1
|
Galasso M, Verde L, Barrea L, Savastano S, Colao A, Frühbeck G, Muscogiuri G. The Impact of Different Nutritional Approaches on Body Composition in People Living with Obesity. Curr Obes Rep 2025; 14:45. [PMID: 40381089 DOI: 10.1007/s13679-025-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
PURPOSE OF REVIEW This narrative review aimed to provide an overview of the current evidence on the impact of various nutritional strategies on body composition in people living with obesity (PLwO), with particular attention to fat mass (FM), fat-free mass (FFM), and fat distribution. RECENT FINDINGS Obesity is increasingly linked to cardiometabolic complications, yet common diagnostic metrics such as body mass index (BMI) do not capture changes in FM or FFM. Recent studies highlight the variable effects of different dietary interventions on body compartments. High-protein and ketogenic diets are associated with greater preservation of FFM and reductions in visceral adipose tissue (VAT), while the Mediterranean diet shows promise for long-term adherence and improvements in metabolic health. Intermittent fasting and time-restricted eating demonstrate efficacy in FM reduction but present mixed results regarding FFM retention and sustainability. Dietary strategies exert diverse effects on body composition in PLwO, underscoring the importance of tailoring interventions to individual metabolic profiles and health goals. Personalized nutrition approaches that prioritize the preservation of lean mass and reduction of VAT, along with sustainable adherence, are critical for optimizing obesity management beyond weight loss alone.
Collapse
Affiliation(s)
- Martina Galasso
- Dipartimento Di Medicina Clinica E Chirurgia, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA
| | - Luigi Barrea
- Dipartimento Psicologia E Scienze Della Salute, Università Telematica Pegaso, Centro Direzionale Isola F2, Via Porzio, 80143, Naples, Italy
| | - Silvia Savastano
- Dipartimento Di Medicina Clinica E Chirurgia, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Annamaria Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131, Naples, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Avda. Pío XII, 36, 31008, Pamplona, Spain
| | - Giovanna Muscogiuri
- Dipartimento Di Medicina Clinica E Chirurgia, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA.
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131, Naples, Italy.
| |
Collapse
|
2
|
Güzey Akansel M, Baş M, Gençalp C, Kahrıman M, Şahin E, Öztürk H, Gür G, Gür C. Effects of the Ketogenic Diet on Microbiota Composition and Short-Chain Fatty Acids in Women with Overweight/Obesity. Nutrients 2024; 16:4374. [PMID: 39770995 PMCID: PMC11679786 DOI: 10.3390/nu16244374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The ketogenic diet (KD) is a dietary model that can impact metabolic health and microbiota and has been widely discussed in recent years. This study aimed to evaluate the effects of a 6-week KD on biochemical parameters, gut microbiota, and fecal short-chain fatty acids (SCFAs) in women with overweight/obesity. Methods: Overall, 15 women aged 26-46 years were included in this study. Blood samples, fecal samples, and anthropometric measurements were evaluated at the beginning and end of this study. Results: After KD, the mean body mass index decreased from 29.81 ± 4.74 to 27.12 ± 4.23 kg/m2, and all decreases in anthropometric measurements were significant (p < 0.05). Fasting glucose, insulin, homeostasis model assessment of insulin resistance, hemoglobin A1C, urea, and creatinine levels decreased, whereas uric acid levels increased (p < 0.05). Furthermore, increased serum zonulin levels were noted (p = 0.001), whereas fecal butyrate, propionate, acetate, and total SCFA levels decreased (p < 0.05). When the changes in microbiota composition were examined, a decrease in beta diversity (p = 0.001) was observed. After the intervention, a statistically significant increase was noted in the Firmicutes/Bacteroidetes ratio (p = 0.001). Although Oscilibacter, Blautia, and Akkermensia relative abundances increased, Prevotella relative abundance and Bifidobacter abundance, which were the dominant genera before the KD, decreased. Moreover, the abundance of some pathogenic genera, including Escherichia, Klebsilella, and Listeria, increased. Conclusions: In healthy individuals, KD may cause significant changes in microbial composition, leading to dysbiosis and long-term adverse outcomes with changes in serum zonulin and fecal SCFA levels.
Collapse
Affiliation(s)
- Müge Güzey Akansel
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey; (M.B.); (M.K.)
| | - Cansu Gençalp
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey; (M.B.); (M.K.)
| | - Meryem Kahrıman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey; (M.B.); (M.K.)
| | - Eray Şahin
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34572, Turkey;
| | - Hakan Öztürk
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey;
| | - Gürsel Gür
- Agriculture and Rural Development Support Institution, Ankara 06490, Turkey;
| | - Ceren Gür
- Bağcılar Training and Research Hospital, University of Health Sciences, Istanbul 34200, Turkey;
| |
Collapse
|
3
|
Rajakumar G, Cagigas ML, Wang T, Pan AY, Pelaia T, Fuller SJ, Fontana L. Effect of ketogenic diets on insulin-like growth factor (IGF)-1 in humans: A systematic review and meta-analysis. Ageing Res Rev 2024; 102:102531. [PMID: 39396675 DOI: 10.1016/j.arr.2024.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Insulin-like growth factor (IGF)-1 plays a role in aging and cancer biology, with fasting known to reduce serum IGF-1 levels in human adults. However, the impact of ad libitum ketogenic diets (KDs) on IGF-1 levels remains unclear. METHODS Adhering to PRISMA guidelines, we conducted a meta-analysis of human trials by systematically searching Ovid, PubMed, Scopus, and CENTRAL Libraries until June 2023. Eligible studies prescribed KDs to adults of any health status, confirmed ketosis, and measured serum IGF-1. Protocols involving prescribed fasting or energy restriction were excluded. Mean differences (MD) and 95 % confidence intervals (CIs) were calculated longitudinally between pre- and post-intervention measurements for the KD groups. RESULTS Among twelve publications meeting the inclusion criteria, 522 individuals participated, with 236 completing KDs. The intervention duration ranged from 1 to 20 weeks. Pooled results from ten trials showed a significant reduction in serum IGF-1 levels post-intervention (MD: -24.9 ng/mL [95 % CI -31.7 to -18.1]; p<0.0001) with low heterogeneity across studies (I2=27 %, p=0.19). KDs were also associated with significantly decreased fasting insulin (MD: -2.57 mU/L [95 % CI -4.41 to -0.74], p=0.006) and glucose (MD: -7.30 mg/dL [95 % CI -11.62 to -2.98], p=0.0009), although heterogeneity was significant. Subgroup analyses on study design, gender, dietary duration, and oncological status revealed no significant differences. CONCLUSION Ad libitum KDs (>55 % fat) effectively induce ketosis and can lower serum IGF-1 by 20 %, fasting glucose by 6 % and insulin by 29 %. This clinically notable reduction in IGF-1 can be attained without the need for a prescribed fasting or severe calorie restriction regimen. Further investigation is warranted to explore the impact of KDs on ageing biomarkers and cancer management.
Collapse
Affiliation(s)
- Gayathiri Rajakumar
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia
| | - Maria Lastra Cagigas
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia
| | - Tian Wang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Angela Y Pan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia
| | - Tiana Pelaia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia
| | - Stephen J Fuller
- Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia; Department of Haematology, Nepean Hospital, Kingswood, NSW 2747, Australia.
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
4
|
Paoli A, Campa F. Problems and Opportunities in the use of Bioelectrical Impedance Analysis for Assessing Body Composition During Ketogenic Diets: A Scoping Review. Curr Obes Rep 2024; 13:496-509. [PMID: 38802722 PMCID: PMC11306364 DOI: 10.1007/s13679-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF THE REVIEW The use of bioelectrical impedance analysis (BIA) for monitoring body composition during the ketogenic diet has experienced a rapid surge. This scoping review aimed to assess the validity of procedures applying BIA in the ketogenic diet and to suggest best practices for optimizing its utilization. RECENT FINDINGS We conducted a systematic scoping review of peer-reviewed literature involving BIA for assessing body composition in individuals adhering to a ketogenic diet. Searches of international databases yielded 1609 unique records, 72 of which met the inclusion criteria and were reviewed. Thirty-five studies used foot-to-hand technology, 34 used standing position technology, while 3 did not declare the technology used. Raw bioelectrical parameters were reported in 21 studies. A total of 196 body mass components were estimated, but predictive equations were reported in only four cases. Most research on BIA during ketogenic diets did not report the equations used for predicting body composition, making it impossible to assess the validity of BIA outputs. Furthermore, the exceedingly low percentage of studies reporting and analyzing raw data makes it challenging to replicate methodologies in future studies, highlighting that BIA is not being utilized to its full potential. There is a need for more precise technology and device characteristics descriptions, full report of raw bioelectrical data, and predictive equations utilized. Moreover, evaluating raw data through vectorial analysis is strongly recommended. Eventually, we suggest best practices to enhance BIA outcomes during ketogenic diets.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Francesco Campa
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Suarez R, Chapela S, Llobera ND, Montalván M, Vásquez CA, Martinuzzi ALN, Katsanos CS, Verde L, Frias-Toral E, Barrea L, Muscogiuri G. Very Low Calorie Ketogenic Diet: What Effects on Lipid Metabolism? Curr Nutr Rep 2024; 13:516-526. [PMID: 39008211 PMCID: PMC11327205 DOI: 10.1007/s13668-024-00556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to critically examine how VLCKD affects plasma lipoprotein, lipid and cholesterol metabolism. Cardiovascular disease is a worldwide health problem affecting millions of people and leading to high rates of mortality and morbidity. There is a well-established association between cardiovascular disease and circulating cholesterol. Various dietary recommendations are currently available for the management of dyslipidemia. RECENT FINDINGS The very low-calorie ketogenic diet (VLCKD) is becoming increasingly popular as a treatment option for several pathological conditions, including dyslipidemia. In addition to being low in calories, the VLCKD's main feature is its unique calorie distribution, emphasizing a reduction in carbohydrate consumption in favor of fat as the primary calorie source. Lowering calorie intake through a VLCKD can reduce the endogenous production of cholesterol. However, if the foods consumed are from animal sources, dietary cholesterol intake may increase due to the higher fat content of animal products. When combined, these dietary practices may have opposing effects on plasma cholesterol levels. Studies investigating the impact of VLCKD on plasma cholesterol and low-density lipoprotein cholesterol levels report contradictory findings. While some studies found an increase in low-density lipoprotein cholesterol levels, others showed a decrease in total cholesterol and low-density lipoprotein cholesterol, along with an increase in high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Rosario Suarez
- School of Medicine, Universidad Técnica Particular de Loja, Calle Paris, San Cayetano Alto, Loja 110107, Ecuador
| | - Sebastián Chapela
- Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Daniela Llobera
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martha Montalván
- Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, 090615, Ecuador
- Facultad de Ciencias Médicas, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Celina Andrade Vásquez
- School of Medicine, Universidad Técnica Particular de Loja, Calle Paris, San Cayetano Alto, Loja 110107, Ecuador
| | | | | | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo - Samborondón, 0901952 Samborondón , Ecuador
| | - Luigi Barrea
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Via Porzio, 80143 Naples, Italy
| | - Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy.
