1
|
Wu K, Shao S, Dong YT, Liu YY, Chen XH, Cheng P, Qin X, Peng XH, Zhang YM. Spinal astrocyte-derived M-CSF mediates microglial reaction and drives visceral hypersensitivity following DSS-induced colitis. Neuropharmacology 2025; 270:110373. [PMID: 39978590 DOI: 10.1016/j.neuropharm.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Ji HN, Zhou HQ, Qie JB, Lu WM, Gao HT, Wu DH. Dysregulated ac4C modification of mRNA in a mouse model of early-stage Alzheimer's disease. Cell Biosci 2025; 15:45. [PMID: 40223095 PMCID: PMC11995559 DOI: 10.1186/s13578-025-01389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The identification and intervention of Alzheimer's Disease (AD) in its early-stage allows for the timely implementation of lifestyle modifications and therapeutic strategies. Although dysregulation of protein expression has been reported in the brain from AD patients and AD animal models, the underlying mechanisms remain poorly understood. N4-acetylcytidine (ac4C), the only known form of RNA acetylation in eukaryotes, has recently been shown to regulate mRNA stability and translation efficiency. However, the dysregulation of ac4C associated with abnormal protein expression levels in the brain of early-stage mouse models of AD remains to be elucidated. METHODS This study investigated ac4C modifications, mRNA and protein expression in the hippocampus of 3 and 6-month-old 5×FAD mice, a mouse model of AD, and wild-type (WT) littermates. The multi-omics analysis was performed: acetylated RNA immunoprecipitation followed by next-generation sequencing (acRIP-seq) to identify ac4C mRNAs, deep RNA sequencing (RNA-seq) to quantify mRNA abundance, and label-free quantitative proteomics to assess protein expression levels. In addition, we used acRIP-qPCR, regular qPCR and western blots to verify the ac4C, mRNA and protein levels of some key genes that were identified by the high-throughput assays. RESULTS Proteomic analysis revealed significant change of protein expression in the hippocampus of 3-months-old 5×FAD mice, compared with WT littermates. In contrast, RNA-seq analysis indicated that there were no substantial alterations in mRNA expression levels in the hippocampus of 3-months-old 5×FAD mice, compared to WT littermates. Strikingly, acRIP-seq revealed notable variations in ac4C modification on mRNAs, particularly those associated with synaptic structure and function, in the hippocampus of 3-months-old 5×FAD mice, compared with WT littermates. The ac4C modifications were found to be correlated with protein expression changes. Genes that are essential for synaptic function and cognition, including GRIN1, MAP2, and DNAJC6, exhibited reduced ac4C and protein levels in 3-months-old 5×FAD mice, without any corresponding changes in the mRNA levels, compared with WT littermates. Moreover, only a small part of dysregulated ac4C mRNAs identified in the 3-month-old 5×FAD mice were found in the 6-month-old 5×FAD mice. CONCLUSIONS Altogether these results identified abnormal ac4C modification of mRNAs that may contribute to the dysregulation of protein synthesis in the hippocampus from an early-stage mouse model of AD.
Collapse
Affiliation(s)
- Hao-Nan Ji
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Hai-Qian Zhou
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Jing-Bo Qie
- Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Mei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Hai-Tao Gao
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Dan-Hong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
King MW, Jacob S, Sharma A, Lawrence JH, Weaver DR, Musiek ES. Circadian rhythms and the light-dark cycle interact to regulate amyloid plaque accumulation and tau phosphorylation in 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645805. [PMID: 40236233 PMCID: PMC11996435 DOI: 10.1101/2025.03.31.645805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Circadian disruption has long been appreciated as a downstream consequence of Alzheimer's Disease in humans. However, an upstream role for behavioral circadian disruption in regulating AD pathology remains an open question. Methods To determine the role of the central circadian clock in the suprachiasmatic nucleus (SCN) in regulating amyloid pathology, we crossed the 5xFAD amyloid mouse model with mice harboring deletion of the critical clock gene Bmal1 in GABAergic neurons using VGAT-iCre, which is expressed in >95% of SCN cells. To examine the role the light-dark cycle in this process, we aged these mice in either regular 12:12 light-dark (LD) or constant darkness (DD) conditions. Transcriptional, behavioral, and physiological rhythms were examined in VGAT-iCre; 5xFAD; Bmal1 fl/fl (VGAT-BMAL1KO;5xFAD) mice under varying light conditions. Amyloid plaque deposition, peri-plaque tau phosphorylation, and other pathology was examined by immunohistochemistry, and transcriptomic changes were examined by high-throughput qPCR. Results VGAT-BMAL1KO;5xFAD mice showed loss of SCN BMAL1 expression and severe disruption of behavioral rhythms in both LD and DD, with loss of day-night rhythms in consolidated sleep and blunting of rhythmic clock gene expression in the brain. Surprisingly, VGAT-BMAL1KO;5xFAD mice kept under LD showed reduced total plaque accumulation and peri-plaque tau phosphorylation, compared to Cre-negative controls. These changes were gated by the light-dark cycle, as they were absent in VGAT-BMAL1KO;5xFAD mice kept in DD conditions. Total plaque accumulation was also reduced in control 5xFAD mice kept in DD as compared to LD, suggesting a general effect of light-dark cycle on amyloid aggregation. Expression of murine presenilin 1 (Psen1) -- which catalyzes the processing of sAPPβ into Aβ -- as well as APP cleavage to C-terminal fragments, were suppressed in VGAT-BMAL1KO;5xFAD under LD conditions. Conclusions These studies elucidated an interaction between the circadian clock in GABAergic neurons and the light-dark cycle in regulating amyloid pathology and suggest that decoupling the central clock form the light-dark cycle may reduce APP cleavage and plaque formation. These results call into question the proposed simple positive feedback loop between circadian rhythm disruption and Alzheimer's Disease pathology.
Collapse
|
4
|
Borjini N, Fernandez M, Giardino L, Sorokin L, Calzà L. Pharmacological Inhibition of Microglial Proliferation Supports Blood-Brain Barrier Integrity in Experimental Autoimmune Encephalomyelitis. Cells 2025; 14:414. [PMID: 40136663 PMCID: PMC11941641 DOI: 10.3390/cells14060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Blood-brain barrier dysfunction (BBB) is a primary characteristic of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). We have previously shown that blocking microglial proliferation using GW2580, a selective inhibitor of CSF1R (Colony stimulating factor 1 receptor), reduced disease progression and severity and prevented the relapse phase. However, whether this was due to effects of GW2580 on the functional integrity of the BBB was not determined. Therefore, here, we examine BBB properties in rats during EAE under GW2580 treatment. Our data suggest that blocking early microglial proliferation through selective targeting of CSF1R signaling has a therapeutic effect in EAE by protecting BBB integrity and reducing peripheral immune cell infiltration. Taken together, our results identify a novel mechanism underlying the effects of GW2580, which could offer a novel therapy for MS.
Collapse
Affiliation(s)
- Nozha Borjini
- Research & Development, Chiesi Farmaceutici S.p.A, via Palermo 26/A, 43100 Parma, Italy
- IRET Foundation, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy;
- Department de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013 Sevilla, Spain
- Facultad de Medicina and CIBERNED ISCIII, 41013 Sevilla, Spain
| | - Mercedes Fernandez
- IRET Foundation, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy;
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy; (L.G.); (L.C.)
| | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy; (L.G.); (L.C.)
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano Emilia (BO), 40064 Bologna, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany;
- Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy; (L.G.); (L.C.)
