1
|
Xu S, Liu K, Qian S, Wu J, Hu J, Zhou D, Zheng T. Mechanism of Tau protein incorporation into exosomes via cooperative recognition of KFERQ-like motifs by LAMP2A and HSP70. Neurochem Int 2025; 186:105976. [PMID: 40187566 DOI: 10.1016/j.neuint.2025.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Aggregates of the tau protein is a well-known hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau can be propagated between nerve cells or brain areas, similar as 'seed'. As a member of small extracellular vesicles, exosomes may act as one of the most important 'seeding machines', disseminating toxic tau and phosphorylated tau proteins between cells and thereby amplifying their neurotoxic effects. Therefore, exploring the underlying mechanisms of Tau loading into exosomes is of great importance. In this study, human P301L tau transfections were established in SH-SY5Y cells (SY5Y-EGFP-TauP301L cells). The content of membrane protein LAMP2A and HSP70 proteins was significantly increased in the SY5Y-EGFP-Tau P301L cells compared to control group. Tau containing KFERQ-like motifs pentapeptide interact with LAMP2A and HSP70, forming a multi-protein complex, which can be loaded into a subpopulation of exosomes. Moreover, knockout of LAMP2A significantly reduced the content of Tau protein in exosomes obtained from SY5Y-EGFP-Tau P301L cells. Thus, exosome-mediated secretion of tau protein may depend on the formation of multi-protein (KFERQ-like motif pentapeptide in tau,LAMP2A and HSP70) complex. These findings revealed the presence of a novel mechanism by which release of tau through exosome secretion pathway and that LAMP2A may play an important role in the regulation of exosome-mediated secretion of tau, which may become a potential therapeutic target for AD or other Tauopathies.
Collapse
Affiliation(s)
- Shan Xu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Kangyan Liu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiyan Qian
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jingying Wu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jialing Hu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
2
|
Bertolio M, Li Q, Mowry FE, Reynolds KE, Alananzeh R, Wei H, Keum K, Jarvis R, Wu J, Yang Y. Glutamatergic Regulation of miRNA-Containing Intraluminal Vesicle Trafficking and Extracellular Vesicle Secretion From Cortical Neurons. J Extracell Vesicles 2025; 14:e70100. [PMID: 40439163 PMCID: PMC12120566 DOI: 10.1002/jev2.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 05/08/2025] [Indexed: 06/02/2025] Open
Abstract
Neuronal extracellular vesicles (microvesicles and exosomes) are emerging secreted vesicular signals that play important roles in the CNS. Currently, little is known about how glutamatergic signalling affects the subcellular localisation of exosome precursor intraluminal vesicles (ILVs), microRNA (miR) packaging into ILVs and in vivo spreading of neuronal EVs. By selectively labelling ILVs and exosomes (but not plasma membrane-derived MVs) with GFP-tagged human CD63 (hCD63-GFP) in cortical neurons, we found that glutamate stimulation significantly redistributes subcellular localisation of hCD63-GFP+ ILVs, especially decreasing its co-localisation with multi-vesicular body (MVB) marker Rab7 while substantially promoting EV secretion. Interestingly, glutamate stimulation only modestly alters EV miR profiles based on small RNA sequencing. Subsequent in vivo cortical neuronal DREADD activation leads to significantly more widespread hCD63-GFP+ area in hCD63-GFPf/+ mice, consistently supporting the stimulatory effect of glutamatergic activation on neuronal EV secretion and spreading. Moreover, in situ localisation of hCD63-GFP+ ILVs and hCD63-GFP+ secreted exosomes from specialised HB9+ and DAT+ neurons were also illustrated in the CNS. Taken together, our results demonstrated that glutamate activity stimulates neuronal exosome secretion and spreading in vitro and in vivo, but only modestly affects miR cargo packaging in neuronal exosomes.
Collapse
Affiliation(s)
- Marcela Bertolio
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Qiyi Li
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Francesca E. Mowry
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Kathryn E. Reynolds
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Rashed Alananzeh
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTexasUSA
| | - Kyoeun Keum
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Rachel Jarvis
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Jiaqian Wu
- Department of Neurosurgery, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTexasUSA
| | - Yongjie Yang
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Zeng Y, Antoniou A. Regulation of synaptic mitochondria by extracellular vesicles and its implications for neuronal metabolism and synaptic plasticity. J Cereb Blood Flow Metab 2025:271678X251337630. [PMID: 40367393 PMCID: PMC12078259 DOI: 10.1177/0271678x251337630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Mitochondrial metabolism in neurons is necessary for energetically costly processes like synaptic transmission and plasticity. As post-mitotic cells, neurons are therefore faced with the challenge of maintaining healthy functioning mitochondria throughout lifetime. The precise mechanisms of mitochondrial maintenance in neurons, and particularly in morphologically complex dendrites and axons, are not fully understood. Evidence from several biological systems suggests the regulation of cellular metabolism by extracellular vesicles (EVs), secretory lipid-enclosed vesicles that have emerged as important mediators of cell communication. In the nervous system, neuronal and glial EVs were shown to regulate neuronal circuit development and function, at least in part via the transfer of protein and RNA cargo. Interestingly, EVs have been implicated in diseases characterized by altered metabolism, such as cancer and neurodegenerative diseases. Furthermore, nervous system EVs were shown to contain proteins related to metabolic processes, mitochondrial proteins and even intact mitochondria. Here, we present the current knowledge of the mechanisms underlying neuronal mitochondrial maintenance, and highlight recent evidence suggesting the regulation of synaptic mitochondria by neuronal and glial cell EVs. We further discuss the potential implications of EV-mediated regulation of mitochondrial maintenance and function in neuronal circuit development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuzhou Zeng
- Medical Faculty, University of Bonn, Bonn, Germany
| | - Anna Antoniou
- Medical Faculty, University of Bonn, Bonn, Germany
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Van Alstyne M, Pratt J, Parker R. Diverse influences on tau aggregation and implications for disease progression. Genes Dev 2025; 39:555-581. [PMID: 40113250 PMCID: PMC12047666 DOI: 10.1101/gad.352551.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Tau is an intrinsically disordered protein that accumulates in fibrillar aggregates in neurodegenerative diseases. The misfolding of tau can be understood as an equilibrium between different states and their propensity to form higher-order fibers, which is affected by several factors. First, modulation of the biochemical state of tau due to ionic conditions, post-translational modifications, cofactors, and interacting molecules or assemblies can affect the formation and structure of tau fibrils. Second, cellular processes impact tau aggregation through modulating stability, clearance, disaggregation, and transport. Third, through interactions with glial cells, the neuronal microenvironment can affect intraneuronal conditions with impacts on tau fibrilization and toxicity. Importantly, tau fibrils propagate through the brain via a "prion-like" manner, contributing to disease progression. This review highlights the biochemical and cellular pathways that modulate tau aggregation and discusses implications for pathobiology and tau-directed therapeutic approaches.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - James Pratt
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA;
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| |
Collapse
|
6
|
Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nat Rev Neurol 2025; 21:265-282. [PMID: 40181198 DOI: 10.1038/s41582-025-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Over the past few decades, extensive basic, translational and clinical research has been devoted to deciphering the physiological and pathogenic roles of extracellular vesicles (EVs) in the nervous system. The presence of brain cell-derived EVs in the blood, carrying diverse cargoes, has enabled the development of predictive, diagnostic, prognostic, disease-monitoring and treatment-response biomarkers for various neurological disorders. In this Review, we consider how EV biomarkers can bring us closer to understanding the complex pathogenesis of neurological disorders such as Alzheimer disease, Parkinson disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis and multiple sclerosis. We describe how translational research on EVs might unfold bidirectionally, proceeding from basic to clinical studies but also in the opposite direction, with biomarker findings in the clinic leading to novel hypotheses that can be tested in the laboratory. We demonstrate the potential value of EVs across all stages of the therapeutic development pipeline, from identifying therapeutic targets to the use of EVs as reporters in model systems and biomarkers in clinical research. Finally, we discuss how the cargo and physicochemical properties of naturally occurring and custom-engineered EVs can be leveraged as novel treatments and vehicles for drug delivery, potentially revolutionizing neurotherapeutics.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
