1
|
Neurath MF, Artis D, Becker C. The intestinal barrier: a pivotal role in health, inflammation, and cancer. Lancet Gastroenterol Hepatol 2025; 10:573-592. [PMID: 40086468 DOI: 10.1016/s2468-1253(24)00390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 03/16/2025]
Abstract
The intestinal barrier serves as a boundary between the mucosal immune system in the lamina propria and the external environment of the intestinal lumen, which contains a diverse array of microorganisms and ingested environmental factors, including pathogens, food antigens, toxins, and other foreign substances. This barrier has a central role in regulating the controlled interaction between luminal factors and the intestinal immune system. Disruptions of intestinal epithelial cells, which serve as a physical barrier, or the antimicrobial peptides and mucins they produce, which act as a chemical barrier, can lead to a leaky gut. In this state, the intestinal wall is unable to efficiently separate the intestinal flora and luminal contents from the intestinal immune system. The subsequent activation of the immune system has an important role in the pathogenesis of inflammatory bowel disease, as well as in metabolic dysfunction-associated steatohepatitis, primary sclerosing cholangitis, and colorectal cancer. Dysregulated intestinal barrier integrity has also been described in patients with chronic inflammatory diseases outside the gastrointestinal tract, including rheumatoid arthritis and neurodegenerative disorders. Mechanistic studies of barrier dysfunction have revealed that the subsequent local activation and systemic circulation of activated immune cells and the cytokines they secrete, as well as extracellular vesicles, promote proinflammatory processes within and outside the gastrointestinal tract. In this Review, we summarise these findings and highlight several new therapeutic concepts currently being developed that attempt to control inflammatory processes via direct or indirect modulation of intestinal barrier function.
Collapse
Affiliation(s)
- Markus F Neurath
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph Becker
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Zang P, Chen P, Chen J, Sun J, Lan H, Dong H, Liu W, Xu N, Wang W, Hou L, Sun B, Zhang L, Huang J, Wang P, Ren F, Liu S. Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats. Nutrients 2025; 17:724. [PMID: 40005052 PMCID: PMC11858084 DOI: 10.3390/nu17040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts' health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Peng Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (F.R.)
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Pu Chen
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Junli Chen
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Jingchao Sun
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Haiyun Lan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Haisheng Dong
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Wei Liu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Nan Xu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Weiran Wang
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Lingwei Hou
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Bowen Sun
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Lujia Zhang
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Jiaqiang Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Fazheng Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (F.R.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
3
|
Wang Q, Jin Q, Wang F, Wang Y, Li X, Zhou Y, Xu S, Fu A, Li W. Bacillus amyloliquefaciens SC06 alleviates LPS-induced intestinal damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction in piglets. Int J Biol Macromol 2024; 282:137307. [PMID: 39510464 DOI: 10.1016/j.ijbiomac.2024.137307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction play an important role in the pathogenesis of intestinal diseases. Our studies investigated the effects of Bacillus amyloliquefaciens SC06 on jejunal mitochondria and ER in piglets under the LPS-induced intestinal injury model. Eighteen piglets (male, 21 days old) were randomly assigned to three treatments: CON (basal diet), LPS (basal diet +100 μg/kg LPS), and SC06 + LPS (basal diet +1 × 108 cfu/kg SC06 + 100 μg/kg LPS). Compared to the LPS group, administration of SC06 improved jejunal morphology and barrier function. In addition, SC06 reduced reactive oxygen species (ROS) and MDA generation in the jejunum by activating the Nrf2/keap1 pathway, which increased the activity of CAT, GSH and SOD in LPS-challenged pigs. In addition, SC06 reduced LPS-induced mitochondrial dysfunction and ERS as evidenced by a decrease in ROS, an improvement in mitochondrial membrane potential and an increase in adenosine triphosphate levels. The results of in vitro IPEC-J2 cell experiments also indicate that SC06 can reduce LPS-induced oxidative stress, mitochondrial dysfunction, ERS, and intestinal barrier function damage by activating the Nrf2/keap1 signaling pathway. Finally, treatment with the Nrf2-specific inhibitor ML-385 inhibited the upregulated effect of SC06 on antioxidant capacity and intestinal barrier function in IPEC-J2 cells. In conclusion, SC06 ameliorated intestinal damage and mitochondrial dysfunction and attenuated endoplasmic reticulum stress via activation of the Nrf2/keap1 signaling pathway in LPS-challenged piglets.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Bai YY, Tian R, Qian Y, Zhang Q, Zhao CB, Yan YG, Zhang L, Yue SJ, Tang YP. Integrated Small Intestine Microbiota and Serum Metabolomics Reveal the Potential Mechanisms of Wine Steaming in Alleviating Rhubarb-Induced Diarrhea. J Inflamm Res 2024; 17:7851-7868. [PMID: 39494199 PMCID: PMC11531732 DOI: 10.2147/jir.s479654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Long-term use of rhubarb (RH) commonly leads to diarrhea, which can be alleviated by steaming with wine. However, the specific mechanism by which wine steaming alleviates RH-induced diarrhea remains unknown. Objective This study aims to reveal the underlying mechanisms of wine steaming in alleviating RH-induced diarrhea by examining small intestinal flora and serum metabolomics. Methods Major anthraquinone and anthrone components were detected using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Eighty-four ICR mice were randomly divided into control, RH, and RH steamed with wine (PRH) groups and were administered RH and PRH (1, 4, and 8 g/kg, i.g). for 14 consecutive days. Histopathological analysis was performed using hematoxylin-eosin staining. Levels of inflammatory factors and tight junction proteins, zonula occludens-1 (ZO-1) and occludin, in the small intestine were measured. The small intestine content was analyzed using 16S rRNA sequencing, and UPLC-MS was used to analyze endogenous metabolites. Results Levels of major anthraquinone and anthrone components decreased in PRH. Both RH and PRH groups showed varying degrees of loose stools and increased fecal water rates; the RH group exhibited more severe effects. Compared with the control group, RH caused small intestine injuries, increased levels of inflammatory cytokines, downregulated the expression of ZO-1 and occludin, and induced gut microbiota (GM) imbalance. The relative abundance of Lactobacillus decreased, while the relative abundance of Shigella and Streptococcus increased. However, PRH had a milder impact than RH. The glycerophospholipid metabolic pathway was involved in this effect. The levels of inflammatory cytokines and potential metabolites (sn-glycero-3-phosphoethanolamine) were positively correlated with Streptococcus infection, while the levels of ZO-1 and occludin were negatively correlated with Streptococcus infection. GM imbalance and abnormal glycerophospholipid metabolism contributed to impaired intestinal barrier function and inflammatory factor release, which may underlie RH-induced diarrhea, though PRH had a weaker effect. Conclusion PRH alleviated RH-induced diarrhea by recovering GM balance, reducing ZO-1 and occludin expression, and decreasing the release of inflammatory factors. This mechanism may be linked to the reduced anthraquinone content. This study is the first to explore the mechanism of wine steaming in alleviating RH-induced diarrhea through small intestinal flora and serum metabolomics. It provides data to support the broader clinical use of RH and its safer application.
