1
|
Sharma A, Kapur S, Kancharla P, Yang T. Sex differences in gut microbiota, hypertension, and cardiovascular risk. Eur J Pharmacol 2025; 987:177183. [PMID: 39647571 PMCID: PMC11714433 DOI: 10.1016/j.ejphar.2024.177183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The intricate ecosystem of the gut microbiome exhibits sex-specific differences, influencing the susceptibility to cardiovascular diseases (CVD). Imbalance within the gut microbiome compromises the gut barrier, activates inflammatory pathways, and alters the production of metabolites, all of which initiate chronic diseases including CVD. In particular, the interplay between lifestyle choices, hormonal changes, and metabolic byproducts uniquely affects sex-specific gut microbiomes, potentially shaping the risk profiles for hypertension and CVD differently in men and women. Understanding the gut microbiome's role in CVD risk offers informative reasoning behind the importance of developing tailored preventative strategies based on sex-specific differences in CVD risk. Furthermore, insight into the differential impact of social determinants and biological factors on CVD susceptibility emphasizes the necessity for more nuanced approaches. This review also outlines specific dietary interventions that may enhance gut microbiome health, offering a glimpse into potential therapeutic avenues for reducing CVD risk that require greater awareness. Imbalance in natural gut microbiomes may explain etiologies of chronic diseases; we advocate for future application to alter the gut microbiome as possible treatment of the aforementioned diseases. This review mentions the idea of altering the gut microbiome through interventions such as fecal microbiota transplantation (FMT), a major application of microbiome-based therapy that is first-line for Clostridium difficile infections and patient-specific probiotics highlights more innovative approaches to hypertension and CVD prevention. Through increased analysis of gut microbiota compositions along with patient-centric probiotics and microbiome transfers, this review advocates for future preventative strategies for hypertension.
Collapse
Affiliation(s)
- Anish Sharma
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Sahil Kapur
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Priyal Kancharla
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA.
| |
Collapse
|
2
|
Zeise KD, Falkowski NR, Stark KG, Brown CA, Huffnagle GB. Profiling inflammatory outcomes of Candida albicans colonization and food allergy induction in the murine glandular stomach. mBio 2024; 15:e0211324. [PMID: 39347572 PMCID: PMC11559088 DOI: 10.1128/mbio.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
We investigated the effects of Candida albicans colonization on inflammatory responses in the murine glandular stomach, which is similar to the glandular mucosa of the human stomach. We also explored whether the presence of a food allergy could exacerbate C. albicans-induced inflammation or if C. albicans would amplify allergic inflammation in the glandular stomach. C. albicans successfully colonized the stomach of amoxicillin-pre-treated BALB/c mice and induced gastritis in the limiting ridge with minimal inflammation in the glandular stomach. There was significant upregulation of Il18, calprotectin (S100a8 and S100a9), and several antimicrobial peptides, but minimal induction of type 1, 2, or 3 responses in the glandular stomach. A robust type 2 response, inflammatory cell recruitment, and tissue remodeling occurred in the glandular stomach following oral ovalbumin challenges in sensitized mice. The type 2 response was not augmented by C. albicans colonization, but there was significant upregulation of Il1b, Il12a, Tnf, and Il17a in C. albicans-colonized food allergic mice. The presence of C. albicans did not affect the expression of genes involved in barrier integrity and signaling, many of which were upregulated during food allergy. Overall, our data indicate that C. albicans colonization induces minimal inflammation in the glandular stomach but augments antimicrobial peptide expression. Induction of a food allergy results in robust type 2 inflammation in the glandular stomach, and while C. albicans colonization does not exacerbate type 2 inflammation, it does activate a number of innate and type 3 immune responses amid the backdrop of allergic inflammation. IMPORTANCE Food allergy continues to be a growing public health concern, affecting at least 1 in 10 individuals in the United States alone. However, little is known about the involvement of the gastric mucosa in food allergy. Gastrointestinal Candida albicans colonization has been reported to promote gastrointestinal inflammation in a number of chronic diseases. Using a mouse model of food allergy to egg white protein, we demonstrate regionalization of the inflammatory response to C. albicans colonization, induction of robust type 2 (allergic) inflammation in the stomach, and augmentation of innate and type 3 responses by C. albicans colonization during food allergy.
Collapse
Affiliation(s)
- Karen D. Zeise
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A. Brown
- Advanced Research Computing, Information and Technology Services, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Coelho LMD, da Fonseca VMB, Labadessa IG, Salvador SL, Del Arco Mastrange M, Gembre AF, Martins NS, Bonato VLD, Vianna ÉO, Carvalho Borges M. The Effect of Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Bifidobacterium animalis ssp. lactis on the Prevention of Asthma in an Animal Model. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10366-5. [PMID: 39382739 DOI: 10.1007/s12602-024-10366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
The increase in the prevalence of asthma, particularly in urban communities, has encouraged investigations into preventive strategies. The hygiene theory proposes that early exposure to infections and unhygienic conditions during childhood influences immune system development, potentially protecting against allergic diseases. The mechanisms involved are related to alterations in the intestinal microbiota, such as with probiotics. This study aimed to evaluate the preventive effect of Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Bifidobacterium animalis ssp. lactis, administered isolated or in combination, at various concentrations, on asthma in an animal model. Mice received two concentrations (1 × 109 and 1 × 1010 CFU/ml) of three probiotics, isolated and in combination, over 26 consecutive days, initiating 10 days before sensitizing and challenging with ovalbumin. In vivo bronchial hyperresponsiveness and airway and lung inflammation were assessed. The administration of L. paracasei, L. rhamnosus, and B. animalis spp. lactis in different concentrations, isolated or in combination, did not reduce hyperresponsiveness and airway and lung inflammation. As probiotic effects are strain and dose-dependents, specific studies are necessary to assess the effect of different probiotic strains, doses, and regimes.
Collapse
Affiliation(s)
- Líris Marini Dias Coelho
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil
| | | | - Ivana Golçalves Labadessa
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil
| | - Sergio Luiz Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Marina Del Arco Mastrange
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Núbia Sabrina Martins
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Élcio Oliveira Vianna
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil
| | - Marcos Carvalho Borges
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil.
| |
Collapse
|
4
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
6
|
Wen L, Zhang T, Chen F, Hu L, Dou C, Ding X, Altamirano A, Wei G, Yan Z. Modified Dingchuan Decoction treats cough-variant asthma by suppressing lung inflammation and regulating the lung microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116171. [PMID: 36646156 DOI: 10.1016/j.jep.2023.116171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Dingchuan Decoction (MDD) is a Chinese medicine formula containing 11 materials with cough suppression, asthma relief, and anti-inflammatory effects. AIM OF THE STUDY This study aimed to evaluate the therapeutic effect of MDD on cough-variant asthma (CVA) and to investigate its mechanism of action. MATERIALS AND METHODS The chemical constituents of MDD were analyzed by ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). A guinea pig CVA model was established using an intramuscular injection of ovalbumin (OVA), combined with an intraperitoneal injection of aluminum hydroxide [Al(OH)3] and nebulized OVA. At the beginning of day 18, the low, medium, and high MDD groups were gavaged with 7.23 g/kg, 14.46 g/kg, and 28.92 g/kg of MDD, respectively, and the positive group was gavaged with 5 mg/kg of prednisone acetate combined with 1 mg/kg of montelukast sodium; the normal and model groups were given an equal volume of distilled water, once a day for 21 days. The cough was induced by 10-3 mol/L capsaicin solution 1 h after the last administration, and the number of coughs and the latency of coughs were evaluated. Hematoxylin and eosin staining (H&E) was used to observe pathological changes in the lungs and airways. The concentration of inflammatory factors in bronchoalveolar lavage fluid (BALF) was measured by enzyme-linked immunosorbent assay (ELISA). We analyzed the lung microbiota using 16 S ribosomal DNA (16 S rDNA) high-throughput sequencing. RESULTS The 38 chemical components were found in MDD, and MDD reduced the number of coughs in guinea pigs with CVA, prolonged cough latency, improved pathological damage to the lungs and airways, regulated inflammatory factor levels in BALF, and modulated the lung microbiota. CONCLUSIONS This study demonstrated that treating CVA with MDD may be related to inhibiting lung inflammation and regulating lung microbiota.