7
|
Goff J, Khalifa M, Short SM, van der Graaf PH, Geerts H. Interactions of Therapeutic Antibodies With Presynaptically-Released Misfolded Proteins in Neurodegenerative Diseases. A Spatial Monte-Carlo Simulation Study. CPT Pharmacometrics Syst Pharmacol 2025. [PMID: 40296445 DOI: 10.1002/psp4.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
The spatial progression hypothesis of misfolded tau and alpha-synuclein proteins in Alzheimer's and Parkinson's Disease proposes the release of proteins from a presynaptic membrane followed by diffusion over the synaptic cleft and uptake by the postsynaptic membrane in the afferent neuron. A number of antibodies aiming to reduce this neuronal uptake by capturing these proteins in the extracellular space are currently in clinical development, so far without much success. For modeling the interaction between antibodies and misfolded proteins in the extremely small synaptic volume with only a few proteins navigating a crowded environment of transsynaptic proteins, traditional assumptions of ordinary differential equations (ODEs) break down. Here we use spatial Monte Carlo calculations of individual molecule trajectories in a realistic geometrical environment using the open-source software Mcell (mcell.org). For several different densities of transsynaptic proteins, we show that due to geometric constraints, less than 0.5% of the antibody in the brain interstitial fluid (ISF) can enter the crowded synaptic cleft. As a consequence, uptake of the seed-competent proteins is reduced by less than 10%, even at the highest concentration and for selective antibodies. Only the seed-competent protein that escapes the synaptic cleft (between 15% and 30%) is captured by the antibody. Given the extremely low penetrance of the antibodies, it is close to impossible for antibodies to interfere with the uptake mechanism that takes place in the synaptic cleft. These simulations using a detailed and realistic biological environment provide a possible explanation for the clinical trial failures of anti-tau and anti-αsynuclein antibodies.
Collapse
Affiliation(s)
- Jamie Goff
- Certara Predictive Technologies, Sheffield, UK
| | | | - Shaina M Short
- Certara Predictive Technologies, Radnor, Pennsylvania, USA
| | | | - Hugo Geerts
- Certara Predictive Technologies, Radnor, Pennsylvania, USA
| |
Collapse
|
8
|
Danis C, Dupré E, Bouillet T, Denéchaud M, Lefebvre C, Nguyen M, Mortelecque J, Cantrelle FX, Rain JC, Hanoulle X, Colin M, Buée L, Landrieu I. Inhibition of tau neuronal internalization using anti-tau single domain antibodies. Nat Commun 2025; 16:3162. [PMID: 40175345 PMCID: PMC11965310 DOI: 10.1038/s41467-025-58383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025] Open
Abstract
In Alzheimer's disease, tau pathology spreads across brain regions as the disease progresses. Intracellular tau can be released and taken up by nearby neurons. We evaluated single domain anti-tau antibodies, also called VHHs, as inhibitors of tau internalization. We identified three VHH inhibitors of tau uptake: A31, H3-2, and Z70mut1. These VHHs compete with the membrane protein LRP1, a major receptor mediating neuronal uptake of tau. A31 and Z70mut1 bind to microtubule binding domain repeats, which are involved in the interaction with LRP1. VHH H3-2 is the only VHH from our library that reduces the internalization of both monomeric tau and tau fibrils. VHH H3-2 binds a C-terminal tau epitope with high affinity. Its three-dimensional structure in complex with a tau peptide reveals a unique binding mode as a VHH-swapped dimer. These anti-tau VHHs are interesting tools to study tau prion-like propagation in tauopathies and potentially develop novel biotherapies.
Collapse
Affiliation(s)
- Clément Danis
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
| | - Elian Dupré
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Thomas Bouillet
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Marine Denéchaud
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Camille Lefebvre
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Marine Nguyen
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Justine Mortelecque
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | | | - Xavier Hanoulle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Morvane Colin
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| |
Collapse
|
9
|
Kalamvoki M. HSV-1 virions and related particles: biogenesis and implications in the infection. J Virol 2025; 99:e0107624. [PMID: 39898651 PMCID: PMC11915793 DOI: 10.1128/jvi.01076-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Virion formation and egress are sophisticated processes that rely on the spatial and temporal organization of host cell membranes and the manipulation of host machineries involved in protein sorting, membrane bending, fusion, and fission. These processes result in the formation of infectious virions, defective particles, and various vesicle-like structures. In herpes simplex virus 1 (HSV-1) infections, virions and capsid-less particles, known as light (L)-particles, are formed. HSV-1 infection also stimulates the release of particles that resemble extracellular vesicles (EVs). In productively infected cells, most EVs are generated through the CD63 tetraspanin biogenesis pathway and lack viral components. A smaller subset of EVs, generated through the endosomal sorting complexes required for transport (ESCRT) pathway, contains both viral and host factors. Viral mechanisms tightly regulate EV biogenesis, including the inhibition of autophagy-a process critical for increased production of CD63+ EVs during HSV-1 infection. Mutant viruses that fail to suppress autophagy instead promote microvesicle production from the plasma membrane. Additionally, the viral protein ICP0 (Infected Cell Protein 0) enhances EV biogenesis during HSV-1 infection. The different types of particles can be separated by density gradients due to their distinct biophysical properties. L-particles and ESCRT+ EVs display a pro-viral role, supporting viral replication, whereas CD63+ EVs exhibit antiviral effects. Overall, these studies highlight that HSV-1 infection yields numerous and diverse particles, with their type and composition shaped by the ability of the virus to evade host responses. These particles likely shape the infectious microenvironment and determine disease outcomes.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Bai L, Yu L, Ran M, Zhong X, Sun M, Xu M, Wang Y, Yan X, Lee RJ, Tang Y, Xie J. Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders. Int J Mol Sci 2025; 26:2491. [PMID: 40141135 PMCID: PMC11942545 DOI: 10.3390/ijms26062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities-particularly their capacity to traverse the blood-brain barrier-make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood-brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Collapse
Affiliation(s)
- Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Robert J. Lee
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| |
Collapse
|
11
|
Nabizadeh F. Connectomics and neurotransmitter receptor profile explain regional tau pathology in Alzheimer's disease. Cereb Cortex 2025; 35:bhaf053. [PMID: 40083151 DOI: 10.1093/cercor/bhaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025] Open
Abstract
Alzheimer's disease tau pathology spreads through neuronal pathways and synaptic connections. Alteration in synaptic activity facilitates tau spreading. Multiple neurotransmitter systems are shown to be implicated in Alzheimer's disease, but their influence on the trans-synaptic spread of tau is not well understood. I aimed to combine resting-state functional magnetic resonance imaging connectomics, neurotransmitter receptor profiles, and tau-PET data to explain the regional susceptibility to tau accumulation. The tau-PET imaging data of 161 amyloid-beta-negative cognitively unimpaired participants as control and 259 amyloid-beta-positive subjects were recruited from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Linear regression analysis revealed that a higher tau-PET z-score is associated with a lower density of nine receptors in the serotonin, dopamine, gamma-aminobutyric acid (GABA), acetylcholine, and glutamate systems. Furthermore, adding four neurotransmitter receptor density z-scores significantly increased the proportion of explained variance by 3% to 7% compared to the epicenter-connectivity distance model in the group-level analysis. Also, adding nine neurotransmitter receptor density z-scores to the epicenter-connectivity distance model increased the explanatory power of variability in individual levels of tau-PET z-score by 3% to 8%. The current study demonstrated the additive value of atlas-based neurotransmitter receptor mapping and individual-level amyloid-beta-PET scans to enhance the connectivity-based explanation of tau accumulation.