- Cattedra Unesco Educazione Alla Salute E Allo Sviluppo Sostenibile, University Federico II, 80131 Naples, Italy.
| |
Collapse
|
6
|
Sommer-Ballarini M, Nguyen TH, Pletsch-Borba L, Wernicke C, Tacke F, Schwerdtle T, Pellowski D, Machann J, Spranger J, Wirth EK, Mai K. Impact of peripheral thyroid hormone balance on liver fat: insights from the NutriAct trial. Eur J Endocrinol 2024; 191:183-191. [PMID: 39049801 DOI: 10.1093/ejendo/lvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Hypothyroidism has been proposed as a potential contributor to steatotic liver disease (SLD), but existing data shows conflicting results in euthyroid subjects. Therefore, we investigated the association between thyroid function and intrahepatic lipids (IHLs) during a 36-month randomized controlled trial evaluating a diet known to reduce liver fat. DESIGN 502 eligible subjects (aged 50-80 years, ≥1 risk factor for unhealthy aging) were randomly assigned to either follow a diet rich in unsaturated fatty acids, plant protein, and fiber (intervention group, IG), or dietary recommendations of the German Nutrition Society (control group, CG). METHODS Serum levels of thyroid hormones (THs) as well as IHLs, defined via magnetic resonance spectroscopy, were measured within an euthyroid subgroup without significant alcohol consumption at baseline (n = 332) and after 12 months (n = 243). A ratio of T3/T4 was used to assess whole-body deiodinase activity. Estimates of glucose and lipid metabolism were analyzed. RESULTS Only fT3 and T3/T4 ratios showed a significant positive correlation with IHL at baseline. We observed a significant decline in fT3, T3, fT3/fT4 ratio, and T3/T4 ratio in CG and IG after 12 months without significant differences between groups. TSH, fT4, and T4 remained stable. A larger improvement of IHL during dietary intervention was seen in those subjects with a lower decline in T3 concentrations. CONCLUSIONS Altered TH balance indicates a possible compensatory upregulation of whole-body TH activity in subjects with increased liver fat. This might be also relevant during the improvement of hepatic steatosis.
Collapse
Affiliation(s)
- Miriam Sommer-Ballarini
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Thu-Huong Nguyen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Laura Pletsch-Borba
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Charlotte Wernicke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 10115 Berlin, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Denny Pellowski
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam,14469 Potsdam, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Eva Katrin Wirth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Department of Human Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| |
Collapse
|
7
|
Burén J, Svensson M, Liv P, Sjödin A. Effects of a Ketogenic Diet on Body Composition in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2024; 16:2030. [PMID: 38999778 PMCID: PMC11243114 DOI: 10.3390/nu16132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigates the effects of a ketogenic low-carbohydrate high-fat (LCHF) diet on body composition in healthy, young, normal-weight women. With the increasing interest in ketogenic diets for their various health benefits, this research aims to understand their impact on body composition, focusing on women who are often underrepresented in such studies. Conducting a randomized controlled feeding trial with a crossover design, this study compares a ketogenic LCHF diet to a Swedish National Food Agency (NFA)-recommended control diet over four weeks. Seventeen healthy, young, normal-weight women adhered strictly to the provided diets, with ketosis confirmed through blood β-hydroxybutyrate concentrations. Dual-energy X-ray absorptiometry (DXA) was utilized for precise body composition measurements. To avoid bias, all statistical analyses were performed blind. The findings reveal that the ketogenic LCHF diet led to a significant reduction in both lean mass (-1.45 kg 95% CI: [-1.90;-1.00]; p < 0.001) and fat mass (-0.66 kg 95% CI: [-1.00;-0.32]; p < 0.001) compared to the control diet, despite similar energy intake and physical activity levels. This study concludes that while the ketogenic LCHF diet is effective for weight loss, it disproportionately reduces lean mass over fat mass, suggesting the need for concurrent strength training to mitigate muscle loss in women following this diet.
Collapse
Affiliation(s)
- Jonas Burén
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
| | - Michael Svensson
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, 90187 Umeå, Sweden
| | - Per Liv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, 90187 Umeå, Sweden;
| | - Anna Sjödin
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Umeå School of Sport Sciences, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
8
|
Taher HA, Salah A, Rammal C, Varma SR. Role of ketogenic diet and its effect on the periodontium. A scoping review. FRONTIERS IN ORAL HEALTH 2024; 5:1364578. [PMID: 38361577 PMCID: PMC10868404 DOI: 10.3389/froh.2024.1364578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The purpose of this study is to investigate the relationship between the ketogenic diet and periodontitis, as well as the nature of such relationship. Furthermore, emphasis was given to know whether ketogenic diet causes changes in oral health parameters and more specifically on periodontal health. Studies from 2010 to 2023 were reviewed and analyzed. Databases used to search included PubMed, Mednet, Scopus, Cochrane, and Embase. The literature reviewed was limited to randomized clinical trials, observational studies, and case-control studies. Of the eight studies included, three studies found that diets with similarities to the ketone-based diet could have a significant positive impact on periodontal health. One study pointed to the potential positive effect of a diet such as keto, but no definitive conclusion could be made. The current body of evidence concluded that there may be a relationship between keto and periodontitis, although the evidence is not consistent. It can be implied, however, that it is a positive relationship as ketogenic diet has been shown to have an anti-inflammatory effect, reducing inflammatory markers found in many diseases, including periodontitis.
Collapse
Affiliation(s)
- Hala Al Taher
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
| | - Aya Salah
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
| | - Caroline Rammal
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
| | - Sudhir Rama Varma
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
9
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Joo M, Moon S, Lee YS, Kim MG. Effects of very low-carbohydrate ketogenic diets on lipid profiles in normal-weight (body mass index < 25 kg/m2) adults: a meta-analysis. Nutr Rev 2023; 81:1393-1401. [PMID: 36931263 DOI: 10.1093/nutrit/nuad017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
CONTEXT Very low-carbohydrate diets or ketogenic diets (KDs) have garnered attention for weight loss in patients with overweight or obesity as well as for normal-weight adults, yet the adverse effects of KDs, such as dyslipidemia in normal-weight adults, have not been studied extensively. OBJECTIVE This meta-analysis aimed to identify the effects of KDs on the lipid profile in normal-weight (body mass index [BMI] < 25 kg/m2) adults from randomized controlled trials. DATA SOURCES PubMed and Embase databases were searched on November 21, 2021, using search terms representing KDs and lipid profiles. Two researchers independently screened articles according to PICOS inclusion criteria. DATA EXTRACTION General study information, dietary data, and lipid profiles were extracted from eligible studies. Risk of bias was assessed using the Cochrane risk of bias 2 tool. DATA ANALYSIS Fixed- or random-effects meta-analysis was performed to estimate the effects of KDs on total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), triglycerides, apolipoprotein A (apoA), and apolipoprotein B (apoB), considering heterogeneity across studies. The certainty of evidence was assessed using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. RESULTS Three studies were selected for meta-analysis. A KD significantly increased TC by 1.47 mmol/L (95%CI, 0.72-2.22 mmol/L), LDL-C by 1.08 mmol/L (95%CI, 0.37-1.79 mmol/L), and apoB by 0.35 g/L (95%CI, 0.06-0.65 g/L). In addition, a KD significantly increased HDL-C by 0.35 mmol/L (95%CI, 0.27-0.42 mmol/L) and apoA by 0.34 g/L (95%CI, 0.28-0.41 g/L) compared with control diets. Triglyceride levels were not significantly different between KDs and control diets (P = 0.63). CONCLUSION This study suggests unfavorable effects of KDs on TC and LDL-C in normal-weight adults. Although an increase in HDL-C can compensate for unfavorable changes in lipids, normal-weight individuals should consider the risk of hypercholesterolemia when consuming a KD. Results for triglycerides were inconsistent.
Collapse
Affiliation(s)
- Minjin Joo
- are with the College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Sumin Moon
- are with the College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Young Seo Lee
- are with the College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Myeong Gyu Kim
- are with the College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
- is with the Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Frączek B, Pięta A. Does the Paleo diet affect an athlete's health and sport performance? Biol Sport 2023; 40:1125-1139. [PMID: 37867746 PMCID: PMC10588572 DOI: 10.5114/biolsport.2023.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 10/24/2023] Open
Abstract
The aim of the study was to assess the impact of an eight-week Paleo diet on the health status (body composition, haematology and biochemistry of blood and urine) and the level of physical capacity (aerobic and anaerobic) of professional handball players. Fifteen athletes were assigned to two groups: 9 in the experimental group (PD) and 6 in the control group (CD). Significant decreases in body mass (BM), body mass index (BMI), and fat mass (FM) as well as an increase in the fat-free mass (FFM) (%) in both groups were observed. There were no significant differences between groups in particular series during the experiment in all haematological and biochemical indicators of blood and urine. Only HDL-C was significantly higher in the last series in the PD compared to the CD (1.63 mmol/l vs. 1.23 mmol/l). In the Wingate test, there were only single intragroup changes, consisting of a significant decrease in the Wt, MAP and Pmean in the experimental group. There were no significant differences between the groups in individual series or intragroup differences during the experiment, determined by the VO2max, VEmax, VE ∙ VCO2 -1, RER, and the time of the test with a gradually increasing load on a treadmill, except for a significant decrease of maximum tidal volume (TVmax) in the PD. No adverse effect of the Paleo diet on the health status was found. The use of the Paleo diet slightly adversely affects anaerobic capacity and does not affect the level of aerobic capacity.
Collapse
Affiliation(s)
- Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Kraków, Poland
| | - Aleksandra Pięta
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Kraków, Poland
| |
Collapse
|
12
|
Pięta A, Frączek B, Wiecek M, Mazur-Kurach P. Impact of Paleo Diet on Body Composition, Carbohydrate and Fat Metabolism of Professional Handball Players. Nutrients 2023; 15:4155. [PMID: 37836439 PMCID: PMC10574054 DOI: 10.3390/nu15194155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Paleo diet (PD) involves a restriction of carbohydrates and increased fat content (35% energy from carbohydrates, 35% energy from fats and 30% energy from protein). The aim of this study was to examine the effect of the PD on body composition, concentration of carbohydrates and lipids, as well as insulin, irisin, adiponectin and leptin in the blood. A total of 25 handball players were assigned to two groups: 14 in the experimental group (PD) and 11 in the control group (CD), using a PD and a rational diet, respectively. Analysis of body mass and body composition (body mass index, fat mass, lean body mass, fat-free mass, muscle mass, bone mineral content and bone mineral density), as well as blood concentration of metabolism markers (glucose, insulin, total cholesterol, HDL-cholesterol, non-HDL-cholesterol, LDL-cholesterol, triglycerides, free fatty acids, β-hydroxybutyrate, irisin, adiponectin and leptin), were determined at the beginning and after 4 and 8 weeks of nutritional intervention. Body mass was lower (p < 0.01), and adiponectin blood concentration was higher (p = 0.03) in the PD group at the end of the intervention. There were no changes (p ≥ 0.05) in body composition and blood levels of other biochemical markers in either group.