- Department of Pharmacy and Biotechnology, University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy
| |
Collapse
|
5
|
Xie DF, Fang C, Crouzet C, Hung YH, Vallejo A, Lee D, Liu J, Liu H, Muvvala S, Paganini-Hill A, Lau WL, Cribbs DH, Choi B, Fisher M. Development of cerebral microhemorrhages in a mouse model of hypertension. J Neuroinflammation 2025; 22:67. [PMID: 40045320 PMCID: PMC11881401 DOI: 10.1186/s12974-025-03378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
Cerebral microhemorrhages (CMH) are the pathological substrate for MRI-demonstrable cerebral microbleeds, which are associated with cognitive impairment and stroke. Aging and hypertension are the main risk factors for CMH. In this study, we investigated the development of CMH in a mouse model of aging and hypertension. Hypertension was induced in aged (17-month-old) female and male C57BL/6J mice via angiotensin II (Ang II), a potent vasoconstrictor. We investigated the vascular origin of CMH using three-dimensional images of 1-mm thick brain sections. We examined Ang II-induced CMH formation with and without telmisartan, an Ang II type 1 receptor (AT1R) blocker. To evaluate the effect of microglia and perivascular macrophages on CMH formation, mice were treated with PLX3397, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, to achieve microglial and macrophage depletion. Iba-1 and CD206 labeling were used to study the relative contributions of microglia and macrophages, respectively, on CMH formation. CMH quantification was performed with analysis of histological sections labeled with Prussian blue. Vessels surrounding CMH were primarily of capillary size range (< 10 μm in diameter). Ang II-infused mice exhibited elevated blood pressure (p < 0.0001) and CMH burden (p < 0.001). CMH burden was significantly correlated with mean arterial pressure in mice with and without Ang II (r = 0.52, p < 0.05). Ang II infusion significantly increased Iba-1 immunoreactivity (p < 0.0001), and CMH burden was significantly correlated with Iba-1 in mice with and without Ang II (r = 0.32, p < 0.05). Telmisartan prevented elevation of blood pressure due to Ang II infusion and blocked Ang II-induced CMH formation without affecting Iba-1 immunoreactivity. PLX3397 treatment reduced Iba-1 immunoreactivity in Ang II-infused mice (p < 0.001) and blocked Ang II-induced CMH (p < 0.0001). No significant association between CMH burden and CD206 reactivity was observed. Our findings demonstrate Ang II infusion increases CMH burden. CMH in this model appear to be capillary-derived and Ang II-induced CMH are largely mediated by blood pressure. In addition, microglial activation may represent an alternate pathway for CMH formation. These observations emphasize the continuing importance of blood pressure control and the role of microglia in hemorrhagic cerebral microvascular disease.
Collapse
Affiliation(s)
- Danny F Xie
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Chuo Fang
- Department of Neurology, University of California, Irvine, CA, USA
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Yu-Han Hung
- Department of Neurology, University of California, Irvine, CA, USA
| | - Adrian Vallejo
- Department of Neurology, University of California, Irvine, CA, USA
| | - Donghy Lee
- Department of Neurology, University of California, Irvine, CA, USA
| | - Jihua Liu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Han Liu
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Suhrith Muvvala
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Annlia Paganini-Hill
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Surgery, University of California, Irvine, CA, USA.
- Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, University of California, Irvine, CA, USA.
| | - Mark Fisher
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, CA, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Huang ZB, Zhang GP, Lu CX, Gong C, Gao X, Lin Y, Su P, Xu W, Lin Y, Lin N, Wu X, Chen X, Zheng T, Zheng X. Gut microbiota-derived 3-indoleacetic acid confers a protection against sepsis-associated encephalopathy through microglial aryl hydrocarbon receptors. Exp Neurol 2025; 384:115055. [PMID: 39547500 DOI: 10.1016/j.expneurol.2024.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The gut microbiota significantly contributes to the pathogenesis of central nervous system disorders. Among the bioactive molecules produced by the gut microbiota, 3-indoleacetic acid (IAA) has been shown to attenuate oxidative stress and inflammatory responses. This experiment aimed to determine the impacts of IAA on sepsis-associated encephalopathy (SAE) and the underlying mechanisms. METHODS A total of 34 septic patients and 24 healthy controls were included in the analysis of the clinical correlation between fecal IAA and septic encephalopathy. Fecal microbiota transplantation was used to verify the role of the gut microbiota and its metabolites in SAE. Male C57BL/6 mice aged six to eight weeks, pre-treated with IAA via oral gavage, were subjected to the cecal ligation and puncture (CLP) procedures. This treatment was administered either in combination with an aryl hydrocarbon receptor (AhR) antagonist, CH223191, or a CSF1R inhibitor, PLX3397, to eliminate microglia. Both immunofluorescence staining and enzyme-linked immunosorbent assays were used to evaluate microglia activation and inflammatory cytokine secretion. Behavioral assessments were conducted to quantify neurological deficits. RESULTS A decreased fecal level of IAA was observed in the patients with sepsis-associated delirium (SAD), a manifestation of SAE. A reduced IAA level was significantly associated with worsen clinical outcomes. Fecal microbiota transplantation from the SAD patients induced an SAE-like phenotype in mice, but supplementing exogenous IAA improved the SAE-like phenotype, mediated by microglia. IAA effectively binded with the aryl hydrocarbon receptor (AhR). Furthermore, IAA increased the nuclear activity of AhR in the lipopolysaccharide (LPS)-treated microglial cells, leading to reduced secretion of inflammatory cytokines. The AhR inhibitor CH223191 counteracted the protective effect of IAA against SAE in mice. CONCLUSIONS Gut microbiota-derived IAA confers a protection against SAE by activating AhR in microglia, improving neuronal and cognitive impairments. Thus, IAA holds the promise as a potential therapeutic agent for managing SAE.
Collapse
Affiliation(s)
- Zhi-Bin Huang
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Guo-Pan Zhang
- Department of Anesthesiology, QuanZhou Orthopedic-Traumatological Hospital, Quanzhou, China
| | - Chen-Xin Lu
- Department of Anesthesiology, Fuzhou Second General Hospital, Fuzhou, China
| | - Cansheng Gong
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Xiaotan Gao
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Yanqi Lin
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Ping Su
- Anesthesiology Department of Fujian Funeng Group General Hospital, Fuzhou, China
| | - Wenyan Xu
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Yongbao Lin
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Xuyang Wu
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Ting Zheng
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fuzhou University Affiliated Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China.
