM, Abdel Salam HS, Mansour SZ. Withania somnifera Modulates Radiation-Induced Generation of Lung Cancer Stem Cells via Restraining the Hedgehog Signaling Factors. Dose Response 2022; 20:15593258221076711. [PMID: 35250409 PMCID: PMC8891860 DOI: 10.1177/15593258221076711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSCs) are implicated in the genesis, development, and recurrence of lung cancer (LC) with great resistance to radiation and chemotherapy. The aim of this study is to assess the inhibitory potential of ethanol extract of Withania somnifera (WS); 500 mg/kg body-weight/day and 8 Gy of ionizing radiation (IR) could inhibit the stemness gene and confer the radiosensitizing effect of W. somnifera extract in the female rat LC model. Compared to IR or WS, the in vitro assay showed that WS + IR potentiates proliferation-inhibition and cell death of the A-549 cell line and suppresses sphere formation. The Hedgehog (Hh) signaling associated with the expression levels of lung CSC markers, octamer-binding transcription factor-4 (OCT4), SRY-box 2 (SOX2), CD133, ATP Binding Cassette Subfamily G Member 2 (ABCG2), and NANOG was upregulated with stimulated epithelial-to-mesenchymal transition (EMT) indicators α-smooth muscle actin (α-SMA), Drosophila embryonic protein (SNAIL-1), Vimentin, and E-cadherin in the LC rat model. The W. somnifera extract plus IR inhibits Hh activation factors, which has resulted in the suppression of CSC gene markers and EMT factors. W. somnifera extract may be a significant adjuvant in the course of radiotherapy, contributing to the termination of tumor progression, and thus providing cure insights into the molecular mechanisms of lung CSCs intervention.
Collapse
Affiliation(s)
- Enas Mahmoud Moustafa
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hemat Sameeh Abdel Salam
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Somaya Zakaria Mansour
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
22
|
Gayathri S, Raghu CH, Fayaz SM. Phytotherapeutics against Alzheimer's Disease: Mechanism, Molecular Targets and Challenges for Drug Development. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:409-426. [PMID: 34544351 DOI: 10.2174/1871527320666210920120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl- D-aspartate receptors. Most of the clinical trials in progress are focused on developing disease-modifying agents that aim at single targets. The 'one drug-one target' approach is failing in the case of Alzheimer's disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like Ayurveda use a holistic approach encompassing the legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of Ayurveda, specifically in identifying plants with potent anti-Alzheimer's disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer's disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer's disease potential and about 500 phytochemicals from medicinal plants have been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants, such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera, have been reviewed with respect to their multidimensional property, such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition, and memory-enhancing activity. In addition, the strengths and challenges in ayurvedic medicine that limit its use as mainstream therapy are discussed, and a framework for the development of herbal medicine has been proposed.
Collapse
Affiliation(s)
- S Gayathri
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Chandrashekar H Raghu
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| |
Collapse
|
23
|
Wang J, Zhang H, Kaul A, Li K, Priyandoko D, Kaul SC, Wadhwa R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021; 11:biom11101454. [PMID: 34680087 PMCID: PMC8533065 DOI: 10.3390/biom11101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson’s disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.
Collapse
Affiliation(s)
- Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Kejuan Li
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Didik Priyandoko
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Department of Biology, Universitas Pendidikan Indonesia, Bangdung 40154, Indonesia
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Correspondence:
| |
Collapse
|
24
|
Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochem Res 2021; 46:3325-3341. [PMID: 34432181 DOI: 10.1007/s11064-021-03434-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and oxidative stress cooperate to compromise the function of the central nervous system (CNS). Colloidal platinum nanoparticles (Pt NPs) are ideal candidates for reducing the deleterious effects of neuroinflammation since they act as free radical scavengers. Here we evaluated the effects of Pt NPs on several markers of lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. BV-2 cells were treated with increased dilutions (1-100 ppm) of Colloidal Pt and/or LPS (1-10 µg/mL) at different exposure times. Three different protocols of exposure were used combining Pt NPs and LPS: (a) conditioning-protective effect (pre-post-treat), (b) therapeutic effect (co-treat) and (c) conditioning-therapeutic effect (pre-co-treat). After exposure to LPS for 24 h, cells were used for assessment of cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, apoptosis and caspase-3 levels, cell proliferation, mitochondrial membrane potential, inducible nitric oxide (iNOS) activity, pro-inflammatory cytokine (IL-1β, TNF-α and IL-6) levels, and phagocytic activity. Low concentrations (below or equal to 10 ppm) of Colloidal Pt prevented or ameliorated the LPS-induced increase in ROS formation, loss of mitochondrial membrane potential, induction of apoptosis, increase in LDH release, increase in pro-inflammatory cytokines and iNOS, inhibition of phagocytosis linked to microglial persistence in the M1 phase phenotype, loss of cell adhesion, differentiation and/or proliferation, as well as loss of cell viability. These protective effects were evident when cells were preconditioned with Pt NPs prior to LPS treatment. Collectively, the findings demonstrate that at low concentrations, Pt NPs can regulate the function and phenotype of BV-2 cells, activating protective mechanisms to maintain the microglial homeostasis and reduce inflammatory events triggered by the inflammatory insults induced by LPS. These preventive/protective effects on the LPS pro-inflammatory model are linked to the antioxidant properties and phagocytic activity of these NPs.