Collapse
Affiliation(s)
- Aleksandra Pięta
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (B.F.); (P.M.-K.)
| | - Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (B.F.); (P.M.-K.)
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland;
| | - Paulina Mazur-Kurach
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (B.F.); (P.M.-K.)
| |
Collapse
|
13
|
Bubeck AM, Urbain P, Horn C, Jung AS, Ferrari L, Ruple HK, Podlesny D, Zorn S, Laupsa-Borge J, Jensen C, Lindseth I, Lied GA, Dierkes J, Mellgren G, Bertz H, Matysik S, Krautbauer S, Liebisch G, Schoett HF, Dankel SN, Fricke WF. High-fat diet impact on intestinal cholesterol conversion by the microbiota and serum cholesterol levels. iScience 2023; 26:107697. [PMID: 37694136 PMCID: PMC10485154 DOI: 10.1016/j.isci.2023.107697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Cholesterol-to-coprostanol conversion by the intestinal microbiota has been suggested to reduce intestinal and serum cholesterol availability, but the relationship between intestinal cholesterol conversion and the gut microbiota, dietary habits, and serum lipids has not been characterized in detail. We measured conserved proportions of cholesterol high and low-converter types in individuals with and without obesity from two distinct, independent low-carbohydrate high-fat (LCHF) dietary intervention studies. Across both cohorts, cholesterol conversion increased in previous low-converters after LCHF diet and was positively correlated with the fecal relative abundance of Eubacterium coprostanoligenes. Lean cholesterol high-converters had increased serum triacylglycerides and decreased HDL-C levels before LCHF diet and responded to the intervention with increased LDL-C, independently of fat, cholesterol, and saturated fatty acid intake. Our findings identify the cholesterol high-converter type as a microbiome marker, which in metabolically healthy lean individuals is associated with increased LDL-C in response to LCHF.
Collapse
Affiliation(s)
- Alena M. Bubeck
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Paul Urbain
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cathrine Horn
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anna S. Jung
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Lisa Ferrari
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Hannah K. Ruple
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Zorn
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johnny Laupsa-Borge
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Caroline Jensen
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Gülen Arslan Lied
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hartmut Bertz
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Frieder Schoett
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Simon N. Dankel
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - W. Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Dyńka D, Paziewska A, Kowalcze K. Keto Menu-Effect of Ketogenic Menu and Intermittent Fasting on the Biochemical Markers and Body Composition in a Physically Active Man-A Controlled Case Study. Foods 2023; 12:3219. [PMID: 37685152 PMCID: PMC10486763 DOI: 10.3390/foods12173219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The combination of ketogenic diet (KD) with intermittent fasting (IF) has, for years, aroused a great interest in the scientific world and among healthy lifestyle enthusiasts. Its importance is even greater when the study subjects are physically active individuals. The aim of the study was a determination of the effect of strict calculated ketogenic menu combined with IF and with caloric deficit on the selected biochemical markers and body composition in a 23-year-old man performing strength training. At the same time, we decided to conduct the first so-deeply investigated and controlled case study in this respect. The study protocol included a 13-week-long ketogenic diet with intermittent fasting (of delayed time-restricted eating 16:8 type) and caloric deficit. A detailed menu was designed and was used by the man throughout the whole study duration. A number of blood tests were performed before and after the implemented dietary intervention. Additionally, body composition was determined weekly and the concentrations of glucose and ketone bodies, as well as pulse rate and arterial pressure, were measured daily. The most important changes noted included a significant increase in testosterone and vitamin D concentrations and significant reduction in the HOMA-IR index and concentrations of hepatic enzymes, insulin, glucose, iron, urea, and free triiodothyronine (FT3). Moreover, a significant improvement of body composition occurred (the ratio of total body mass to the adipose and muscular tissue and water mass improved). Favourable changes were also noted in heart rate and arterial pressure values. In view of that, the KD with IF and caloric deficit exerted favourable effects on most biochemical parameters and on body composition and caused an almost twofold increase in serum testosterone concentration.
Collapse
Affiliation(s)
| | | | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland; (D.D.); (A.P.)
| |
Collapse
|
15
|
Nasr L, Sacre Y, Attieh R, Mannan H. Association between the Timing of Pre-Workout Macronutrient Intake and Rated Appetite among Resistance-Trained Adults in Jbeil, Lebanon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2399. [PMID: 36767765 PMCID: PMC9915277 DOI: 10.3390/ijerph20032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Macronutrients play an important role in appetite regulation. In addition, adequate nutrient and energy intake, which may be altered by exercise-induced appetite fluctuations, is required to ensure important training outcomes. However, findings regarding appetite responses to macronutrient consumption before training and to different resistance training intensities remain inconclusive. This study investigated the association of three types of macronutrient intake before different intensities of resistance training with appetite. A purposive cross-sectional design was used to collect data from 280 resistance-trained individuals (mean age 26.4 ± 5.8 years) representing five gyms located in Jbeil, Lebanon, and who completed an online questionnaire. Data collected included socio-demographics, nutritional strategies followed by each respondent, training characteristics, and appetite rating before, during and after exercise using a validated visual analogue scale (VAS). A short-term suppression of appetite was reported during resistance-training, with no significant difference in exercise intensities (p > 0.05). In addition, low-fiber carbohydrate and protein food/beverage content consumed 30-60 min before training had an advantage in appetite suppression. In summary, these findings suggest that resistance training combined with pre-workout consumption of a whole meal was associated with appetite suppression, at least during the short period of exercise. From the perspective of appetite control and energy balance, the critical factor is the quantity and quality of macronutrient food sources, in addition to the timing surrounding training of nutrients ingested.
Collapse
Affiliation(s)
- Lea Nasr
- Faculty of Arts and Sciences, Department of Human Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Yonna Sacre
- Faculty of Arts and Sciences, Department of Human Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Randa Attieh
- Faculty of Arts and Sciences, Department of Human Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Haider Mannan
- Translational Health Research Institute, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
16
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Vargas-Molina S, Gómez-Urquiza JL, García-Romero J, Benítez-Porres J. Effects of the Ketogenic Diet on Muscle Hypertrophy in Resistance-Trained Men and Women: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912629. [PMID: 36231929 PMCID: PMC9564904 DOI: 10.3390/ijerph191912629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 05/22/2023]
Abstract
Reviews focused on the ketogenic diet (KD) based on the increase in fat-free mass (FFM) have been carried out with pathological populations or, failing that, without population differentiation. The aim of this review and meta-analysis was to verify whether a ketogenic diet without programmed energy restriction generates increases in fat-free mass (FFM) in resistance-trained participants. We evaluated the effect of the ketogenic diet, in conjunction with resistance training, on fat-free mass in trained participants. Boolean algorithms from various databases (PubMed, Scopus. and Web of Science) were used, and a total of five studies were located that related to both ketogenic diets and resistance-trained participants. In all, 111 athletes or resistance-trained participants (87 male and 24 female) were evaluated in the studies analyzed. We found no significant differences between groups in the FFM variables, and more research is needed to perform studies with similar ketogenic diets and control diet interventions. Ketogenic diets, taking into account the possible side effects, can be an alternative for increasing muscle mass as long as energy surplus is generated; however, their application for eight weeks or more without interruption does not seem to be the best option due to the satiety and lack of adherence generated.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- Department of Physical Education and Sport, Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - José L. Gómez-Urquiza
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| | - Jerónimo García-Romero
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Javier Benítez-Porres
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Correspondence:
| |
Collapse
|
18
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Albert O, Goumperis T, Knutsen HK. Safety of β-hydroxybutyrate salts as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07449. [PMID: 36254193 PMCID: PMC9558159 DOI: 10.2903/j.efsa.2022.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on β-hydroxybutyrate (BHB) salts as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of sodium, magnesium and calcium BHB salts, and is proposed to be used by adults as a food ingredient in a number of food categories and as food supplement. The data provided by the applicant about the identity, the production process and the compositional data of the NF over the course of the risk assessment period were overall considered unsatisfactory. The Panel noted inconsistencies in the reporting of the test item used in the subchronic toxicity study and human studies provided by the applicant. Owing to these deficiencies, the Panel cannot establish a safe intake level of the NF. The Panel concludes that the safety of the NF has not been established.
Collapse
|
19
|
Widiatmaja DM, Lutvyani A, Sari DR, Kurniasari H, Meiliana ID, Fasitasari M, Yamaoka Y, Rejeki PS. The effect of long-term ketogenic diet on serum adiponectin and insulin-like growth factor-1 levels in mice. J Basic Clin Physiol Pharmacol 2022; 33:611-618. [PMID: 34674405 DOI: 10.1515/jbcpp-2021-0287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Noncommunicable disease (NCD) including obesity, cancer, and diabetes has become particular concern worldwide due to its morbidity and mortality which keep increasing annually. Adiponectin and insulin-like growth factor-1 (IGF-1) are known to be substances that are involved in the development of NCD. Several diet regimens have been developed to treat NCD, one of which is the ketogenic diet (KD). This study aimed to analyze the long-term KD effect on serum adiponectin and IGF-1 levels in mice. METHODS This study was a real experimental with post-test only controls group design. The subjects were 14 male mice (2-3 months, 20-30 g) were randomly divided into two groups, K1 (n=7, standard diet) and K2 (n=7, KD with a composition of 60% fat, 30% protein, and 10% fiber). All subjects were given diet intervention for 8 weeks ad libitum. Serum adiponectin and IGF levels were measured in post-intervention using Enzyme-Linked Immunosorbent Assay. Distribution of normality was analyzed by the Shapiro-Wilk Test, mean difference using Independent T-Test, and linear correlation using Pearson's Correlation Test. Data analysis was performed using Statistic Package for Social Science Version 16. RESULTS Serum adiponectin levels in K1 (0.080 ± 0.012) pg/mL and K2 (0.099 ± 0.005) pg/mL, with p=0.003. Serum IGF-1 levels in K1 (133.535 ± 25.702) ng/mL and K2 (109.987 ± 27.118) ng/mL, with p=0.121. Coefficient correlation between serum adiponectin and serum IGF-1 levels [r]=-0.401, with p=0.155. CONCLUSIONS Long-term KD increases serum adiponectin levels and has no effect on serum IGF-1 levels. There was no significant correlation between serum adiponectin and serum IGF-1 levels.