| |
Collapse
|
7
|
Ma R, Zhou Y, Huang W, Kong X. Icariin maintaining TMEM119-positive microglial population improves hippocampus-associated memory in senescent mice in relation to R-3-hydroxybutyric acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119287. [PMID: 39736348 DOI: 10.1016/j.jep.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness. Icariin is a principal component of the genus Epimedium. AIM OF THE STUDY The metabolic mechanism of icariin treating forgetfulness is explored. MATERIALS AND METHODS A D-galactose-induced senescent mouse model was employed. The cognitive performance of mice was assessed in the fear conditioning test. Hippocampal pathology was assessed in the immunohistochemistry assay. Plasma metabolome was analyzed using GC-MS method, and the differential metabolites were further identified by UPLC-MS/MS or GC-MS method. The liver function, including ALT and AST, was assessed by enzyme reaction. Icariin was administered intraperitoneally at 50 and 100 mg/kg. Mice were administered five consecutive days per week for 8 weeks. RESULTS Icariin treatment improved hippocampus-related fear memory but not amygdala-related memory, whereas Pexidartinib (PLX3397), a microglial scavenger, did not. Icariin treatment maintained the TMEM119-positive microglial population and decreased the accumulation of the senescent biomarker p16 in the dorsal hippocampus in senescent mouse brains, whereas PLX3397 did not. Notably, p16 in the CA2 subregion significantly decreased in icariin-treated mice than the other hippocampal subregions. The senescent mice exhibited the circulating metabolic characteristics of mild ketoacidosis, active tricarboxylic acid (TCA) cycle, lactic acidosis, hyperglycemia, active detoxification, active cis-oleic acid metabolism, and inhibitory GABA shut. R-3-Hydroxybutyric acid primarily produced in the liver was selectively and robustly decreased by icariin treatment, which was not observed with PLX3397 treatment. The TCA cycle was rescued in senescent mice by icariin treatment. Icariin also protected liver function (plasma ALT) in D-gal-induced senescent mice. CONCLUSIONS Icariin may protect mouse hippocampal cognition from D-gal-induced senescence by protecting microglial homeostasis, and facilitating the utilization of R-3-hydroxybutyric acid is one of the underpins.
Collapse
Affiliation(s)
- Rong Ma
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
9
|
Gimenez GA, Romijn M, van den Herik J, Meijer W, Eggers R, Hobo B, De Zeeuw CI, Canto CB, Verhaagen J, Carulli D. A Study on Potential Sources of Perineuronal Net-Associated Sema3A in Cerebellar Nuclei Reveals Toxicity of Non-Invasive AAV-Mediated Cre Expression in the Central Nervous System. Int J Mol Sci 2025; 26:819. [PMID: 39859534 PMCID: PMC11765860 DOI: 10.3390/ijms26020819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown. Most Sema3A-bearing neurons do not express Sema3A mRNA, suggesting that Sema3A may be released from other neurons. Another potential source of Sema3A is the choroid plexus. To identify sources of PNN-associated Sema3A, we focused on the cerebellar nuclei, which contain Sema3A+ PNNs. Cerebellar nuclei neurons receive prominent input from Purkinje cells (PCs), which express high levels of Sema3A mRNA. By using a non-invasive viral vector approach, we overexpressed Cre in PCs, the choroid plexus, or throughout the CNS of Sema3Afl/fl mice. Knocking out Sema3A in PCs or the choroid plexus was not sufficient to decrease the amount of PNN-associated Sema3A. Alternatively, knocking out Sema3A throughout the CNS induced a decrease in PNN-associated Sema3A. However, motor deficits, microgliosis, and neurodegeneration were observed, which were due to Cre toxicity. Our study represents the first attempt to unravel cellular sources of PNN-associated Sema3A and shows that non-invasive viral-mediated Cre expression throughout the CNS could lead to toxicity, complicating the interpretation of Cre-mediated Sema3A knock-out.
Collapse
Affiliation(s)
- Geoffrey-Alexander Gimenez
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (C.I.D.Z.); (C.B.C.)
| | - Maurits Romijn
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Joëlle van den Herik
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Wouter Meijer
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Ruben Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Barbara Hobo
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| | - Chris I. De Zeeuw
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (C.I.D.Z.); (C.B.C.)
- Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (C.I.D.Z.); (C.B.C.)
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Daniela Carulli
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; (G.-A.G.); (M.R.); (J.v.d.H.); (W.M.); (R.E.); (B.H.); (J.V.)
| |
Collapse
|
10
|
Zhang Z, Niu K, Huang T, Guo J, Xarbat G, Gong X, Gao Y, Liu F, Cheng S, Su W, Yang F, Liu Z, Ginhoux F, Zhang T. Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson's disease model triggered by α-synuclein overexpression. NPJ Parkinsons Dis 2025; 11:15. [PMID: 39779738 PMCID: PMC11711755 DOI: 10.1038/s41531-024-00846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic neuroinflammation with sustained microglial activation occurs in Parkinson's disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia. This chronic treatment paradigm prevented the development of motor deficits and concomitantly preserved dopaminergic neuron cell and weakened α-synuclein phosphorylation. Gene expression profiles related to extracellular matrix (ECM) remodeling were increased after microglia depletion in PD mice, which were further validated on protein level. We demonstrated that microglia exert adverse effects during α-synuclein-overexpression-induced neuronal lesion formation, and their depletion remodels ECM and aids recovery following insult.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Kun Niu
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Taoying Huang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Jiali Guo
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Gongbikai Xarbat
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, 100069, China
| | - Yunke Gao
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Feiyang Liu
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Shan Cheng
- Department of Medical Genetics and Developmental Biology, Capital Medical University, Beijing, 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Republic of Singapore
- Gustave Roussy Cancer Campus, Villejuif, 94800, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ting Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Liang Z, Shostak D, Hao Y, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Zilberter M, Huang Y. Microglia depletion reduces human neuronal APOE4-related pathologies in a chimeric Alzheimer's disease model. Cell Stem Cell 2025; 32:86-104.e7. [PMID: 39500314 DOI: 10.1016/j.stem.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Despite strong evidence supporting the important roles of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-related AD pathogenesis remain elusive. To examine such effects, we utilized microglial depletion in a chimeric model with induced pluripotent stem cell (iPSC)-derived human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) iPSC-derived human neurons into the hippocampus of human APOE3 or APOE4 knockin mice and then depleted microglia in half of the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA sequencing analysis identified two pro-inflammatory microglial subtypes with elevated MHC-II gene expression enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - David Shostak
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Tsering W, de la Rosa A, Ruan IY, Philips JL, Bathe T, Villareal JA, Prokop S. Preferential clustering of microglia and astrocytes around neuritic plaques during progression of Alzheimer's disease neuropathological changes. J Neurochem 2025; 169:e16275. [PMID: 39655787 PMCID: PMC11629606 DOI: 10.1111/jnc.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Neuroinflammation plays an important role in the pathological cascade of Alzheimer's disease (AD) along with aggregation of extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein. In animal models of amyloidosis, local immune activation is centered around Aβ plaques, which are usually of uniform morphology, dependent on the transgenic model used. In postmortem human brains a diversity of Aβ plaque morphologies is seen including diffuse plaques (non-neuritic plaques, non-NP), dense-core plaques, cotton-wool plaques, and NP. In a recent study, we demonstrated that during the progression of Alzheimer's disease neuropathologic changes (ADNC), a transformation of non-NP into NP occurs which is tightly linked to the emergence of cortical, but not hippocampal neurofibrillary tangle (NFT) pathology. This highlights the central role of NP in AD pathogenesis as well as brain region-specific differences in NP formation. In order to correlate the transformation of plaque types with local immune activation, we quantified the clustering and phenotype of microglia and accumulation of astrocytes around non-NP and NP during the progression of ADNC. We hypothesize that glial clustering occurs in response to formation of neuritic dystrophy around NP. First, we show that Iba1-positive microglia preferentially cluster around NP. Utilizing microglia phenotypic markers, we furthermore demonstrate that CD68-positive phagocytic microglia show a strong preference to cluster around NP in both the hippocampus and frontal cortex. A similar preferential clustering is observed for CD11c and ferritin-positive microglia in the frontal cortex, while this preference is less pronounced in the hippocampus, highlighting differences between hippocampal and cortical Aβ plaques. Glial fibrillary acidic protein-positive astrocytes showed a clear preference for clustering around NP in both the frontal cortex and hippocampus. These data support the notion that NP are intimately associated with the neuroimmune response in AD and underscore the importance of the interplay of protein deposits and the immune system in the pathophysiology of AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Neuroscience, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Ana de la Rosa
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Isabelle Y. Ruan
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jennifer L. Philips
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jonathan A. Villareal
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Norman Fixel Institute for Neurological DiseasesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
13
|
Zheng F, Dong T, Chen Y, Wang L, Peng G. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer's disease. Exp Neurol 2025; 383:115021. [PMID: 39461707 DOI: 10.1016/j.expneurol.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Border-associated macrophages (BAMs) constitute a highly heterogeneous group of central nervous system-resident macrophages at the brain boundaries. Despite their significance, BAMs have mainly been overlooked compared to microglia, resulting in a limited understanding of their functions. However, recent advancements in single-cell immunophenotyping and transcriptomic analyses of BAMs have revealed a previously unrecognized complexity in these cells, in addition to their critical roles under non-pathological conditions and diseases like Alzheimer's disease (AD), Parkinson's disease, glioma, and ischemic stroke. In this review, we discuss the origins, self-renewal capabilities, and extensive heterogeneity of BAMs, and clarify their important physiological functions such as immune monitoring, waste removal and vascular permeability regulation. We also summarize experimental evidence linking BAMs to the progression of AD. Finally, we review therapeutic strategies targeting brain innate immune cells mainly focusing on strategies aimed at modulating BAMs to treat AD and evaluate their potential in clinical applications.