Collapse
|
25
|
Liu H, Hu X, Jiang R, Cai J, Lin Q, Fan Z, Zhao P, Wang S, Zou C, Du W, Dong Z, Liu Y. CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021; 44:1345-1358. [PMID: 33528726 PMCID: PMC8285337 DOI: 10.1007/s10753-021-01420-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Xiangnan Hu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghui Cai
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Lin
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiguo Fan
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Pan Zhao
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Chunqiao Zou
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Weimin Du
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yingju Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
26
|
CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021. [PMID: 33528726 DOI: 10.1007/s10753-021-01420-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
|
27
|
Rui Q, Cao S, Wang X, Duan X, Iao X, Dong W, Fang Q, Zhang X, Xue Q. LMTK2 regulates inflammation in lipopolysaccharide-stimulated BV2 cells. Exp Ther Med 2021; 21:219. [PMID: 33603828 DOI: 10.3892/etm.2021.9621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia activation plays vital roles in neuroinflammatory pathologys. Lemurs tyrosine kinase 2 (LMTK2) was reported to regulate NF-κB signals. In the present study, the roles of LMTK2 were investigated in lipopolysaccharide (LPS)-treated BV-2 cells. Reverse transcription-quantitative (RT-q)PCR and western blotting (WB) were utilized to analyze LMTK2 levels in LPS-treated BV2 cells. MTT assay determined cell viabilities. Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were assessed through Griess and enzyme-linked immunosorbent assay (ELISA), respectively. The expression level of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected through RT-qPCR and WB. The release of inflammatory mediators under LPS stimulation, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-10, were analyzed through ELISA. WB was used to analyze the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/NAD(P)H dehydrogenase quinone 1 (NQO1) signal pathway. The results showed that the levels of the inflammatory mediators, iNOS, NO, COX-2 and PGE2, along with pro-inflammatory factors, TNF-α, IL-1β and IL-6, were significantly decreased following the induction of exogenous LMTK2 expression by LMTK2 overexpression plasmids in LPS-induced BV2 microglia. In contrast, anti-inflammatory factor IL-10 showed obvious decrease. Additionally, LMTK2 overexpression induced the elevation of Nrf2 in the cytoplasm and nucleus, along with the upregulation of HO-1 and NQO1 expression. In conclusion, LMTK2 is postulated to regulate neuroinflammation possibly through Nrf2 pathway. The present study is essential to reveal the underlying function of LMTK2 and to identify novel therapeutic targets for drug development in treating neuroinflammation.
Collapse
Affiliation(s)
- Qianyun Rui
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shugang Cao
- Department of Neurology, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Xiaozhu Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaoyu Duan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinyi Iao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, P.R. China
| | - Xueguang Zhang
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 P.R. China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, P.R. China.,Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 P.R. China
| |
Collapse
|
28
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
29
|
Jabri MA, Rtibi K, Sebai H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr Neurosci 2020; 25:1350-1361. [PMID: 33314994 DOI: 10.1080/1028415x.2020.1859727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An abundant literature suggests that obesity-associated with taking a high fat diet is related to an elevated risk of type 2 diabetes and metabolic syndrome. However, metabolic disorders may be involved in the induction of the anxiogenic-like symptoms. The current study was designed to elucidate the mechanisms by which a high fat diet (HFD) can cause several complications in the WISTAR rats (Rattus norvegicus) brain. Oxidative stress and inflammation as well as the putative protection afforded by chamomile decoction extract (CDE) were also studied.The results demonstrated that the increased body and brain weight, acetylcholinesterase and butyrylcholinesterase activities as well as hypercholezterolaemia in response to HFD taking were correlated with anxiogenic-like symptoms. Moreover, HFD feed caused a brain oxidative stress characterized by increased lipoperoxidation, inhibition of antioxidant enzyme activities such as SOD, CAT and GPx, depletion of a non-enzymatic antioxidant such as sulfhydryl groups and GSH. Importantly, the results also show that HFD also provoked a cerebral overload in reactive oxygen species such as OH•, H2O2 and O2∙- as well as brain inflammation assessed by the overproduction of cytokines such as IL-1β and IL-6.Interestingly, all neurobehavioral changes and all the biochemical and molecular disturbances were abolished in HFD-fed rats treated with CDE.Our results provide clear evidence that obesity and depression as well as anxiety are finely correlated and that M. recutita's decoction may prove to be a potential therapeutic agent to mitigate the behavioral disorders, the biochemical alterations and the neuroinflammation associated to the obesity.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Kaïs Rtibi
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Hichem Sebai
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| |
Collapse
|
30
|
Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1501-1526. [PMID: 33489024 PMCID: PMC7811807 DOI: 10.22038/ijbms.2020.44254.10378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Withania somnifera L. is a multipurpose medicinal plant of family Solanaceae occurring abundantly in sub-tropical regions of the world. The folk healers used the plant to treat several diseases such as fever, cancer, asthma, diabetes, ulcer, hepatitis, eyesores, arthritis, heart problems, and hemorrhoids. The plant is famous for the anti-cancerous activity, low back pain treatment, and muscle strengthening, which may be attributed to the withanolide alkaloids. W. somnifera is also rich in numerous valued secondary metabolites such as steroids, alkaloids, flavonoids, phenolics, saponins, and glycosides. A wide range of preclinical trials such as cardioprotective, anticancer, antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, anti-depressant, and hypoglycemic have been attributed to various parts of the plant. Different parts of the plant have also been evaluated for the clinical trials such as male infertility, obsessive-compulsive disorder, antianxiety, bone and muscle strengthening potential, hypolipidemic, and antidiabetic. This review focuses on folk medicinal uses, phytochemistry, pharmacological, and nutrapharmaceutical potential of the versatile plant.