Collapse
Affiliation(s)
- Deandra M Widiatmaja
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alif Lutvyani
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Desi R Sari
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hamidah Kurniasari
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ismi D Meiliana
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Minidian Fasitasari
- Department of Nutrition, Faculty of Medicine, Universitas Islam Sultan Agung/Sultan Agung Islamic Hospital, Semarang, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Purwo S Rejeki
- Physiology Division, Department of Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
20
|
Ostrowska L, Smarkusz-Zarzecka J, Muszyńska A, Adamska-Patruno E, Górska M, Krętowski A. High-Fat or High-Carbohydrate Meal-Does It Affect the Metabolism of Men with Excess Body Weight? Nutrients 2022; 14:2876. [PMID: 35889836 PMCID: PMC9323987 DOI: 10.3390/nu14142876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Excessive adipose tissue in the body may lead to adverse health effects, carbohydrate and lipid metabolism disorders, and cardiovascular diseases. The aim of this study was to analyze the effect of a standardized high-fat meal (HF) on changes in energy expenditure and changes in the oxidation of energy substrates as well as the concentration of glucose, insulin, triglycerides and homocysteine in blood serum in relation to a standardized high-carbohydrate (non-fat, HC) meal in men with different nutritional status. In this study, 26 men (aged 19-60) without carbohydrate disorders (study group GS = 13 overweight/obese; control group GC = 13 normal body weight) were examined. It was observed that following a high-fat or high-carbohydrate meal, men with excessive body weight metabolized the main nutrients differently than men with normal body weight, and postprandial insulin secretion was also different (even without any significant differences in glucose concentrations). Overweight/obesity, which is in itself a risk factor for cardiovascular disease, contributes to an increase in the concentration of other risk factors, such as the concentration of homocysteine and triglycerides, which is referred to as cardiometabolic risk. Consumption of a high-fat meal increased the number of potential risk factors for cardiovascular disease (homocysteine and triglycerides) compared to a high-carbohydrate meal.
Collapse
Affiliation(s)
- Lucyna Ostrowska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, ul. Mieszka I 4B, 15-054 Bialystok, Poland; (L.O.); (A.M.)
| | - Joanna Smarkusz-Zarzecka
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, ul. Mieszka I 4B, 15-054 Bialystok, Poland; (L.O.); (A.M.)
| | - Anna Muszyńska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, ul. Mieszka I 4B, 15-054 Bialystok, Poland; (L.O.); (A.M.)
| | - Edyta Adamska-Patruno
- Clinical Research Support Centre, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland;
| | - Maria Górska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; (M.G.); (A.K.)
| | - Adam Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; (M.G.); (A.K.)
| |
Collapse
|
21
|
Abstract
Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e. mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KD) to manipulate body mass (BM) and to enhance fat mass loss. KD reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilisation, leading to an increase in blood ketone bodies (acetoacetate, 3-β-hydroxybutyrate and acetone) and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KD and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training or endurance training) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using Medline, Google Scholar, PubMed, Web of Science, Scopus and Sportdiscus Databases was used to identify relevant studies. In summary, based on the current evidence, KD are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KD, which can decrease daily energy intake. Therefore, KD do not have any superior benefits to non-KD in BM and body fat loss in individuals with obesity and athletic populations in an isoenergetic situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet. In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KD are more efficient in endurance-trained compared with resistance-trained individuals.
Collapse
|
22
|
Cipryan L, Litschmannova M, Maffetone PB, Plews DJ, Dostal T, Hofmann P, Laursen PB. Very Low-Carbohydrate High-Fat Diet Improves Risk Markers for Cardiometabolic Health More Than Exercise in Men and Women With Overfat Constitution: Secondary Analysis of a Randomized Controlled Clinical Trial. Front Nutr 2022; 9:867690. [PMID: 35677551 PMCID: PMC9168912 DOI: 10.3389/fnut.2022.867690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose This randomized controlled parallel-group study examined the effects of a very low-carbohydrate high-fat (VLCHF) diet and high-intensity interval training (HIIT) program over 12-weeks on cardiometabolic risk factors in individuals with overfat constitution. Methods Ninety-one participants out of 109 completed the study. The participants were randomly allocated to the HIIT (N = 22), VLCHF (N = 25), VLCHF+HIIT (N = 25), or control (N = 19) groups for 12 weeks. Fasting plasma samples were collected before the intervention and after 4 and 12 weeks. The analyzed outcomes included complete blood count, glucose, insulin, glycated hemoglobin, triglycerides (TG), cholesterol, high- and low-density lipoprotein (HDL-C and LDL-C), lipoprotein(a), adiponectin (Adpn), leptin (Lep), tumor necrosis factor α (TNF-α), other interleukins (hs-IL-6, IL-1β, and IL-10), and IL-1RA. The homeostasis model assessment of insulin resistance (HOMA-IR), Adpn/Lep ratio, TG/HDL-C ratio, and TyG index were calculated and analyzed. Blood pressure was measured before the intervention, after 4, 8, and 12 weeks (ClinicalTrials.gov: NCT03934476). Results Absolute changes in HOMA-IR, Adpn/Lep ratio, LDL-C, and diastolic blood pressure after 12 weeks differed by study groups (p < 0.05). The most pronounced changes were revealed in the VLCHF (ΔM [95% CI]; HOMA-IR: -0.75 [-1.13; -0.55]; Adpn/Lep: 9.34 [6.33; 37.39]; LDL-C: 0.06 [-0.12; 0.50] mmol/l) and VLCHF+HIIT (HOMA-IR: -0.44 [-1.14; 0.12]; Adpn/Lep: 4.26 [2.24; 13.16]; LDL-C: 0.25 [-0.04; 0.50] mmol/l) groups. Conclusions A 12-week VLCHF diet intervention in individuals with overfat constitution is effective for favorable changes in HOMA-IR (compared to HIIT), Adpn/Lep ratio, and diastolic blood pressure. HIIT, or HIIT combined with the VLCHF diet, had no additional benefits for the analyzed variables. No adverse side effects were observed.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies & Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czechia
| | - Martina Litschmannova
- Department of Applied Mathematics, VSB—Technical University of Ostrava, Ostrava, Czechia
| | | | - Daniel J. Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tomas Dostal
- Department of Human Movement Studies & Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czechia
| | - Peter Hofmann
- Institute of Human Movement Science, Sport & Health, Exercise Physiology, Training & Training Therapy Research Group, University of Graz, Graz, Austria
| | - Paul B. Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
23
|
Basolo A, Magno S, Santini F, Ceccarini G. Ketogenic Diet and Weight Loss: Is There an Effect on Energy Expenditure? Nutrients 2022; 14:nu14091814. [PMID: 35565778 PMCID: PMC9105638 DOI: 10.3390/nu14091814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
A dysregulation between energy intake (EI) and energy expenditure (EE), the two components of the energy balance equation, is one of the mechanisms responsible for the development of obesity. Conservation of energy equilibrium is deemed a dynamic process and alterations of one component (energy intake or energy expenditure) lead to biological and/or behavioral compensatory changes in the counterpart. The interplay between energy demand and caloric intake appears designed to guarantee an adequate fuel supply in variable life contexts. In the past decades, researchers focused their attention on finding efficient strategies to fight the obesity pandemic. The ketogenic or “keto” diet (KD) gained substantial consideration as a potential weight-loss strategy, whereby the concentration of blood ketones (acetoacetate, 3-β-hydroxybutyrate, and acetone) increases as a result of increased fatty acid breakdown and the activity of ketogenic enzymes. It has been hypothesized that during the first phase of KDs when glucose utilization is still prevalent, an increase in EE may occur, due to increased hepatic oxygen consumption for gluconeogenesis and for triglyceride-fatty acid recycling. Later, a decrease in 24-h EE may ensue due to the slowing of gluconeogenesis and increase in fatty acid oxidation, with a reduction of the respiratory quotient and possibly the direct action of additional hormonal signals.
Collapse
|
24
|
Moreno-Villanueva A, Rico-González M, Pino-Ortega J. The Effects of a Ketogenic Diet on Anthropometric Parameters, Metabolic Adaptation, and Physical Fitness Performance in Amateur Endurance Athletes: A Systematic Review. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Buga A, Welton GL, Scott KE, Atwell AD, Haley SJ, Esbenshade NJ, Abraham J, Buxton JD, Ault DL, Raabe AS, Noakes TD, Hyde PN, Volek JS, Prins PJ. The Effects of Carbohydrate versus Fat Restriction on Lipid Profiles in Highly Trained, Recreational Distance Runners: A Randomized, Cross-Over Trial. Nutrients 2022; 14:nu14061135. [PMID: 35334791 PMCID: PMC8955386 DOI: 10.3390/nu14061135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
A growing number of endurance athletes have considered switching from a traditional high-carbohydrate/low-fat (HCLF) to a low-carbohydrate/high-fat (LCHF) eating pattern for health and performance reasons. However, few studies have examined how LCHF diets affect blood lipid profiles in highly-trained runners. In a randomized and counterbalanced, cross-over design, athletes (n = 7 men; VO2max: 61.9 ± 6.1 mL/kg/min) completed six weeks of two, ad libitum, LCHF (6/69/25% en carbohydrate/fat/protein) and HCLF (57/28/15% en carbohydrate/fat/protein) diets, separated by a two-week washout. Plasma was collected on days 4, 14, 28, and 42 during each condition and analyzed for: triglycerides (TG), LDL-C, HDL-C, total cholesterol (TC), VLDL, fasting glucose, and glycated hemoglobin (HbA1c). Capillary blood beta-hydroxybutyrate (BHB) was monitored during LCHF as a measure of ketosis. LCHF lowered plasma TG, VLDL, and TG/HDL-C (all p < 0.01). LCHF increased plasma TC, LDL-C, HDL-C, and TC/HDL-C (all p < 0.05). Plasma glucose and HbA1c were unaffected. Capillary BHB was modestly elevated throughout the LCHF condition (0.5 ± 0.05 mmol/L). Healthy, well-trained, normocholesterolemic runners consuming a LCHF diet demonstrated elevated circulating LDL-C and HDL-C concentrations, while concomitantly decreasing TG, VLDL, and TG/HDL-C ratio. The underlying mechanisms and implications of these adaptive responses in cholesterol should be explored.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (J.S.V.)
| | - Gary L. Welton
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Katie E. Scott
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Adam D. Atwell
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Sarah J. Haley
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Noah J. Esbenshade
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Jacqueline Abraham
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Jeffrey D. Buxton
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Dana L. Ault
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Amy S. Raabe
- Department of Human Ecology, Youngstown State University, Youngstown, OH 44555, USA;
| | - Timothy D. Noakes
- Department of Applied Design, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| | - Parker N. Hyde
- Department of Kinesiology, University of Northern Georgia, Dahlonega, GA 30597, USA;
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (J.S.V.)