Collapse
Affiliation(s)
- Ya-Ya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Rui Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yan Qian
- Suzhou Institute for Drug Control, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Chong-Bo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yong-Gang Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu Province, 225300, People’s Republic of China
| | - Shi-Jun Yue
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
5
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Mao Y, Yang Q, Liu J, Fu Y, Zhou S, Liu J, Ying L, Li Y. Quercetin Increases Growth Performance and Decreases Incidence of Diarrhea and Mechanism of Action in Weaned Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5632260. [PMID: 39139212 PMCID: PMC11321896 DOI: 10.1155/2024/5632260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the mechanism of quercetin increasing growth performance and decreasing incidence of diarrhea in weaned piglets. Forty-eight Duroc × Landrace × Large White weaned piglets with similar body weight (7.48 ± 0.20 kg, 28 days of age) were randomly divided into four treatments (control, 250 mg/kg quercetin, 500 mg/kg quercetin, and 750 mg/kg quercetin treatments) and fed with basal diet or experimental diet supplemented with quercetin. Performance, diarrhea rate and index, and content of serum anti-inflammatory factors were determined and calculated in weaned piglets; colonic flora and signaling pathways related to anti-inflammation were measured using 16S rDNA sequencing and RNA-seq, respectively. The results showed that compared with control, feed-to-gain ratio and content of serum interferon gamma (IFN-γ) were significantly decreased in the 500 and 750 mg/kg quercetin treatments (P < 0.05); quercetin significantly decreased diarrhea rate and diarrhea index (P < 0.05) and significantly increased the content of serum transforming growth factor (TGF-β) in weaned piglets (P < 0.05); the content of serum NF-κB was significantly decreased in the 750 mg/kg quercetin treatment (P < 0.05); moreover, quercetin significantly increased diversity of colonic flora (P < 0.05), and at the phylum level, the relative abundance of Actinobacteria in the 500 and 750 mg/kg treatments was significantly increased (P < 0.05), and the relative abundance of Proteobacteria in the three quercetin treatments were significantly decreased (P < 0.05) in the colon of weaned piglets; at the genus level, the relative abundance of Clostridium-sensu-stricto-1, Turicibacter, unclassified_f_Lachnospiraceae, Phascolarctobacterium, and Family_XIII _AD3011_group was significantly increased (P < 0.05); the relative abundance of Subdollgranulum and Blautia was significantly decreased in the 500 and 750 mg/kg treatments (P < 0.05); the relative abundance of Eschericha-Shigella, Terrisporobacter, and Eubacterium-coprostanoligenes was significantly increased (P < 0.05); the relative abundance of Streptocococcus, Sarcina, Staphylococcus, and Ruminococcaceae_UCG-008 was significantly decreased in the three quercetin treatments (P < 0.05); the relative abundance of Ruminococcaceae_UCG_014 was significantly increased in the 250 mg/kg quercetin treatment in the colon of weaned piglets (P < 0.05). The results of Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differentially expressed genes (DEGs) from the quercetin treatments were significantly enriched in nuclear transcription factor-κB (NF-κB) signal pathway (P < 0.05); mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1R1 (IL-1R1), conserved helix-loop-helix ubiquitous kinase (CHUK), toll-like receptor 4 (TLR4), and IL-1β from quercetin treatments were significantly decreased in colonic mucosa of weaned piglets (P < 0.05). In summary, quercetin increased feed conversion ratio and decreased diarrhea through regulating NF-κB signaling pathway, controlling the balance between anti-inflammatory and proinflammatory factors, and modulating intestinal flora, thus promoting the absorption of nutrients in weaned piglets. These results provided the theoretical foundation for applying quercetin in preventing weaning piglets' diarrhea and animal husbandry practices.
Collapse
Affiliation(s)
- Yanjun Mao
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Qinglin Yang
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Junhong Liu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Yuxin Fu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Shuaishuai Zhou
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Jiayan Liu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Linlin Ying
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Yao Li
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Cui C, Wei Y, Wang Y, Ma W, Zheng X, Wang J, Ma Z, Wu C, Chu L, Zhang S, Guan W, Chen F. Dietary supplementation of benzoic acid and essential oils combination enhances intestinal resilience against LPS stimulation in weaned piglets. J Anim Sci Biotechnol 2024; 15:4. [PMID: 38238856 PMCID: PMC10797991 DOI: 10.1186/s40104-023-00958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The benefits of combining benzoic acid and essential oils (BAO) to mitigate intestinal impairment during the weaning process have been well established, while the detailed underlying mechanism has not been fully elucidated. Previous research has primarily focused on the reparative effects of BAO on intestinal injury, while neglecting its potential in enhancing intestinal stress resistance. METHODS In this study, we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure. Piglets were pre-supplemented with BAO for 14 d, followed by a challenge with LPS or saline to collect blood and intestinal samples. RESULTS Our findings demonstrated that BAO supplementation led to significant improvements in piglets' final weight, average daily gain, and feed intake/body gain ratio. Additionally, BAO supplementation positively influenced the composition of intestinal microbiota, increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota, Prevotella and Oscillospira. Furthermore, BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge. This was evidenced by elevated levels of T-AOC, SOD, and GSH, as well as decreased levels of MDA, TNF-α, and IL-6 in the plasma. Moreover, piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity, as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts. Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway. Additionally, the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO. CONCLUSIONS In summary, our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition, reinforcing the intestinal barrier, and enhancing antioxidative and anti-inflammatory capabilities. These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yulong Wei
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Licui Chu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Tian Z, Chen J, Lin T, Zhu J, Gan H, Chen F, Zhang S, Guan W. Dietary Supplementation with Lysozyme-Cinnamaldehyde Conjugates Enhances Feed Conversion Efficiency by Improving Intestinal Health and Modulating the Gut Microbiota in Weaned Piglets Infected with Enterotoxigenic Escherichia coli. Animals (Basel) 2023; 13:3497. [PMID: 38003115 PMCID: PMC10668808 DOI: 10.3390/ani13223497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to evaluate the efficacy of lysozyme-cinnamaldehyde conjugates (LC) as a potential alternative to antibiotics in treating piglets infected with enterotoxigenic Escherichia coli (ETEC). The results demonstrated that piglets fed with the LC diet exhibited lower rectal temperature and fecal scores at 9 h, 24 h, and 48 h post-ETEC challenge. Furthermore, LC supplementation led to significant improvements in the mechanical and immune barriers of the jejunum and ileum, as indicated by an increased villi-height-to-crypt-depth ratio (VCR) and the expression of tight junction proteins, mucin, and β-defensins. Furthermore, the LC diet lowered the levels of pro-inflammatory cytokines TNF-α and IL-1β in the plasma. Further analyses showed that the LC diet downregulated genes (specifically TLR4 and MyD88) linked to the TLRs/MyD88/NF-κB signaling pathway in the small intestine. Additionally, 16SrDNA sequencing data revealed that LC supplementation increased the α diversity of intestinal microorganisms and the relative abundance of Lactobacillus. In summary, the LC-supplemented diet effectively mitigated the adverse effects of E. coli K88, including intestinal barrier damage and inflammation. Furthermore, it improved the structure of the intestinal flora, ultimately contributing to better growth performance in piglets.