Collapse
Affiliation(s)
- Sumaira Saleem
- Department of Chemistry, GC University Lahore, Lahore 54000 Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, GC University Lahore, Lahore 54000 Pakistan
| | | | - Muhammad Altaf
- Department of Chemistry, GC University Lahore, Lahore 54000 Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka2014, Saudi Arabia
| |
Collapse
|
31
|
Kalotra S, Kaur G. PSA mimetic 5-nonyloxytryptamine protects cerebellar neurons against glutamate induced excitotoxicity: An in vitro perspective. Neurotoxicology 2020; 82:69-81. [PMID: 33197482 DOI: 10.1016/j.neuro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
PSA-NCAM is a molecule of therapeutic interest for its key role in promoting neuritogenesis and synaptic plasticity. The current study was aimed to investigate the neuroregenerative potential of 5-nonyloxytryptamine (5-NOT) as PSA mimetic compound against glutamate induced excitotoxicity. 2D and 3D cultures of cerebellar neurons challenged with glutamate were used to ascertain the effect of 5-NOT on neurite outgrowth, migration and expression of neuronal plasticity markers. Glutamate excitotoxicity is one of the major underlying pathological factor responsible for neurodegeneration in various neurological disorders such as trauma, stroke, ischemia, epilepsy and neurodegenerative diseases.5-NOT treatment was observed to promote axonal growth and defasiculation in glutamate challenged neurons as well as promoted the migration of cerebellar neurons in both wound scratched area and cerebellar explant cultures. Further, 5-NOT treatment upregulated the expression of synaptic plasticity and cell survival pathway proteins which showed reduced expression after glutamate induced excitotoxicity. Thus, this preliminary data reveals thatPSA-mimetic,5-NOT may prove to be a potential neuroprotective candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
32
|
Zahran E, El Sebaei MG, Awadin W, Elbahnaswy S, Risha E, Elseady Y. Withania somnifera dietary supplementation improves lipid profile, intestinal histomorphology in healthy Nile tilapia (Oreochromis niloticus), and modulates cytokines response to Streptococcus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:133-141. [PMID: 32738514 DOI: 10.1016/j.fsi.2020.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Despite Withania somnifera (WS), stimulating effects have been investigated on many animal species, its role on lipid profile and intestinal histomorphology in healthy animals, and its modulating role on pro-inflammatory cytokines following infection in fish are yet scarce. In this context, lipid profile, liver, and intestinal histomorphology were measured in Nile tilapia fed with a basal diet or diets containing 2.5 and 5% of supplementary WS for 60 days. Besides, cytokines response was measured at 1, 3,7, and 14 days following Streptococcus iniae (S. iniae) infection after the feeding trial. All lipid profile parameters were nominally lowered, excluding high-density lipoprotein (HDL) that exhibited a significant increase in WS 5% group compared to other groups. Improved gut health integrity was observed, especially in WS 5% group in terms of increased goblet cell numbers, villous height, the width of lamina propria in all parts of the intestine, and a decrease in the diameter of the intestinal lumen of the distal intestine only. A significant down-regulation in the mRNA transcript level of cytokine genes (interleukin 1β/IL-1β, tumor necrosis factor α/TNFα, and interleukin 6/IL-6) was demonstrated in the kidney and spleen of WS-supplemented groups following S. iniae infection compared with the control infected (positive control/PC) group. Our findings give new insights for the potential roles of WS dietary inclusion not only on lipid profile and intestinal health integrity improvement in healthy fish under normal rearing but also as a prophylactic against the infection. Thus, WS can be incorporated as a promising nutraceutical in aquaculture.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy Risha
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Youssef Elseady
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
33
|
Gupta V, Guleri R, Gupta M, Kaur N, Kaur K, Kumar P, Anand M, Kaur G, Pati PK. Anti-neuroinflammatory potential of Tylophora indica (Burm. f) Merrill and development of an efficient in vitro propagation system for its clinical use. PLoS One 2020; 15:e0230142. [PMID: 32210464 PMCID: PMC7094842 DOI: 10.1371/journal.pone.0230142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a major risk factor associated with the pathogenesis of neurodegenerative diseases. Conventional non-steroidal anti-inflammatory drugs are prescribed but their long term use is associated with adverse effects. Thus, herbal based medicines are attracting major attraction worldwide as potential therapeutic candidates. Tylophora indica (Burm. f) Merrill is a valuable medicinal plant well known in Ayurvedic practices for its immunomodulatory, anti-oxidant, anti-asthmatic and antirheumatic activities. The present study aimed to elucidate the anti-neuroinflammatory potential of water and hydroalcoholic leaf extracts of micropropagated plants of T. indica using BV-2 microglia activated with lipopolysaccharide as an in vitro model system and development of an efficient reproducible protocol for its in vitro cloning. Non cytotoxic doses of the water and hydroalcoholic extracts (0.2μg/ml and 20μg/ml, respectively) were selected using MTT assay. α-Tubulin, Iba-1 and inflammatory cascade proteins like NFκB, AP1 expression was studied using immunostaining to ascertain the anti-neuroinflammatory potential of these extracts. Further, anti-migratory activity was also analyzed by Wound Scratch Assay. Both extracts effectively attenuated lipopolysaccharide induced microglial activation, migration and the production of nitrite via regulation of the expression of NFκB and AP1 as the possible underlying target molecules. An efficient and reproducible protocol for in vitro cloning of T. indica through multiple shoot proliferation from nodal segments was established on both solid and liquid Murashige and Skoog’s (MS) media supplemented with 15μM and 10μM of Benzyl Amino Purine respectively. Regenerated shoots were rooted on both solid and liquid MS media supplemented with Indole-3-butyric acid (5–15μM) and the rooted plantlets were successfully acclimatized and transferred to open field conditions showing 90% survivability. The present study suggests that T. indica may prove to be a potential anti-neuroinflammatory agent and may be further explored as a potential therapeutic candidate for the management of neurodegenerative diseases. Further, the current study will expedite the conservation of T. indica ensuring ample supply of this threatened medicinal plant to fulfill its increasing demand in herbal industry.