Collapse
|
12
|
Jia C, Chai J, Zhang S, Sun Y, He L, Sang Z, Chen D, Zheng X. The Advancements of Marine Natural Products in the Treatment of Alzheimer's Disease: A Study Based on Cell and Animal Experiments. Mar Drugs 2025; 23:91. [PMID: 40137277 PMCID: PMC11943648 DOI: 10.3390/md23030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As life expectancy rises and the aging population grows, Alzheimer's disease (AD) has become a significant global health concern. AD is a complex neurodegenerative disorder with an unclear etiology. Current hypotheses primarily focus on β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, and neuroinflammation as key pathological processes. Given the limited efficacy of existing therapeutic strategies, there is an urgent need to explore novel treatment options. Marine natural products have garnered significant attention due to their unique chemical structures and diverse bioactivities, demonstrating potential for multi-target interventions in AD. This review systematically summarizes the roles of marine-derived compounds, including polysaccharides, carotenoids, and polyphenols, in modulating Aβ aggregation, mitigating tau protein pathology, and regulating gut-brain axis dysfunction. Furthermore, the challenges of current research are discussed, with an emphasis on improving blood-brain barrier permeability and optimizing drug delivery systems to facilitate clinical translation.
Collapse
Affiliation(s)
- Chunbo Jia
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Chai
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shenyun Zhang
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yining Sun
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
13
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
14
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
15
|
Spinelli S, Tripodi D, Corti N, Zocchi E, Bruschi M, Leoni V, Dominici R. Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System. Int J Mol Sci 2025; 26:1345. [PMID: 39941112 PMCID: PMC11818369 DOI: 10.3390/ijms26031345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, playing a pivotal role in CNS development and the maintenance of homeostasis. Current evidence indicates that exosomes from CNS cells may function as either inhibitors or enhancers in the onset and progression of neurological disorders. Furthermore, exosomes have been found to transport disease-related molecules across the blood-brain barrier, enabling their detection in peripheral blood. This distinctive property positions exosomes as promising diagnostic biomarkers for neurological conditions. Additionally, a growing body of research suggests that exosomes derived from mesenchymal stem cells exhibit reparative effects in the context of neurological disorders. This review provides a concise overview of the functions of exosomes in both physiological and pathological states, with particular emphasis on their emerging roles as potential diagnostic biomarkers and therapeutic agents in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Nicole Corti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| |
Collapse
|
16
|
Hernandez P, Rackles E, Alboniga OE, Martínez‐Lage P, Camacho EN, Onaindia A, Fernandez M, Talamillo A, Falcon‐Perez JM. Metabolic Profiling of Brain Tissue and Brain-Derived Extracellular Vesicles in Alzheimer's Disease. J Extracell Vesicles 2025; 14:e70043. [PMID: 39901643 PMCID: PMC11791017 DOI: 10.1002/jev2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Alzheimer´s disease (AD) is the most frequent neurodegenerative disorder in the world and is characterised by the loss of memory and other cognitive functions. Metabolic changes associated with AD are important players in the development of the disease. However, the mechanism underlying these changes is still unknown. Extracellular vesicles (EVs) are nano-sized particles that play an important role in regulating pathophysiological processes and are a non-invasive manner to obtain information of the cell that is secreting them. The analysis of brain-derived EVs (bdEVs) will provide new insights in the metabolic processes associated with AD. To characterize bdEVs in AD, we optimised a method to isolate them from tissue of different brain regions, obtaining the highest enrichment in isolations from the temporal cortex. We performed unbiased untargeted metabolomics analysis on post-mortem human temporal cortex tissue and bdEVs from the same region of AD patients and healthy controls. Both, univariate and multivariate statistical analysis were used to determine the metabolites that influence the separation between AD patients and controls. Interestingly, a clear separation between control and AD groups was obtained with bdEVs, which allowed to select 12 relevant features by a validated PLS-DA model. Furthermore, comparison of tissue and bdEVs identified 68 common features. The pathway enrichment analysis of the common metabolites showed that the alanine, aspartate and glutamate pathway and the arginine, phenylalanine, tyrosine pathway were the most significant ones in the separation between the AD patients and controls. The phenylalanine, tyrosine and tryptophan pathway, still had a very high influence in the separation between groups, albeit not significant. Notably, some metabolites were identified for the first time in bdEVs. For example, the N-acetyl aspartic acid (NAA) metabolite present in bdEVs was suitable to differentiate AD patients from healthy controls. Furthermore, the analysis of the hippocampus, midbrain, temporal and entorhinal cortex and their respective bdEVs indicated that the metabolic profiles of different brain areas were distinct and showed some correlation between the metabolome of the tissue and its respective bdEVs. Thus, our study highlights the potential of bdEVs to understand the metabolic fingerprint associated with AD and their potential use as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Patricia Hernandez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Pablo Martínez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Emma N. Camacho
- Anatomic PathologyAraba University HospitalVitoria‐GazteizAlavaSpain
| | - Arantza Onaindia
- Bioaraba Health Research InstituteOncohaematology Research GroupVitoria‐GasteizSpain
- Pathology DepartmentOsakidetza Basque Health ServiceAraba University HospitalVitoria‐GasteizSpain
| | - Manuel Fernandez
- Neurological DepartmentHospital Universitario Cruces (HUC)BarakaldoSpain
- Neuroscience DepartmentUniversidad del País Vasco (UPV‐EHU)LeioaSpain
| | - Ana Talamillo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Biomedical Research Centre of Hepatic and Digestive Diseases (CIBERehd)Carlos III Health Institute (ISCIII)MadridSpain
- IKERBASQUE Basque Foundation for ScienceBilbao, BizkaiaSpain
| |
Collapse
|
17
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Roemer-Cassiano SN, Wagner F, Evangelista L, Rauchmann BS, Dehsarvi A, Steward A, Dewenter A, Biel D, Zhu Z, Pescoller J, Gross M, Perneczky R, Malpetti M, Ewers M, Schöll M, Dichgans M, Höglinger GU, Brendel M, Jäkel S, Franzmeier N. Amyloid-associated hyperconnectivity drives tau spread across connected brain regions in Alzheimer's disease. Sci Transl Med 2025; 17:eadp2564. [PMID: 39841807 DOI: 10.1126/scitranslmed.adp2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner. Here, we hypothesized that neuronal hyperactivity and hypersynchronicity, resulting in functional connectivity increases, constitute a crucial mechanism by which Aβ facilitates the spreading of tau pathology. By combining Aβ positron emission tomography (PET), resting-state functional magnetic resonance imaging, and longitudinal tau-PET in 69 cognitively normal amyloid-negative controls and 140 amyloid-positive patients covering the AD spectrum, we confirmed that Aβ induces hyperconnectivity of temporal lobe tau epicenters to posterior brain regions that are vulnerable to tau accumulation in AD. This was replicated in an independent sample of 55 controls and 345 individuals with preclinical AD and low cortical tau-PET uptake, suggesting that the emergence of Aβ-related hyperconnectivity precedes neocortical tau spreading . Last, using longitudinal tau-PET and mediation analysis, we confirmed that these Aβ-related connectivity increases in tau epicenters to typical tau-vulnerable brain regions in AD mediated the effect of Aβ on faster tau accumulation, unveiling increased connectivity as a potential causal link between the two AD hallmark pathologies. Together, these findings suggest that Aβ promotes tau spreading by eliciting neuronal hyperconnectivity and that targeting Aβ-related neuronal hyperconnectivity may attenuate tau spreading in AD.