Collapse
Affiliation(s)
- Zhezhe Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Junhua Zhu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Haoyang Gan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.T.); (J.C.); (T.L.); (J.Z.); (H.G.); (F.C.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Han Q, Liu R, Wang H, Zhang R, Liu H, Li J, Bao J. Gut Microbiota-Derived 5-Hydroxyindoleacetic Acid Alleviates Diarrhea in Piglets via the Aryl Hydrocarbon Receptor Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15132-15144. [PMID: 37797200 DOI: 10.1021/acs.jafc.3c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
With the improvement in sow prolificacy, formula feeding has been increasingly used in the pig industry. Diarrhea remains a serious health concern in formula-fed (FF) piglets. Fecal microbiota transplantation (FMT) is an efficacious strategy to reshape gut microbiota and the metabolic profile for treating diarrhea. This study aims to investigate whether FMT from breast-fed piglets could alleviate diarrhea in FF piglets. The piglets were randomly assigned to the control (CON) group, FF group, and FMT group. Our results showed that FF piglets exhibited a higher diarrhea incidence, damaged colonic morphology, and disrupted barrier function. In contrast, FMT treatment normalized the morphology and barrier function. FMT suppressed the JNK/MAPK pathway and production of proinflammatory cytokines. Additionally, FF piglets had a lower abundance of the beneficial bacterial genus Bifidobacterium compared to CON piglets. Following FMT administration, Bifidobacterium was restored. Meanwhile, 5-HIAA, a metabolite of tryptophan, and AHR-responsive CYP1A1 and CYP1B1 were upregulated. Importantly, integrated multiomics analysis revealed a strong positive correlation between Bifidobacterium and 5-HIAA. In vitro, 5-HIAA supplementation reversed the LPS-induced disruption of tight junctions and production of proinflammatory cytokines in IPEC-J2 cells. In conclusion, FMT reduced diarrhea incidence and improved growth performance. The alleviative effect of FMT on diarrhea was associated with Bifidobacterium and 5-HIAA.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Runze Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, P. R. China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, P. R. China
| |
Collapse
|
11
|
Hu N, Mao P, Xiong X, Ma Z, Xie Z, Gao M, Wu Q, Ma W. Effect of N-Carbamylglutamate Supplementation on Growth Performance, Jejunal Morphology, Amino Acid Transporters, and Antioxidant Ability of Weaned Pigs. Animals (Basel) 2023; 13:3183. [PMID: 37893907 PMCID: PMC10603668 DOI: 10.3390/ani13203183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Weaning is an important period that affects the performance of piglets. However, the regulation of dietary amino acid levels is considered to be an effective way to alleviate the weaning stress of piglets. N-carbamylglutamate (NCG) plays an important role in improving the growth performance and antioxidant capacity of animals. A total of 36 weaned piglets were randomly assigned to two treatment groups, a control group (CON) and a 500 mg/kg NCG group (NCG), and the experiment lasted for 28 days. The results show that the NCG treatment group showed an increased 0-28 days average weight gain and average daily feed intake, and also increased contents of GLU and HDL, and lower SUN in serum, and an upregulation of the expression of the amino acid transporters SNAT2, EAAC1, SLC3A1, and SLC3A2 mRNA in the jejunum (p < 0.05), as well as an increased villus length and VH:CD ratio, and claudin-1, occludin, and ZO-1 mRNA expression in the jejunum (p < 0.05). The NCG treatment group showed an increased content of GSH-Px in serum and T-AOC and SOD in the jejunum, and a lower content of MDA (p < 0.05); and the upregulation of the mRNA expression related to antioxidant enzymes (CAT, SOD1, Gpx4, GCLC, GCLM and Nrf2, AhR, CYP1A1) in the jejunal mucosa (p < 0.05). In addition, compared with the control group, the NCG treatment group saw an upregulation in the mRNA expression of IL-10 and a decrease in the expression of IL-1β and IL-4 in the jejunal mucosa (p < 0.05). In summary, the results of this study suggest that NCG improved growth performance and jejunal morphology, improved the jejunal transport of amino acids related to the ornithine cycle, and improved the antioxidant capacity in weaned pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (N.H.); (P.M.); (X.X.); (Z.M.); (Z.X.); (M.G.); (Q.W.)
| |
Collapse
|
12
|
Yao W, Wang E, Zhou Y, Han Y, Li S, Yin X, Huang X, Huang F. Effects of garcinol supplementation on the performance, egg quality, and intestinal health of laying hens in the late laying period. Poult Sci 2023; 102:102939. [PMID: 37562130 PMCID: PMC10432834 DOI: 10.1016/j.psj.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
The problem of rapid decline in egg production performance and poor egg quality is a key obstacle to improving the economic benefits of laying hens. Garcinol is an antioxidant polyphenol plant extract that has multiple physiological functions. Diets with the appropriate amount of garcinol might be able to improve the performance traits and health of late laying hens. Therefore, this study was conducted to evaluate the utilization of garcinol in late laying hens. A total of 400 healthy 59-wk-old Tingfen No. 6 hens were randomly allocated into 4 dietary treatment groups and fed a basal diet supplemented with 0, 100, 300, and 500 mg/kg garcinol for 12 wk, denoted the Con, LG, MG, and HG groups, respectively. The results showed that the addition of garcinol in the diet tended to increase the egg production rate compared with that of the control group (P = 0.080), while the average egg weight was significantly lower (P < 0.05) during the whole period of the experiment. The results showed that MG group hens had higher egg quality and strengthened antioxidant capacity in their serum (P < 0.05). Moreover, the laying hens in the MG group had significantly decreased crypt depth (CD) and increased villus height (VH) in the jejunum and ileum (P < 0.05), as well as an increased ratio of VH to CD (P < 0.05) and increased expression levels of Occludin (P < 0.05) and Claudin-2 (P < 0.05) in the jejunum to improve intestinal barrier function. In addition, dietary supplementation with garcinol influenced the cecal microbiota of laying hens, which was characterized by changes in the microbial community composition, including increased abundances of Firmicutes, Romboutsia, and Ruminococcus torques. In conclusion, dietary 300 mg/kg garcinol supplementation could increase the egg production and egg quality of late laying hens, which may be attributed to the antioxidant effects of garcinol and the improvement of intestinal morphology and epithelial barrier function as well as the regulation of mucosal immune status by altering microbial composition.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Enling Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Yan Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Yanxu Han
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shimin Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinyi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinlei Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
13
|