| | - Philip J. Prins
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
- Correspondence: ; Tel.: +1-724-458-3863
| |
Collapse
|
26
|
Weitgasser R, Ocenasek H, Fallwickl S. Race Across America: First Athlete With Type 1 Diabetes to Finish Solo With Diabetes Technology Support. Diabetes Spectr 2022; 35:227-231. [PMID: 35668881 PMCID: PMC9160562 DOI: 10.2337/ds21-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Raimund Weitgasser
- Department of Internal Medicine/Diabetology and Metabolism, Wehrle-Diakonissen Hospital, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Helmuth Ocenasek
- Institute for Sport and Health Medicine, Linz, Austria
- CARDIOMED Centre for Outpatient Cardiac Rehabilitation, Linz, Austria
| | - Susanne Fallwickl
- Cardio-Pulmonary Rehabilitation, Rehabilitation Center Hochegg, Grimmenstein, Austria
| |
Collapse
|
27
|
The effect of low-carbohydrate ketogenic diet in the management of obesity compared with low caloric, low-fat diet. Clin Nutr ESPEN 2022; 49:522-528. [DOI: 10.1016/j.clnesp.2022.02.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
|
28
|
Tzenios N, Lewis ED, Crowley DC, Chahine M, Evans M. Examining the Efficacy of a Very-Low-Carbohydrate Ketogenic Diet on Cardiovascular Health in Adults with Mildly Elevated Low-Density Lipoprotein Cholesterol in an Open-Label Pilot Study. Metab Syndr Relat Disord 2021; 20:94-103. [PMID: 34918971 PMCID: PMC8972001 DOI: 10.1089/met.2021.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: The objective of this open-label pilot study was to investigate the efficacy of a very-low-carbohydrate ketogenic diet (VLCKD), known as Nic's Ketogenic Diet, for 140 days on cardiometabolic markers in healthy adults with mildly elevated low-density lipoprotein cholesterol (LDL-C). Methods: Study assessments were conducted at Day 0, 28, 56, 70, 84, 112, and 140, and weight and blood pressure (BP) were measured and fasting blood was collected for analysis of plasma lipids. A DEXA scan was performed and body mass index recorded on Day 0, 70, and 140. Blood glucose, inflammatory, and thyroid markers were measured on Day 0 and 140. Compliance was assessed using weekly 3-day food records and daily blood glucose and ketone monitoring. Results: The results showed that body fat percentage decreased by 2.25% and 4.41% at Day 70 and 140, respectively (P ≤ 0.012). Significant reductions in android, gynoid, and android/gynoid fat ratio and increases in muscle mass occurred by Day 70 and 140. Total cholesterol, LDL-C, and high-density lipoprotein cholesterol were increased and systolic BP and glycated hemoglobin (HbA1c) were decreased at Day 140 (P < 0.05). Following this VLCKD for 140 days was found to be safe and was well tolerated. Conclusion: The VLCKD showed beneficial changes in body composition and cardiometabolic markers in eutrophic and overweight participants in a 140-day study suggesting a future role for this diet in populations at cardiovascular disease risk. Future research with larger sample size in a randomized double blind clinical trial is warranted to confirm these results. Clinical Trial Registration number: NCT04195594.
Collapse
Affiliation(s)
- Nikolaos Tzenios
- Public Health and Medical Research, Charisma University, Grace Bay, Turks and Caicos Islands.,Global Clinical Scholars Research Training Program, Department of Postgraduate Medical Education, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Mohamad Chahine
- Biological and Chemical Technology, International Medical Institute, Kursk State Medical University, Kursk, Russian Federation
| | | |
Collapse
|
29
|
Woelber JP, Tennert C, Ernst SF, Vach K, Ratka-Krüger P, Bertz H, Urbain P. Effects of a Non-Energy-Restricted Ketogenic Diet on Clinical Oral Parameters. An Exploratory Pilot Trial. Nutrients 2021; 13:nu13124229. [PMID: 34959780 PMCID: PMC8703871 DOI: 10.3390/nu13124229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diets (KDs) may be a helpful complement in the prevention of and therapy for several diseases. Apart from their non-cariogenic properties, it is still unclear how KDs affect oral parameters. The aim of this study was to investigate the influence of a KD on clinical periodontal parameters. Twenty generally healthy volunteers with an average age of 36.6 years underwent a KD for 6 weeks. Their compliance was monitored by measuring their urinary ketones daily and by keeping 7-day food records. Clinical oral parameters included plaque (PI), gingival inflammation (GI), a complete periodontal status (probing depths, bleeding on probing), and general physical and serologic parameters at baseline and after 6 weeks. The results showed a trend towards lower plaque values, but with no significant changes from baseline to the end of the study with regard to the clinical periodontal parameters. However, their body weight and BMI measurements showed a significant decrease. The regression analyses showed that the fat mass and the BMI were significantly positively correlated to periodontal inflammation, while HDL, fiber, and protein intake were negatively correlated to periodontal inflammation. The KD change did not lead to clinical changes in periodontal parameters in healthy participants under continued oral hygiene, but it did lead to a significant weight loss.
Collapse
Affiliation(s)
- Johan Peter Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; si.- (S.F.E.); (P.R.-K.)
- Correspondence:
| | - Christian Tennert
- Department of Restorative, Preventive and Pediatric Dentistry, University of Berne, Freiburgstrasse 7, 3010 Bern, Switzerland;
| | - Simon Fabian Ernst
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; si.- (S.F.E.); (P.R.-K.)
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Zinkmattenstr. 6A, 79108 Freiburg, Germany;
| | - Petra Ratka-Krüger
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; si.- (S.F.E.); (P.R.-K.)
| | - Hartmut Bertz
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (H.B.); (P.U.)
| | - Paul Urbain
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (H.B.); (P.U.)
| |
Collapse
|
30
|
Leite TC, Watters RJ, Weiss KR, Intini G. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. J Transl Med 2021; 19:450. [PMID: 34715874 PMCID: PMC8555297 DOI: 10.1186/s12967-021-03122-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer, affecting mostly children and adolescents. Although much progress has been made throughout the years towards treating primary OS, the 5-year survival rate for metastatic OS has remained at only 20% for the last 30 years. Therefore, more efficient treatments are needed. Recent studies have shown that tumor metabolism displays a unique behavior, and plays important roles in tumor growth and metastasis, making it an attractive potential target for novel therapies. While normal cells typically fuel the oxidative phosphorylation (OXPHOS) pathway with the products of glycolysis, cancer cells acquire a plastic metabolism, uncoupling these two pathways. This allows them to obtain building blocks for proliferation from glycolytic intermediates and ATP from OXPHOS. One way to target the metabolism of cancer cells is through dietary interventions. However, while some diets have shown anticancer effects against certain tumor types in preclinical studies, as of yet none have been tested to treat OS. Here we review the features of tumor metabolism, in general and about OS, and propose avenues of research in dietary intervention, discussing strategies that could potentially be effective to target OS metabolism.
Collapse
Affiliation(s)
- Taiana Campos Leite
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Rebecca Jean Watters
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kurt Richard Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Intini
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Valenzuela PL, Castillo-García A, Lucia A, Naclerio F. Effects of Combining a Ketogenic Diet with Resistance Training on Body Composition, Strength, and Mechanical Power in Trained Individuals: A Narrative Review. Nutrients 2021; 13:nu13093083. [PMID: 34578961 PMCID: PMC8469041 DOI: 10.3390/nu13093083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Ketogenic diets (KD) have gained popularity in recent years among strength-trained individuals. The present review summarizes current evidence—with a particular focus on randomized controlled trials—on the effects of KD on body composition and muscle performance (strength and power output) in strength-trained individuals. Although long-term studies (>12 weeks) are lacking, growing evidence supports the effectiveness of an ad libitum and energy-balanced KD for reducing total body and fat mass, at least in the short term. However, no or negligible benefits on body composition have been observed when comparing hypocaloric KD with conventional diets resulting in the same energy deficit. Moreover, some studies suggest that KD might impair resistance training-induced muscle hypertrophy, sometimes with concomitant decrements in muscle performance, at least when expressed in absolute units and not relative to total body mass (e.g., one-repetition maximum). KD might therefore be a beneficial strategy for promoting fat loss, although it might not be a recommendable option to gain muscle mass and strength/power. More research is needed on the adoption of strategies for avoiding the potentially detrimental effect of KD on muscle mass and strength/power (e.g., increasing protein intake, reintroduction of carbohydrates before competition). In summary, evidence is as yet scarce to support a major beneficial effect of KD on body composition or performance in strength-trained individuals. Furthermore, the long-term effectiveness and safety of this type of diet remains to be determined.
Collapse
Affiliation(s)
- Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (P.L.V.); (A.L.)
| | | | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (P.L.V.); (A.L.)
- Physical Activity and Health Research Group (‘PaHerg’), Research Institute of the Hospital 12 de Octubre (‘imas12’), 28041 Madrid, Spain
| | - Fernando Naclerio
- Institute for Lifecourse Development, School of Human Sciences, Centre for Exercise Activity and Rehabilitation, University of Greenwich, London SE10 9LS, UK
- Correspondence: or
| |
Collapse
|
32
|
Huang TY, Linden MA, Fuller SE, Goldsmith FR, Simon J, Batdorf HM, Scott MC, Essajee NM, Brown JM, Noland RC. Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E1053-E1067. [PMID: 33843280 PMCID: PMC8285595 DOI: 10.1152/ajpendo.00410.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.NEW & NOTEWORTHY A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.
Collapse
Affiliation(s)
- Tai-Yu Huang
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa A Linden
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Scott E Fuller
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Felicia R Goldsmith
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jacob Simon
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Heidi M Batdorf
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Matthew C Scott
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Nabil M Essajee
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John M Brown
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
33
|
Liu Y, Sun P, Shuai P, Qiao Q, Li T. Fat-restricted low-glycemic index diet controls weight and improves blood lipid profile: A pilot study among overweight and obese adults in Southwest China. Medicine (Baltimore) 2021; 100:e26107. [PMID: 34032752 PMCID: PMC8154408 DOI: 10.1097/md.0000000000026107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence from trials demonstrating the benefits and risks of low-glycemic index and fat-restricted diets in weight loss and blood lipid profile changes is unclear. This study aimed to assess the implemented and effects of a fat-restricted low-glycemic index diet on weight control and blood lipid profile changes in in overweight/obese Southwest Chinese individualst.This prospective pilot study enrolled overweight/obese subjects at the People's Hospital of Sichuan Province between February and July 2019. The daily energy intake was reduced by 300 to 500 kcal according to the participant's weight and activity level, with low-glycemic index carbohydrate- and fat-energy ratios < 45% and 25% to 30%, respectively. Participants received guidance for 3 months by telephone follow-up, internet interaction, or WeChat. Changes in weight, body composition, and blood profile were measured.A total of 254 patients were finally analyzed, including 101 males and 153 females. After adjusting for potential confounders, weight (P < .001), body mass index (P < .001), waist circumference (P < .001), waist-hip ratio (P < .001), body fat percentage (P < .001), visceral fat area (P < .001), basal metabolism (P = .002), cholesterol (P < .001), and triglycerides (P < .001) were significantly reduced after the 3-month intervention. The above indexes showed no significant differences between men and women.Regardless of gender, fat-restricted low-glycemic index diet might be helpful for controlling weight and lowering blood cholesterol and triglycerides in overweight/obese individuals in Southwest China.