Collapse
Affiliation(s)
- Fangxue Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taiwei Dong
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yi Chen
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Wang
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2025; 329:e13365. [PMID: 38989642 PMCID: PMC11724017 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C. Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Abigail H. Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
15
|
El Gazzar WB, Farag AA, Samir M, Bayoumi H, Youssef HS, Marei YM, Mohamed SK, Marei AM, Abdelfatah RM, Mahmoud MM, Aboelkomsan EAF, Khalfallah EKM, Anwer HM. Berberine chloride loaded nano-PEGylated liposomes attenuates imidacloprid-induced neurotoxicity by inhibiting NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Biofactors 2025; 51:e2107. [PMID: 39074847 DOI: 10.1002/biof.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1β and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aβ] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aβ deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, Egypt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Yasmin Mohammed Marei
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Azza M Marei
- Department of Zoology, Faculty of Science, Benha University, Benha City, Qalyubia, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | | | | | - Eman Kamel M Khalfallah
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hala Magdy Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| |
Collapse
|
16
|
Le LHD, O'Banion MK, Majewska AK. Partial microglial depletion and repopulation exert subtle but differential effects on amyloid pathology at different disease stages. Sci Rep 2024; 14:30912. [PMID: 39730671 PMCID: PMC11680822 DOI: 10.1038/s41598-024-81910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Colony-stimulating factor-1-receptor (CSF1R) inhibitors have been widely used to rapidly deplete microglia from the brain, allowing the remaining microglia population to self-renew and repopulate. These new-born microglia are thought to be "rejuvenated" and have been shown to be beneficial in several disease contexts and in normal aging. Their role in Alzheimer's disease (AD) is thus of great interest as they represent a potential disease-modifying therapy. Here, we explored the differential effects of microglial depletion and repopulation during amyloid pathology progression using 5xFAD mice. We utilized the CSF1R inhibitor PLX3397 to induce microglial self-renewal and tracked microglia-plaque dynamics with in vivo imaging. We observed transient improvement in plaque burden on different timescales depending on the animal's age. While the improvement in plaque burden did not persist in any age group, renewing microglia during mid- to late-pathology might still be beneficial as we observed a potential improvement in microglial sensitivity to noradrenergic signaling. Altogether, our findings provide further insights into the therapeutic potential of microglial renewal in AD.
Collapse
Affiliation(s)
- L H D Le
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - M K O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - A K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
17
|
Zhang L, Huang L, Zhou Y, Meng J, Zhang L, Zhou Y, Zheng N, Guo T, Zhao S, Wang Z, Huo Y, Zhao Y, Chen XF, Zheng H, Holtzman DM, Zhang YW. Microglial CD2AP deficiency exerts protection in an Alzheimer's disease model of amyloidosis. Mol Neurodegener 2024; 19:95. [PMID: 39695808 DOI: 10.1186/s13024-024-00789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The CD2-associated protein (CD2AP) was initially identified in peripheral immune cells and regulates cytoskeleton and protein trafficking. Single nucleotide polymorphisms (SNPs) in the CD2AP gene have been associated with Alzheimer's disease (AD). However, the functional role of CD2AP, especially its role in microglia during AD onset, remains elusive. METHODS CD2AP protein levels in cultured primary cells and in 5xFAD mice was studied. Microglial CD2AP-deficient mice were crossed with 5xFAD mice and the offspring were subjected to neuropathological assessment, behavioral tests, electrophysiology, RNA-seq, Golgi staining, and biochemistry analysis. Primary microglia were also isolated for assessing their uptake and morphology changes. RESULTS We find that CD2AP is abundantly expressed in microglia and its levels are elevated in the brain of AD patients and the 5xFAD model mice at pathological stages. We demonstrate that CD2AP haploinsufficiency in microglia significantly attenuates cognitive and synaptic deficits, weakens the response of microglia to Aβ and the formation of disease-associated microglia (DAM), and alleviates synapse loss in 5xFAD mice. We show that CD2AP-deficient microglia exhibit compromised uptake ability. In addition, we find that CD2AP expression is positively correlated with the expression of the complement C1q that is important for synapse phagocytosis and the formation of DAM in response to Aβ deposition. Moreover, we reveal that CD2AP interacts with colony stimulating factor 1 receptor (CSF1R) and regulates CSF1R cell surface levels, which may further affect C1q expression. CONCLUSIONS Our results demonstrate that CD2AP regulates microgliosis and identify a protective function of microglial CD2AP deficiency against Aβ deposition, suggesting the importance of detailed investigation of AD-associated genes in different brain cells for thoroughly understanding their exact contribution to AD.
Collapse
Affiliation(s)
- Lingliang Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lingling Huang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhang Zhou
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jian Meng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liang Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yunqiang Zhou
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Naizhen Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tiantian Guo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shanshan Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zijie Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuanhui Huo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao-Fen Chen
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
18
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024:10.1038/s41577-024-01104-7. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
19
|
Baligács N, Albertini G, Borrie SC, Serneels L, Pridans C, Balusu S, De Strooper B. Homeostatic microglia initially seed and activated microglia later reshape amyloid plaques in Alzheimer's Disease. Nat Commun 2024; 15:10634. [PMID: 39639016 PMCID: PMC11621353 DOI: 10.1038/s41467-024-54779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The role of microglia in the amyloid cascade of Alzheimer's disease (AD) is debated due to conflicting findings. Using a genetic and a pharmacological approach we demonstrate that depletion of microglia before amyloid-β (Aβ) plaque deposition, leads to a reduction in plaque numbers and neuritic dystrophy, confirming their role in plaque initiation. Transplanting human microglia restores Aβ plaque formation. While microglia depletion reduces insoluble Aβ levels, soluble Aβ concentrations stay consistent, challenging the view that microglia clear Aβ. In later stages, microglial depletion decreases plaque compaction and increases neuritic dystrophy, suggesting a protective role. Human microglia with the TREM2R47H/R47H mutation exacerbate plaque pathology, emphasizing the importance of non-reactive microglia in the initiation of the amyloid cascade. Adaptive immune depletion (Rag2-/-) does not affect microglia's impact on plaque formation. These findings clarify conflicting reports, identifying microglia as key drivers of amyloid pathology, and raise questions about optimal therapeutic strategies for AD.