Collapse
Affiliation(s)
- Vasudha Gupta
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rupam Guleri
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muskan Gupta
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kuldeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Paramdeep Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manju Anand
- Amity Institute of Biotechnology, Amity University, Haryana, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (PKP); (GK)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (PKP); (GK)
| |
Collapse
|
34
|
El-Husseiny WM, El-Sayed MAA, El-Azab AS, AlSaif NA, Alanazi MM, Abdel-Aziz AAM. Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. J Enzyme Inhib Med Chem 2020; 35:744-758. [PMID: 32183576 PMCID: PMC7144195 DOI: 10.1080/14756366.2020.1740695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of 24 compounds was synthesised based on a 2-cyclopentyloxyanisole scaffold 3–14 and their in vitro antitumor activity was evaluated. Compounds 4a, 4b, 6b, 7b, 13, and 14 had the most potent antitumor activity (IC50 range: 5.13–17.95 μM), compared to those of the reference drugs celecoxib, afatinib, and doxorubicin. The most active derivatives 4a, 4b, 7b, and 13 were evaluated for their inhibitory activity against COX-2, PDE4B, and TNF-α. Compounds 4a and 13 potently inhibited TNF-α (IC50 values: 2.01 and 6.72 μM, respectively) compared with celecoxib (IC50=6.44 μM). Compounds 4b and 13 potently inhibited COX-2 (IC50 values: 1.08 and 1.88 μM, respectively) comparable to that of celecoxib (IC50=0.68 μM). Compounds 4a, 7b, and 13 inhibited PDE4B (IC50 values: 5.62, 5.65, and 3.98 μM, respectively) compared with the reference drug roflumilast (IC50=1.55 μM). The molecular docking of compounds 4b and 13 with the COX-2 and PDE4B binding pockets was studied.Highlights Antitumor activity of new synthesized cyclopentyloxyanisole scaffold was evaluated. The powerful antitumor 4a, 4b, 6b, 7b & 13 were assessed as COX-2, PDE4B & TNF-α inhibitors. Compounds 4a, 7b, and 13 exhibited COX-2, PDE4B, and TNF-α inhibition. Compounds 4b and 13 showed strong interactions at the COX-2 and PDE4B binding pockets.
Collapse
Affiliation(s)
- Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Gurav NS, Gurav SS, Sakharwade SN. Studies on Ashwagandha Ghrita with reference to murcchana process and storage conditions. J Ayurveda Integr Med 2020; 11:243-249. [PMID: 32139244 PMCID: PMC7527808 DOI: 10.1016/j.jaim.2019.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Withania somnifera (L.) (family-Solanaceae), known as ‘Indian ginseng’ or ‘Ashwagandha’ is acclaimed as an effective adaptogen, immunomodulator, aphrodisiac and sedative. Ashwagandhaghrita is a recognized ghee based Ayurvedic formulation. Few ancient texts suggest murcchana process for preparation of Ashwagandha ghrita. Objective The study was undertaken to evaluate probable effects of murcchana process on ghrita preparation with reference to time and storage conditions. Materials and Methods Ashwagandha ghrita samples were prepared separately using plain ghee (Indian cow's ghee) and murcchana ghee. These formulations were stored separately in different glass bottles at room temperature and 400C/75%RH. Organoleptic characters (colour, odour, taste, texture and touch) and physicochemical parameters (acid value, peroxide value, iodine value, saponification value, unsaponifiable matter, refractive index and specific gravity) were determined after 3, 6, 9 and 12 months. Plain ghee and prepared ghrita were subjected for antioxidant evaluation by various in vitro methods. Results Changes were observed in organoleptic characters and physicochemical parameters of plain ghee and Ashwagandha ghrita formulations. Alterations in these parameters were more pronounced at high temperature and on long storage. Ashwagandha ghrita prepared with murcchana process exhibited better antioxidant potential in all in vitro methods. Conclusion The murcchana process was found to be beneficial towards quality of ghrita. Hence, Ashwagandha ghrita may be prepared along with murcchana herbs and stored in a good quality glass bottle to ensure improved shelf life of ghrita.