Collapse
Affiliation(s)
- Sebastian N Roemer-Cassiano
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lisa Evangelista
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Aging Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, W6 8RP London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, S10 2HQ Sheffield, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
| |
Collapse
|
19
|
Lo Cascio F, Park S, Sengupta U, Puangmalai N, Bhatt N, Shchankin N, Jerez C, Moreno N, Bittar A, Xavier R, Zhao Y, Wang C, Fu H, Ma Q, Montalbano M, Kayed R. Brain-derived tau oligomer polymorphs: distinct aggregations, stability profiles, and biological activities. Commun Biol 2025; 8:53. [PMID: 39809992 PMCID: PMC11733013 DOI: 10.1038/s42003-025-07499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs. Here, we investigate the structural and functional differences of amplified brain-derived tau oligomers (aBDTOs) from AD, DLB, and PSP. Our results indicate that the aBDTOs possess different structural and morphological features that impact neuronal function, gene regulation, and ultimately disease progression. The distinct tau oligomeric polymorphs may thus contribute to the development of clinical phenotypes and shape the progression of diseases. Our results can provide insight into developing personalized therapy to target a specific neurotoxic tau polymorph.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suhyeorn Park
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikita Shchankin
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi Moreno
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rhea Xavier
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
20
|
Fowler SL, Behr TS, Turkes E, O'Brien DP, Cauhy PM, Rawlinson I, Edmonds M, Foiani MS, Schaler A, Crowley G, Bez S, Ficulle E, Tsefou E, Fischer R, Geary B, Gaur P, Miller C, D'Acunzo P, Levy E, Duff KE, Ryskeldi-Falcon B. Tau filaments are tethered within brain extracellular vesicles in Alzheimer's disease. Nat Neurosci 2025; 28:40-48. [PMID: 39572740 PMCID: PMC11706778 DOI: 10.1038/s41593-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024]
Abstract
The abnormal assembly of tau protein in neurons is a pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). Assembled tau associates with extracellular vesicles (EVs) in the central nervous system of individuals with AD, which is linked to its clearance and prion-like propagation. However, the identities of the assembled tau species and EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron tomography and single-particle cryo-electron microscopy to study brain EVs from individuals with AD. We found tau filaments composed mainly of truncated tau that were enclosed within EVs enriched in endo-lysosomal proteins. We observed multiple filament interactions, including with molecules that tethered filaments to the EV limiting membrane, suggesting selective packaging. Our findings will guide studies into the molecular mechanisms of EV-mediated secretion of assembled tau and inform the targeting of EV-associated tau as potential therapeutic and biomarker strategies for AD.
Collapse
Affiliation(s)
- Stephanie L Fowler
- UK Dementia Research Institute at University College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine, University of Oxford, Oxford, UK
| | - Tiana S Behr
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Isadora Rawlinson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marisa Edmonds
- UK Dementia Research Institute at University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK
| | - Ari Schaler
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA
| | - Gerard Crowley
- UK Dementia Research Institute at University College London, London, UK
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Ficulle
- UK Dementia Research Institute at University College London, London, UK
| | - Eliona Tsefou
- UK Dementia Research Institute at University College London, London, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beth Geary
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pallavi Gaur
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Chelsea Miller
- The Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA.
| | | |
Collapse
|
21
|
Mufson EJ, Perez SE. The cholinotrophic system in Down syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:185-213. [PMID: 40340061 DOI: 10.1016/b978-0-443-19088-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cholinergic basal forebrain (CBF) projection neurons within the nucleus basalis and striatal cholinergic interneurons degenerate in individuals with Down syndrome (DS). However, the neuropathobiology of these diverse cholinergic phenotypes remains underinvestigated. This review summarizes the alterations of cholinergic, neurotrophic survival and cell death factors as well as tau pathology and amyloidopathy, and their effects upon these cell types in DS. In trisomy, the developing cholinergic system remains stable, whereas the neurotrophic receptors are compromised between control and DS cases. Both cholinergic neuronal phenotypes display severe cellular degeneration in both adult and the aged people with DS. Although developing cholinergic striatal neurons display a similar morphology between phenotypes, cholinergic striatal neurons appear dystrophic in adults with DS. Both cholinergic cell types display tau tangle pathology in elders with DS. Novel findings suggest that alterations in plasma and cerebral spinal fluid levels of proNGF, NGF metabolites, and select classes of neuronal genes are potential biomarkers to distinguish nondemented from demented people with DS. Compounds that target cholinergic pathways, TrkA agonists, p75NTR/proNGF small molecular antagonists, NGF metabolites, and select gene ontology classes are potential targets to slow degeneration of the CBF memory connectome in DS with translation to AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Translational Neuroscience, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States; Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Sylvia E Perez
- Department of Translational Neuroscience, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
22
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Marvian AT, Strauss T, Tang Q, Tuck BJ, Keeling S, Rüdiger D, Mirzazadeh Dizaji N, Mohammad-Beigi H, Nuscher B, Chakraborty P, Sutherland DS, McEwan WA, Köglsperger T, Zahler S, Zweckstetter M, Lichtenthaler SF, Wurst W, Schwarz S, Höglinger G. Distinct regulation of Tau Monomer and aggregate uptake and intracellular accumulation in human neurons. Mol Neurodegener 2024; 19:100. [PMID: 39736627 DOI: 10.1186/s13024-024-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates. However, similarities or differences in neuronal transport mechanisms between Tau species remain elusive. METHOD Monomers, oligomers, and fibrils of recombinant 2N4R Tau were produced and characterized by biochemical and biophysical methods. A neuronal eTau uptake and accumulation assay was developed for human induced pluripotent stem cell-derived neurons (iPSCNs) and Lund human mesencephalic cells (LUHMES)-derived neurons. Mechanisms of uptake and cellular accumulation of eTau species were studied by using small molecule inhibitors of endocytic mechanisms and siRNAs targeting Tau uptake mediators. RESULTS Extracellular Tau aggregates accumulated more than monomers in human neurons, mainly due to the higher efficiency of small fibrillar and soluble oligomeric aggregates in intraneuronal accumulation. A competition assay revealed a distinction in the neuronal accumulation between physiological eTau Monomers and pathology-relevant aggregates, suggesting differential transport mechanisms. Blocking heparan sulfate proteoglycans (HSPGs) with heparin only inhibited the accumulation of eTau aggregates, whereas monomers' uptake remained unaltered. At the molecular level, the downregulation of genes involved in HSPG synthesis exclusively blocked neuronal accumulation of eTau aggregates but not monomers, suggesting its role in the transport of pathologic Tau. Moreover, the knockdown of LRP1, as a receptor of Tau, mainly reduced the accumulation of monomeric form, confirming its involvement in Tau's physiological transport. CONCLUSION These data propose that despite the similarity in the cellular mechanism, the uptake and accumulation of eTau Monomers and aggregates in human neurons are regulated by different molecular mediators. Thus, they address the possibility of targeting the pathological spreading of Tau aggregates without disturbing the probable physiological or non-pathogenic transport of Tau Monomers.