Collapse
Affiliation(s)
- Nóra Baligács
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giulia Albertini
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sarah C Borrie
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sriram Balusu
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
20
|
Lee SH, Bae EJ, Perez-Acuna D, Jung MK, Han JW, Mook-Jung I, Lee SJ. Amyloid-β-activated microglia can induce compound proteinopathies. Brain 2024; 147:4105-4120. [PMID: 39194073 DOI: 10.1093/brain/awae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathological features of Alzheimer's disease include amyloid plaques, neurofibrillary tangles and Lewy bodies, with the former preceding the latter two. However, it is not fully understood how these compound proteinopathies are interconnected. Here, we show that transplantation of amyloid-β oligomer-activated microglia into the striatum of naïve mice was sufficient to generate all the features of Alzheimer's disease, including widespread tauopathy and synucleinopathy, gliosis, neuroinflammation, synapse loss, neuronal death, and cognitive and motor deficits. These pathological features were eliminated by microglia depletion and anti-inflammatory drug administration. Our results suggest the crucial roles of microglia-driven inflammation in development of mixed pathology. This study provides not only mechanistic insights into amyloid-β oligomer-triggered proteinopathies but also a novel animal model recapitulating the salient features of Alzheimer's disease.
Collapse
Affiliation(s)
- Sang Hwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Eun-Jin Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Dayana Perez-Acuna
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Kyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41068, Korea
| | - Jong Won Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biochemistry, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
- Department of Biochemistry, Seoul National University College of Medicine, Seoul 03080, Korea
- Convergence Research Center for Dementia, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
- Convergence Research Center for Dementia, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
21
|
Yang R, Wang R, Xu A, Zhang J, Ma J. Mitigating neurodegenerative diseases: the protective influence of baicalin and baicalein through neuroinflammation regulation. Front Pharmacol 2024; 15:1425731. [PMID: 39687298 PMCID: PMC11647303 DOI: 10.3389/fphar.2024.1425731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases (NDDs) represent a category of serious illnesses characterized by the progressive deterioration of neuronal structure and function. The exploration of natural compounds as potential therapeutic agents has gained increasing attention in recent years owing to their wide range of pharmacological activities and minimal side effects. Baicalin (BAI) and baicalein (BE), polyphenolic flavonoids, derived from the root of Scutellaria baicalensis, evidently show potential in treating NDDs. This review provides an overview of the current understanding of the roles of BAI and BE in alleviating neuroinflammation, a pivotal pathological process implicated in various NDDs. Studies conducted prior to clinical trials have shown that BAI and BE exert protective effects on the nervous system in different animal models of NDDs. Furthermore, mechanistic studies indicate that BAI and BE exert anti-inflammatory effects by inhibiting pro-inflammatory cytokines, suppressing microglial activation, and regulating microglial phenotypes. These effects are mediated through the modulation of inflammatory signaling cascades, including Toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), amp-activated protein kinase (AMPK), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, and nuclear factor erythroid 2-related factor 2 (Nrf2)/hemoglobin oxygenase-1 (HO-1). Overall, BAI and BE exhibit promising potential as natural compounds with anti-inflammatory properties and offer innovative therapeutic approaches for managing NDDs.
Collapse
Affiliation(s)
| | | | | | | | - Jing Ma
- *Correspondence: Jing Ma, ; Jian Zhang,
| |
Collapse
|
22
|
Sun H, Gao X, Niu J, Chen P, He S, Xu S, Ge J. AD-Like Neuropsychiatric Dysfunction in a Mice Model Induced by a Combination of High-Fat Diet and Intraperitoneal Injection of Streptozotocin. eNeuro 2024; 11:ENEURO.0310-24.2024. [PMID: 39626951 DOI: 10.1523/eneuro.0310-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
Increasing data suggest a crucial relationship between glycolipid metabolic disorder and neuropsychiatric injury. The aim of this study is to investigate the behavioral performance changes and neuropathological injuries in mice challenged with high-fat diet (HFD) and streptozotocin (STZ). The glucose metabolism indicators and behavioral performance were detected. The mRNA expression of IL-1β, IL-6, TNF-α, ocln, zo-1, and clnds and protein expression of APP, p-Tau, p-IRS1, p-AKT, p-ERK, and TREM1/2 were measured. The fluorescence intensities of MAP-2, NeuN, APP, p-Tau, GFAP, and IBA-1 were observed. The results showed that combination of HFD and STZ/I.P. could induce glucose metabolic turmoil and Alzheimer's disease (AD)-like neuropsychiatric dysfunction in mice, as indicated by the increased concentrations of fasting blood glucose and impaired learning and memory ability. Moreover, the model mice presented increased levels of APP, p-Tau, p-IRS1, TREM2, IL-1β, IL-6, TNF-α, ocln, zo-1, and clnds; decreased levels of p-AKT, p-ERK, and TREM1; and neuron damage and the hyperactivation of astrocytes and microglia in the hippocampus as compared with control mice. Only male mice were used in this study. Although AD and type 2 diabetes mellitus (T2DM) are distinct pathologies, our results suggested that combination of HFD and STZ/I.P., a widely used T2DM modeling method, could successfully induce AD-like behavioral impairments and neuropathological injuries in mice; the mechanism might be involved with neuroinflammation and its associated dysfunction of IRS1/AKT/ERK signaling pathway. Our findings further support the potential overlap between T2DM and AD pathophysiology, providing insight into the mechanisms underlying the comorbidity of these diseases.
Collapse
Affiliation(s)
- Huaizhi Sun
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Xinran Gao
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Jiachun Niu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Pengquan Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Shuai He
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Songlin Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei 230032, PR China
| |
Collapse
|
23
|
Tian Z, Zhang Q, Wang L, Li M, Li T, Wang Y, Cao Z, Jiang X, Luo P. Progress in the mechanisms of pain associated with neurodegenerative diseases. Ageing Res Rev 2024; 102:102579. [PMID: 39542176 DOI: 10.1016/j.arr.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs) represent a class of neurological disorders characterized by the progressive degeneration or loss of neurons, impacting millions of individuals globally. In addition to the typical manifestations, pain is a prevalent symptom associated with NDDs, seriously impacting the quality of life for patients. The pathogenesis of pain associated with NDDs is intricate and multifaceted. Currently, the clinical management of NDDs-related pain symptoms predominantly relies on conventional pharmacological agents or physical therapy. However, these approaches often fail to produce satisfactory outcomes. This article summarizes the underlying mechanisms of major NDDs-associated pain: Neuroinflammation, Brain and spinal cord dysfunctions, Mitochondrial dysfunction, Risk gene and pathological protein, as well as Receptor, channel, and neurotransmitter. While numerous studies have investigated the downstream pathological processes associated with these mechanisms, there remains a significant gap in identifying the key initiating factors. Specifically, there is insufficient evidence for the upstream elements that activate microglia and astrocytes in neuroinflammation leading to pain in NDDs. Likewise, there is an absence of upstream factors elucidating how dysfunctions in the brain and spinal cord, as well as mitochondrial impairments, contribute to the development of pain. Furthermore, the specific mechanisms through which hallmark pathological proteins related to NDDs contribute to these pathological processes remain inadequately understood. The objective of this article is to synthesize the existing mechanisms underlying pain associated with NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Schizophrenia, Amyotrophic lateral sclerosis, and Multiple sclerosis, while also identifying gaps and deficiencies in these mechanisms. This paper offers insights for future research trajectories. Given the intricate pathogenesis of NDDs-related pain, it emphasizes that a promising short-term strategy is combination therapy-intervening concurrently in multiple pathological processes-akin to the cocktail approach utilized in treating acquired immunodeficiency syndrome (AIDS). For long-term advancements, achieving breakthroughs in the treatment of the NDDs themselves will remain essential for alleviating accompanying pain symptoms.