Collapse
Affiliation(s)
- Yuping Liu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Sun
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qichuan Qiao
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingxin Li
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
34
|
Carbohydrate Restriction with or without Exercise Training Improves Blood Pressure and Insulin Sensitivity in Overweight Women. Healthcare (Basel) 2021; 9:healthcare9060637. [PMID: 34072093 PMCID: PMC8229341 DOI: 10.3390/healthcare9060637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: The purpose of this study was to evaluate the effects of a 4-week low-carbohydrate diet (LC) with or without exercise training on cardiometabolic health-related profiles in overweight/obese women. Methods: Fifty overweight/obese Chinese women (age: 22.2 ± 3.3 years, body mass index (BMI): 25.1 ± 3.1 kg·m−2) were randomized to either a LC control group (LC-CON, n = 16), a LC and high-intensity interval training group (LC-HIIT, n = 17), or a LC and moderate-intensity continuous training group (LC-MICT, n = 17). All groups consumed LC for 4 weeks, while the LC-HIIT and LC-MICT groups followed an additional five sessions of HIIT (10 × 6 s cycling sprints and 9 s rest intervals, 2.5 min in total) or MICT (cycling continuously at 50–60% of peak oxygen uptake (VO2peak) for 30 min) weekly. Blood pressure, fasting glucose, insulin sensitivity, and several metabolic or appetite regulating hormones were measured before and after intervention. Results: Significant reductions in body weight (− ~2.5 kg, p < 0.001, η2 = 0.772) and BMI (− ~1 unit, p < 0.001, η2 = 0.782) were found in all groups. Systolic blood pressure was reduced by 5–6 mmHg (p < 0.001, η2 = 0.370); fasting insulin, leptin, and ghrelin levels were also significantly decreased (p < 0.05), while insulin sensitivity was improved. However, there were no significant changes in fasting glucose, glucagon, and gastric inhibitory peptide levels. Furthermore, no group differences were found among the three groups, suggesting that extra training (i.e., LC-HIIT and LC-MICT) failed to trigger additional effects on these cardiometabolic profiles. Conclusions: The short-term carbohydrate restriction diet caused significant weight loss and improved blood pressure and insulin sensitivity in the overweight/obese women, although the combination with exercise training had no additional benefits on the examined cardiometabolic profiles. Moreover, the long-term safety and effectiveness of LC needs further study.
Collapse
|
35
|
Durkalec-Michalski K, Nowaczyk PM, Główka N, Ziobrowska A, Podgórski T. Is a Four-Week Ketogenic Diet an Effective Nutritional Strategy in CrossFit-Trained Female and Male Athletes? Nutrients 2021; 13:nu13030864. [PMID: 33800770 PMCID: PMC8001376 DOI: 10.3390/nu13030864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
This single-arm interventional study examined the effect of a 4-week ketogenic diet (KD) on aerobic capacity and discipline-specific performance in female (n = 11) and male (n = 11) CrossFit-trained athletes. The participants performed incremental cycling (ICT) and Fight Gone Bad (FGB) tests after consuming a customary diet and a KD. Pre- and post-ICT exercise blood samples were also analysed. Consuming a KD had a slight impact on aerobic capacity and no relevant effect on CrossFit-specific performance. In females, consuming a KD led to an 10.4% decrease in peak oxygen uptake during the ICT (p = 0.027) and resulted in certain alterations in haematological parameters (haemoglobin (HGB), mean corpuscular HGB, and mean corpuscular HGB concentration). Furthermore, in males, alanine aminotransferase activity increased with a simultaneous improvement in the post-ICT blood acid–base balance after consuming a KD. The pre-exercise bilirubin concentration was also elevated in the entire group after consuming a KD. In conclusion, female CrossFit-trained athletes seem to be prone to aerobic performance decrements and increased risk of developing haematological disturbances when consuming a KD. In males who consumed a KD, there was an undesirable alanine aminotransferase elevation and a small tendency towards improved acid–base status. Moreover, consuming a KD had no effect on discipline-specific performance in CrossFit-trained athletes.
Collapse
Affiliation(s)
- Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznań, Poland
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznań, Poland; (P.M.N.); (N.G.); (A.Z.)
- Correspondence:
| | - Paulina M. Nowaczyk
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznań, Poland; (P.M.N.); (N.G.); (A.Z.)
| | - Natalia Główka
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznań, Poland; (P.M.N.); (N.G.); (A.Z.)
| | - Anna Ziobrowska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-624 Poznań, Poland; (P.M.N.); (N.G.); (A.Z.)
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 61-871 Poznań, Poland;
| |
Collapse
|
36
|
Burén J, Ericsson M, Damasceno NRT, Sjödin A. A Ketogenic Low-Carbohydrate High-Fat Diet Increases LDL Cholesterol in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2021; 13:nu13030814. [PMID: 33801247 PMCID: PMC8001988 DOI: 10.3390/nu13030814] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Ketogenic low-carbohydrate high-fat (LCHF) diets are popular among young, healthy, normal-weight individuals for various reasons. We aimed to investigate the effect of a ketogenic LCHF diet on low-density lipoprotein (LDL) cholesterol (primary outcome), LDL cholesterol subfractions and conventional cardiovascular risk factors in the blood of healthy, young, and normal-weight women. The study was a randomized, controlled, feeding trial with crossover design. Twenty-four women were assigned to a 4 week ketogenic LCHF diet (4% carbohydrates; 77% fat; 19% protein) followed by a 4 week National Food Agency recommended control diet (44% carbohydrates; 33% fat; 19% protein), or the reverse sequence due to the crossover design. Treatment periods were separated by a 15 week washout period. Seventeen women completed the study and treatment effects were evaluated using mixed models. The LCHF diet increased LDL cholesterol in every woman with a treatment effect of 1.82 mM (p < 0.001). In addition, Apolipoprotein B-100 (ApoB), small, dense LDL cholesterol as well as large, buoyant LDL cholesterol increased (p < 0.001, p < 0.01, and p < 0.001, respectively). The data suggest that feeding healthy, young, normal-weight women a ketogenic LCHF diet induces a deleterious blood lipid profile. The elevated LDL cholesterol should be a cause for concern in young, healthy, normal-weight women following this kind of LCHF diet.
Collapse
Affiliation(s)
- Jonas Burén
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: ; Tel.: +46-90-7866560
| | - Madelene Ericsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, 90187 Umeå, Sweden;
- Umeå Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Anna Sjödin
- Department of Food, Nutrition and Culinary Science, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
37
|
Vidić V, Ilić V, Toskić L, Janković N, Ugarković D. Effects of calorie restricted low carbohydrate high fat ketogenic vs. non-ketogenic diet on strength, body-composition, hormonal and lipid profile in trained middle-aged men. Clin Nutr 2021; 40:1495-1502. [PMID: 33743284 DOI: 10.1016/j.clnu.2021.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS The aim of this paper was to investigate and compare the effects of two iso-energetic hypo-caloric ketogenic hyper-ketonemic and non-ketogenic low carbohydrate high fat high cholesterol diets on body-composition, muscle strength and hormonal profile in experienced resistance-trained middle-aged men. METHODS Twenty non-competitive experienced resistance-trained middle-aged men were on the supervised calorie maintenance western diet and resistance-training regimen for 4 weeks and then divided into ketogenic and non-ketogenic groups for 8 weeks period. Keto bodies (β-hydroxybutyrate) levels were measured weekly, testosterone and insulin biweekly, strength and body-composition monthly, lipid profile and blood sugar level at the beginning and at the end of the study. RESULTS Both groups lost a similar amount of lean body mass and fat tissue (from F = 248.665, p < 0.001 to F = 21.943, p = 0.001), but preserved maximal upper and lower body strength (from F = 1.772, p = 0.238 to F = 0.595, p = 0.577). Basal testosterone and free testosterone increased (from F = 37.267, p = 0.001 to F = 16.261, p = 0.005) and insulin levels decreased significantly in both groups (F = 27.609, p = 0.001; F = 54.256, p < 0.001, respectively). No differences in lipid profile and blood sugar level were found (from F = 4.174, p = 0.058, to F = 0.065, p = 0.802). CONCLUSIONS Ketogenic diet with sustained hyper-ketonemia above 1 mol/l has the same impact as low carbohydrate non-ketogenic diet on muscle strength, body-composition, and hormonal and lipid profile in hypo-caloric dietary conditions in strength-trained middle-aged men.
Collapse
Affiliation(s)
- Vladimir Vidić
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ilić
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Lazar Toskić
- Faculty of Sport and Physical Education, University in Priština Kosovska Mitrovica, Leposavić, Serbia.
| | - Nenad Janković
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Dušan Ugarković
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Alherz M, Lee D, Alshangiti A, Roddy D, O'Keeffe G, White R, Barry D. The Growth Response to Beta-Hydroxybutyrate in SH-SY5Y Neuroblastoma Cells is Suppressed by Glucose and Pyruvate Supplementation. Neurochem Res 2021; 46:701-709. [PMID: 33389384 DOI: 10.1007/s11064-020-03203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Neuroblastoma (NB) is a childhood malignancy of the sympathetic nervous system and is commonly studied using the SH-SY5Y cell line. Its neoplastic and neurodevelopmental manifestations are characterised by a high glucose demand which maintains its high proliferative capacity. This metabolic phenotype may be utilised in dietary therapies such as the ketone diet which alter substrate availability and thus starve NB cells of their preferred biosynthetic requirements. However, the effects of ketone metabolism on cancer growth remain poorly understood due to the involvement of other metabolic substrates in experimental paradigms and complexities underlying the Warburg effect. We investigated how the primary ketone body beta-hydroxybutyrate (βOHB) affects the growth of SH-SY5Y NB cells in the presence or absence of culture metabolic substrates. We demonstrated that while glucose deprivation reduced the growth and viability of SH-SY5Y cells, they proliferated and were initially unaffected by the addition of βOHB. However, a growth response to βOHB was subsequently revealed in media containing low levels of glucose, as well as in glucose and pyruvate deprived conditions. These data shed light on the roles of metabolic substrate availability as key determinants of the responses of SH-SY5Y NB cells to ketone supplementation.