Collapse
Affiliation(s)
- Nilambari S Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, 403401, India
| | - Shailendra S Gurav
- Goa College of Pharmacy, Department of Pharmacognosy, Panaji, Goa University, Goa, 403 001, India.
| | - Satish N Sakharwade
- Department of Cosmetic Technology, L.A.D. & S.R.P. College for Women, Seminary Hills, Nagpur, Maharashtra, 440 006, India
| |
Collapse
|
36
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Anti-brain cancer activity of chloroform and hexane extracts of Tinospora cordifolia Miers: an in vitro perspective. Ann Neurosci 2020; 26:10-20. [PMID: 31975767 PMCID: PMC6894632 DOI: 10.5214/ans.0972.7531.260104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023] Open
Abstract
Background Plants have been suggested as safest source of therapeutic agents, with multi targeted mode of action and least side effects. Tinospora cordifolia, commonly known as Guduchi in India, is one of the most highly valued herbs in Ayurvedic medicine. It possesses potential anti-cancer, anti-inflammatory, hepatoprotective, anti-diabetic, immune-stimulatory and various other beneficial activities. Purpose The present study was aimed to investigate the differentiation inducing potential of chloroform and hexane extracts of T. cordifolia using U87MG glioblastoma and IMR-32 neuroblastoma cell lines as model system. Results Chloroform (Chl-TCE) and hexane (Hex-TCE) extracts significantly reduced the rate of proliferation and induced cell differentiation as evidenced by MTT assay and immunostaining for GFAP and MAP-2 in glioblastoma and neuroblastoma, respectively. Further these extracts increased the expression of stress markers HSP70 and Mortalin and induced senescence. Chloroform and hexane extracts also inhibited the migration of U87MG glioblastoma and IMR-32 neuroblastoma as indicated by wound scratch assay and supported by reduced expression of NCAM. Furthermore these extracts are not toxic to normal cells as they showed no inhibitory effects on primary astrocytic and neuronal cultures. Conclusions The present study suggests that chloroform and hexane extracts of T. cordifolia retard the rate of proliferation, induce differentiation and inhibit migration of human glioblastomas and neuroblastomas, thus may act as potential phytotherapeutic intervention in treatment of neural cancers.
Collapse
|
38
|
Dutta R, Khalil R, Green R, Mohapatra SS, Mohapatra S. Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. Int J Mol Sci 2019; 20:ijms20215310. [PMID: 31731424 PMCID: PMC6862083 DOI: 10.3390/ijms20215310] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Ashwagandha (Withania Somnifera, WS), belonging to the family Solanaceae, is an Ayurvedic herb known worldwide for its numerous beneficial health activities since ancient times. This medicinal plant provides benefits against many human illnesses such as epilepsy, depression, arthritis, diabetes, and palliative effects such as analgesic, rejuvenating, regenerating, and growth-promoting effects. Several clinical trials of the different parts of the herb have demonstrated safety in patients suffering from these diseases. In the last two decades, an active component of Withaferin A (WFA) has shown tremendous cytotoxic activity suggesting its potential as an anti-carcinogenic agent in treatment of several cancers. In spite of enormous progress, a thorough elaboration of the proposed mechanism and mode of action is absent. Herein, we provide a comprehensive review of the properties of WS extracts (WSE) containing complex mixtures of diverse components including WFA, which have shown inhibitory properties against many cancers, (breast, colon, prostate, colon, ovarian, lung, brain), along with their mechanism of actions and pathways involved.
Collapse
Affiliation(s)
- Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Roukiah Khalil
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S Mohapatra
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A Haley VA Hospital, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4127
| |
Collapse
|
39
|
Konar A, Gupta R, Shukla RK, Maloney B, Khanna VK, Wadhwa R, Lahiri DK, Thakur MK. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep 2019; 9:13990. [PMID: 31570736 PMCID: PMC6769020 DOI: 10.1038/s41598-019-48238-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Memory loss is one of the most tragic symptoms of Alzheimer's disease. Our laboratory has recently demonstrated that 'i-Extract' of Ashwagandha (Withania somnifera) restores memory loss in scopolamine (SC)-induced mice. The prime target of i-Extract is obscure. We hypothesize that i-Extract may primarily target muscarinic subtype acetylcholine receptors that regulate memory processes. The present study elucidates key target(s) of i-Extract via cellular, biochemical, and molecular techniques in a relevant amnesia mouse model and primary hippocampal neuronal cultures. Wild type Swiss albino mice were fed i-Extract, and hippocampal cells from naïve mice were treated with i-Extract, followed by muscarinic antagonist (dicyclomine) and agonist (pilocarpine) treatments. We measured dendritic formation and growth by immunocytochemistry, kallikrein 8 (KLK8) mRNA by reverse transcription polymerase chain reaction (RT-PCR), and levels of KLK8 and microtubule-associated protein 2, c isoform (MAP2c) proteins by western blotting. We performed muscarinic receptor radioligand binding. i-Extract stimulated an increase in dendrite growth markers, KLK8 and MAP2. Scopolamine-mediated reduction was significantly reversed by i-Extract in mouse cerebral cortex and hippocampus. Our study identified muscarinic receptor as a key target of i-Extract, providing mechanistic evidence for its clinical application in neurodegenerative cognitive disorders.
Collapse
Affiliation(s)
- Arpita Konar
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
| | - Richa Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Devision of ECD, Indian Council of Medical Research, New Delhi, 110029, India
| | - Rajendra K Shukla
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Department of Biochemistry, Autonomous State Medical College, Bahraich, Utter Pradesh, 271801, India
| | - Bryan Maloney
- Departments of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN-46202, USA
| | - Vinay K Khanna
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8562, Japan.
| | - Debomoy K Lahiri
- Departments of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN-46202, USA.