Collapse
Affiliation(s)
- Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Wang
- Xi'an Children's Hospital, Xi'an 710002, China
| | - Mengxiang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yujie Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zixuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
24
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
25
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2024; 134:1256-1281. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
26
|
Yang L, Gomm A, Bai P, Ding W, Tanzi RE, Wang C, Shen S, Zhang C. The Effect of Pexidartinib on Neuropathic Pain via Influences on Microglia and Neuroinflammation in Mice. Anesth Analg 2024:00000539-990000000-01022. [PMID: 39475839 DOI: 10.1213/ane.0000000000007239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
BACKGROUND Chronic pain is a debilitating medical condition that lacks effective treatments. Increasing evidence suggests that microglia and neuroinflammation underlie pain pathophysiology, which therefore supports a potential strategy for developing pain therapeutics. Here, our study is testing the hypothesis that the promise of pain amelioration can be achieved using the small-molecule pexidartinib (PLX-3397), a previously food and drug administration (FDA)-approved cancer medicine and a colony-stimulating factor-1 receptor (CSF-1R) inhibitor that display microglia-depleting properties. METHOD We used the previously reported chronic constriction injury (CCI) mouse model, in which PLX-3397 or vehicle was orally administrated to mice daily for 21 days, then applied to the CCI model, followed by PLX-3397 or vehicle administration for an additional 28 days. Additionally, we examined microglia-related neuroinflammation markers using positron emission tomography (PET) neuroimaging and immunofluorescence (IF). RESULTS We showed that PLX-3397 significantly ameliorated pain-related behavioral changes throughout the entire experimental period after CCI (vehicle versus PLX-3397 at day 14, effect size: 2.57, P = .002). Microglia changes were first analyzed by live-animal PET neuroimaging, revealing PLX-3397-associated reduction of microglia by probing receptor-interacting serine/threonine-protein kinase 1 (RIPK1), a protein primarily expressed in microglia, which were further corroborated by postmortem immunohistochemistry (IHC) analysis using antibodies for microglia, including ionized Ca2+ binding adaptor molecule 1 (Iba-1) (somatosensory cortex, hindlimb area; vehicle versus PLX-3397, effect size 3.6, P = .011) and RIPK1 (somatosensory cortex, hindlimb area; vehicle versus PLX-3397, effect size 2.9, P = .023. The expression of both markers decreased in the PLX-3397 group. Furthermore, we found that PLX-3397 led to significant reductions in various proteins, including inducible nitric oxide synthase (iNOS) (somatosensory cortex, hindlimb area; vehicle versus PLX-3397, effect size: 2.3, P = .048), involved in neuroinflammation through IHC. CONCLUSIONS Collectively, our study showed PLX-3397-related efficacy in ameliorating pain linked to the reduction of microglia and neuroinflammation in mice. Furthermore, our research provided new proof-of-concept data supporting the promise of testing PLX-3397 as an analgesic.
Collapse
Affiliation(s)
- Liuyue Yang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ashley Gomm
- Genetics and Aging Research Unit, Department of Neurology, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ping Bai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weihua Ding
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Changning Wang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shiqian Shen
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Gao S, Shen R, Li J, Jiang Y, Sun H, Wu X, Li X, Miao C, He M, Wang J, Chen W. N-acetyltransferase 10 mediates cognitive dysfunction through the acetylation of GABA BR1 mRNA in sepsis-associated encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2410564121. [PMID: 39190359 PMCID: PMC11388286 DOI: 10.1073/pnas.2410564121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai201203, China
| | - Jie Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Xiya Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai200032, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai201104, China
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai201799, China
| |
Collapse
|
28
|
Kuhn MK, Proctor EA. Microglial Drivers of Alzheimer's Disease Pathology: An Evolution of Diverse Participating States. Proteins 2024:10.1002/prot.26723. [PMID: 39219300 PMCID: PMC11871049 DOI: 10.1002/prot.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune-competent cells of the brain, become dysfunctional in Alzheimer's disease (AD), and their aberrant immune responses contribute to the accumulation of pathological proteins and neuronal injury. Genetic studies implicate microglia in the development of AD, prompting interest in developing immunomodulatory therapies to prevent or ameliorate disease. However, microglia take on diverse functional states in disease, playing both protective and detrimental roles in AD, which largely overlap and may shift over the disease course, complicating the identification of effective therapeutic targets. Extensive evidence gathered using transgenic mouse models supports an active role of microglia in pathology progression, though results vary and can be contradictory between different types of models and the degree of pathology at the time of study. Here, we review microglial immune signaling and responses that contribute to the accumulation and spread of pathological proteins or directly affect neuronal health. We additionally explore the use of induced pluripotent stem cell (iPSC)-derived models to study living human microglia and how they have contributed to our knowledge of AD and may begin to fill in the gaps left by mouse models. Ultimately, mouse and iPSC-derived models have their own limitations, and a comprehensive understanding of microglial dysfunction in AD will only be established by an integrated view across models and an appreciation for their complementary viewpoints and limitations.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
| | - Elizabeth A. Proctor
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
- Department of Engineering Science & Mechanics, Penn State University
| |
Collapse
|
29
|
Sethi P, Bhaskar R, Singh KK, Gupta S, Han SS, Avinash D, Abomughaid MM, Koul A, Rani B, Ghosh S, Jha NK, Sinha JK. Exploring advancements in early detection of Alzheimer's disease with molecular assays and animal models. Ageing Res Rev 2024; 100:102411. [PMID: 38986845 DOI: 10.1016/j.arr.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's Disease (AD) is a challenging neurodegenerative condition, with overwhelming implications for affected individuals and healthcare systems worldwide. Animal models have played a crucial role in studying AD pathogenesis and testing therapeutic interventions. Remarkably, studies on the genetic factors affecting AD risk, such as APOE and TREM2, have provided valuable insights into disease mechanisms. Early diagnosis has emerged as a crucial factor in effective AD management, as demonstrated by clinical studies emphasizing the benefits of initiating treatment at early stages. Novel diagnostic technologies, including RNA sequencing of microglia, offer promising avenues for early detection and monitoring of AD progression. Therapeutic strategies remain to evolve, with a focus on targeting amyloid beta (Aβ) and tau pathology. Advances in animal models, such as APP-KI mice, and the advancement of anti-Aβ drugs signify progress towards more effective treatments. Therapeutically, the focus has shifted towards intricate approaches targeting multiple pathological pathways simultaneously. Strategies aimed at reducing Aβ plaque accumulation, inhibiting tau hyperphosphorylation, and modulating neuroinflammation are actively being explored, both in preclinical models and clinical trials. While challenges continue in developing validated animal models and translating preclinical findings to clinical success, the continuing efforts in understanding AD at molecular, cellular, and clinical levels offer hope for improved management and eventual prevention of this devastating disease.