Collapse
Affiliation(s)
- Mohammad Alherz
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - David Lee
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Amnah Alshangiti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Darren Roddy
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gerard O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Robin White
- Department of Biology, Westfield State University, Westfield, MA, 01086, USA
| | - Denis Barry
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Cipryan L, Dostal T, Plews DJ, Hofmann P, Laursen PB. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr Res 2020; 87:22-30. [PMID: 33596508 DOI: 10.1016/j.nutres.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the effect of a 12-week very low-carbohydrate, high-fat (VLCHF) diet and exercise on biomarkers of inflammation in healthy individuals. Since the anti-inflammatory effects of a ketogenic diet have been established, we hypothesized that the VLCHF diet, along with exercise, would have an additional favorable effect on biomarkers of inflammation. Twenty-four healthy individuals were allocated to the VLCHF diet (VLCHF: N = 12, age 25.3 ± 2.0 years, body mass 66.7 ± 9.8 kg, fat mass 21.5% ± 4.9%), or habitual diet (HD: N = 12, age 23.9 ± 3.8 years, body mass 72.7 ± 15.0 kg, fat mass 23.4 ± 8.4 %) group. Biomarkers of inflammation (adiponectin, leptin, and high-sensitive interleukin-6 [hs-IL-6]) and substrate metabolism (glycated hemoglobin, fasting glucose, triacylglycerides, and cholesterol) were analyzed from blood at baseline and after 12 weeks. The adiponectin-leptin ratio significantly increased in the VLCHF group after the intervention period (ES [95% CL]: -0.90 [-0.96, -0.77], P ≤ .001, BF10 = 22.15). The adiponectin-leptin ratio changes were associated with both a significant increase in adiponectin (-0.79 [-0.91, -0.54], P ≤ .001, BF10 = 9.43) and a significant decrease in leptin (0.58 [0.19, 0.81], P = .014, BF10 = 2.70). There was moderate evidence of changes in total cholesterol (-1.15 [-2.01, -0.27], P = .010, BF10 = 5.20), and LDL cholesterol (-1.12 [-2.01, -0.21], P = .016, BF10 = 4.56) in the VLCHF group. Body weight (kg) and fat mass (%) decreased in the VLCHF group by 5.4% and 14.9%, respectively. We found that in healthy young individuals, consuming a VLCHF diet while performing regular exercise over a 12-week period produced favorable changes in body weight and fat mass along with beneficial changes in serum adiponectin and leptin concentrations. These data support the use of a VLCHF diet strategy for the primary prevention of chronic diseases associated with systemic low-grade inflammation.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health; Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria.
| | - Paul B Laursen
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The aim of this study was to summarize current contributions affecting knowledge and predictions about the nutritional adequacy of plant-free diets, contextualized by historical accounts. RECENT FINDINGS As demonstrated in recent experiments, nutrient interactions and metabolic effects of ketogenic diets can impact nutritional needs, sometimes resulting in nutrient-sparing effects. Other studies highlight conflicting hypotheses about the expected effect on metabolic acidosis, and therefore mineral status, of adding alkaline mineral-rich vegetables. SUMMARY A carnivore diet is a newly popular, but as yet sparsely studied form of ketogenic diet in which plant foods are eliminated such that all, or almost all, nutrition derives from animal sourced foods. Ketogenic diets are already nutritionally controversial due to their near-complete absence of carbohydrate and high dietary fat content, but most ketogenic diet advocates emphasize the inclusion of plant foods. In this review, we discuss the implications of relying solely on animal sourced foods in terms of essential nutrient status.
Collapse
|
41
|
Watanabe M, Tuccinardi D, Ernesti I, Basciani S, Mariani S, Genco A, Manfrini S, Lubrano C, Gnessi L. Scientific evidence underlying contraindications to the ketogenic diet: An update. Obes Rev 2020; 21:e13053. [PMID: 32648647 PMCID: PMC7539910 DOI: 10.1111/obr.13053] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
First identified as a feasible treatment for intractable epilepsy, the ketogenic diet (KD) has recently gained popularity thanks to growing evidence on applications such as weight loss, most importantly, but also NAFLD, cancer, neurologic conditions and chronic pain. As with any treatment, whether pharmacologic or not, the KD might not be an appropriate intervention for every individual, and a number of contraindications have been proposed, now deeply rooted into clinical practice, excluding de facto many patients that could benefit from its use. However, many of these concerns were expressed due to the absence of clinical studies conducted on fragile populations, and an assessment of lately emerged evidence relative to KD safety is currently lacking and much needed. We herein provide a critical revision of the literature behind each safety alert, in order to guide through the treatment options in the case of subjects with an indication to the KD and a borderline safe situation. Based on available evidence, the possible use of this diet as a therapeutic intervention should be assessed on a patient-to-patient basis by adequately skilled medical doctors, keeping in mind current recommendations, but reading them through the knowledge of the current state of the art.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Ilaria Ernesti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy.,Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Genco
- Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Kuchkuntla AR, Shah M, Velapati S, Gershuni VM, Rajjo T, Nanda S, Hurt RT, Mundi MS. Ketogenic Diet: an Endocrinologist Perspective. Curr Nutr Rep 2020; 8:402-410. [PMID: 31705484 DOI: 10.1007/s13668-019-00297-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Obesity and its related comorbidities make up a large part of healthcare expenditures. Despite a wide array of options for treatment of obesity, rates of sustained weight loss continue to be low, leading patients to seek alternative treatment options. Although the first medically utilized ketogenic diet was described nearly 100 years ago, it has made a resurgence as a treatment option for obesity. Despite increased popularity in the lay public and increased use of ketogenic dietary strategies for metabolic therapy, we are still beginning to unravel the metabolic impact of long-term dietary ketosis. RECENT FINDINGS There are a number of recent trials that have highlighted the short- and long-term benefits of ketogenic diet on weight, glycemic control, and other endocrine functions including reproductive hormones. This review is a summary of available data on the effectiveness and durability of the ketogenic diet when compared to conventional interventions. Ketogenic dietary strategies may play a role in short-term improvement of important metabolic parameters with potential for long-term benefit. However, response may vary due to inter-individual ability to maintain long-term carbohydrate restriction.
Collapse
Affiliation(s)
| | - Meera Shah
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Saketh Velapati
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Victoria M Gershuni
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tamim Rajjo
- Department of Family Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Nanda
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan T Hurt
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
43
|
Kong Z, Sun S, Shi Q, Zhang H, Tong TK, Nie J. Short-Term Ketogenic Diet Improves Abdominal Obesity in Overweight/Obese Chinese Young Females. Front Physiol 2020; 11:856. [PMID: 32848830 PMCID: PMC7399204 DOI: 10.3389/fphys.2020.00856] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to examine the effects of a short-term ketogenic diet (KD) on body composition and cardiorespiratory fitness (CRF) in overweight/obese Chinese females. Twenty young females [age: 21.0 ± 3.7 years, weight: 65.5 ± 7.7 kg, body mass index (BMI): 24.9 ± 2.7 kg⋅m–2] consumed 4 weeks of a normal diet (ND) as a baseline and then switched to a low-carbohydrate, high-fat, and adequate protein KD for another 4 weeks. With the same daily caloric intake, the proportions of energy intake derived from carbohydrates, proteins, and fats were changed from 44.0 ± 7.6%, 15.4 ± 3.3%, 39.6 ± 5.8% in ND to 9.2 ± 4.8%, 21.9 ± 3.4%, and 69.0 ± 5.4% in KD. The results showed that, without impairing the CRF level, the 4-week KD intervention significantly reduced body weight (−2.9 kg), BMI (−1.1 kg⋅m–2), waist circumference (−4.0 cm), hip circumference (−2.5 cm), and body fat percentage (−2.0%). Moreover, fasting leptin level was lowered significantly, and serum levels of inflammatory markers (i.e., TNF-α and MCP-1) were unchanged following KD. These findings suggest that KD can be used as a rapid and effective approach to lose weight and reduce abdominal adiposity in overweight/obese Chinese females without exacerbating their CRF.
Collapse
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Haifeng Zhang
- College of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Tomas K Tong
- Department of Physical Education, Hong Kong Baptist University, Hong Kong, China
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| |
Collapse
|
44
|
Zorn S, Ehret J, Schäuble R, Rautenberg B, Ihorst G, Bertz H, Urbain P, Raynor A. Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients - a controlled cross-over pilot study. BMC Cancer 2020; 20:578. [PMID: 32571329 PMCID: PMC7310229 DOI: 10.1186/s12885-020-07041-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This pilot trial aimed to investigate whether modified short-term fasting (mSTF) reduces the incidence of chemotherapy-induced toxicities and whether an initial ketogenic diet (KD) as fasting supportive diet reduces fasting-related discomfort and improves the compliance. METHODS In this controlled cross-over trial, gynaecologic cancer patients undergoing chemotherapy with a minimum of 4 cycles fasted for 96 h during half of their chemotherapy cycles and consumed a normocaloric diet during the other chemotherapy cycles. The caloric intake during mSTF was restricted to 25% of each patient's daily requirement. In addition, half of the patients should eat a 6-day normocaloric KD prior to each mSTF period to investigate a KD's hunger-suppression effect. Chemotherapy-induced toxicities, fasting-related discomfort, body composition, quality of life, laboratory values, and compliance were assessed at each chemotherapy. RESULTS Thirty patients aged 30-74 years (median 54 years) completed the study. During mSTF the frequency and severity score of stomatitis [- 0.16 ± 0.06; 95% CI -0.28 - (- 0.03); P = 0.013], headaches [- 1.80 ± 0.55; 95% CI -2.89 - (- 0.71); P = 0.002], weakness [- 1.99 ± 0.87; 95% CI -3.72 - (- 0.26); P = 0.024] and the total toxicities' score were significantly reduced [- 10.36 ± 4.44; 95% CI -19.22 - (- 1.50); P = 0.023]. We also observed significantly fewer chemotherapy postponements post-mSTF, reflecting improved tolerance of chemotherapy [- 0.80 ± 0.37; 95% CI -1.53 - (- 0.06); P = 0.034]. A significant reduction in mean body weight by - 0.79 ± 1.47 kg during mSTF was not compensated and remained until study's conclusion (P < 0.005). On average, Insulin [- 169.4 ± 44.1; 95% CI -257.1 - (- 81.8); P < 0.001] and Insulin-like growth factor 1 levels [- 33.3 ± 5.4; 95% CI -44.1 - (- 22.5); P < 0.001] dropped significantly during fasting. The KD as a fasting supportive diet neither reduced fasting-related discomfort nor improved compliance of our fasting regimen. CONCLUSION MSTF is safe and feasible in gynaecologic cancer patients. Our results indicate that mSTF during chemotherapy can reduce chemotherapy-induced toxicities and enhance the tolerance of chemotherapy. Larger clinical trials are required to recommend mSTF for cancer patients. TRIAL REGISTRATION germanctr.de: DRKS00011610, registered 30 January, 2017.