Collapse
Affiliation(s)
- Amir T Marvian
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Tabea Strauss
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Qilin Tang
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel Rüdiger
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Negar Mirzazadeh Dizaji
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Brigitte Nuscher
- Division of Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Köglsperger
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Gӧttingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Sigrid Schwarz
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Haag, Geriatric Clinic Haag, Oberbayern, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurology, Hanover Medical School, Hanover, Germany.
- Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
24
|
Gawor K, Tomé SO, Vandenberghe R, Van Damme P, Vandenbulcke M, Otto M, von Arnim CAF, Ghebremedhin E, Ronisz A, Ospitalieri S, Blaschko M, Thal DR. Amygdala-predominant α-synuclein pathology is associated with exacerbated hippocampal neuron loss in Alzheimer's disease. Brain Commun 2024; 6:fcae442. [PMID: 39659977 PMCID: PMC11631359 DOI: 10.1093/braincomms/fcae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
Misfolded α-synuclein protein accumulates in 43-63% of individuals with symptomatic Alzheimer's disease. Two main patterns of comorbid α-synuclein pathology have been identified: caudo-rostral and amygdala-predominant. α-Synuclein aggregates have been shown to interact with the transactive response DNA-binding protein 43 (TDP-43) and abnormally phosphorylated tau protein. All these proteins accumulate in the amygdala, which is anatomically connected with the hippocampus. However, the specific role of amygdala-predominant α-synuclein pathology in the progression of Alzheimer's disease and hippocampal degeneration remains unclear. In this cross-sectional study, we analysed 291 autopsy brains from both demented and non-demented elderly individuals neuropathologically. Neuronal density in the CA1 region of the hippocampus was assessed for all cases. We semiquantitatively evaluated α-synuclein pathology severity across seven brain regions and calculated a ratio of limbic to brainstem α-synuclein pathology severity, which was used to stratify the cases into two distinct spreading patterns. In the 99 symptomatic Alzheimer's disease cases, we assessed severity of limbic-predominant age-related TDP-43 neuropathological changes and CA1 phosphorylated tau density. We performed triple fluorescence staining of medial temporal lobe samples with antibodies against phosphorylated TDP-43, α-synuclein and phosphorylated tau. Finally, we employed path analysis to determine the association network of various parameters of limbic pathology in Alzheimer's disease cases and CA1 neuronal density. We identified an association between the amygdala-predominant αSyn pathology pattern and decreased neuronal density in the CA1 region. We found that Alzheimer's disease cases with an amygdala-predominant α-synuclein pattern exhibited the highest TDP-43 severity and prevalence of TDP-43 inclusions in the dentate gyrus among all groups, while those with the caudo-rostral pattern had the lowest severity of Alzheimer's disease neuropathological changes. We observed colocalization of TDP-43, aggregated α-synuclein and hyperphosphorylated tau in cytoplasmic inclusions within hippocampal and amygdala neurons of Alzheimer's disease cases. Path analysis modelling suggests that the relationship between amygdala-predominant α-synuclein pathology and CA1 neuron loss is partially mediated by hippocampal tau and TDP-43 aggregates. Our findings suggest that Alzheimer's disease cases with amygdala-predominant α-synuclein pathology may constitute a distinct group with more severe hippocampal damage, a higher TDP-43 burden and potential interactions among α-synuclein, TDP-43 and hyperphosphorylated tau.
Collapse
Affiliation(s)
- Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
- Laboratory for Neurobiology, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Estifanos Ghebremedhin
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe University, Frankfurt am Main 60596, Germany
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Matthew Blaschko
- Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven 3000, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
25
|
An C, Cai H, Ren Z, Fu X, Quan S, Jia L. Biofluid biomarkers for Alzheimer's disease: past, present, and future. MEDICAL REVIEW (2021) 2024; 4:467-491. [PMID: 39664082 PMCID: PMC11629312 DOI: 10.1515/mr-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/04/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with tremendous social and economic burden. Therefore, early and accurate diagnosis is imperative for effective treatment or prevention of the disease. Cerebrospinal fluid and blood biomarkers emerge as favorable diagnostic tools due to their relative accessibility and potential for widespread clinical use. This review focuses on the AT(N) biomarker system, which includes biomarkers reflecting AD core pathologies, amyloid deposition, and pathological tau, as well as neurodegeneration. Novel biomarkers associated with inflammation/immunity, synaptic dysfunction, vascular pathology, and α-synucleinopathy, which might contribute to either the pathogenesis or the clinical progression of AD, have also been discussed. Other emerging candidates including non-coding RNAs, metabolites, and extracellular vesicle-based markers have also enriched the biofluid biomarker landscape for AD. Moreover, the review discusses the current challenges of biofluid biomarkers in AD diagnosis and offers insights into the prospective future development.
Collapse
Affiliation(s)
- Chengyu An
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
26
|
Weir JS, Hanssen KS, Winter-Hjelm N, Sandvig A, Sandvig I. Evolving alterations of structural organization and functional connectivity in feedforward neural networks after induced P301L tau mutation. Eur J Neurosci 2024; 60:7228-7248. [PMID: 39622242 DOI: 10.1111/ejn.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Reciprocal structure-function relationships underlie both healthy and pathological behaviours in complex neural networks. Thus, understanding neuropathology and network dysfunction requires a thorough investigation of the complex interactions between structural and functional network reconfigurations in response to perturbation. Such adaptations are often difficult to study in vivo. For example, subtle, evolving changes in synaptic connectivity, transmission and the electrophysiological shift from healthy to pathological states, for example alterations that may be associated with evolving neurodegenerative disease, such as Alzheimer's, are difficult to study in the brain. Engineered in vitro neural networks are powerful models that enable selective targeting, manipulation and monitoring of dynamic neural network behaviour at the micro- and mesoscale in physiological and pathological conditions. In this study, we engineered feedforward cortical neural networks using two-nodal microfluidic devices with controllable connectivity interfaced with microelectrode arrays (mMEAs). We induced P301L mutated tau protein to the presynaptic node of these networks and monitored network dynamics over three weeks. Induced perturbation resulted in altered structural organization and extensive axonal retraction starting in the perturbed node. Perturbed networks also exhibited functional changes in intranodal activity, which manifested as an overall decline in both firing rate and bursting activity, with a progressive increase in synchrony over time and a decrease in internodal signal propagation between pre- and post-synaptic nodes. These results provide insights into dynamic structural and functional reconfigurations at the micro- and mesoscale as a result of evolving pathology and illustrate the utility of engineered networks as models of network function and dysfunction.