Collapse
Affiliation(s)
- Paalki Sethi
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Apurva Koul
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Jaipur, Rajsthan, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India.
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
30
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
32
|
Piccioni G, Maisto N, d'Ettorre A, Strimpakos G, Nisticò R, Triaca V, Mango D. Switch to phagocytic microglia by CSFR1 inhibition drives amyloid-beta clearance from glutamatergic terminals rescuing LTP in acute hippocampal slices. Transl Psychiatry 2024; 14:338. [PMID: 39179543 PMCID: PMC11344079 DOI: 10.1038/s41398-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nunzia Maisto
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Asia d'Ettorre
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy.
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
33
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
34
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
35
|
Ban F, Zhou L, Yang Z, Liu Y, Zhang Y. Aspergillusidone G Potentiates the Anti-Inflammatory Effects of Polaprezinc in LPS-Induced BV2 Microglia: A Bioinformatics and Experimental Study. Mar Drugs 2024; 22:324. [PMID: 39057433 PMCID: PMC11278036 DOI: 10.3390/md22070324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, its potential effects on NDs remain unexplored. In LPS-induced BV-2 microglia, we found that Pol reduced the generation of NO and ROS and revealed inhibited expression of iNOS, COX-2, and inflammatory factors such as IL-6, TNF-α, and 1L-1β by Pol using qRT-PCR and Western blotting. These effects were found to be associated with the suppression of the NF-κB signaling pathway. Moreover, we evaluated the potential synergistic effects of aspergillusidone G (Asp G) when combined with Pol. Remarkably, co-treatment with low doses of Asp G enhanced the NO inhibition by Pol from approximately 30% to 80% in LPS-induced BV2 microglia, indicating a synergistic anti-inflammatory effect. A bioinformatics analysis suggested that the synergistic mechanism of Asp G and Pol might be attributed to several targets, including NFκB1, NRF2, ABL1, TLR4, and PPARα. These findings highlight the anti-neuroinflammatory properties of Pol and its enhanced efficacy when combined with Asp G, proposing a novel therapeutic strategy for managing neuroinflammation in NDs.
Collapse
Affiliation(s)
- Fangfang Ban
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.B.); (Z.Y.); (Y.L.)
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.B.); (Z.Y.); (Y.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.B.); (Z.Y.); (Y.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.B.); (Z.Y.); (Y.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (F.B.); (Z.Y.); (Y.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
36
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
37
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
39
|
Gauberg J, Moreno KB, Jayaraman K, Abumeri S, Jenkins S, Salazar AM, Meharena HS, Glasgow SM. Spinal motor neuron development and metabolism are transcriptionally regulated by Nuclear Factor IA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600888. [PMID: 38979382 PMCID: PMC11230388 DOI: 10.1101/2024.06.26.600888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well-established, much less is known about the role of transcription factors in the later stages of maturation and terminal arborization. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor Nuclear Factor-IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and ATP production, providing a new and important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.
Collapse
|
40
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
41
|
Fruhwürth S, Zetterberg H, Paludan SR. Microglia and amyloid plaque formation in Alzheimer's disease - Evidence, possible mechanisms, and future challenges. J Neuroimmunol 2024; 390:578342. [PMID: 38640827 DOI: 10.1016/j.jneuroim.2024.578342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aβ) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aβ plaque formation, as well as their impact on morphological and functional diversity of Aβ plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Søren R Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
42
|
Shippy DC, Oliai SF, Ulland TK. Zinc utilization by microglia in Alzheimer's disease. J Biol Chem 2024; 300:107306. [PMID: 38648940 PMCID: PMC11103939 DOI: 10.1016/j.jbc.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aβ and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aβ and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Sophia F Oliai
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
43
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
44
|
Kuhn MK, Kang RY, Kim C, Tagay Y, Morris N, Tabdanov ED, Elcheva IA, Proctor EA. Dynamic neuroinflammatory profiles predict Alzheimer's disease pathology in microglia-containing cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567220. [PMID: 38014053 PMCID: PMC10680718 DOI: 10.1101/2023.11.16.567220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Neuroinflammation and the underlying dysregulated immune responses of microglia actively contribute to the progression and, likely, the initiation of Alzheimer's disease (AD). Fine-tuned therapeutic modulation of immune dysfunction to ameliorate disease cannot be achieved without the characterization of diverse microglial states that initiate unique, and sometimes contradictory, immune responses that evolve over time in chronic inflammatory environments. Because of the functional differences between human and murine microglia, untangling distinct, disease-relevant reactive states and their corresponding effects on pathology or neuronal health may not be possible without the use of human cells. In order to profile shifting microglial states in early AD and identify microglia-specific drivers of disease, we differentiated human induced pluripotent stem cells (iPSCs) carrying a familial AD PSEN2 mutation or its isogenic control into cerebral organoids and quantified the changes in cytokine concentrations over time with Luminex XMAP technology. We used partial least squares (PLS) modeling to build cytokine signatures predictive of disease and age to identify key differential patterns of cytokine expression that inform the overall organoid immune milieu and quantified the corresponding changes in protein pathology. AD organoids exhibited an overall reduction in cytokine secretion after an initial amplified immune response. We demonstrate that reduced synapse density observed in the AD organoids is prevented with microglial depletion. Crucially, these differential effects of dysregulated immune signaling occurred without the accumulation of pathological proteins. In this study, we used microglia-containing AD organoids to quantitatively characterize an evolving immune milieu, made up of a diverse of collection of activation patterns and immune responses, to identify how a dynamic, overall neuroinflammatory state negatively impacts neuronal health and the cell-specific contribution of microglia.
Collapse
Affiliation(s)
- Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Rachel Y Kang
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - ChaeMin Kim
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nathan Morris
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Irina A Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
45
|
Zhu C, Ren X, Liu C, Liu Y, Wang Y. Rbm8a regulates neurogenesis and reduces Alzheimer's disease-associated pathology in the dentate gyrus of 5×FAD mice. Neural Regen Res 2024; 19:863-871. [PMID: 37843222 PMCID: PMC10664127 DOI: 10.4103/1673-5374.382254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a prevalent and debilitating neurodegenerative condition that profoundly affects a patient's daily functioning with progressive cognitive decline, which can be partly attributed to impaired hippocampal neurogenesis. Neurogenesis in the hippocampal dentate gyrus is likely to persist throughout life but declines with aging, especially in Alzheimer's disease. Recent evidence indicated that RNA-binding protein 8A (Rbm8a) promotes the proliferation of neural progenitor cells, with lower expression levels observed in Alzheimer's disease patients compared with healthy people. This study investigated the hypothesis that Rbm8a overexpression may enhance neurogenesis by promoting the proliferation of neural progenitor cells to improve memory impairment in Alzheimer's disease. Therefore, Rbm8a overexpression was induced in the dentate gyrus of 5×FAD mice to validate this hypothesis. Elevated Rbm8a levels in the dentate gyrus triggered neurogenesis and abated pathological phenotypes (such as plaque formation, gliosis reaction, and dystrophic neurites), leading to ameliorated memory performance in 5×FAD mice. RNA sequencing data further substantiated these findings, showing the enrichment of differentially expressed genes involved in biological processes including neurogenesis, cell proliferation, and amyloid protein formation. In conclusion, overexpressing Rbm8a in the dentate gyrus of 5×FAD mouse brains improved cognitive function by ameliorating amyloid-beta-associated pathological phenotypes and enhancing neurogenesis.