Deng J, Zhang X, Lin B, Mi H, Zhang L. Excessive dietary soluble arabinoxylan impairs the intestinal physical and immunological barriers via activating MAPK/NF-κB signaling pathway in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109041. [PMID: 37657558 DOI: 10.1016/j.fsi.2023.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Arabinoxylan (AX) has been deemed as an antinutritional factor, but limited information has addressed the effects of dietary AX on intestinal health of fish. The present study investigated the effects of dietary AX on intestinal mucosal physical and immunological barriers of rainbow trout (Oncorhynchus mykiss). Five isoproteic and isolipidic experimental diets (AXE, AX0, AX2.5, AX5 and AX10) were formulated to contain 0.03% arabinoxylanase as well as 0%, 2.5%, 5% and 10% AX, respectively. Each diet was randomly distributed to triplicate groups of 35 juvenile (average weight 3.14 ± 0.02 g) per tank in a rearing system maintained at 17 ± 1 °C for 9 weeks. Dietary AX supplementation regardless of inclusion levels significantly (P < 0.05) depressed the growth performance and feed utilization. The plasma endothelin-1 and d-lactic acid contents as well as diamino oxidase activity were significantly higher in fish fed diet AX10 compared to fish fed diet AX0. Dietary inclusion of 5-10% AX resulted in decreased intestinal villus height, goblet cell number and desmosome density, increased crypt depth, short and irregular microvilli, widened intercellular space; down-regulated the mRNA levels of occludin in hindgut, claudin3 and ZO-1 in foregut and midgut, but up-regulated the mRNA levels of claudin12 and claudin15 in midgut as well as claudin23 in foregut, midgut and hindgut. Furthermore, dietary 5-10% AX supplementation decreased the midgut and hindgut complement 3, complement 4 and sIgT contents as well as the midgut IgM and hindgut IL-10 contents. Conversely, the hindgut TNF-α and IL-6 contents increased with the rising dietary AX level. RT-qPCR demonstrated that the pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12β, IFN-γ, and TNF-α) and pIgR mRNA levels in midgut and hindgut were up-regulated by dietary AX inclusion of 5-10% AX. Meanwhile, the mRNA levels of p38 MAPK, IκBα, and NF-κB p65 in midgut and hindgut raised gradually with the increasing dietary AX content. The Western blot results showed that the protein expression levels of p38 MAPK and NF-κB generally increased with the rising dietary AX content. Dietary treatment with 0.03% arabinoxylanase did not affect the growth performance and intestinal health of rainbow trout (P > 0.05). In conclusion, excessive dietary AX inclusion (5-10%) increased the intestinal permeability and induced the intestinal inflammatory response via activating MAPK/NF-κB signaling pathway, and ultimately damaged the intestinal barrier function of rainbow trout.
Collapse
Affiliation(s)
- Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xindang Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Beibei Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Chengdu, 610093, China.
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Chengdu, 610093, China.
| |
Collapse
|
14
|
Li X, Gou F, Xiao K, Zhu J, Lin Q, Yu M, Hong Q, Hu C. Effects of DON on Mitochondrial Function, Endoplasmic Reticulum Stress, and Endoplasmic Reticulum Mitochondria Contact Sites in the Jejunum of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13234-13243. [PMID: 37643317 DOI: 10.1021/acs.jafc.3c03380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recent research has emphasized the significance of investigating the interplay between organelles, with endoplasmic reticulum mitochondria contact sites (ERMCSs) being recognized as critical signaling hubs between organelles. The objective of the current study was to assess the impact of deoxynivalenol (DON) on jejunal mitochondria, ER, and ERMCSs. Twelve piglets (35 d, 10.22 ± 0.35 kg) were randomized into two groups: control group, basal diet; the DON group, basal diet + 1.5 mg/kg DON. The findings revealed that DON decreased growth performance, induced jejunal oxidative stress, and impaired jejunal barrier function. DON was also found to induce mitochondrial dysfunction, trigger endoplasmic reticulum stress (ERS) in the piglets' jejunum, and activate mitochondrial and ER apoptosis pathways by upregulating apoptosis-related proteins (Caspase-8, Caspase-12, Bax, and CHOP). To investigate the involvement of ERMCSs in DON-induced intestinal injury, we measured the protein levels of ERMCS proteins, such as mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and glucose-regulated protein 75 (GRP75) and Pearson's correlation coefficient of ERMCS proteins and ERMCS ultrastructure. Our finding showed that DON upregulated the protein level of Mfn2 and GRP75 and increased the percentage of mitochondria with ERMCSs/total mitochondria, the length of ERMCSs compared to the perimeter of mitochondria, and the Pearson's correlation coefficient of voltage-dependent anion-selective channel protein 1 (VDAC1) and inositol 1,4,5-triphosphate receptors (IP3Rs) in piglets' jejunum. Furthermore, DON shortened the distance between mitochondria and ER at ERMCSs. These findings suggested that DON impaired mitochondrial function, triggered ERS, and increased ERMCSs, indicating that the increased ERMCSs could be related to mitochondrial dysfunction and ERS involved in the intestinal injury of piglets induced by DON.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Gou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kan Xiao
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiang Zhu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Lin
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Yu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qihua Hong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Chen H, Jia Z, He M, Chen A, Zhang X, Xu J, Wang C. Arula-7 powder improves diarrhea and intestinal epithelial tight junction function associated with its regulation of intestinal flora in calves infected with pathogenic Escherichia coli O 1. MICROBIOME 2023; 11:172. [PMID: 37542271 PMCID: PMC10403850 DOI: 10.1186/s40168-023-01616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The effects of Arula-7 powder (ASP) on diarrhea and intestinal barrier function associated with its regulation of intestinal microflora in calves infected with pathogenic Escherichia coli O1 (E. coli O1) were studied. METHOD Twenty Holstein calves were randomly divided into four treatment groups: normal control (NC), model control (MC), 0.5 mg/kg ciprofloxacin (CIP) and 2.50 g/kg ASP groups. RESULTS ASP inhibited the relative abundance of Proteobacteria, Selenomonadales, and Enterobacteriales, and increased the relative abundance of Lactobacillus, Faecalibacterium, and Alloprevotella. Moreover, we demonstrated for the first time that the ASP and CIP promoted weight gain, reduced the diarrhea rate (P < 0.05), and enhanced antioxidant capacity (P < 0.05) due to the increase in average daily gain (ADG), total protein (TP), and albumin (ALB). In addition, ASP and CIP increased the expression of Zunola occludens-1 (ZO-1), Occludin, and Claudin-1 in the ileum (P < 0.05), and improved immunity due to increase levels of interleukin-2 (IL-2), interleukin-4 (IL-4), interferon-γ (IFN-γ), immunoglobulin A (IgA), and immunoglobulin G (IgG) in the serum, strengthened CD4+T levels in the ileal mucosa and reducing CD8+T and CD11c+T (P < 0.05). CONCLUSION Hence, The intestinal microbiota environment formed by early intervention of ASP powder has a protective effect on the intestinal mucosal function of calves infected with pathogenic E. coli. Video Abstract.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhifeng Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Animal Disease Prevention and Control Center of Bazhou District, Bazhong, China
| | - Meiling He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Xin Zhang
- College of Basic Medical, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Jin Xu
- Henan Houyi Bio-Engineering, Inc, He Nan, 451161, Zhengzhou, People's Republic of China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
16
|
Adekolurejo OO, McDermott K, Greathead HMR, Miller HM, Mackie AR, Boesch C. Effect of Red-Beetroot-Supplemented Diet on Gut Microbiota Composition and Metabolite Profile of Weaned Pigs-A Pilot Study. Animals (Basel) 2023; 13:2196. [PMID: 37443994 PMCID: PMC10339942 DOI: 10.3390/ani13132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.