Collapse
Affiliation(s)
- Janelle S Weir
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurorehabilitation, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
27
|
Fukumoto H, Kao TH, Tai CY, Jang MK, Miyamoto M. High-molecular-weight oligomer tau (HMWoTau) species are dramatically increased in Braak-stage dependent manner in the frontal lobe of human brains, demonstrated by a novel oligomer Tau ELISA with a mouse monoclonal antibody (APNmAb005). FASEB J 2024; 38:e70160. [PMID: 39565643 DOI: 10.1096/fj.202401704r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Disease-specific oligomers Tau assay system is anticipated in Alzheimer disease (AD) to elucidate their etiological roles. We developed a highly sensitive and selective ELISA for high-molecular-weight oligomer tau (HMWoTau) with LLOQ of 0.3 pg/well for the first time, using a novel mouse monoclonal antibody APNmAb005. The target molecule was identified as HMWoTau with circa 2000 kD as a minimum size and the more oligomerized species (>5000 kD), in combination analysis with Size-Exclusion-Chromatography and Sucrose-Density-Gradient-Centrifugation for both recombinant human (rh) Tau-derived aggregates and AD brain-lysates in PBS(-). HMWoTau was labeled by Thioflavin S and visualized as a homogeneous globular particle (about 30 nm in diameter) by two different technologies of atomic force microscopy and dSTORM-Nanoimager. Specific quantitation was also confirmed by immune-absorption, rhHMWoTau-spiked, and cross-reactivity studies. APNmAb005 failed to detect the HMWoTau signal by treatment with DTT/SDS under no influence on the pan-tau antibody, indicating its conformation-specific recognition. APNmAb005-ELISA showed AD-specific and statistically significant ELISA signals from 1 ng brain lysate protein/well. Analysis of the frontal neocortex (N = 40, Braak stage I-VI) by ELISA revealed the detection-limit levels of HMWoTau species at stage I-III, and drastic and statistically significant increases at stage V/VI (AD). By contrast, total Tau and p181 Tau showed 1/4-1/5 levels of AD even at Stage I, while both tau species also showed a statistically significant increase in AD. In sum, our novel APNmAb005-ELISA clarified the disease-specific increase in HMWoTau species and will be useful for not only further etiological elucidation but also the potential diagnostics in AD and relevant tauopathy.
Collapse
Affiliation(s)
- Hiroaki Fukumoto
- Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan
| | - Tzu-Huei Kao
- Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan
| | | | | | - Masaomi Miyamoto
- Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan
| |
Collapse
|
28
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
29
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
30
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
31
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
32
|
Zhou F, Zhao Y, Sun Y, Chen W. Molecular Insights into Tau Pathology and its Therapeutic Strategies in Alzheimer's Disease. J Integr Neurosci 2024; 23:197. [PMID: 39613463 DOI: 10.31083/j.jin2311197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 12/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The two major hallmarks of this disease are extracellular amyloid plaques and intracellular neurofibrillary tangles in the brain, accompanied by loss of neurons and synapses. The plaques and tangles mainly consist of amyloid-β (Aβ) and tau protein, respectively. Most of the therapeutic strategies for AD to date have focused on Aβ. However, there is still no effective therapy available. In recent years, the clinical therapeutic failure of targeting Aβ pathology has resulted in increased interest towards tau-based therapeutics. In the current review, we focus on the research progress regarding the pathological mechanisms of tau protein in this disease and discuss tau-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| |
Collapse
|
33
|
Sattarov R, Havers M, Orbjörn C, Stomrud E, Janelidze S, Laurell T, Mattsson-Carlgren N. Phosphorylated tau in cerebrospinal fluid-derived extracellular vesicles in Alzheimer's disease: a pilot study. Sci Rep 2024; 14:25419. [PMID: 39455624 PMCID: PMC11511998 DOI: 10.1038/s41598-024-75406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by brain aggregation of β-amyloid (Aβ) peptides and phosphorylated tau (P-tau) proteins. Extracellular vesicles (EVs) can be isolated and studied for potential roles in disease. While several studies have tested plasma-derived EVs in AD, few have analyzed EVs from cerebrospinal fluid (CSF), which are potentially more closely related to brain changes. This study included 20 AD patients and 20 cognitively unimpaired (CU) participants. Using a novel EV isolation method based on acoustic trapping, we isolated and purified EVs from minimal CSF volumes. EVs were lysed and analyzed by immunoassays for P-tau217 and P-tau181. Isolation was confirmed through transmission electron microscopy and the presence of EV-specific markers (CD9, CD63, CD81, ATP1A3). Nanoparticle tracking analysis revealed a high variance in EV distribution. AD patients exhibited increased P-tau181 and decreased P-tau217 in EVs, leading to a higher EV P-tau181/P-tau217 ratio compared to CU. No significant differences in EV counts or sizes were observed between AD and CU groups. This study is the first to use acoustic trapping to isolate EVs from CSF and demonstrates differential P-tau content in AD-derived EVs, warranting further research to understand the relationship between these EV changes and brain pathology.
Collapse
Affiliation(s)
- Roman Sattarov
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | - Megan Havers
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Camilla Orbjörn
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
34
|
Tyagi M, Chadha R, de Hoog E, Sullivan KR, Walker AC, Northrop A, Fabian B, Fuxreiter M, Hyman BT, Shepherd JD. Arc mediates intercellular tau transmission via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619703. [PMID: 39484489 PMCID: PMC11526995 DOI: 10.1101/2024.10.22.619703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular neurofibrillary tangles that consist of misfolded tau protein1 cause neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Tau pathology spreads cell-to-cell2 but the exact mechanisms of tau release and intercellular transmission remain poorly defined. Tau is released from neurons as free protein or in extracellular vesicles (EVs)3-5 but the role of these different release mechanisms in intercellular tau transmission is unclear. Here, we show that the neuronal gene Arc is critical for packaging tau into EVs. Brain EVs purified from human tau (hTau) transgenic rTg4510 mice (rTgWT) contain high levels of hTau that are capable of seeding tau pathology. In contrast, EVs purified from rTgWT crossed with Arc knock-out mice (rTgArc KO) have significantly less hTau and cannot seed tau aggregation. Arc facilitates the release of hTau in EVs produced via the I-BAR protein IRSp53, but not free tau. Arc protein directly binds hTau to form a fuzzy complex that we identified in both mouse and human brain tissue. We find that pathological intracellular hTau accumulates in neurons in rTgArc KO mice, which correlates with accelerated neuron loss in the hippocampus. Finally, we find that intercellular tau transmission is significantly abrogated in Arc KO mice. We conclude that Arc-dependent release of tau in EVs plays a significant role in intracellular tau elimination and intercellular tau transmission.