Collapse
Affiliation(s)
- Lingmiao Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Tinglan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Fangfang Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lin Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Chongyang Dou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xian Ding
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Alvin Altamirano
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
8
|
DiPalma MP, Blattman JN. The impact of microbiome dysbiosis on T cell function within the tumor microenvironment (TME). Front Cell Dev Biol 2023; 11:1141215. [PMID: 37009485 PMCID: PMC10063789 DOI: 10.3389/fcell.2023.1141215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Insights into the effect of the microbiome’s composition on immune cell function have recently been discerned and further characterized. Microbiome dysbiosis can result in functional alterations across immune cells, including those required for innate and adaptive immune responses to malignancies and immunotherapy treatment. Dysbiosis can yield changes in or elimination of metabolite secretions, such as short-chain fatty acids (SCFAs), from certain bacterial species that are believed to impact proper immune cell function. Such alterations within the tumor microenvironment (TME) can significantly affect T cell function and survival necessary for eliminating cancerous cells. Understanding these effects is essential to improve the immune system’s ability to fight malignancies and the subsequent efficacy of immunotherapies that rely on T cells. In this review, we assess typical T cell response to malignancies, classify the known impact of the microbiome and particular metabolites on T cells, discuss how dysbiosis can affect their function in the TME then further describe the impact of the microbiome on T cell-based immunotherapy treatment, with an emphasis on recent developments in the field. Understanding the impact of dysbiosis on T cell function within the TME can carry substantial implications for the design of immunotherapy treatments and further our understanding of factors that could impact how the immune system combats malignancies.
Collapse
Affiliation(s)
- Michelle P. DiPalma
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
| | - Joseph N. Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
- *Correspondence: Joseph N. Blattman,
| |
Collapse
|
9
|
Thriene K, Michels KB. Human Gut Microbiota Plasticity throughout the Life Course. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1463. [PMID: 36674218 PMCID: PMC9860808 DOI: 10.3390/ijerph20021463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
The role of the gut microbiota in human health and disease has garnered heightened attention over the past decade. A thorough understanding of microbial variation over the life course and possible ways to influence and optimize the microbial pattern is essential to capitalize on the microbiota's potential to influence human health. Here, we review our current understanding of the concept of plasticity of the human gut microbiota throughout the life course. Characterization of the plasticity of the microbiota has emerged through recent research and suggests that the plasticity in the microbiota signature is largest at birth when the microbial colonization of the gut is initiated and mode of birth imprints its mark, then decreases postnatally continuously and becomes less malleable and largely stabilized with advancing age. This continuing loss of plasticity has important implication for the impact of the exposome on the microbiota and health throughout the life course and the identification of susceptible 'windows of opportunity' and methods for interventions.
Collapse
Affiliation(s)
- Kerstin Thriene
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Rentería I, García-Suárez PC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Lira FS, Jiménez-Maldonado A. Unhealthy Dieting During the COVID-19 Pandemic: An Opinion Regarding the Harmful Effects on Brain Health. Front Nutr 2022; 9:876112. [PMID: 35571935 PMCID: PMC9097874 DOI: 10.3389/fnut.2022.876112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2020, the world has been suffering from a pandemic that has affected thousands of people regardless of socio-economic conditions, forcing the population to adopt different strategies to prevent and control the advance of the disease, one of which is social distancing. Even though social distancing is a safe strategy to reduce the spread of COVID-19, it is also the cause of a rising sedentary behavior. This behavior develops an excess of fat tissue that leads to metabolic and inflammatory disruption related to chronic diseases and mental health disorders, such as anxiety, depression, and sleep issues. Furthermore, the adoption of dietary patterns involving the consumption of ultra-processed foods, higher in fats and sugars, and the reduction of fresh and healthy foods may play a role in the progress of the disease. In this perspective, we will discuss how an unhealthy diet can affect brain function and, consequently, be a risk factor for mental health diseases.
Collapse
Affiliation(s)
- Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Patricia Concepción García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | | | | | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University, UNESP, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
11
|
Song J, Wang J. SIRT3 regulates bronchial epithelium apoptosis and aggravates airway inflammation in asthma. Mol Med Rep 2022; 25:144. [PMID: 35234263 PMCID: PMC8915391 DOI: 10.3892/mmr.2022.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jie Song
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Tongzhou, Beijing 101100, P.R. China
| | - Jinxiang Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Tongzhou, Beijing 101100, P.R. China
| |
Collapse
|
12
|
Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity. Molecules 2021; 26:molecules26196076. [PMID: 34641619 PMCID: PMC8512487 DOI: 10.3390/molecules26196076] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Probiotics are beneficial active microorganisms that colonize the human intestines and change the composition of the flora in particular parts of the host. Recently, the use of probiotics to regulate intestinal flora to improve host immunity has received widespread attention. Recent evidence has shown that probiotics play significant roles in gut microbiota composition, which can inhibit the colonization of pathogenic bacteria in the intestine, help the host build a healthy intestinal mucosa protective layer, and enhance the host immune system. Based on the close relationship between the gut microbiota and human immunity, it has become an extremely effective way to improve human immunity by regulating the gut microbiome with probiotics. In this review, we discussed the influence of probiotics on the gut microbiota and human immunity, and the relationship between immunity, probiotics, gut microbiota, and life quality. We further emphasized the regulation of gut microflora through probiotics, thereby enhancing human immunity and improving people’s lives.
Collapse
|
13
|
Herman RA, Bauman PA, Goodwin L, Islamovic E, Ma EH, Serrano H, Silvanovich A, Simmons AR, Song P, Tetteh AO, Wang R. Mass spectrometric analysis of digesta does not improve the allergenicity assessment of GM crops. Transgenic Res 2021; 30:283-288. [PMID: 33864193 PMCID: PMC8169501 DOI: 10.1007/s11248-021-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 11/23/2022]
Abstract
An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein’s status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Ma
- Syngenta Crop Protection, LLC., Research Triangle Park, NC, USA
| | | | | | | | - Ping Song
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Rong Wang
- Bayer, Crop Science Division, Chesterfield, MO, USA
| |
Collapse
|
14
|
Castello A, Rossi S, Toschi L, Lopci E. Impact of Antibiotic Therapy and Metabolic Parameters in Non-Small Cell Lung Cancer Patients Receiving Checkpoint Inhibitors. J Clin Med 2021; 10:jcm10061251. [PMID: 33803006 PMCID: PMC8002619 DOI: 10.3390/jcm10061251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction: In the current study, we aimed to assess the impact of antibiotics (ATB) and metabolic parameters on clinical outcome of non-small cell lung carcinoma (NSCLC) patients treated with immune checkpoint inhibitors (ICI). Methods: Data from fifty NSCLC patients referred for ICI between December 2015 and May 2019 were analyzed. All patients underwent 18F-fluorodeoxyglucose positron emission tomography computed tomography (18F-FDG PET/CT) and contrast-enhanced CT at baseline and for response assessment after 6–8 weeks. Patients who received ATB within 1 month before or after the first dose of ICI were compared with those who did not. Response assessment according to iRECIST and EORTC was evaluated, as well as progression-free survival (PFS) and overall survival (OS). For semi-quantitative parameters, we computed metabolic tumor volume (MTV), total lesion glycolysis (TLG) and their variations (∆). Results: Twenty NSCLC cases of 50 (40%) had received ATB. Patients receiving ATB had a higher number of metastases (p = 0.046), and were associated with an elevated tumor burden, expressed by TLG (687 vs. 235.3, p = 0.007) and MTV (125.6 vs. 40.6, p = 0.002), compared to no-ATB patients. According to iRECIST, progressive disease rate was significantly higher for ATB group (64.7% vs. 27.6%, p = 0.029). Likewise, PFS was shorter for ATB compared to no-ATB (median 4.1 vs. 12.4 months, p = 0.004), while no difference for OS was detected. On multivariate analysis, the effect of ATB remained significant for poor PFS along with performance status (ECOG ≥ 1), and ∆SUVmax. Conclusions: ATB therapy seems to be associated with a worse treatment response, PFS, and higher metabolic tumor burden in NSCLC patients treated with ICI.
Collapse
Affiliation(s)
- Angelo Castello
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
| | - Sabrina Rossi
- Department of Oncology and Hematology, IRCCS-Humanitas Research Center, 20089 Rozzano, Italy; (S.R.); (L.T.)
| | - Luca Toschi
- Department of Oncology and Hematology, IRCCS-Humanitas Research Center, 20089 Rozzano, Italy; (S.R.); (L.T.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
- Correspondence: ; Tel.: +39-02-82247542; Fax: +39-02-82246693
| |
Collapse
|
15
|
Cavaleiro Rufo J, Paciência I, Hoffimann E, Moreira A, Barros H, Ribeiro AI. The neighbourhood natural environment is associated with asthma in children: A birth cohort study. Allergy 2021; 76:348-358. [PMID: 32654186 DOI: 10.1111/all.14493] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND A lower exposure to the natural environment has been hypothesized to adversely affect the human microbiome and its immunomodulatory capacity. However, the underlying effects of this hypothesis are still not understood. We aimed to evaluate the effect of early-life exposure to greenness and species richness on the development of allergic diseases and asthma in children. METHODS A longitudinal study was conducted comprising 1050 children from a population-based birth cohort recruited in Portugal. Residential normalized difference vegetation index (NDVI) and species richness index (SRI) were assessed at baseline to estimate their association with allergic diseases and asthma at the ages of 4 and 7. RESULTS Significant predisposing associations were observed between the exposure to species richness at baseline and the onset of asthma and wheezing at the age of 7. Children living in neighbourhoods surrounded by high levels of SRI were at a significantly higher risk developing allergic sensitization(OR [95% CI] = 2.00 [1.04:3.86] at age 4; 2.35 [1.20:4.63] at age 7). Living surrounded by greener environments was significantly associated with a lower prevalence of asthma and rhinitis at the age of 7(0.41 [0.18:0.97] and 0.37 [0.15:0.93], respectively). CONCLUSIONS Living in close proximity to a greener environment at birth has a protective effect on the development of allergic diseases and asthma at the age of 7. Conversely, living in neighbourhoods with a high number of fauna species appears to be associated with a higher risk for allergy, asthma and wheezing.