Collapse
Affiliation(s)
- Opeyemi O. Adekolurejo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Katie McDermott
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Henry M. R. Greathead
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Helen M. Miller
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Alan R. Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| |
Collapse
|
17
|
Liang Z, Jin C, Bai H, Liang G, Su X, Wang D, Yao J. Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:1-8. [PMID: 36873600 PMCID: PMC9981809 DOI: 10.1016/j.aninu.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Since starch digestion in the small intestine provides more energy than digestion in the rumen of ruminants, reducing dietary rumen degradable starch (RDS) content is beneficial for improving energy utilization of starch in ruminants. The present study tested whether the reduction of rumen degradable starch by restricting dietary corn processing for growing goats could improve growth performance, and further investigated the possible underlying mechanism. In this study, twenty-four 12-wk-old goats were selected and randomly allocated to receive either a high RDS diet (HRDS, crushed corn-based concentrate, the mean of particle sizes of corn grain = 1.64 mm, n = 12) or a low RDS diet (LRDS, non-processed corn-based concentrate, the mean of particle sizes of corn grain >8 mm, n = 12). Growth performance, carcass traits, plasma biochemical indices, gene expression of glucose and amino acid transporters, and protein expression of the AMPK-mTOR pathway were measured. Compared to the HRDS, LRDS tended to increase the average daily gain (ADG, P = 0.054) and decreased the feed-to-gain ratio (F/G, P < 0.05). Furthermore, LRDS increased the net lean tissue rate (P < 0.01), protein content (P < 0.05) and total free amino acids (P < 0.05) in the biceps femoris (BF) muscle of goats. LRDS increased the glucose concentration (P < 0.01), but reduced total amino acid concentration (P < 0.05) and tended to reduce blood urea nitrogen (BUN) concentration (P = 0.062) in plasma of goats. The mRNA expression of insulin receptors (INSR), glucose transporter 4 (GLUT4), L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in BF muscle, and sodium-glucose cotransporters 1 (SGLT1) and glucose transporter 2 (GLUT2) in the small intestine were significantly increased (P < 0.05) in LRDS goats. LRDS also led to marked activation of p70-S6 kinase (S6K) (P < 0.05), but lower activation of AMP-activated protein kinase (AMPK) (P < 0.05) and eukaryotic initiation factor 2α (P < 0.01). Our findings suggested that reducing the content of dietary RDS enhanced postruminal starch digestion and increased plasma glucose, thereby improving amino acid utilization and promoting protein synthesis in the skeletal muscle of goats via the AMPK-mTOR pathway. These changes may contribute to improvement in growth performance and carcass traits in LRDS goats.
Collapse
Affiliation(s)
- Ziqi Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hanxun Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gaofeng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaodong Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
18
|
Dang G, Wen X, Zhong R, Wu W, Tang S, Li C, Yi B, Chen L, Zhang H, Schroyen M. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway. J Anim Sci Biotechnol 2023; 14:38. [PMID: 36882874 PMCID: PMC9993796 DOI: 10.1186/s40104-023-00838-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chong Li
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
19
|
Wendner D, Schott T, Mayer E, Teichmann K. Beneficial Effects of Phytogenic Feed Additives on Epithelial Barrier Integrity in an In Vitro Co-Culture Model of the Piglet Gut. Molecules 2023; 28:molecules28031026. [PMID: 36770693 PMCID: PMC9920886 DOI: 10.3390/molecules28031026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Industrial farming of livestock is increasingly focused on high productivity and performance. As a result, concerns are growing regarding the safety of food and feed, and the sustainability involved in their production. Therefore, research in areas such as animal health, welfare, and the effects of feed additives on animals is of significant importance. In this study, an in vitro co-culture model of the piglet gut was used to investigate the effects of two phytogenic feed additives (PFA) with similar compositions. Intestinal porcine epithelial cells (IPEC-J2) were co-cultivated with peripheral blood mononuclear cells (PBMC) to model the complex porcine gut environment in vitro. The effects of treatments on epithelial barrier integrity were assessed by means of transepithelial electrical resistance (TEER) in the presence of an inflammatory challenge. Protective effects of PFA administration were observed, depending on treatment duration and the model compartment. After 48 h, TEER values were significantly increased by 12-13% when extracts of the PFA were applied to the basolateral compartment (p < 0.05; n = 4), while no significant effects on cell viability were observed. No significant differences in the activity of a PFA based mainly on pure chemical compounds versus a PFA based mainly on complex, natural essential oils, and extracts were found. Overall, the co-culture model was used successfully to investigate and demonstrate beneficial effects of PFAs on intestinal epithelial barrier function during an inflammatory challenge in vitro. In addition, it demonstrates that the two PFAs are equivalent in effect. This study provides useful insights for further research on porcine gut health status even without invasive in vivo trials.
Collapse
|
20
|
Li Z, Liu S, Zhao Y, Wang J, Ma X. Compound organic acid could improve the growth performance, immunity and antioxidant properties, and intestinal health by altering the microbiota profile of weaned piglets. J Anim Sci 2023; 101:skad196. [PMID: 37314321 PMCID: PMC10355368 DOI: 10.1093/jas/skad196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
This study aimed to investigate the impact of compound organic acid (COA) and chlortetracycline (CTC) on serum biochemical parameters, intestinal health, and growth performance of weaned piglets. Twenty-four piglets (24 d of age) were randomly allocated into three treatments with eight replicate pens (one piglet per pen). Feed the basal diet or a diet containing 3,000 mg/kg COA or 75 mg/kg CTC, respectively. Results showed that both COA and CTC significantly increased average daily gain and reduced diarrhea rates (P < 0.05). They also upregulated serum total antioxidant capacity and downregulated serum interleukin (IL-10) levels (P < 0.05), increased crude protein digestibility and propionic acid concentration in the colon, and decreased spermidine and putrescine contents (P < 0.05). Intestinal microbiota analysis revealed that both COA and CTC increased the Shannon and Chao1 index and decreased the relative abundance of Blautia and Roseburia, but increased the relative abundance of Clostridium-sensu-stricto-1. Correlation analysis indicated that Clostridium-sensu-stricto-1 may be closely related to inflammation levels and microbial metabolites in piglets. Based on the results, COA may be a potential substitute for CTC to reduce antibiotic use and biogenic amine emission while improving piglet growth and intestinal health.