- Departments of Medical and Molecular Genetics, Indiana Alzheimer Disesae Center, Indiana University School of Medicine, Indianapolis, IN-46202, USA.
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
40
|
Gupta M, Kaur G. Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:217. [PMID: 31416451 PMCID: PMC6694620 DOI: 10.1186/s12906-019-2635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Systemic inflammation driven neuroinflammation is an event which correlates with pathogenesis of several neurodegenerative diseases. Therefore, targeting peripheral and central inflammation simultaneously could be a promising approach for the management of these diseases. Nowadays, herbal medicines are emerging as potent therapeutics against various brain pathologies. Therefore, in this contemporary study, the neuroprotective activity of Ashwagandha (Withania somnifera) was elucidated against the inflammation associated neurodegeneration and cognitive impairments induced by systemic LPS administration using in vivo rat model system. METHODS To achieve this aim, young adult wistar strain male albino rats were randomized into four groups: (i) Control, (ii) LPS alone, (iii) LPS + ASH-WEX, (iv) ASH-WEX alone. Post regimen, the animals were subjected to Rotarod, Narrow Beam Walking and Novel Object Recognition test to analyze their neuromuscular coordination, working memory and learning functions. The rats were then sacrificed to isolate the brain regions and expression of proteins associated with synaptic plasticity and cell survival was studied using Western blotting and Quantitative real time PCR. Further, neuroprotective potential of ASH-WEX and its active fraction (FIV) against inflammatory neurodegeneration was studied and validated using in vitro model system of microglial conditioned medium-treated neuronal cultures and microglial-neuronal co-cultures. RESULTS Orally administered ASH-WEX significantly suppressed the cognitive and motor-coordination impairments in rats. On the molecular basis, ASH-WEX supplementation also regulated the expression of various proteins involved in synaptic plasticity and neuronal cell survival. Since microglial-neuronal crosstalk is crucial for maintaining CNS homeostasis, the current study was further extended to ascertain whether LPS-mediated microglial activation caused damage to neurons via direct cell to cell contact or through secretion of inflammatory mediators. ASH-WEX and FIV pretreatment was found to restore neurite outgrowth and protect neurons from apoptotic cell death caused by LPS-induced neuroinflammation in both activated microglial conditioned medium-treated neuronal cultures as well as microglial-neuronal co-cultures. CONCLUSION This extensive study using in vivo and in vitro model systems provides first ever pre-clinical evidence that ASH-WEX can be used as a promising natural therapeutic remedial for the prevention of neurodegeneration and cognitive impairments associated with peripheral inflammation and neuroinflammation.
Collapse
Affiliation(s)
- Muskan Gupta
- Department of Biotechnology, Medical Biotechnology Laboratory, Guru Nanak Dev University, Amritsar, Amritsar, Punjab 143005 India
| | - Gurcharan Kaur
- Department of Biotechnology, Medical Biotechnology Laboratory, Guru Nanak Dev University, Amritsar, Amritsar, Punjab 143005 India
| |
Collapse
|
41
|
The Ameliorative Effects of the Ethyl Acetate Extract of Salicornia europaea L. and Its Bioactive Candidate, Irilin B, on LPS-Induced Microglial Inflammation and MPTP-Intoxicated PD-Like Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6764756. [PMID: 31379989 PMCID: PMC6652089 DOI: 10.1155/2019/6764756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Hyperactivation of microglia, the resident innate immune cells of the central nervous system, exacerbates various neurodegenerative disorders, including Parkinson's disease (PD). Parkinson's disease is generally characterized by a severe loss of dopaminergic neurons in the nigrostriatal pathway, with substantial neuroinflammation and motor deficits. This was experimentally replicated in animal models, using neurotoxins, i.e., LPS (lipopolysaccharides) and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Salicornia europaea L. (SE) has been used as a dietary supplement in Korea and Europe for several years, due to its nutritional and therapeutic value. In this study, we intend to investigate the antineuroinflammatory and anti-PD-like effects of the bioactive fraction/candidate of the SE extract. Initially, we screened various fractions of SE extract using an in vitro antioxidant assay. The optimal fraction was investigated for its in vitro antineuroinflammatory potential in LPS-stimulated BV-2 microglial cells and in vivo anti-PD-like potential in MPTP-intoxicated mice. Subsequently, to identify the potential candidate responsible for the elite therapeutic potential of the optimal fraction, we conducted antioxidant activity-guided isolation and purification; the bioactive candidate was structurally characterized using nuclear magnetic resonance spectroscopy and chromatographic techniques and further investigated for its in vitro antioxidative and antineuroinflammatory potential. The results of our study indicate that SE-EA and its bioactive candidate, Irilin B, effectively alleviate the deleterious effect of microglia-mediated neuroinflammation and promote antioxidative effects. Thus, they exhibit potential as therapeutic candidates against neuroinflammatory and oxidative stress-mediated PD-like neurodegenerative complications.