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Inês Paciência
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Elaine Hoffimann
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
| | - André Moreira
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Henrique Barros
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| | - Ana Isabel Ribeiro
- EPIUnit Instituto de Saúde Pública da Universidade do Porto Porto Portugal
- Faculdade de Medicina da Universidade do Porto Porto Portugal
| |
Collapse
|
16
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Park IH, Lee JS, Park JH, Kang SH, Hong SM, Park IS, Yoon JH, Hong SJ. Comparison of the human microbiome in adults and children with chronic rhinosinusitis. PLoS One 2020; 15:e0242770. [PMID: 33264344 PMCID: PMC7710060 DOI: 10.1371/journal.pone.0242770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
We hypothesized that differences in the microbiome could be a cause of the substantial differences in the symptoms of and treatment options for adult and pediatric patients with chronic rhinosinusitis (CRS). First, we characterized the differences in the nasal microbiomes of pediatric and adult CRS patients. Swabs were obtained from 19 patients with chronic rhinosinusitis (9 children and 10 adults). The bacterial 16S rRNA gene was pyrosequenced to compare the microbiota of the middle meatus. No significant differences were found in species richness and alpha-diversity indices between the two groups. However, in the comparison of diversity between groups using the unweighted pair group method with arithmetic mean (UPGMA) clustering of microbiome taxonomic profiles, we observed a relatively clear separation between the adult and pediatric groups. Actinobacteria had a significantly higher relative abundance in the adult group than in the pediatric group at the phylum level. At the genus level, Corynebacterium showed significantly higher relative abundance in the adult group than in the pediatric group. This is a comparative study between the microbiomes of adult and pediatric CRS patients. We expect this study to be the first step in understanding the pathogenesis of CRS in adults and children using microbiome analysis.
Collapse
Affiliation(s)
- Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Disease Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Joong Seob Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang-Si, Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Disease Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Sung Hun Kang
- Department of Biomedical Sciences, Hallym University College of Medicine, Chuncheon, Korea
| | - Seok Min Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-Si, Korea
| | - Il Seok Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-Si, Korea
| | - Joo Heung Yoon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Seok Jin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-Si, Korea
| |
Collapse
|
18
|
van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020; 11:2141. [PMID: 33193294 PMCID: PMC7641638 DOI: 10.3389/fimmu.2020.02141] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Specific and adequate nutrition during pregnancy and early life is an important factor in avoiding non-communicable diseases such as obesity, type 2 diabetes, cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic and experimental studies have shown that nutrition is important at all stages of life, it is especially important in prenatal and the first few years of life. During the last decade, there has been a growing interest in the potential role of epigenetic mechanisms in the increasing health problems associated with allergic disease. Epigenetics involves several mechanisms including DNA methylation, histone modifications, and microRNAs which can modify the expression of genes. In this study, we focus on the effects of maternal nutrition during pregnancy, the effects of the bioactive components in human and bovine milk, and the environmental factors that can affect early life (i.e., farming, milk processing, and bacterial exposure), and which contribute to the epigenetic mechanisms underlying the persistent programming of immune functions and allergic diseases. This knowledge will help to improve approaches to nutrition in early life and help prevent allergies in the future.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- John Paul II Hospital, Krakow, Poland
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
19
|
Łoś-Rycharska E, Gołębiewski M, Grzybowski T, Rogalla-Ładniak U, Krogulska A. The microbiome and its impact on food allergy and atopic dermatitis in children. Postepy Dermatol Alergol 2020; 37:641-650. [PMID: 33240001 PMCID: PMC7675070 DOI: 10.5114/ada.2019.90120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023] Open
Abstract
Food allergy (FA) affects 4-10% of children, especially children with atopic dermatitis (AD). During infancy the gut microbiome may determine both the course of FA and tolerance to food allergens. Analogically, the skin microbiome changes in the course of AD. Most studies have associated FA with a lower abundance and diversity of Lactobacillales and Clostridiales, but greater numbers of Enterobacterales, while AD in children has been associated with lower numbers of Staphylococcus epidermidis and S. hominis but an abundance of S. aureus and Streptococcus species. An understanding of the impact of the microbiome on the clinical course of FA and AD may allow for the development of new models of allergy treatment and prevention.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Marcin Gołębiewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Grzybowski
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Urszula Rogalla-Ładniak
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Aneta Krogulska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
20
|
Altered vaginal microbiome and relative co-abundance network in pregnant women with penicillin allergy. Allergy Asthma Clin Immunol 2020; 16:79. [PMID: 32944033 PMCID: PMC7491301 DOI: 10.1186/s13223-020-00475-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background Penicillin allergy is frequently reported in adults and children. Recent studies suggest that microbiota plays a key role in the development and progression of allergy. In this study, the relationship between vaginal microbiome and pregnant women with penicillin allergy was investigated. Methods Vaginal samples before labor from 12 pregnant women with penicillin allergy and 15 non-allergic pregnant women were collected. Bacterial community structure of all study subjects and the discrepancies between the two groups were analyzed using 16S rRNA sequencing based on Illumina Hiseq 2500 platform. Results The abundant phyla among all participants were Firmicutes, Actinobacteria and Bacteroidetes. The predominant genus was Lactobacillus. Compared to non-allergic pregnant women, Actinobacteria, Coriobacteriaceae, Lachnospiraceae, Paraprevotella and Anoxybacillus significantly decreased, whereas Deltaproteobacteria, Peptostreptococcaceae, Enterococcus and Megamonas were more abundant in penicillin allergic women. Additionally, obvious discrepancies were observed in the co-abundance network at the genus level between the two groups. Conclusions There were differences in the microbial community structure and composition of reproduction tract between penicillin allergic and non-allergic pregnant women. These shifts may be related to maternal and neonatal health.
Collapse
|
21
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
22
|
Hewes SA, Wilson RL, Estes MK, Shroyer NF, Blutt SE, Grande-Allen KJ. In Vitro Models of the Small Intestine: Engineering Challenges and Engineering Solutions. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:313-326. [PMID: 32046599 PMCID: PMC7462033 DOI: 10.1089/ten.teb.2019.0334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Pathologies affecting the small intestine contribute significantly to the disease burden of both the developing and the developed world, which has motivated investigation into the disease mechanisms through in vitro models. Although existing in vitro models recapitulate selected features of the intestine, various important aspects have often been isolated or omitted due to the anatomical and physiological complexity. The small intestine's intricate microanatomy, heterogeneous cell populations, steep oxygen gradients, microbiota, and intestinal wall contractions are often not included in in vitro experimental models of the small intestine, despite their importance in both intestinal biology and pathology. Known and unknown interdependencies between various physiological aspects necessitate more complex in vitro models. Microfluidic technology has made it possible to mimic the dynamic mechanical environment, signaling gradients, and other important aspects of small intestinal biology. This review presents an overview of the complexity of small intestinal anatomy and bioengineered models that recapitulate some of these physiological aspects.