Collapse
Affiliation(s)
- Zhiqing Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuhan Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yirun Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Yao W, Wang T, Huang L, Bao Z, Wen S, Huang F. Embelin alleviates weaned piglets intestinal inflammation and barrier dysfunction via PCAF/NF-κB signaling pathway in intestinal epithelial cells. J Anim Sci Biotechnol 2022; 13:139. [PMID: 36514139 PMCID: PMC9749222 DOI: 10.1186/s40104-022-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intestinal barrier plays key roles in maintaining intestinal homeostasis. Inflammation damage can severely destroy the intestinal integrity of mammals. This study was conducted to investigate the protective effects of embelin and its molecular mechanisms on intestinal inflammation in a porcine model. One hundred sixty 21-day-old castrated weaned pigs (Duroc × Landrace × Yorkshire, average initial body weight was 7.05 ± 0.28 kg, equal numbers of castrated males and females) were allotted to four groups and fed with a basal diet or a basal diet containing 200, 400, or 600 mg embelin/kg for 28 d. The growth performance, intestinal inflammatory cytokines, morphology of jejunum and ileum, tight junctions in the intestinal mucosa of piglets were tested. IPEC-1 cells with overexpression of P300/CBP associating factor (PCAF) were treated with embelin, the activity of PCAF and acetylation of nuclear factor-κB (NF-κB) were analyzed to determine the effect of embelin on PCAF/NF-κB pathway in vitro. RESULTS The results showed that embelin decreased (P < 0.05) serum D-lactate and diamine oxidase (DAO) levels, and enhanced the expression of ZO-1, occludin and claudin-1 protein in jejunum and ileum. Moreover, the expression levels of critical inflammation molecules (interleukin-1β, interleukin-6, tumor necrosis factor-α, and NF-κB) were down-regulated (P < 0.05) by embelin in jejunal and ileal mucosa. Meanwhile, the activity of PCAF were down-regulated (P < 0.05) by embelin. Importantly, transfection of PCAF siRNAs to IPEC-1 cell decreased NF-κB activities; embelin treatment downregulated (P < 0.05) the acetylation and activities of NF-κB by 31.7%-74.6% in IPEC-1 cells with overexpression of PCAF. CONCLUSIONS These results suggested that embelin ameliorates intestinal inflammation in weaned pigs, which might be mediated by suppressing the PCAF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
22
|
Ma J, Huangfu W, Yang X, Xu J, Zhang Y, Wang Z, Zhu X, Wang C, Shi Y, Cui Y. “King of the forage”—Alfalfa supplementation improves growth, reproductive performance, health condition and meat quality of pigs. Front Vet Sci 2022; 9:1025942. [PMCID: PMC9667112 DOI: 10.3389/fvets.2022.1025942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
As one kind of high-quality feed with rich nutrients, including high quality protein and amino acids, dietary fiber, enriched vitamins and mineral elements and bioactive molecules, alfalfa has been widely used in the production of ruminant livestock. As the understanding of alfalfa becomes more and more comprehensive, it is found that the high-quality nutrients in alfalfa could have positive effects on pigs. An increasing number of researches have shown that supplementing dietary alfalfa to the diet of gestating sows reduced constipation, alleviated abnormal behavior, improved satiety and reproductive performance; supplementing dietary alfalfa to the diet of piglets improved growth performance and intestinal barrier function, reduced intestinal inflammatory response and diarrhea; supplementing dietary alfalfa to the diet of growing-fattening pigs improved production performance and pork quality. Moreover, the mechanisms by which various nutrients of alfalfa exert their beneficial effects on pigs mainly including dietary fiber stimulating intestinal peristalsis, enhancing the activity of digestive enzymes, and promoting the colonization of beneficial bacteria in the intestinal tract through fermentation in the intestine, producing short-chain fatty acids and thus improving intestinal health; high quality protein and amino acids are beneficial to improve animal health condition; rich vitamins and mineral elements play an important role in various physiological functions and growth and development of the body; and bioactive molecules can improve the antioxidant and anti-inflammatory level. Therefore, alfalfa could be used as pig feed ingredient to alleviate various problems in the pig industry and to improve pig production performance. In this review, we detail the current application of alfalfa in pigs and discuss the potential mechanisms involved in how alfalfa improves growth and reproductive performance, pork quality, and intestinal health of the animals, thus laying the foundation for the increased application of high-quality forage in pig production.
Collapse
Affiliation(s)
- Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xu Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Chengzhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
- Yinghua Shi
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
- *Correspondence: Yalei Cui
| |
Collapse
|
23
|
YANG L, YU X, ZHANG C, CHEN P, DUAN X. Yajieshaba prevents lipopolysaccharide-induced intestinal barrier injuryanti-inflammatory and anti-apoptosis. J TRADIT CHIN MED 2022; 42:707-714. [PMID: 36083477 PMCID: PMC9924688 DOI: 10.19852/j.cnki.jtcm.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the protective effect of Yajieshaba (YJSB) on the intestinal barrier dysfunction induced by lipopolysaccharide (LPS). METHODS C57BL/6 mice and rat intestinal epithelial cells were treated with LPS. Thiazolyl Blue Tetrazolium Bromide assay were used to detect cell viability. D-Lactate, diamine oxidase and myeloperoxidase and cytokines were determined by enzyme-linked immunosorbent assay. Western blot was used to detect apoptosis-related proteins and tight junction (TJ) proteins. Real-time quantitative polymerase chain reaction was used to quantify the levels of mRNA expression of cytokines. Histological analysis was performed by hematoxylin and eosin staining. An immunofluorescence staining assay was performed to determine the expression level of TJ protein. RESULTS YJSB increased cell viability and decreased apoptosis, maintained intestinal permeability after LPS-induced. YJSB inhibited LPS-induced decrease of TJ protein expression, pro-inflammatory cytokine levels and neutrophil infiltration. CONCLUSION YJSB protect against LPS-induced intestinal barrier dysfunction anti-inflammatory and anti-apoptosis, suggesting its therapeutic potential against intestinal barrier injury-related diseases.
Collapse
Affiliation(s)
- Liping YANG
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xinglin YU
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Chao ZHANG
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Pu CHEN
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohua DUAN
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
- DUAN Xiaohua, Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China. Telephone: +86-871-65919481
| |
Collapse
|
24
|
Li J, Zhang Q, Zhuo Y, Fang Z, Che L, Xu S, Feng B, Lin Y, Jiang X, Zhao X, Wu D. Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets. Animals (Basel) 2022; 12:ani12172246. [PMID: 36077966 PMCID: PMC9454523 DOI: 10.3390/ani12172246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Weaning piglets face stressors from changes in feed and environment, which affects their growth. To resolve this problem, we explored the separate effects of multi-strain probiotics and Perilla frutescens seed extract and their combined effect on weaning piglets. We found multi-strain probiotics or Perilla frutescens seed extract both improved the gain to feed ratio and antioxidant capacity. In addition, multi-strain probiotics improved jejunal villus height and the villus height/crypt depth ratio. Perilla frutescens seed extract improved ileal villus height. The interactive effects were observed in jejunal villus height and the villus height/crypt depth ratio, ileal villus height, and the gene expression of IL-1β and mucin2 in the intestinal mucosa. This study shows that using either multi-strain probiotics or Perilla frutescens seed extract alone is more effective than their combined use in weaning piglets. Abstract This study examined the effects of multi-strain probiotics (BL) and Perilla frutescens seed extract (PSE), alone or in combination, on weaning piglets. In total, 96 weaning piglets were allocated into four treatments: CON group (the basal diet), PSE group (basal diet + 1g/kg PSE), BL group (basal diet + 2 g/kg BL), and BL+PSE group (basal diet +1 g/kg PSE + 2 g/kg BL) according to a 2 × 2 factorial arrangement. The supplementation of BL or PSE improved the gain to feed ratio. Dietary BL reduced diarrhea occurrence and Escherichia coli, but increased Lactobacillus counts in the ileal digesta. Dietary PSE tended to increase Lactobacillus counts in the ileal digesta. Interactive effects were found in terms of ileal villus height, the gene expression of IL-1β, and malondialdehyde in the ileal mucosa. Dietary BL lowered malondialdehyde in the spleen, liver, and jejunal mucosa but increased the total antioxidant capacity (T-AOC) in the liver and ileum mucosa. The supplementation of PSE improved superoxide dismutase in serum and T-AOC in the liver, and reduced MDA in liver, spleen, and jejunum mucosa. Taken together, BL or PSE showed positive effects, improving growth and intestinal morphology and enhancing antioxidant capacity. However, their interaction showed no beneficial effects on the antioxidant indices and the intestinal morphology of weaned piglets.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
- Correspondence: (J.L.); (D.W.); Tel.: +86-134-1935-4223 (J.L.); +86-28-8629-0922 (D.W.)