Collapse
|
42
|
Rajamohamed BS, Siddharthan S. Modulatory effects of Amukkara Choornam on Candida albicans biofilm: in vitro and in vivo study. Mol Biol Rep 2019; 46:2961-2969. [DOI: 10.1007/s11033-019-04757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
|
43
|
Evidence of a PPARγ-mediated mechanism in the ability of Withania somnifera to attenuate tolerance to the antinociceptive effects of morphine. Pharmacol Res 2018; 139:422-430. [PMID: 30503841 DOI: 10.1016/j.phrs.2018.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Notwithstanding the experimental evidence indicating Withania somnifera Dunal roots extract (WSE) ability to prolong morphine-elicited analgesia, the mechanisms underlying this effect are largely unknown. With the aim of evaluating a PPARγ-mediated mechanism in such WSE effects, we verified the ability of the PPARγ antagonist GW-9662 to modulate WSE actions. Further, we evaluated the influence of GW-9662 upon WSE / morphine interaction in SH-SY5Y cells since we previously reported that WSE hampers the morphine-induced μ-opioid receptor (MOP) receptor down-regulation. Nociceptive thresholds / tolerance development were assessed in different groups of rats receiving vehicles (control), morphine (10 mg/kg; i.p.), WSE (100 mg/kg, i.p.) and PPARγ antagonist GW-9662 (1 mg/kg; s.c.) in acute and chronic schedules of administration. Moreover, the effects of GW-9662 (5 and 10 μM) applied alone and in combination with morphine (10 μM) and/or WSE (0.25 and 1.00 mg/mL) on the MOP gene expression were investigated in cell cultures. Data analysis revealed a functional effect of the PPARγ antagonist in attenuating the ability of WSE to prolong morphine analgesic effect and to reduce tolerance development after repeated administration. In addition, molecular experiments demonstrated that the blockade of PPARγ by GW-9662 promotes MOP mRNA down-regulation and counteracts the ability of 1.00 mg/mL of WSE to keep an adequate MOP receptor availability. In conclusion, our results support the involvement of a PPARγ-mediated mechanism in the WSE effects on morphine-mediated nociception and the likely usefulness of WSE in lengthening the analgesic efficacy of opioids in chronic therapy.
Collapse
|
44
|
Gupta M, Kaur G. Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation. Neuromolecular Med 2018; 20:343-362. [PMID: 29846872 DOI: 10.1007/s12017-018-8497-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
|
45
|
Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson's Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3175214. [PMID: 29849878 PMCID: PMC5925162 DOI: 10.1155/2018/3175214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a commonly reported age-related neurodegenerative disorder. Microglial-mediated neuroinflammation is one of the cardinal hallmarks of various neurodegenerative disorders, including PD progression. Inadequate therapeutic strategies and substantial adverse effects of well-established drug candidates demand new therapeutic leads to treat PD. Dendropanax morbifera (DM) is an endemic plant species of South Korea, and it has been used extensively as traditional medicine to treat numerous clinical complications. In this study, we conducted an initial profiling of the few major phytoconstituents of aqueous DM leaf extracts (DML) and quantified the same using high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (HPLC-ESI-MS/MS). We subsequently evaluated the antineuroinflammatory activity and ameliorative potential of DML in both in vitro and in vivo experimental PD models. The prophylactic treatment of DML effectually improved the behavioral deficits, curbed the microglial-mediated neuroinflammation, and protected dopaminergic (DA) neuronal loss by restoring tyrosine hydroxylase (TH) levels in brain tissue of the MPTP-induced PD mouse model. We conducted chromatographic profiling and identified chlorogenic acid (CA) as a major constituent (19.5 mg/g of BuOH fraction), which has been well documented as an antioxidant and anti-inflammatory agent. This was found to be in harmony with our in vitro results, where DML suppressed the level of inflammatory mediators and allied the signaling pathway in LPS-stimulated microglial cells. The results of our study indicate that DML and its bioactive constituents can be developed as potential therapeutic candidates against progressive PD complications.
Collapse
|
46
|
Singh P, Kaur S, Sharma A, Kaur G, Bhatti R. TNF-α and IL-6 inhibitors: Conjugates of N-substituted indole and aminophenylmorpholin-3-one as anti-inflammatory agents. Eur J Med Chem 2017; 140:92-103. [DOI: 10.1016/j.ejmech.2017.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023]
|
47
|
Kaur T, Kaur G. Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. J Neuroinflammation 2017; 14:201. [PMID: 29025435 PMCID: PMC5639730 DOI: 10.1186/s12974-017-0975-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023] Open
Abstract
Background The epidemic of obesity has reached alarming levels in both developing and developed nations. Excessive calorie intake and sedentary lifestyle due to technological advancements are the main causal factors for overweight and obesity among the human population. Obesity has been associated with a number of co-morbidities such as hypertension, type 2 diabetes mellitus, cardiovascular diseases, and neurodegeneration and dementia. The progression of neurological disorders in obese subjects has been mainly attributed to neuroinflammation. Withania somnifera has been used in numerous Ayurvedic formulations owing to its wide array of health-promoting properties. The current study was designed to test the hypothesis whether dry leaf powder of W. somnifera has anxiolytic and anti-neuroinflammatory potential in diet-induced obesity. Methods Young adult female rats were divided into four groups: low fat diet group (LFD) fed with regular chow feed, high fat diet group (HFD) fed with diet containing 30% fat by weight, low fat diet plus extract group (LFDE) fed with regular chow feed supplemented with dry leaf powder of W. somnifera 1 mg/g of body weight (ASH), and high fat diet plus extract group (HFDE) fed with diet containing 30% fat by weight and supplemented with ASH. All the animals were kept on respective feeding regimen for 12 weeks; following which, the animals were tested for their anxiety-like behavior using elevated plus maze test. The animals were sacrificed and used to study various inflammatory markers such as GFAP, Iba1, PPARγ, iNOS, MCP-1, TNFα, IL-1β, IL-6, and various markers of NF-κB pathway by Western blotting and quantitative real-time PCR. Serum levels of leptin, insulin and pro-inflammatory cytokines were also assayed. Results ASH treated rats showed less anxiety levels as compared to HFD animals. At molecular level, ASH ameliorated the HFD-induced reactive gliosis and microgliosis and suppressed the expression of inflammatory markers such as PPARγ, iNOS, MCP-1, TNFα, IL-1β, and IL-6. Further, ASH ameliorated leptin and insulin resistance and prevented HFD-induced apoptosis. Conclusions Dry leaf powder of W. somnifera may prove to be a potential therapeutic agent to attenuate neuroinflammation associated with obesity and may prevent its co-morbidities.