Collapse
Affiliation(s)
- Sarah A. Hewes
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
23
|
Cabral DJ, Wurster JI, Korry BJ, Penumutchu S, Belenky P. Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. mSystems 2020; 5:e00317-20. [PMID: 32723789 PMCID: PMC7394352 DOI: 10.1128/msystems.00317-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary composition and antibiotic use have major impacts on the structure and function of the gut microbiome, often resulting in dysbiosis. Despite this, little research has been done to explore the role of host diet as a determinant of antibiotic-induced microbiome disruption. Here, we utilize a multi-omic approach to characterize the impact of Western-style diet consumption on ciprofloxacin-induced changes to gut microbiome structure and transcriptional activity. We found that Western diet consumption dramatically increased Bacteroides abundances and shifted the community toward the metabolism of simple sugars and mucus glycoproteins. Mice consuming a Western-style diet experienced a greater expansion of Firmicutes following ciprofloxacin treatment than those eating a control diet. Transcriptionally, we found that ciprofloxacin reduced the abundance of tricarboxylic acid (TCA) cycle transcripts on both diets, suggesting that carbon metabolism plays a key role in the response of the gut microbiome to this antibiotic. Despite this, we observed extensive diet-dependent differences in the impact of ciprofloxacin on microbiota function. In particular, at the whole-community level we detected an increase in starch degradation, glycolysis, and pyruvate fermentation following antibiotic treatment in mice on the Western diet, which we did not observe in mice on the control diet. Similarly, we observed diet-specific changes in the transcriptional activity of two important commensal bacteria, Akkermansia muciniphila and Bacteroides thetaiotaomicron, involving diverse cellular processes such as nutrient acquisition, stress responses, and capsular polysaccharide (CPS) biosynthesis. These findings demonstrate that host diet plays a role in determining the impacts of ciprofloxacin on microbiome composition and microbiome function.IMPORTANCE Due to the growing incidence of disorders related to antibiotic-induced dysbiosis, it is essential to determine how our "Western"-style diet impacts the response of the microbiome to antibiotics. While diet and antibiotics have profound impacts on gut microbiome composition, little work has been done to examine their combined effects. Previous work has shown that nutrient availability, influenced by diet, plays an important role in determining the extent of antibiotic-induced disruption to the gut microbiome. Thus, we hypothesize that the Western diet will shift microbiota metabolism toward simple sugar and mucus degradation and away from polysaccharide utilization. Because of bacterial metabolism's critical role in antibiotic susceptibility, this change in baseline metabolism will impact how the structure and function of the microbiome are impacted by ciprofloxacin exposure. Understanding how diet modulates antibiotic-induced microbiome disruption will allow for the development of dietary interventions that can alleviate many of the microbiome-dependent complications of antibiotic treatment.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
24
|
Herman RA. Increasing allergy: are antibiotics the elephant in the room? Allergy Asthma Clin Immunol 2020; 16:35. [PMID: 32426004 PMCID: PMC7218489 DOI: 10.1186/s13223-020-00432-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 01/29/2023] Open
Abstract
Antibiotics cause dramatic changes to the human microbiome. The composition of the microbiome has been associated with changes in the immune system and these changes are beginning to be linked to immune diseases. Thus, antibiotics have been implicated as a significant contributor to the continual rise of allergies and autoimmune disease in developed countries. This recognition will hopefully result in the development of post-antibiotic therapies that restore a healthy microbiome and reduce immune system disorders.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268 USA
| |
Collapse
|
25
|
Cavaleiro Rufo J, Ribeiro AI, Paciência I, Delgado L, Moreira A. The influence of species richness in primary school surroundings on children lung function and allergic disease development. Pediatr Allergy Immunol 2020; 31:358-363. [PMID: 31943397 DOI: 10.1111/pai.13213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary schools represent important environments for biodiversity exposure and thus may play a crucial role on early-life immunomodulation, protecting against allergic sensitization. The aim of this study was to understand how the exposure to different levels of species richness surrounding urban primary schools may influence the development of allergic diseases and asthma in children. METHODS A species richness index (SRI), evaluating habitat diversity in terms of amphibians, birds, reptiles, and small mammals, was estimated and attributed to 20 primary schools in the city of Porto, Portugal. The SRI was measured considering a 100 m straight-line buffer around the schools. Children who attended the participating schools were invited to participate in the study, performed spirometry with bronchodilation and skin-prick tests, and had their parents fill a questionnaire concerning allergy and asthma symptoms, as well as demographic and socioeconomic data. Asthma was defined according to three distinct criteria. RESULTS The study results showed significant and positive associations between the exposure to species richness in schools and the forced expiratory volume at the first second (FEV1 ) and forced vital capacity (FVC) parameters both before and after bronchodilation, independently of the asthma and atopic status. Fully adjusted models revealed that a unitary increment in the SRI was associated with an average increase of approximately 2 and 3 mL in FEV1 and FVC, respectively. CONCLUSION Species richness in school surroundings may impact lung function development in children. However, this increase in lung function was not associated with any clinically relevant protective effect on allergy and asthma development.
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Serviço e Laboratório de Imunologia Básica e Clínica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Ribeiro
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês Paciência
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Serviço e Laboratório de Imunologia Básica e Clínica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Luís Delgado
- Serviço e Laboratório de Imunologia Básica e Clínica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - André Moreira
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Serviço e Laboratório de Imunologia Básica e Clínica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Liu X, Tao J, Li J, Cao X, Li Y, Gao X, Fu Y. Dysbiosis of Fecal Microbiota in Allergic Rhinitis Patients. Am J Rhinol Allergy 2020; 34:650-660. [PMID: 32340468 DOI: 10.1177/1945892420920477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The gut microbiota plays an important role in shaping the immune system and may be closely connected to the development of allergic diseases. Objective This study aimed to determine the gut microbiota composition in Chinese allergic rhinitis (AR) patients as compared with healthy controls (HCs). Methods We collected stool samples from 93 AR patients and 72 age- and sex-matched HCs. Gut microbiota composition was analyzed using QIIME targeting the 16S rRNA gene. Functional pathways were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. Statistical analysis was performed using the R program, linear discriminant analysis effect size (LefSe), analysis of QIIME, and statistical analysis of metagenomic profiles, among other tests. Results Compared with HCs, AR patients had significantly lower gut-microbiota α-diversity ( P < .001). The gut microbiota composition significantly differed between the 2 study groups. At the phylum level, the relative abundance of Bacteroidetes was higher while those of Actinobacteria and Proteobacteria were lower in the AR group than in the HC group ( P < .001, q < 0.001). At the genus level, Escherichia-Shigella, Prevotella, and Parabacteroides ( P < .001, q < 0.001) had significantly higher relative abundances in the AR group than in the HC group. LefSe analysis indicated that Escherichia-Shigella, Lachnoclostridium, Parabacteroides, and Dialister were potential biomarkers for AR. In addition, predictive metagenome functional analysis showed that pyruvate, porphyrin, chlorophyll, purine metabolism, and peptidoglycan biosynthesis significantly differed between the AR and HC groups. Conclusion A comparison of the gut microbiota of AR patients and HCs suggested that dysbiosis of the fecal microbiota is involved in the development of AR. The present results may reveal key differences and identify targets for preventive or therapeutic intervention.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Tao
- Department of ENT and Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Li
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Cao
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Li
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Gao
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Yong Fu
- Department of ENT and Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Mizuta K, Sasaki H, Zhang Y, Matoba A, Emala CW. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1248-L1260. [PMID: 32209026 DOI: 10.1152/ajplung.00357.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that gut microbiota-derived short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) are important modulators of the inflammatory state in diseases such as asthma. However, the functional expression of the Gi protein-coupled free fatty acid receptors (FFAR2/GPR43 and FFAR3/GPR41) has not been identified on airway smooth muscle (ASM). Classically, acute activation of Gi-coupled receptors inhibits cyclic AMP (cAMP) synthesis, which impairs ASM relaxation and can also induce crosstalk between Gi- and Gq-signaling pathways, potentiating increases in intracellular Ca2+ concentration ([Ca2+]i), favoring ASM contraction. In contrast, chronic activation of Gi-coupled receptors can sensitize adenylyl cyclase resulting in increased cAMP synthesis favoring relaxation. We questioned whether the Gi-coupled FFAR2 or FFAR3 is expressed in human ASM, whether they modulate cAMP and [Ca2+]i, and whether SCFAs modulate human ASM tone. We detected the protein expression of FFAR3 but not FFAR2 in native human ASM and primary cultured human airway smooth muscle (HASM) cells. In HASM cells, acute activation of FFAR3 with SCFAs inhibited forskolin-stimulated cAMP accumulation, but chronic activation did not sensitize cAMP synthesis. SCFAs induced [Ca2+]i increases that were attenuated by pertussis toxin, gallein, U73122, or xestospongin C. Acute treatment with SCFAs potentiated acetylcholine-stimulated [Ca2+]i increases and stress fiber formation in cells and contraction of ex vivo human airway tissues. In contrast, chronic pretreatment of human ASM with propionate did not potentiate airway relaxation. Together, these findings demonstrate that FFAR3 is expressed in human ASM and contributes to ASM contraction via reduced cAMP and increased [Ca2+]i.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Haruka Sasaki
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yi Zhang
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Atsuko Matoba
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
28
|
Homayouni Rad A, Aghebati Maleki L, Samadi Kafil H, Abbasi A. Postbiotics: A novel strategy in food allergy treatment. Crit Rev Food Sci Nutr 2020; 61:492-499. [PMID: 32160762 DOI: 10.1080/10408398.2020.1738333] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the last two decades, the prevalence and severity of clinical appearances of food allergy (FA) have a significant rise. FA derives from a breakdown of immune tolerance. In recent year's clinical evidence have shown that the probiotics have significant influences on FA by improving the immune tolerance. Besides, postbiotics due to their unique characteristics (safe profile, more shelf life, resistance to mammalian enzymes and stable to digestive system conditions), may have safety superiority against their parent live cells and as a novel strategy can be applied for improvement immune tolerance and treatment of FA without any undesirable side-effects or human opportunistic infections, particularly in infants and pediatrics.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati Maleki
- Department of Immunology, Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Cheng H, Wang Z, Cui L, Wen Y, Chen X, Gong F, Yi H. Opportunities and Challenges of the Human Microbiome in Ovarian Cancer. Front Oncol 2020; 10:163. [PMID: 32133297 PMCID: PMC7040031 DOI: 10.3389/fonc.2020.00163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal malignancy among gynecological cancers worldwide. Most ovarian cancer patients are diagnosed at an advanced stage because of non-specific clinical symptoms. The human microbiome plays a crucial role in maintaining the normal physiological and pathological state of the body. With the development of technologies such as DNA and 16S rRNA sequencing, an increasing number of findings on the role of microbiome in cancers are being reported. Microbiome abnormalities are increasingly associated with diseases, including cancer development, and response to therapies. Some studies have shown the relationship between microbiome changes and ovarian cancer. However, the mechanisms underlying this relationship are not yet fully understood. Here, we summarize the key findings in this regard by focusing on estrogen metabolism and host recognition receptors in microorganisms and changes in the gut or pelvic microbiome in patients with ovarian cancer. We further discuss the potential of using the microbiome as a novel biomarker for cancers. We also highlight the possibility to use microorganisms as a treatment modality to enhance the immune system, activate anti-tumor response, mediate chemotherapy resistance, and ameliorate the adverse effects of the treatment.