Collapse
Affiliation(s)
- Mitali Tyagi
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Eric de Hoog
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | | | - Alicia C. Walker
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Ava Northrop
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Germany
| | - Monika Fuxreiter
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
35
|
Protto V, Miteva MT, Iannuzzi F, Marcocci ME, Li Puma DD, Piacentini R, Belli M, Sansone L, Pietrantoni A, Grassi C, Palamara AT, De Chiara G. HSV-1 infection induces phosphorylated tau propagation among neurons via extracellular vesicles. mBio 2024; 15:e0152224. [PMID: 39189744 PMCID: PMC11481531 DOI: 10.1128/mbio.01522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular vesicles (EV), key players in cell-to-cell communication, may contribute to disease propagation in several neurodegenerative diseases, including Alzheimer's disease (AD), by favoring the dissemination of neurotoxic proteins within the brain. Interestingly, growing evidence supports the role of herpes simplex virus type 1 (HSV-1) infection in the pathogenesis of AD. Here, we investigated whether HSV-1 infection could promote the spread of phosphorylated tau (ptau) among neurons via EV. We analyzed the ptau species that were secreted via EV following HSV-1 infection in neuroblastoma cells and primary neurons, focusing particularly on T205, T181, and T217, the phosphorylation sites mainly associated with AD. Moreover, by overexpressing human tau tagged with GFP (htauGFP), we found that recipient tau knockout (KO) neurons uptook EV that are loaded with HSV-1-induced phtauGFP. Finally, we exploited an in vivo model of acute infection and assessed that cerebral HSV-1 infection promotes the release of ptau via EV in the brain of infected mice. Overall, our data suggest that, following HSV-1 infection, EV play a role in tau spreading within the brain, thus contributing to neurodegeneration.IMPORTANCEHerpes simplex virus type 1 (HSV-1) infection that reaches the brain has been repeatedly linked with the appearance of the pathognomonic markers of Alzheimer's disease (AD), including accumulation of amyloid beta and hyperphosphorylated tau proteins, and cognitive deficits. AD is a multifactorial neurodegenerative disease representing the most common form of dementia in the elderly, and no cure is currently available, thus prompting additional investigation on potential risk factors and pathological mechanisms. Here, we demonstrate that the virus exploits the extracellular vesicles (EV) to disseminate phosphorylated tau (ptau) among brain cells. Importantly, we provide evidence that the HSV-1-induced EV-bearing ptau can be undertaken by recipient neurons, thus likely contributing to misfolding and aggregation of native tau, as reported for other AD models. Hence, our data highlight a novel mechanism exploited by HSV-1 to propagate tau-related damage in the brain.
Collapse
Affiliation(s)
- V. Protto
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M. T. Miteva
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - F. Iannuzzi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M. E. Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - D. D. Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - R. Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M. Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - L. Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - A. Pietrantoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C. Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A. T. Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - G. De Chiara
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
36
|
D'Egidio F, Castelli V, d'Angelo M, Ammannito F, Quintiliani M, Cimini A. Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol Dis 2024; 201:106663. [PMID: 39251030 DOI: 10.1016/j.nbd.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
The functionality of the central nervous system (CNS) relies on the connection, integration, and the exchange of information among neural cells. The crosstalk among glial cells and neurons is pivotal for a series of neural functions, such as development of the nervous system, electric conduction, synaptic transmission, neural circuit establishment, and brain homeostasis. Glial cells are crucial players in the maintenance of brain functionality in physiological and disease conditions. Neuroinflammation is a common pathological process in various brain disorders, such as neurodegenerative diseases, and infections. Glial cells, including astrocytes, microglia, and oligodendrocytes, are the main mediators of neuroinflammation, as they can sense and respond to brain insults by releasing pro-inflammatory or anti-inflammatory factors. Recent evidence indicates that extracellular vesicles (EVs) are pivotal players in the intercellular communication that underlies physiological and pathological processes. In particular, glia-derived EVs play relevant roles in modulating neuroinflammation, either by promoting or inhibiting the activation of glial cells and neurons, or by facilitating the clearance or propagation of pathogenic proteins. The involvement of EVs in neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Multiple Sclerosis (MS)- which share hallmarks such as neuroinflammation and oxidative stress to DNA damage, alterations in neurotrophin levels, mitochondrial impairment, and altered protein dynamics- will be dissected, showing how EVs act as pivotal cell-cell mediators of toxic stimuli, thereby propagating degeneration and cell death signaling. Thus, this review focuses on the EVs secreted by microglia, astrocytes, oligodendrocytes and in neuroinflammatory conditions, emphasizing on their effects on neurons and on central nervous system functions, considering both their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo".
| | - Fabrizio Ammannito
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| |
Collapse
|
37
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
38
|
Ikezu T, Yang Y, Verderio C, Krämer-Albers EM. Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System. J Neurosci 2024; 44:e1170242024. [PMID: 39358029 PMCID: PMC11450539 DOI: 10.1523/jneurosci.1170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Claudia Verderio
- Department of Biomedical Sciences, CNR Institute of Neuroscience, Università Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Rhineland Palatinate, Germany
| |
Collapse
|
39
|
Li Q, Liu H, Zhu Q, Zhang R, Liang D, Zhang J, Jin R, Chen Y, Qin C, Teng J. Induction of tau pathology and motor dysfunction in mice by urinary exosomes from progressive supranuclear palsy patients. Brain Res Bull 2024; 216:111046. [PMID: 39111605 DOI: 10.1016/j.brainresbull.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is characterized by the presence of hyperphosphorylated and misfolded tau aggregates in neurons and glia. Recent studies have illuminated the prion-like cell-to-cell propagation of tau via exosomes. Recognizing the potential significance of excretion through urine as a crucial pathway for eliminating pathological tau from the central nervous system, this study aimed to investigate whether exosomes derived from the urine of PSP-Richardson's syndrome (PSP-RS) patients can elicit tau pathology and PSP-like symptoms in mice. METHODS Urinary exosomes obtained from PSP-RS patients and normal controls (NCs) were stereotactically injected into the bilateral globus pallidus of mouse brains. Behavioral analyses were conducted every 3 months post-injection. After 6 months, mice were sacrificed for pathological evaluation. RESULTS Elevated levels of phosphorylated tau and neural cell markers were observed in urinary exosomes from PSP-RS patients compared to NCs. At the 6-month mark post-injection, tau inclusions were evident in the brains of mice receiving urinary exosomes from PSP-RS patients, with widespread distribution in both injection sites and distant brain regions (cortex, hippocampus, and substantia nigra). Tau pathology manifested in neurons and astrocytes. Moreover, mice injected with urinary exosomes from PSP-RS patients exhibited impaired motor coordination and balance, mirroring PSP motor symptoms. CONCLUSION Our findings indicate that urinary exosomes from PSP-RS patients can induce tau pathology and trigger PSP-like motor symptoms in mice. This leads to the hypothesis that exosomes may play a role in the pathogenesis of PSP.