Collapse
Affiliation(s)
- Stefanie Zorn
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janine Ehret
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Schäuble
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Beate Rautenberg
- Department of Gynecology and Gynecologic Oncology, Medical Center - University of Freiburg, Faculty of Gynecology, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Paul Urbain
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Raynor
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Effects of a Ketogenic Diet on Muscle Fatigue in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2020; 12:nu12040955. [PMID: 32235518 PMCID: PMC7231033 DOI: 10.3390/nu12040955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
Ketogenic low-carbohydrate high-fat (LCHF) diets are increasingly popular in broad sections of the population. The main objective of this study was to evaluate the effects of a non-energy-restricted ketogenic LCHF diet on muscle fatigue in healthy, young, and normal-weight women. Twenty-four women were randomly allocated to a 4-week ketogenic LCHF diet followed by a 4-week control diet (a National Food Agency recommended diet), or the reverse sequence due to the crossover design. Treatment periods were separated by a 15 week washout period. Seventeen women completed the study and were included in the analyses. Treatment effects were evaluated using mixed models. The ketogenic LCHF diet had no effect on grip strength or time to fatigue, measured with handgrip test (day 24–26). However, cycling time to fatigue decreased with almost two minutes (−1.85 min 95% CI:[−2.30;−1.40]; p < 0.001) during incremental cycling (day 25–27), accommodated with higher ratings of perceived exertion using the Borg scale (p < 0.01). Participants’ own diary notes revealed experiences of muscle fatigue during daily life activities, as well as during exercise. We conclude that in young and healthy women, a ketogenic LCHF diet has an unfavorable effect on muscle fatigue and might affect perceived exertion during daily life activities.
Collapse
|
46
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Julia Tulipan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| |
Collapse
|
47
|
Kang J, Ratamess NA, Faigenbaum AD, Bush JA. Ergogenic Properties of Ketogenic Diets in Normal-Weight Individuals: A Systematic Review. J Am Coll Nutr 2020; 39:665-675. [PMID: 32039654 DOI: 10.1080/07315724.2020.1725686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ketogenic diets (KDs) have received increasing attention among athletes and physically active individuals. However, the question as to whether and how the diet could benefit this healthy cohort remains unclear.Purpose: This study was designed to systematically review the existing evidence concerning the effect of KDs on body composition, aerobic and anaerobic capacity, muscle development, and sports performance in normal-weight individuals including athletes.Methods: A systematic search of English literature was conducted through electronic databases including PubMed, EBSCOhost, and Google Scholar. Upon the use of search criteria, 23 full-text original human studies involving non-obese participants were included in this review. For more stratified and focused analysis, these articles were further categorized based on the outcomes being examined including 1) body mass (BM) and %fat, 2) substrate utilization, 3) blood substrate and hormonal responses, 4) aerobic capacity and endurance performance, and 5) strength, power, and anaerobic capacity.Results: Our review indicates that a non-calorie-restricted KD carried out for ≥3 weeks can produce a modest reduction in BM and %fat, while maintaining fat-free mass. This diet leads to augmented use of fat as fuel, but this adaptation doesn't seem to improve endurance performance. Additionally, ad libitum KDs combined with resistance training will pose no harm to developing strength and power, especially when protein intake is increased modestly.Conclusions: It appears that a non-calorie-restricted KD provides minimal ergogenic benefits in normal-weight individuals including athletes, but can be used for optimizing BM and body composition without compromising aerobic and anaerobic performance. Key teaching pointsKetogenic diets have received increasing attention among athletes and physically active individuals.It remains elusive as to whether ketogenic diets could confer ergogenic benefits for those who are normal weight but want to use the diet to improve fitness and performance.An interesting dilemma exists in that ketogenic diets can reduce body mass and %fat and increase fat oxidation, but they can also decrease glycogen stores and limit sports performance.This review concludes that a non-calorie-restricted ketogenic diet provides minimal ergogenic benefits in normal-weight individuals, but can be used to optimize body mass and composition without compromising athletic performance.This finding can be important for esthetic or weight-sensitive athletes because the diet may allow them to reach a target body mass without having to sacrifice athletic performance.The ketogenic diet-induced metabolic adaptations require a state of ketosis, and thus caution should be taken because an excessive increase in ketone bodies can be detrimental to health.
Collapse
Affiliation(s)
- Jie Kang
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey, USA
| | - Nicholas A Ratamess
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey, USA
| | - Avery D Faigenbaum
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey, USA
| | - Jill A Bush
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey, USA
| |
Collapse
|
48
|
Affective and Enjoyment Responses to Short-Term High-Intensity Interval Training with Low-Carbohydrate Diet in Overweight Young Women. Nutrients 2020; 12:nu12020442. [PMID: 32050648 PMCID: PMC7071177 DOI: 10.3390/nu12020442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Low-carbohydrate diets (LCs) seem effective on weight reduction and maintenance. However, the affect and enjoyment of exercise during LCs is not clear. The purpose of the present study was to compare the psychological responses to high-intensity interval training (HIIT) and to moderate-intensity continuous training (MICT) during the consumption of a 4-week LC diet in overweight young women. With LCs (~10% carbohydrate, 65%–70% fat, 20%–25% protein), forty-three eligible women (age: 20.9 ± 3.1 years; body weight: 65.8 ± 8.2 kg) were randomly assigned to one of three groups: HIIT (10 sets of 6 s all-out cycling interspersed with 9 s of rest), MICT (30 min cycling at 50%–60% of peak oxygen consumption, V̇O2peak) or no-exercise controls (CON). Anthropometric indices and V̇O2peak were measured pre- and post-training. Feeling Scale (FS), Felt Arousal Scale (FAS), Exercise Enjoyment Scale (EES), and Physical Activity Enjoyment Scale (PACES) scores were collected before and immediately after each training session throughout the study. After intervention, all three groups reduced by more than 2.5 kg of body weight whereas both exercise groups improved ~15% V̇O2peak. Participants in the HIIT and MICT group exhibited similar affect points as indicated by FS and FAS. Post-exercise enjoyment scores in PACES were lower in HIIT (73–78 points) than MICT (83–87 points) despite similarly positive responses being observed in EES (corresponding to ~4 points of a 7-point scale). Short-term LCs were effective in weight loss and exercise training had an additive improvement on cardiorespiratory fitness. The overweight young women had similar affect valence, arousal levels, and comparable pleasurable feelings to HIIT and MICT with LCs. Furthermore, as indicated by PACES, MICT was more enjoyable which may elicit better adherence, whereas HIIT with LCs seems to be more arduous despite its time-efficiency.
Collapse
|
49
|
Buechert M, Lange T, Deibert P, Urbain P. In Vivo Fat Quantification: Monitoring Effects of a 6-Week Non-Energy-Restricted Ketogenic Diet in Healthy Adults Using MRI, ADP and BIA. Nutrients 2020; 12:nu12010244. [PMID: 31963475 PMCID: PMC7019649 DOI: 10.3390/nu12010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022] Open
Abstract
The ketogenic diet (KD) is a very low-carbohydrate, high-fat, and adequate-protein diet that induces many metabolic adaptations when calorie intake is not limited. Its therapeutic use in a range of diseases including cancer is currently being investigated. Our objective was to firstly assess the impact of a 6-week non-energy-restricted KD on the abdominal fat distribution and the hepatic fat composition in healthy adults. Body fat distribution and composition were measured by comparing magnetic resonance imaging (MRI) and spectroscopy (MRS) results with air displacement plethysmography (ADP) and bioelectrical impedance analysis (BIA) measurements. A total of 12 subjects from the KetoPerformance study were recruited for this ancillary study. Body mass index (BMI), total mass, total fat mass, total subcutaneous mass, and subcutaneous fat mass decreased significantly. None of the MRS parameters showed a significant change during the study. Even though the average change in body weight was >2kg, no significant changes in intrahepatic lipid (IHL) content could be observed. Total fat mass and total fat-free mass derived from MRI has a strong correlation with the corresponding values derived from BIA and ADP data. BMI and the absolute fat parameter of all three modalities decreased, but there were no or only minor changes regarding the fat-free parameter. Magnetic resonance imaging provides body composition information on abdominal fat distribution changes during a ketogenic diet. This information is complementary to anthropomorphic and laboratory measures and is more detailed than the information provided by ADP and BIA measures. It was shown that there was no significant change in internal fat distribution, but there was a decrease in subcutaneous fat.
Collapse
Affiliation(s)
- Martin Buechert
- Department of Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Correspondence:
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Peter Deibert
- Institute for Exercise—und Occupational Medicine, Center for Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Paul Urbain
- Department of Medicine I, Section of Clinical Nutrition and Dietetics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
50
|
Valsdottir TD, Henriksen C, Odden N, Nellemann B, Jeppesen PB, Hisdal J, Westerberg AC, Jensen J. Effect of a Low-Carbohydrate High-Fat Diet and a Single Bout of Exercise on Glucose Tolerance, Lipid Profile and Endothelial Function in Normal Weight Young Healthy Females. Front Physiol 2019; 10:1499. [PMID: 31920704 PMCID: PMC6931312 DOI: 10.3389/fphys.2019.01499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Low-carbohydrate-high-fat (LCHF) diets are efficient for weight loss, and are also used by healthy people to maintain bodyweight. The main aim of this study was to investigate the effect of 3-week energy-balanced LCHF-diet, with >75 percentage energy (E%) from fat, on glucose tolerance and lipid profile in normal weight, young, healthy women. The second aim of the study was to investigate if a bout of exercise would prevent any negative effect of LCHF-diet on glucose tolerance. Seventeen females participated, age 23.5 ± 0.5 years; body mass index 21.0 ± 0.4 kg/m2, with a mean dietary intake of 78 ± 1 E% fat, 19 ± 1 E% protein and 3 ± 0 E% carbohydrates. Measurements were performed at baseline and post-intervention. Fasting glucose decreased from 4.7 ± 0.1 to 4.4 mmol/L (p < 0.001) during the dietary intervention whereas fasting insulin was unaffected. Glucose area under the curve (AUC) and insulin AUC did not change during an OGTT after the intervention. Before the intervention, a bout of aerobic exercise reduced fasting glucose (4.4 ± 0.1 mmol/L, p < 0.001) and glucose AUC (739 ± 41 to 661 ± 25, p = 0.008) during OGTT the following morning. After the intervention, exercise did not reduce fasting glucose the following morning, and glucose AUC during an OGTT increased compared to the day before (789 ± 43 to 889 ± 40 mmol/L∙120min–1, p = 0.001). AUC for insulin was unaffected. The dietary intervention increased total cholesterol (p < 0.001), low-density lipoprotein (p ≤ 0.001), high-density lipoprotein (p = 0.011), triglycerides (p = 0.035), and free fatty acids (p = 0.021). In conclusion, 3-week LCHF-diet reduced fasting glucose, while glucose tolerance was unaffected. A bout of exercise post-intervention did not decrease AUC glucose as it did at baseline. Total cholesterol increased, mainly due to increments in low-density lipoprotein. LCHF-diets should be further evaluated and carefully considered for healthy individuals.
Collapse
Affiliation(s)
- Thorhildur Ditta Valsdottir
- Department of Medicine, Atlantis Medical University College, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nancy Odden
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonny Hisdal
- Oslo Vascular Center, Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - Ane C Westerberg
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway.,Institute of Health Sciences, Kristiania University College, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|