Collapse
Affiliation(s)
- Huiyan Cheng
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Zhichao Wang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lifeng Cui
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Xiuhua Chen
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Gong
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory of the Eastern Division, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Zafman KB, Bergh EP, Cohen N, Odom E, Fox NS. The effect of microbiome exposure at birth on pediatric outcomes using a twin cohort discordant for microbiome exposure at birth. J Matern Fetal Neonatal Med 2019; 34:3355-3361. [PMID: 31739712 DOI: 10.1080/14767058.2019.1684469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Microbiome exposure at birth has been associated with long-term pediatric outcomes. However, it is difficult to determine if differences in outcomes are truly due to microbiome exposure at birth or other exposures after birth and in early infancy. Using a twin cohort, we sought to determine the association between length of exposure to the maternal vaginal-fecal microbiome and long-term pediatric health outcomes by comparing outcomes between presenting and nonpresenting twins born to women who labored.Methods: We performed a mail-based survey study of women in a single maternal-fetal medicine practice who delivered twin pregnancies ≥24 weeks. The survey study was sent to women when twins were between 2 and 10 years old to assess the long-term health outcomes, including any medical diagnoses or problems with grown and development. For this study, we included all women who labored, and we compared health outcomes for the presenting versus nonpresenting twin with the primary outcome being the development of asthma/reactive airway disease and allergies. The length of exposure to the maternal vaginal-fecal microbiome was measured using the time from rupture of membranes (ROM) to delivery of each twin. Chi-square and Student's t-test were used.Results: Two hundred fifty-seven sets of twins were eligible for analyses. The presenting twin had a longer time of ROM than the nonpresenting twin (617 ± 2408 min versus 2 ± 5 minutes, p < .001). There were no significant differences between health outcomes for the presenting versus nonpresenting twin in the overall cohort, including the development of asthma/reactive airway disease (9.3 versus 10.1%, p = .77) or allergies (12.5 versus 7.8%, p = .08). There were no differences in any outcomes when comparing the presenting versus nonpresenting twin for those twins delivered vaginally or by cesarean delivery.Conclusion: In twins born to women who labored and either delivered vaginally or via cesarean section, delivery order was not associated with any significant increase in defined adverse pediatric outcomes, including the development of asthma or allergies. Using twins as a model for microbiome exposure may help to elucidate the role of the maternal vaginal-fecal microbiome on long-term pediatric health outcomes.
Collapse
Affiliation(s)
- Kelly B Zafman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eric P Bergh
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas at Houston, Houston, TX, USA
| | - Natalie Cohen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Odom
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan S Fox
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Maternal Fetal Medicine Associates, PLLC, New York, NY, USA
| |
Collapse
|
31
|
Alesa DI, Alshamrani HM, Alzahrani YA, Alamssi DN, Alzahrani NS, Almohammadi ME. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J Family Med Prim Care 2019; 8:3496-3503. [PMID: 31803643 PMCID: PMC6881942 DOI: 10.4103/jfmpc.jfmpc_709_19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
The adult intestine hosts a huge number of diverse bacterial species, collectively referred to as the microbiome, that reside mainly in the lower gut, where they maintain a symbiotic relationship with their host. Recent research points to a central role of the microbiome in many biological processes. These microbial communities are influenced by multiple environmental and dietary factors and can modulate immune responses. In addition to local effects on the gastrointestinal tract, the microbiota is associated with effects on other organs and tissues, such as the skin. Indeed, an altered microbiome has been associated with skin disorders in several instances. Thus, in this review, we describe the recent advances regarding the interplay between gut microbiota and the skin. We explore how this potential link affects skin homeostasis and its influence on modulating the cutaneous immune response, focusing on psoriasis disorder. Finally, we discuss how to take advantage of this interplay to manage this disorder, particularly through probiotics administration. In the gastrointestinal tract, the microbiome has been proven to be important in the maintenance of the balance between effector T cells and regulatory T cells, and the induction of immunoglobulin A. Moreover, gut bacterial dysbiosis is associated with chronic inflammatory disorders of the skin, such as psoriasis. Thus, the microbiome can be considered an effective therapeutical target for treating this disorder. Despite some limitations, interventions with probiotics seem promising for the development of a preventive therapy by restoring altered microbiome functionality or as an adjuvant in specific immunotherapy.
Collapse
Affiliation(s)
- Dalal I Alesa
- Dermatology Resident, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | | | - Yahya A Alzahrani
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dania N Alamssi
- General Practitioner, Consultant Center for Dermatology and Venereology Clinics, Makkah, Saudi Arabia
| | - Nada S Alzahrani
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
32
|
Ahmed N, Mahmoud NF, Solyman S, Hanora A. Human Nasal Microbiome as Characterized by Metagenomics Differs Markedly Between Rural and Industrial Communities in Egypt. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:573-582. [PMID: 31651219 DOI: 10.1089/omi.2019.0144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbial communities residing in the nose play important roles in human health and disease. We report marked differences in nasal microbiota between a rural community and an industrial setting located near a major urban city. Nasal samples were collected from 19 healthy male subjects: 9 samples from persons living in a rural village, and 10 samples from ceramic factory workers in a major industrial Egyptian city. The nasal microbiota in the rural sample had higher and distinct diversity compared with industrial samples from workers exposed to pollution daily. Taxonomic analysis of the sequences revealed five major phyla; among these phyla were Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria, revealing significant abundance variation by geographical location. For example, the rural group had a significant increase in representation of Actinobacteria and Bacteroidetes (p = 0.004, p = 0.01, respectively) compared with the industrial group. However, the industrial group showed a significant increase in relative abundance of phylum Proteobacteria (p = 0.02). The most predominant genera for the rural group were Corynebacterium, Staphylococcus, Alloiococcus, and Peptoniphilus. By contrast, the industrial group was dominated by Staphylococcus, Sphingomonas, and Moraxella. Environmental pollution might alter the nasal microbiome leading to an attendant disturbance in the microbiome community structure. The clinical and public health implications of these nasal microbiome variations by rural and industrialized geography warrant further research. This study contributes to our knowledge of the bacterial composition of nasal microbiome in rural and industrialized geographies, and informs public health, respiratory medicine, and occupational health scholarship.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ministry of Health, Cairo, Egypt
| | - Nora Fahmy Mahmoud
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samar Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
33
|
Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, Nilson R, Guang A, Sano WH, Rowan-Nash AD, Li H, Belenky P. Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metab 2019; 30:800-823.e7. [PMID: 31523007 PMCID: PMC6948150 DOI: 10.1016/j.cmet.2019.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/24/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although antibiotics disturb the structure of the gut microbiota, factors that modulate these perturbations are poorly understood. Bacterial metabolism is an important regulator of susceptibility in vitro and likely plays a large role within the host. We applied a metagenomic and metatranscriptomic approach to link antibiotic-induced taxonomic and transcriptional responses within the murine microbiome. We found that antibiotics significantly alter the expression of key metabolic pathways at the whole-community and single-species levels. Notably, Bacteroides thetaiotaomicron, which blooms in response to amoxicillin, upregulated polysaccharide utilization. In vitro, we found that the sensitivity of this bacterium to amoxicillin was elevated by glucose and reduced by polysaccharides. Accordingly, we observed that dietary composition affected the abundance and expansion of B. thetaiotaomicron, as well as the extent of microbiome disruption with amoxicillin. Our work indicates that the metabolic environment of the microbiome plays a role in the response of this community to antibiotics.