Collapse
Affiliation(s)
- Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chen Liu
- Department of Neurology, Xiaogan City Central Hospital, Xiaogan, Hubei Province, China
| | - Yawei Liu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Yonggang Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Kusui Y, Izuo N, Tokuhara R, Asano T, Nitta A. Neuronal activation of nucleus accumbens by local methamphetamine administration induces cognitive impairment through microglial inflammation in mice. J Pharmacol Sci 2024; 154:127-138. [PMID: 38395513 DOI: 10.1016/j.jphs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/25/2024] Open
Abstract
More than half of methamphetamine (METH) users present with cognitive impairment, making it difficult for them to reintegrate into society. However, the mechanisms of METH-induced cognitive impairment remain unclear. METH causes neuronal hyperactivation in the nucleus accumbens (NAc) by aberrantly releasing dopamine, which triggers dependence. In this study, to clarify the involvement of hyperactivation of NAc in METH-induced cognitive impairment, mice were locally microinjected with METH into NAc (mice with METH (NAc)) and investigated their cognitive phenotype. Mice with METH (NAc) exhibited cognitive dysfunction in behavioral analyses and decreased long-term potentiation in the hippocampus, with NAc activation confirmed by expression of FosB, a neuronal activity marker. In the hippocampus of mice with METH (NAc), activated microglia, but not astroglia, and upregulated microglia-related genes, Il1b and C1qa were observed. Finally, administration of minocycline, a tetracycline antibiotic with suppressive effect on microglial activation, to mice with METH (NAc) ameliorated cognitive impairment and synaptic dysfunction by suppressing the increased expression of Il1b and C1qa in the hippocampus. In conclusion, activation of NAc by injection of METH into NAc elicited cognitive impairment by facilitating immune activation in mice. This study suggests that immunological intervention could be a therapeutic strategy for addiction-related cognitive disturbances.
Collapse
Affiliation(s)
- Yuka Kusui
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Reika Tokuhara
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
47
|
Adhikari A, Chauhan K, Adhikari M, Tiwari AK. Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorg Med Chem 2024; 100:117628. [PMID: 38330850 DOI: 10.1016/j.bmc.2024.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aβ) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India.
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California 22860, Mexico
| | - Manish Adhikari
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb, Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
48
|
Bjørnstad F, Havik S, Aarhus TI, Mahdi I, Unger A, Habenberger P, Degenhart C, Eickhoff J, Klebl BM, Sundby E, Hoff BH. Pyrrolopyrimidine based CSF1R inhibitors: Attempted departure from Flatland. Eur J Med Chem 2024; 265:116053. [PMID: 38141285 DOI: 10.1016/j.ejmech.2023.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is an attractive target for inflammation disorders and cancers. Based on a series of pyrrolo[2,3-d]pyrimidine containing two carbo-aromatic rings, we have searched for new CSF1R inhibitors having a higher fraction of sp3-atoms. The phenyl unit in the 4-amino group could efficiently be replaced by tetrahydropyran (THP) retaining inhibitor potency. Exchanging the 6-aryl group with cyclohex-2-ene units also resulted in highly potent compounds, while fully saturated ring systems at C-6 led to a loss of activity. The structure-activity relationship study evaluating THP containing pyrrolo[2,3-d]pyrimidine derivates identified several highly active inhibitors by enzymatic studies. A comparison of 11 pairs of THP and aromatic compounds showed that inhibitors containing THP had clear benefits in terms of enzymatic potency, solubility, and cell toxicity. Guided by cellular experiments in Ba/F3 cells, five CSF1R inhibitors were further profiled in ADME assays, indicating the para-aniline derivative 16t as the most attractive compound for further development.
Collapse
Affiliation(s)
- Frithjof Bjørnstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Simen Havik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Iktedar Mahdi
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Carsten Degenhart
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert M Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
49
|
Miao X, Wu Q, Du S, Xiang L, Zhou S, Zhu J, Chen Z, Wang H, Pan X, Fan Y, Zhang L, Qian J, Xing Y, Xie Y, Hu L, Xu H, Wang W, Wang Y, Huang Z. SARM1 Promotes Neurodegeneration and Memory Impairment in Mouse Models of Alzheimer's Disease. Aging Dis 2024; 15:390-407. [PMID: 37307837 PMCID: PMC10796105 DOI: 10.14336/ad.2023.0516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
Neuroinflammation plays a crucial role in the pathogenesis and progression of Alzheimer's disease (AD). The Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) has been shown to promote axonal degeneration and is involved in neuroinflammation. However, the role of SARM1 in AD remains unclear. In this study, we found that SARM1 was reduced in hippocampal neurons of AD model mice. Interestingly, conditional knockout (CKO) of SARM1 in the central nervous system (CNS, SARM1Nestin-CKO mice) delayed the cognitive decline in APP/PS1 AD model mice. Furthermore, SARM1 deletion reduced the Aβ deposition and inflammatory infiltration in the hippocampus and inhibited neurodegeneration in APP/PS1 AD model mice. Further investigation into the underlying mechanisms revealed that the signaling of tumor necrosis factor-α (TNF-α) was downregulated in the hippocampus tissues of APP/PS1;SARM1Nestin-CKO mice, thereby alleviating the cognitive decline, Aβ deposition and inflammatory infiltration. These findings identify unrecognized functions of SARM1 in promoting AD and reveal the SARM1-TNF-α pathway in AD model mice.
Collapse
Affiliation(s)
- Xuemeng Miao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Qian Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyao Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junzhe Zhu
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Zirun Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hui Wang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Xuyi Pan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiren Fan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lihan Zhang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Jingkang Qian
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yuxuan Xing
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiyang Xie
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lixin Hu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
50
|
Mensah-Kane P, Davis DL, Shi HS, Trinh OT, Vann PH, Dory L, Sumien N. Hyperbaric oxygen alleviates selective domains of cognitive and motor deficits in female 5xFAD mice. GeroScience 2024; 46:517-530. [PMID: 38153668 PMCID: PMC10828284 DOI: 10.1007/s11357-023-01047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Treatment of Alzheimer's disease (AD) has been limited to managing of symptoms or anti-amyloid therapy with limited results and uncertainty. Seeking out new therapies that can reverse the effects of this devastating disease is important. Hyperbaric oxygen (HBO) therapy could be such a candidate as it has been shown to improve brain function in certain neurological conditions. Furthermore, the role sex plays in the vulnerability/resilience to AD remains equivocal. An understanding of what makes one sex more vulnerable to AD could unveil new pathways for therapy development. In this study, we investigated the effects of HBO on cognitive, motor, and affective function in a mouse model of AD (5xFAD) and assessed protein oxidation in peripheral tissues as a safety indicator. The motor and cognitive abilities of 5xFAD mice were significantly impaired. HBO therapy improved cognitive flexibility and associative learning of 5xFAD females but not males, but HBO had no effect other aspects of cognition. HBO also reversed AD-related declines in balance but had no impact on gait and anxiety-like behavior. HBO did not affect body weights or oxidative stress in peripheral tissues. Our study provides further support for HBO therapy as a potential treatment for AD and emphasizes the importance of considering sex as a biological variable in therapeutic development. Further investigations into the underlying mechanisms of HBO's sex-specific responses are warranted, as well as optimizing treatment protocols for maximum benefits.
Collapse
Affiliation(s)
- Paapa Mensah-Kane
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Delaney L Davis
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Helen S Shi
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Oanh T Trinh
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Ladislav Dory
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA.
| |
Collapse
|