Collapse
Affiliation(s)
- Taranjeet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
48
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
49
|
Ren Z, Wang X, Yang F, Xu M, Frank JA, Wang H, Wang S, Ke ZJ, Luo J. Ethanol-induced damage to the developing spinal cord: The involvement of CCR2 signaling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2746-2761. [PMID: 28778590 DOI: 10.1016/j.bbadis.2017.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Ethanol exposure during development causes fetal alcohol spectrum disorders (FASD). A large body of evidence shows that ethanol produces multiple abnormalities in the developing central nervous system (CNS), such as smaller brain size, reduced volume of cerebral white matter, permanent loss of neurons, and alterations in synaptogenesis and myelinogenesis. The effects of ethanol on the developing spinal cord, however, receive little attention and remain unclear. We used a third trimester equivalent mouse model to investigate the effect of ethanol on the developing spinal cord. Ethanol caused apoptosis and neurodegeneration in the dorsal horn neurons of mice of early postnatal days, which was accompanied by glial activation, macrophage infiltration, and increased expression of CCR2, a receptor for monocyte chemoattractant protein 1 (MCP-1). Ethanol-induced neuronal death during development resulted in permanent loss of spinal cord neurons in adult mice. Ethanol stimulated endoplasmic reticulum (ER) stress and oxidative stress, and activated glycogen synthase kinase 3β (GSK3β) and c-Jun N-terminal kinase (JNK) pathways. Knocking out MCP-1 or CCR2 made mice resistant to ethanol-induced apoptosis, ER stress, glial activation, and activation of GSK3β and JNK. CCR2 knock out offered much better protection against ethanol-induced damage to the spinal cord. Thus, developmental ethanol exposure caused permanent loss of spinal cord neurons and CCR2 signaling played an important role in ethanol neurotoxicity.
Collapse
Affiliation(s)
- Zhenhua Ren
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Xin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Fanmuyi Yang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Haiping Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Siying Wang
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Zun-Ji Ke
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
50
|
Zou ZQ, Chen JJ, Feng HF, Cheng YF, Wang HT, Zhou ZZ, Guo HB, Zheng W, Xu JP. Novel Phosphodiesterase 4 Inhibitor FCPR03 Alleviates Lipopolysaccharide-Induced Neuroinflammation by Regulation of the cAMP/PKA/CREB Signaling Pathway and NF- κB Inhibition. J Pharmacol Exp Ther 2017; 362:67-77. [PMID: 28450469 DOI: 10.1124/jpet.116.239608] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/20/2017] [Indexed: 01/18/2023] Open
Abstract
Overactivation of microglia contributes to the induction of neuroinflammation, which is highly involved in the pathology of many neurodegenerative diseases. Phosphodiesterase 4 (PDE4) represents a promising therapeutic target for anti-inflammation; however, the dose-limiting side effects, such as nausea and emesis, have impeded their clinic application. FCPR03, a novel selective PDE4 inhibitor synthesized in our laboratory, shows little or no emetic potency; however, the anti-inflammatory activities of FCPR03 in vitro and in vivo and the molecular mechanisms are still not clearly understood. This study was undertaken to delineate the anti-inflammatory effects of FCPR03 both in vitro and in vivo and explore whether these effects are regulated by PDE4-mediated signaling pathway. BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and mice injected i.p. with LPS were established as in vitro and in vivo models of inflammation. Our results showed that FCPR03 dose dependently suppressed the production of tumor necrosis factor α, interleukin-1β, and iinterleukin-6 in BV-2 microglial cells treated with LPS. The role of FCPR03 in the production of proinflammatory factors was reversed by pretreatment with protein kinase A (PKA) inhibitor H89. In addition, FCPR03 reduced the levels of proinflammatory factors in the hippocampus and cortex of mice injected with LPS. Our results further demonstrated that FCPR03 effectively increased the production of cAMP, promoted cAMP response element binding protein (CREB) phosphorylation, and inhibited nuclear factor κB (NF-κB) activation both in vitro and in vivo. Our findings suggest that FCPR03 inhibits the neuroinflammatory response through the activation of cAMP/PKA/CREB signaling pathway and NF-κB inhibition.
Collapse
Affiliation(s)
- Zheng-Qiang Zou
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Jia-Jia Chen
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Hong-Fang Feng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Yu-Fang Cheng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Hai-Tao Wang
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Zhong-Zhen Zhou
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Hai-Biao Guo
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Wenhua Zheng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| |
Collapse
|