Collapse
Affiliation(s)
- Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Elizabeth M Reinhart
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - August Guang
- Center for Computation & Visualization, Brown University, Brown University, Providence, RI 02906, USA; Center for Computational Biology of Human Disease, Brown University, Providence, RI 02906, USA
| | - William H Sano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55904, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
34
|
Pulvirenti G, Parisi GF, Giallongo A, Papale M, Manti S, Savasta S, Licari A, Marseglia GL, Leonardi S. Lower Airway Microbiota. Front Pediatr 2019; 7:393. [PMID: 31612122 PMCID: PMC6776601 DOI: 10.3389/fped.2019.00393] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
During the last several years, the interest in the role of microbiota in human health has grown significantly. For many years, the lung was considered a sterile environment, and only recently, with the use of more sophisticated techniques, has it been demonstrated that colonization by a complex population of microorganisms in lower airways also occurs in healthy subjects; a predominance of some species of Proteobacteria, Firmicutes, and Bacteroidetes phyla and with a peculiar composition in some disease conditions, such as asthma, have been noted. Lung microbiota derives mainly from the higher airways microbiota. Although we have some information about the role of gut microbiota in modulation of immune system, less it is known about the connection between lung microbiota and local and systemic immunity. There is a correlation between altered microbiota composition and some diseases or chronic states; however, despite this correlation, it has not been clearly demonstrated whether the lung microbiota dysbiosis could be a consequence or a cause of these diseases. We are far from a scientific approach to the therapeutic use of probiotics in airway diseases, but we are only at the starting point of a knowledge process in this fascinating field that could reveal important surprises, and randomized prospective studies in future could reveal more about the clinical possibilities for controlling lung microbiota. This review was aimed at updating the current knowledge in the field of airway microbiota.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Fabio Parisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Giallongo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Papale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sara Manti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Salvatore Savasta
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
35
|
Dou J, Zeng J, Wu K, Tan W, Gao L, Lu J. Microbiosis in pathogenesis and intervention of atopic dermatitis. Int Immunopharmacol 2019; 69:263-269. [DOI: 10.1016/j.intimp.2019.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
|
36
|
Antibiotic Prescription in Young Children With Respiratory Syncytial Virus-Associated Respiratory Failure and Associated Outcomes. Pediatr Crit Care Med 2019; 20:101-109. [PMID: 30720644 DOI: 10.1097/pcc.0000000000001839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To describe antibiotic prescribing practices during the first 2 days of mechanical ventilation among previously healthy young children with respiratory syncytial virus-associated lower respiratory tract infection and evaluate associations between the prescription of antibiotics at onset of mechanical ventilation with clinical outcomes. DESIGN Retrospective cohort study. SETTING Forty-six children's hospitals in the United States. PATIENTS Children less than 2 years old discharged between 2012 and 2016 with an International Classification of Diseases diagnosis of respiratory syncytial virus-associated lower respiratory tract infection, no identified comorbid conditions, and receipt of mechanical ventilation. INTERVENTIONS Antibiotic prescription during the first 2 days of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS We compared duration of mechanical ventilation and hospital length of stay between children prescribed antibiotics on both of the first 2 days of mechanical ventilation and children not prescribed antibiotics during the first 2 days of mechanical ventilation. We included 2,107 PICU children with respiratory syncytial virus-associated lower respiratory tract infection (60% male, median age of 1 mo [interquartile range, 1-4 mo]). The overall proportion of antibiotic prescription on both of the first 2 days of mechanical ventilation was 82%, decreasing over the study period (p = 0.004) and varying from 36% to 100% across centers. In the bivariate analysis, antibiotic prescription was associated with a shorter duration of mechanical ventilation (6 d [4-9 d] vs 8 d [6-11 d]; p < 0.001) and a shorter hospital length of stay (11 d [8-16 d] vs 13 d [10-18 d]; p < 0.001). After adjustment for center, demographics, and vasoactive medication prescription, antibiotic prescription was associated with a 1.21-day shorter duration of mechanical ventilation and a 2.07-day shorter length of stay. Ultimately, 95% of children were prescribed antibiotics sometime during hospitalization, but timing, duration, and antibiotic choice varied markedly. CONCLUSIONS Although highly variable across centers and decreasing over time, the practice of instituting antibiotics after intubation in young children with respiratory syncytial virus-associated lower respiratory tract infection was associated with a shortened clinical course after adjustment for the limited available covariates. A prudent approach to identify and optimally treat bacterial coinfection is needed.
Collapse
|
37
|
Abstract
The lung and gut microbiome are factors in asthma risk or protection. Relevant elements of the microbiome within both niches include the importance of the early life window for microbiome establishment, the diversity of bacteria, richness of bacteria, and effect of those bacteria on the local epithelium and immune system. Mechanisms of protection include direct anti-inflammatory action or induction of non-type 2 inflammation by certain bacterial colonies. The gut microbiome further impacts asthma risk through the contribution of metabolic products. This article reviews the mechanisms that connect the lung and gut microbiota to asthma development and severity.
Collapse
Affiliation(s)
- Tara F Carr
- Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724-5030, USA.
| | - Rhonda Alkatib
- Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724-5030, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724-5030, USA
| |
Collapse
|
38
|
Samra M, Nam SK, Lim DH, Kim DH, Yang J, Kim YK, Kim JH. Urine Bacteria-Derived Extracellular Vesicles and Allergic Airway Diseases in Children. Int Arch Allergy Immunol 2018; 178:150-158. [PMID: 30415264 DOI: 10.1159/000492677] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Microbiota and human allergic airway diseases have been proven to be interrelated. Bacteria-derived extracellular vesicle (EV)s are known to play important roles in interbacterial and human-bacteria communications, but their relationship with allergies has not been examined yet. Urine EVs were investigated to determine whether they could be used as biomarkers for monitoring allergic airway diseases in children. METHODS Subjects were 4 groups of chronic rhinitis (CR), allergic rhinitis (AR), atopic asthma (AS) and healthy controls. Single voided urine samples were collected. Urine EVs were isolated and their DNA was extracted for 16S-rDNA pyrosequencing. RESULTS A total of 118 children participated in this study; 27, 39, 19, and 33 were in the CR, AR, AS, and control group, respectively. The AR had a significantly high Chao-1 index than that of controls. Principal component analysis revealed dysbiosis in the CR, AR, and AS compared to the controls. One phylum and 19 families and genera were significantly enriched or depleted in the disease groups compared to the controls; the Actinobacteria phylum and the Sphingomonadaceae family were more abundant in the AS and CR, the Comamonadaceae family, the Propionibacteraceae family, Propionibacterium and Enhydrobacter were more enriched in the CR, and the Methylobacteriaceae family and Methylobacterium were more abundant in each disease group, while the Enterobacteriaceae family was depleted in each disease group. CONCLUSIONS CR, AR, and AS had a distinct composition of urine EVs. Urine EVs could be an indicator for assessing allergic airway diseases in children.
Collapse
Affiliation(s)
- Mona Samra
- Department of Pediatrics, Inha University School of Medicine, Incheon, Republic of Korea.,Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea
| | - Soo Kyung Nam
- Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Dae Hyun Lim
- Department of Pediatrics, Inha University School of Medicine, Incheon, Republic of Korea.,Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea.,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Dong Hyun Kim
- Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea.,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Jinho Yang
- MD Healthcare Inc., Seoul, Republic of Korea
| | | | - Jeong Hee Kim
- Department of Pediatrics, Inha University School of Medicine, Incheon, Republic of Korea, .,Environmental Health Center of Allergic Rhinitis, Inha University Hospital, Incheon, Republic of Korea, .,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea,
| |
Collapse
|
39
|
Tsang MSM, Cheng SW, Zhu J, Atli K, Chan BCL, Liu D, Chan HYT, Sun X, Chu IMT, Hon KL, Lam CWK, Shaw PC, Leung PC, Wong CK. Anti-Inflammatory Activities of Pentaherbs formula and Its Influence on Gut Microbiota in Allergic Asthma. Molecules 2018; 23:molecules23112776. [PMID: 30373169 PMCID: PMC6278535 DOI: 10.3390/molecules23112776] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/01/2023] Open
Abstract
Allergic asthma is a highly prevalent airway inflammatory disease, which involves the interaction between the immune system, environmental and genetic factors. Co-relation between allergic asthma and gut microbiota upon the change of diet have been widely reported, implicating that oral intake of alternative medicines possess a potential in the management of allergic asthma. Previous clinical, in vivo, and in vitro studies have shown that the Pentaherbs formula (PHF) comprising five traditional Chinese herbal medicines Lonicerae Flos, Menthae Herba, Phellodendri Cortex, Moutan Cortex, and Atractylodis Rhizoma possesses an anti-allergic and anti-inflammatory potential through suppressing various immune effector cells. In the present study, to further investigate the anti-inflammatory activities of PHF in allergic asthma, intragastrical administration of PHF was found to reduce airway hyperresponsiveness, airway wall remodeling and goblet cells hyperplasia in an ovalbumin (OVA)-induced allergic asthma mice model. PHF also significantly suppressed pulmonary eosinophilia and asthma-related cytokines IL-4 and IL-33 in bronchoalveolar lavage (BAL) fluid. In addition, PHF modulated the splenic regulatory T cells population, up-regulated regulatory interleukin (IL)-10 in serum, altered the microbial community structure and the short chain fatty acids content in the gut of the asthmatic mice. This study sheds light on the anti-inflammatory activities of PHF on allergic asthma. It also provides novel in vivo evidence that herbal medicines can ameliorate symptoms of allergic diseases may potentially prevent the development of subsequent atopic disorder such as allergic asthma through the influence of the gut microbiota.