| | - Qianqian Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
- Correspondence: (J.L.); (D.W.); Tel.: +86-134-1935-4223 (J.L.); +86-28-8629-0922 (D.W.)
| |
Collapse
|
25
|
Gao Q, Wang Y, Li J, Bai G, Liu L, Zhong R, Ma T, Pan H, Zhang H. Supplementation of multi-enzymes alone or combined with inactivated Lactobacillus benefits growth performance and gut microbiota in broilers fed wheat diets. Front Microbiol 2022; 13:927932. [PMID: 35979486 PMCID: PMC9376439 DOI: 10.3389/fmicb.2022.927932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of multi-enzymes mixture supplementation or combination with inactivated Lactobacillus on growth performance, intestinal barrier, and cecal microbiota were investigated in broilers at the age of 15-42 days fed a wheat-based diet. A total of 576 broilers (12 broilers/cage; n = 12) were used and divided into four groups and randomly allotted to four experimental diets throughout grower (15-28 days of age) and finisher (29-42 days of age) phases. Diets consisted of a corn-soybean meal-based diet (BD), a wheat-soybean meal-based diet (WD), and WD supplemented multi-enzymes (WED) or combined with inactivated Lactobacillus (WEPD). The results showed that the average daily gain (ADG) and body weight (BW) were reduced in broilers fed WD diet compared with those fed BD diet during the grower period (P < 0.05). Broilers in the WED or WEPD group had higher ADG and BW during the grower period (P < 0.05) and had a lower feed-to-gain ratio (F/G) compared to broilers in the WD group during the grower and overall periods (P < 0.05). Improved expression of intestinal barrier genes (claudin-1, ZO-1, and mucin-2) was observed in WEPD compared to the BD or WD group (P < 0.05). Compared to the BD group, the WD group decreased the abundance of Oscillospira, norank_f__Erysipelotrichaceae, and Peptococcus, which are related to anti-inflammatory function and BW gain. The WD also increased Bifidobacterium and some short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Blautia, and Oscillibacter), and Barnesiella, which were presumed as "harmful microbes" [false discovery rate (FDR) < 0.05]. WED and WEPD groups, respectively, improved Bilophila and Eubacterium_hallii_group compared with those in the WD group (FDR < 0.05). In addition, the Enterococcus abundance was reduced in the WEPD group compared to the WD group (FDR < 0.05). Higher acetate and total SCFA concentrations were observed (P < 0.05) among broilers who received a WD diet. Compared with the WD group, the WED or WEPD group further increased cecal propionate content (P < 0.05) and tended to improve butyrate concentration. These results suggested that supplemental multi-enzymes alone and combined with inactivated Lactobacillus could improve the growth performance based on the wheat-based diet and offer additional protective effects on the intestinal barrier function of broilers.
Collapse
Affiliation(s)
- Qingtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Guosong Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Qin L, Yao W, Wang T, Jin T, Guo B, Wen S, Huang F. Targeting gut microbiota-derived butyrate improves hepatic gluconeogenesis through the cAMP-PKA-GCN5 pathway in late pregnant sows. Food Funct 2022; 13:4360-4374. [PMID: 35355044 DOI: 10.1039/d2fo00094f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Short chain fatty acids (SCFAs) produced by gut microbiota affected hepatic glucose metabolism via the gut-liver axis. The present study aimed to investigate the effects of butyrate produced by gut microbiota on hepatic gluconeogenesis in late-pregnancy sows. A total of 240 primiparous sows in late pregnancy were tested for blood glucose using a glucose meter before feeding and grouped according to their blood glucose level as follows: 0-3.0 mmol L-1 (low blood glucose group, LG group) and 3.1-5.0 mmol L-1 (normal blood glucose group, NG group). Colonic SCFAs and microbiota, SCFAs in the portal vein and liver, and acetylation and phosphorylation levels in the liver samples were analyzed. Hepatocytes from pregnant sows were examined for the effect of butyrate on hepatic glucose gluconeogenesis. In vivo experiments showed that the reproductive performance, serum glucose metabolism index, colonic butyrate and butyrate-producing bacteria decreased in the LG group compared with the NG group. Correlation analysis found a positive correlation among colonic butyrate, butyrate-producing bacteria and the serum glucose metabolism index. Moreover, the hepatic cAMP concentration, PKA activity, GCN5 phosphorylation, and the expression of G6P and PEPCK were decreased and PGC1-α acetylation was increased in the LG group compared with the NG group. In vitro, sodium butyrate significantly stimulated the cAMP concentration, PKA activity, GCN5 phosphorylation, and the expression of G6P and PEPCK and inhibited PGC-1α acetylation in the LG group of hepatocytes from late-pregnancy sows. Interestingly, another in vivo experiment showed that dietary 1-kestose, a natural regulator of gut bacteria, significantly increased butyrate and butyrate-producing bacteria, and improved the reproductive performance and serum glucose metabolism index in late-pregnancy sows. Taken together, we found that targeting gut microbiota-derived butyrate could improve hepatic gluconeogenesis through the cAMP-PKA-GCN5 pathway in late-pregnancy sows.