Collapse
Affiliation(s)
- Qiusha Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingwen Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ruoqi Jin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
40
|
Zouaoui S, Rouabhi R. Lysosomal disruption, mitochondrial impairment, histopathological and oxidative stress in rat's nervous system after exposure to a neonicotinoid (imidacloprid). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59472-59489. [PMID: 39356435 DOI: 10.1007/s11356-024-35195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Imidacloprid (IMI), a neonicotinoid pesticide, has been widely used due to its high efficiency against insect pests. However, its prolonged exposure may pose significant risks to non-target organisms, including mammals. Recent studies have raised concerns about its potential neurotoxicity, yet the underlying mechanisms remain poorly understood. This study aimed to assess the neurotoxic effects of chronic Imidacloprid exposure in Wistar rats, focusing on oxidative stress, mitochondrial dysfunction, and lysosomal disruption. Wistar rats were orally administered two doses of Imidacloprid (5 mg/kg and 50 mg/kg body weight) for three months. Neurotoxic effects were assessed by measuring key biochemical markers such as the enzymatic activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione S-transferase (GST). Non-enzymatic markers, including glutathione (GSH) levels and malondialdehyde (MDA) index, were also evaluated. Mitochondrial function was assessed by analyzing oxygen consumption, swelling, and membrane permeability and histopathological changes. Lysosomal stability was examined using the Neutral Red Retention Time (NRRT) assay. Neutral red is a dye that accumulates in the acidic environment of lysosomes. Healthy lysosomes retain the dye, while compromised lysosomes lose it, indicating destabilization. By measuring the amount of neutral red retained in lysosomes, the NRRT assay assesses lysosomal integrity. Lysosomal pH variations were also monitored to evaluate functional changes. Microscopic analysis provided insight into structural changes in lysosomes and other cell components. Lysosomal destabilization was further confirmed by morphological alterations observed through light microscopy, revealing a progressive, time-dependent degeneration of lysosomal structures, including lysosomal expansion, neutral red dye leakage, and cell rounding. These changes reflected a temporal evolution of lysosomal damage, progressing from minor structural disruptions to more severe alterations as exposure continued, observable at the microscopic level. During the study, clinical observations of intoxicated rats included symptoms such as lethargy, reduced activity levels, and impaired motor coordination. High-dose Imidacloprid exposure led to noticeable behavioral changes, including decreased exploratory behavior and altered grooming patterns. Additionally, signs of neurotoxic effects, such as tremors or ataxia, were observed in the rats exposed to the higher dose, reflecting the systemic impact of chronic pesticide exposure. The results revealed a significant decrease in the enzymatic activities of CAT, GPx, and SOD, accompanied by an increase in GST activity. A notable reduction in glutathione levels and a rise in MDA index were observed, indicating enhanced oxidative stress in the brain. Mitochondrial impairment was evidenced by disturbances in oxygen consumption, increased swelling, and altered membrane permeability. Lysosomal destabilization was confirmed by reduced retention of neutral red dye, structural changes in lysosomes, and a significant rise in lysosomal pH in the IMI-exposed groups. In addition, the histopathological features indicate that imidacloprid at the given dose and exposure duration may have caused notable neurotoxic effects in Wistar rat brain tissue. Chronic exposure to Imidacloprid induces oxidative stress, mitochondrial dysfunction, lysosomal disruption and histopathological alterations in the central nervous system of Wistar rats. These findings provide valuable insights into the neurotoxic mechanisms of neonicotinoid pesticides, highlighting the need for further research to understand the long-term effects of Imidacloprid exposure on mammalian health.
Collapse
Affiliation(s)
- Sarra Zouaoui
- Laboratory of Toxicology and Ecosystems Pathologies, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
- Applied Biology Department, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
| | - Rachid Rouabhi
- Laboratory of Toxicology and Ecosystems Pathologies, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.
- Applied Biology Department, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.
| |
Collapse
|
41
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
42
|
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, Schmidt SV, Lambertz J, Bellande T, Pósfai B, Geck C, Spitzer J, Odainic A, Castro-Gomez S, Schwartz S, Boussaad I, Krüger R, Glaab E, Di Monte DA, Bano D, Dénes Á, Latz E, Melki R, Pape HC, Heneka MT. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024; 112:3106-3125.e8. [PMID: 39059388 DOI: 10.1016/j.neuron.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Frederik Eikens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Opitz
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Csaba Cserép
- Institute of Experimental Medicine, Budapest, Hungary
| | - Susanne V Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Tracy Bellande
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Balázs Pósfai
- Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Geck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ádám Dénes
- Institute of Experimental Medicine, Budapest, Hungary
| | - Eike Latz
- German Center for Neurodegenerative Diseases, Bonn, Germany; Institute of innate immunity, University Hospital Bonn, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Institute of innate immunity, University Hospital Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
43
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
44
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
45
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
46
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Nishida I, Yamada K, Sakamoto A, Wakabayashi T, Iwatsubo T. Chronic Neuronal Hyperexcitation Exacerbates Tau Propagation in a Mouse Model of Tauopathy. Int J Mol Sci 2024; 25:9004. [PMID: 39201689 PMCID: PMC11354494 DOI: 10.3390/ijms25169004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The intracerebral spread of tau is a critical mechanism associated with functional decline in Alzheimer's disease (AD) and other tauopathies. Recently, a hypothesis has emerged suggesting that tau propagation is linked to functional neuronal connections, specifically driven by neuronal hyperactivity. However, experimental validation of this hypothesis remains limited. In this study, we investigated how tau propagation from the entorhinal cortex to the hippocampus, the neuronal circuit most susceptible to tau pathology in AD, is affected by the selective stimulation of neuronal activity along this circuit. Using a mouse model of seed-induced propagation combined with optogenetics, we found that the chronic stimulation of this neuronal connection over a 4-week period resulted in a significant increase in insoluble tau accumulation in both the entorhinal cortex and hippocampus. Importantly, the ratio of tau accumulation in the hippocampus relative to that in the entorhinal cortex, serving as an indicator of transcellular spreading, was significantly higher in mice subjected to chronic stimulation. These results support the notion that abnormal neuronal activity promotes tau propagation, thereby implicating it in the progression of tauopathy.
Collapse
Affiliation(s)
- Itaru Nishida
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Asami Sakamoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
- Department of Pathophysiology, Meiji Pharmaceutical University, Tokyo 2040004, Japan
| | - Takeshi Iwatsubo
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan;
| |
Collapse
|
48
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
49
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
50
|
Yoo CJ, Choi Y, Bok E, Lin Y, Cheon M, Lee YH, Kim J. Complement receptor 4 mediates the clearance of extracellular tau fibrils by microglia. FEBS J 2024; 291:3499-3520. [PMID: 38715400 DOI: 10.1111/febs.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 08/03/2024]
Abstract
Tauopathies exhibit a characteristic accumulation of misfolded tau aggregates in the brain. Tau pathology shows disease-specific spatiotemporal propagation through intercellular transmission, which is closely correlated with the progression of clinical manifestations. Therefore, identifying molecular mechanisms that prevent tau propagation is critical for developing therapeutic strategies for tauopathies. The various innate immune receptors, such as complement receptor 3 (CR3) and complement receptor 4 (CR4), have been reported to play a critical role in the clearance of various extracellular toxic molecules by microglia. However, their role in tau clearance has not been studied yet. In the present study, we investigated the role of CR3 and CR4 in regulating extracellular tau clearance. We found that CR4 selectively binds to tau fibrils but not to tau monomers, whereas CR3 does not bind to either of them. Inhibiting CR4, but not CR3, significantly reduces the uptake of tau fibrils by BV2 cells and primary microglia. By contrast, inhibiting CR4 has no effect on the uptake of tau monomers by BV2 cells. Furthermore, inhibiting CR4 suppresses the clearance of extracellular tau fibrils, leading to more seed-competent tau fibrils remaining in the extracellular space relative to control samples. We also provide evidence that the expression of CR4 is upregulated in the brains of human Alzheimer's disease patients and the PS19 mouse model of tauopathy. Taken together, our data strongly support that CR4 is a previously undescribed receptor for the clearance of tau fibrils in microglia and may represent a novel therapeutic target for tauopathy.
Collapse
Affiliation(s)
- Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), South Korea
| | - Youngtae Choi
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Eugene Bok
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, South Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, South Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, South Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| |
Collapse
|