Collapse
Affiliation(s)
- Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sau-Wan Cheng
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Karam Atli
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Dehua Liu
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Helen Yau-Tsz Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Kam-Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | - Pang-Chui Shaw
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
40
|
Michels KR, Lukacs NW, Fonseca W. TLR Activation and Allergic Disease: Early Life Microbiome and Treatment. Curr Allergy Asthma Rep 2018; 18:61. [PMID: 30259206 DOI: 10.1007/s11882-018-0815-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Allergy and asthma are growing problems in the developed world. The accelerated increase of these diseases may be related to microbiome modification that leads to aberrant activation of Toll-like receptors (TLRs). Current research supports the concept that changes in microbial communities in early life impact TLR activation, resulting in an altered risk for the development of asthma and allergies. RECENT FINDINGS Prenatal and early childhood events that generate microbiome modification are closely related with TLR activation. Early childhood exposure to a rich array of TLR agonists, particularly lipopolysaccharide, strongly predicts protection against allergic disease later in life even when other lifestyle factors are accounted for. Genetic deletion of TLR signaling components in mice results in reduced function of tolerogenic cell populations in the gut. In contrast, weak TLR signaling can promote allergic sensitization later in life. This review summarizes the role of TLR signaling in microbiome-mediated protection against allergy.
Collapse
Affiliation(s)
- Kathryn R Michels
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
van Wattum JJ, Leferink TM, Wilffert B, Ter Horst PGJ. Antibiotics and lactation: An overview of relative infant doses and a systematic assessment of clinical studies. Basic Clin Pharmacol Toxicol 2018; 124:5-17. [PMID: 30015369 DOI: 10.1111/bcpt.13098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
Breastfeeding is important for the development of the child. Many antibiotics are considered safe during breastfeeding. The aim of the study was to assess the quality of lactation studies with antibiotics using the FDA and International Lactation Consultant Association quality guidelines for lactation studies. The secondary goal was to determine the exposure of the breastfed infant to antibiotics in relation to bacterial resistance and the developing microbiome. A literature search was performed and the included studies were scored on methodology, parameters concerning maternal exposure to antibiotics, maternal plasma and milk sampling. The infant exposure has been calculated and expressed as a percentage of a normal infant therapeutic dose. Sixty-six studies were included in five antibiotic groups (broad-spectrum penicillin, cephalosporins, macrolides and lincosamides, quinolones and sulphonamides). Cephalosporins were the most studied group of antibiotics (n = 21). Fifteen studies met all the criteria of "mother exposure to antibiotic". Six studies met every criterion related to "plasma sampling". Only one case report met all listed criteria for lactation studies. The correct calculation of infant exposure to antibiotics via the milk:plasma ratio (AUC) varies between 13% for macrolides and 38% for broad-spectrum penicillin. The highest assessed exposure as a percentage of infant therapeutic dose was for metronidazole (11%). The studies meet to a limited extent with the quality standards for lactation research. The breastfed infants are exposed to a subtherapeutic concentration of antibiotics.
Collapse
Affiliation(s)
| | - Thomas M Leferink
- Department of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Bob Wilffert
- Department of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
42
|
Ahmed J, Kumar A, Parikh K, Anwar A, Knoll BM, Puccio C, Chun H, Fanucchi M, Lim SH. Use of broad-spectrum antibiotics impacts outcome in patients treated with immune checkpoint inhibitors. Oncoimmunology 2018; 7:e1507670. [PMID: 30377571 PMCID: PMC6205076 DOI: 10.1080/2162402x.2018.1507670] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/17/2018] [Accepted: 07/31/2018] [Indexed: 02/04/2023] Open
Abstract
We carried out a retrospective cohort study on patients with advanced cancer treated with immune checkpoint inhibitors (ICIs) to determine whether antibiotics affect treatment outcome. Sixty consecutive patients were identified, and 17 received systemic antibiotics within 2 weeks before and/or after first dose of ICI. Antibiotic-treated patients were significantly younger (p = 0.0008) and less likely to receive nivolumab (p = 0.08) or had neutrophil:lymphocyte ratio < 5 (p = 0.08). They had a lower response rate (RR) (29.4% vs 62.8%) (p = 0.024) and more inferior progression-free survival (PFS) (p = 0.048). Narrow-spectrum antibiotics did not affect the RR. However, broad-spectrum antibiotics were associated with a lower RR (25% vs 61%) (p = 0.02) and a trend towards longer time to response (median: 14 weeks vs 12 weeks) (p = 0.1). They also had shorter PFS (p = 0.012). Multivariate analysis identified antibiotics as the only factor affecting RR (p = 0.0038) and PFS (p = 0.01). We next examined the 21 patients whose PFS lasted for 12 weeks or more. Five of the 21 patients received broad-spectrum antibiotics within 10 weeks before disease progression. There was a trend towards shorter PFS in these patients (p = 0.1). Finally, antibiotic-treated patients experienced shorter overall survival (OS) (median: 24 months vs 89 months) (p = 0.003). Multivariate analysis found age (p = 0.035) and antibiotics (p = 0.038) to be the only factors affecting OS. Our results point to a detrimental effect of broad-spectrum antibiotics on treatment outcome to ICI therapy.
Collapse
Affiliation(s)
- Jibran Ahmed
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Arun Kumar
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Kaushal Parikh
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Asad Anwar
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Bettina M Knoll
- Division of Infectious Diseases, Westchester Medical Center, Hawthorne, New York, USA
| | - Carmelo Puccio
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Hoo Chun
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Michael Fanucchi
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| | - Seah H Lim
- Division of Hematology and Oncology, Westchester Medical Center, Hawthorne, New York, USA
| |
Collapse
|
43
|
Abstract
The bidirectional epidemiological association between asthma and obesity is well known. Recent evidence suggests that there is an intersection of the pathophysiological molecular pathways leading to either obesity or asthma, at the level of mitochondria. This is not surprising, because mitochondria, beyond their roles as the metabolic powerhouses of the cell, serve as sensors of threats, regulators of stress signaling, and effectors of cytotoxicity. Reduced mitochondrial function and low metabolic activity are well-recognized features of obesity. Three distinct lines of experimental evidences connect mitochondrial dysfunction with asthma. First, asthma is associated with aberrant mitochondrial metabolism. Second, mitochondrial dysfunction may either induce asthma-like features or increase asthma severity. Third, mitochondria-targeted therapies appear effective in preventing or reversing asthma features. Importantly, mitochondrial dysfunction in airway epithelial cells appears to be a powerful trigger for airway remodeling that is independent of cellular inflammation. This is clinically relevant to the obese-asthma phenotype, with exaggerated symptoms despite apparently low levels of inflammation, and poor response to antiinflammatory treatment. In summary, mitochondrial dysfunction is a common thread tying together the twin epidemics of obesity and asthma. Environmental and lifestyle factors leading to primary mitochondrial dysfunction may be increasing the risk for either disease. Further, secondary mitochondrial dysfunction emerging from the pathogenesis of either obesity or asthma may increase the risk of the other. Mitochondrial health-centric strategies may be relevant to prevention and treatment of both obesity and asthma, and should be actively considered.
Collapse
|
44
|
Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, Manso L, Matheu V, Seoane E, Zamorano M, Labrador M, Mayorga C. Microbiome and Allergic Diseases. Front Immunol 2018; 9:1584. [PMID: 30065721 PMCID: PMC6056614 DOI: 10.3389/fimmu.2018.01584] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Allergic diseases, such as respiratory, cutaneous, and food allergy, have dramatically increased in prevalence over the last few decades. Recent research points to a central role of the microbiome, which is highly influenced by multiple environmental and dietary factors. It is well established that the microbiome can modulate the immune response, from cellular development to organ and tissue formation exerting its effects through multiple interactions with both the innate and acquired branches of the immune system. It has been described at some extent changes in environment and nutrition produce dysbiosis in the gut but also in the skin, and lung microbiome, inducing qualitative and quantitative changes in composition and metabolic activity. Here, we review the potential role of the skin, respiratory, and gastrointestinal tract (GIT) microbiomes in allergic diseases. In the GIT, the microbiome has been proven to be important in developing either effector or tolerant responses to different antigens by balancing the activities of Th1 and Th2 cells. In the lung, the microbiome may play a role in driving asthma endotype polarization, by adjusting the balance between Th2 and Th17 patterns. Bacterial dysbiosis is associated with chronic inflammatory disorders of the skin, such as atopic dermatitis and psoriasis. Thus, the microbiome can be considered a therapeutical target for treating inflammatory diseases, such as allergy. Despite some limitations, interventions with probiotics, prebiotics, and/or synbiotics seem promising for the development of a preventive therapy by restoring altered microbiome functionality, or as an adjuvant in specific immunotherapy.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, ARADyAL, Barcelona, Spain
| | - Marina Perez-Gordo
- Basic Medical Science Department, Faculty of Medicine, CEU San Pablo University, ARADyAL, Madrid, Spain.,Institute of Applied and Molecular Medicine (IMMA), Faculty of Medicine, CEU San Pablo University, Madrid, Spain
| | | | - Maria M Escribese
- Basic Medical Science Department, Faculty of Medicine, CEU San Pablo University, ARADyAL, Madrid, Spain
| | | | | | - Luis Manso
- Hospital Universitario del Sureste, Madrid, Spain
| | - Victor Matheu
- Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Elena Seoane
- Hospital Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Cristobalina Mayorga
- Research Laboratory and Allergy Unit, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Universidad de Málaga, ARADyAL, Malaga, Spain
| |
Collapse
|
45
|
Terhune TD, Deth RC. Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E901. [PMID: 29751492 PMCID: PMC5981940 DOI: 10.3390/ijerph15050901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
There are similarities between the immune response following immunization with aluminum adjuvants and the immune response elicited by some helminthic parasites, including stimulation of immunoglobulin E (IgE) and eosinophilia. Immunization with aluminum adjuvants, as with helminth infection, induces a Th2 type cell mediated immune response, including eosinophilia, but does not induce an environment conducive to the induction of regulatory mechanisms. Helminths play a role in what is known as the hygiene hypothesis, which proposes that decreased exposure to microbes during a critical time in early life has resulted in the increased prevalence and morbidity of asthma and atopic disorders over the past few decades, especially in Western countries. In addition, gut and lung microbiome composition and their interaction with the immune system plays an important role in a properly regulated immune system. Disturbances in microbiome composition are a risk factor for asthma and allergies. We propose that immunization with aluminum adjuvants in general is not favorable for induction of regulatory mechanisms and, in the context of the hygiene hypothesis and microbiome theory, can be viewed as an amplifying factor and significant contributing risk factor for allergic diseases, especially in a genetically susceptible subpopulation.
Collapse
Affiliation(s)
- Todd D Terhune
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | - Richard C Deth
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
46
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
47
|
Hulshof L, Overbeek SA, Wyllie AL, Chu MLJN, Bogaert D, de Jager W, Knippels LMJ, Sanders EAM, van Aalderen WMC, Garssen J, Van't Land B, Sprikkelman AB. Exploring Immune Development in Infants With Moderate to Severe Atopic Dermatitis. Front Immunol 2018; 9:630. [PMID: 29966024 PMCID: PMC5884950 DOI: 10.3389/fimmu.2018.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in infancy with a complex pathology. In adults, the clinical severity of AD has been associated with increases in T helper cell type (Th) 2, Th22, and Th17 serum markers, including high levels of CC chemokine ligand (CCL) 17 and CCL22 chemokines. Objective To explore the possible association between serum chemokine levels and AD severity in infants with moderate-to-severe AD and elevated immunoglobulin E (IgE). Subjects and methods Serum samples (n = 41) obtained from a randomized, double-blind, and clinical dietary intervention study were used to study biomarkers in infants with AD. Baseline- and post-intervention samples (4 months) were used, six chemokines and nine ratios thereof were analyzed using Luminex and correlated to AD severity. In the initial study, the infants were randomized to receive extensively hydrolyzed whey-based formula without (control) or with short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides (9:1) and Bifidobacterium breve M-16V (active). Results 31 Infants up to 11 months of age, with an objective-SCORAD score (oSCORAD) ≥ 20 and elevated total-IgE and/or specific-IgE levels were included. In time, the median oSCORAD decreased in both groups by −8 (control, p < 0.05; active, p < 0.01). Irrespective of dietary intervention, several changes in Th2 chemokines (CCL17 and CCL22), inflammatory chemokine (CCL20), and the Th1 chemokine, CXC chemokine ligand (CXCL) 9, were detected over time. Overall CCL17 correlated to oSCORAD (r = 0.446, p < 0.01). After 4 months of dietary intervention, CXCL9 was higher (p < 0.01) in the active group compared with control [active, 2.33 (1.99–2.89); controls, 1.95 (1.77–2.43) log 10 median (range)]. In addition, a reduction in Th2/Th1 chemokine ratios for CCL17/CXCL9, CCL22/CXCL9, CCL20/CXCL10, and CCL20/CXCL11 was detected associated with the active intervention. Conclusion While this study is small and exploratory in nature, these data contribute to immune biomarker profiling and understanding of AD in infants.
Collapse
Affiliation(s)
- Lies Hulshof
- Emma Children's Hospital Academic Medical Centre, Department of Paediatric Respiratory Medicine and Allergy, University of Amsterdam, Amsterdam, Netherlands
| | - Saskia A Overbeek
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Anne L Wyllie
- Department of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Wilco de Jager
- Laboratory of Translational Immunology, Department of Paediatric Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Leon M J Knippels
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Wim M C van Aalderen
- Emma Children's Hospital Academic Medical Centre, Department of Paediatric Respiratory Medicine and Allergy, University of Amsterdam, Amsterdam, Netherlands
| | - Johan Garssen
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Belinda Van't Land
- Nutricia Research, Utrecht, Netherlands.,Department of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Aline B Sprikkelman
- Emma Children's Hospital Academic Medical Centre, Department of Paediatric Respiratory Medicine and Allergy, University of Amsterdam, Amsterdam, Netherlands.,Department of Paediatric Pulmonology and Paediatric Allergology, University of Groningen, University Medical Centre Groningen, Beatrix Children's Hospital, Groningen, Netherlands
| | | |
Collapse
|
48
|
Zhai J, Kim J, Knox KS, Twigg HL, Zhou H, Zhou JJ. Variance Component Selection With Applications to Microbiome Taxonomic Data. Front Microbiol 2018; 9:509. [PMID: 29643839 PMCID: PMC5883493 DOI: 10.3389/fmicb.2018.00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Juhyun Kim
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN, United States
| | - Hua Zhou
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jin J Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. Phage therapy in allergic disorders? Exp Biol Med (Maywood) 2018; 243:534-537. [PMID: 29359577 PMCID: PMC5882018 DOI: 10.1177/1535370218755658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Allergic disorders pose a growing challenge to medicine and our society. Therefore, novel approaches to prevention and therapy are needed. Recent progress in studies on bacterial viruses (phages) has provided new data indicating that they have significant immunomodulating activities. We show how those activities could be translated into beneficial effects in allergic disorders and present initial clinical data that support this hope. Impact statement Allergic disorders pose a growing challenge to medicine and our society, so new approaches to prevention and therapy are urgently needed. Our article summarizes progress that has been recently made and presents a shift in our understanding of the immunobiological significance of bacterial viruses (phages). Currently, phages may be considered not only as mere "bacteria eaters" but also as regulators of immunity. The new understanding of phages as important factors in maintenance of immune homeostasis opens completely new perspectives for their use in controlling aberrant immune responses. It is likely that this new knowledge could be translated into novel means of immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Andrzej Górski
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
50
|
Delhalle S, Bode SFN, Balling R, Ollert M, He FQ. A roadmap towards personalized immunology. NPJ Syst Biol Appl 2018; 4:9. [PMID: 29423275 PMCID: PMC5802799 DOI: 10.1038/s41540-017-0045-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
Big data generation and computational processing will enable medicine to evolve from a "one-size-fits-all" approach to precise patient stratification and treatment. Significant achievements using "Omics" data have been made especially in personalized oncology. However, immune cells relative to tumor cells show a much higher degree of complexity in heterogeneity, dynamics, memory-capability, plasticity and "social" interactions. There is still a long way ahead on translating our capability to identify potentially targetable personalized biomarkers into effective personalized therapy in immune-centralized diseases. Here, we discuss the recent advances and successful applications in "Omics" data utilization and network analysis on patients' samples of clinical trials and studies, as well as the major challenges and strategies towards personalized stratification and treatment for infectious or non-communicable inflammatory diseases such as autoimmune diseases or allergies. We provide a roadmap and highlight experimental, clinical, computational analysis, data management, ethical and regulatory issues to accelerate the implementation of personalized immunology.
Collapse
Affiliation(s)
- Sylvie Delhalle
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Sebastian F N Bode
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg.,2Center for Pediatrics-Department of General Pediatrics, Adolescent Medicine, and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany
| | - Rudi Balling
- 3Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Markus Ollert
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg.,4Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, 5000 Odense C, Denmark
| | - Feng Q He
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|