Collapse
Affiliation(s)
- Longshan Qin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Taimin Jin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Baoyin Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Schott T, Reisinger N, Teichmann K, König J, Ladinig A, Mayer E. Establishment of an In Vitro Co-Culture Model of the Piglet Gut to Study Inflammatory Response and Barrier Integrity. PLANTA MEDICA 2022; 88:262-273. [PMID: 34144625 DOI: 10.1055/a-1510-5802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In intensive farming, piglets are exposed to various challenges that activate intestinal inflammatory processes, negatively affecting animal health and leading to economic losses. To study the role of the inflammatory response on epithelial barrier integrity, co-culture systems that mimic in vivo complexity are more and more preferred over cell monocultures. In this study, an in vitro gut co-culture model consisting of intestinal porcine epithelial cells and porcine peripheral blood mononuclear cells was established. The model provides an appropriate tool to study the role of the inflammatory response on epithelial barrier integrity and to screen for feed and food components, exerting beneficial effects on gut health. In the established model, inflammation-like reactions and damage of the epithelial barrier, indicated by a decrease of transepithelial electrical resistance, were elicited by activation of peripheral blood mononuclear cells via one of 3 stimuli: lipopolysaccharide, lipoteichoic acid, or concanavalin A. Two phytogenic substances that are commonly used as feed additives, licorice extract and oregano oil, have been shown to counteract the drop in transepithelial electrical resistance values in the gut co-culture model. The established co-culture model provides a powerful in vitro tool to study the role of intestinal inflammation on epithelial barrier integrity. As it consists of porcine epithelial and porcine blood cells it perfectly mimics in vivo conditions and imitates the inter-organ communication of the piglet gut. The developed model is useful to screen for nutritional components or drugs, having the potential to balance intestinal inflammation and strengthen the epithelial barrier integrity in piglets.
Collapse
Affiliation(s)
| | | | | | - Jürgen König
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
28
|
Huang Y, Liu Z, Liu S, Song F, Jin Y. Studies on the mechanism of Panax Ginseng in the treatment of deficiency of vital energy dementia rats based on urine metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123115. [PMID: 35042148 DOI: 10.1016/j.jchromb.2022.123115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Panax Ginseng (PG) has been used to strengthen memory and physique for thousands of years, because its main components ginsenosides (GS) and ginseng polysaccharides (GP) play a major role, but its mechanism is not clear. In this study, a rat model of dementia with vital energy deficiency (DED) was established through intraperitoneal injection with D-galactose and AlCl3 and combined with exhaustive swimming. Pharmacological studies and the urine metabolomics based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) were employed for evaluation the efficacy of PG and exploring this treatment mechanism. Through urine metabolic profiling, it can be seen that DED rats after PG administration are close to normal group (NG) rats, and PG can regulate the in vivo status of DED rats which tend to NG. The results of behavioral, biochemical indicators and immunohistochemistry further verified the above results, and the mechanism of action of each component is refined. Ultimately, we believe that the mechanism of PG in the treatment of DED is that ginsenosides (GS) intervenes in phenylalanine tryptophan and tyrosine metabolism, stimulates dopamine production, inhibits Aβ deposition and neuroinflammation; and that ginseng polysaccharides (GP) provides energy to strengthen the TCA cycle and improve immune capacity.
Collapse
Affiliation(s)
- Yu Huang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiqiang Liu
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shu Liu
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Jin X, Yuan B, Liu M, Zhu M, Zhang X, Xie G, Wu W, Wang Z, Xu H, Lv Y, Huang Y, Wang W. Dietary Hermetia illucens Larvae Replacement Alleviates Diarrhea and Improves Intestinal Barrier Function in Weaned Piglets Challenged With Enterotoxigenic Escherichia coli K88. Front Vet Sci 2021; 8:746224. [PMID: 34901243 PMCID: PMC8655791 DOI: 10.3389/fvets.2021.746224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
A high-quality protein substitute, Hermetia illucens (black soldier fly) larvae powder, is rich in protein and often used in animal feed. This study aimed to investigate the feasibility and optimal ratio of replacing fish meal with H. illucens larvae in weaned piglets and to demonstrate the effects on piglets' growth performance, intestinal microflora and immune performance. Forty-eight female weaned piglets were randomly classified into three groups. Each group consisted of eight pens (replicates), with two piglets per pen. Three groups containing different proportions of H. illucens larvae (0, 4, and 8%) were referred to as C, HI4, and HI8. We first designed a 28-day feeding experiment to detect growth performance; after that, the piglets were induced with oral gavage of enterotoxigenic Escherichia coli K88 (ETEC K88) and recording diarrhea on day 29 of the experiment. Samples were taken on the 32nd day to detect the effect of H. illucens larvae on the immune performance of the weaned piglets. H. illucens larvae replacement did not cause any obvious change in the growth performance nether in HI4 nor in HI8 of weaned piglets with 28 d feeding stage. H. illucens larvae could improve the intestinal health of weaned piglets by increasing the content of Lactobacillus and reducing the content of Streptococcus. Compared with C+K88 group, the diarrhea rate was attenuated for the H. illucens supplemented group. The integrity of ileum villi in HI4+K88 and HI8+K88 groups was better than that in C+K88 group, and the villi in C+K88 group were severely damaged. The expression of IL-10, Occludin and Claudin-3 in the intestinal mucosa of the HI4+K88 group and HI8+K88 group were significantly increased (P < 0.05), and the expression of TNF-α was significantly decreased (P < 0.05) compared with the C+K88 group. The results of immunoblotting also validated that the same ETEC K88 treatment of weaned piglets enhanced the expression of tight junction protein in the intestinal mucosa of the H. illucens addition group. ETEC-induced diarrhea will be reduced by the diet of weaned piglets containing H. illucens larvae, ameliorating the immune performance of piglets. Our results indicates that the optimal dosage of H. illucens replacement in weaned piglets is 4%.
Collapse
Affiliation(s)
- Xinxin Jin
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Boyu Yuan
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Mingming Liu
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingqiang Zhu
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xue Zhang
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gaijie Xie
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenxiang Wu
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zifan Wang
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haidong Xu
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yantao Lv
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanhua Huang
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wang
- College of Animal Science & Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Zhang Y, Yu F, Hao J, Nsabimana E, Wei Y, Chang X, Liu C, Wang X, Li Y. Study on the Effective Material Basis and Mechanism of Traditional Chinese Medicine Prescription (QJC) Against Stress Diarrhea in Mice. Front Vet Sci 2021; 8:724491. [PMID: 34671661 PMCID: PMC8520981 DOI: 10.3389/fvets.2021.724491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K-Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K-Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingyou Hao
- Harbin Lvda Sheng Animal Medicine Manufacture Co., Ltd., Harbin, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanru Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaohan Chang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaozhen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Harbin Herb and Herd Bio-Technology Co., Ltd., Harbin, China
| |
Collapse
|
31
|
Xiang XD, Deng ZC, Wang YW, Sun H, Wang L, Han YM, Wu YY, Liu JG, Sun LH. Organic Acids Improve Growth Performance with Potential Regulation of Redox Homeostasis, Immunity, and Microflora in Intestines of Weaned Piglets. Antioxidants (Basel) 2021; 10:antiox10111665. [PMID: 34829536 PMCID: PMC8615128 DOI: 10.3390/antiox10111665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of this study is to evaluate the effects of organic acids on piglet growth performance and health status. A total of 360 weanling pigs (5.3 ± 0.6 kg) were randomly allotted to 3 treatment groups with 12 replicates of 10 pigs/pen. Piglets were fed the same basal diet and given either water (control) or water plus 2.0 L/Ton organic acid (OA) blends, such as OA1 or OA2, respectively, for 7 weeks. Compared to the control, OA1 and OA2 improved growth performance and/or reduced the piglets' diarrhea rate during the various periods and improved small intestinal morphology at days 14 and/or 49. OA1 and OA2 also increased serum CAT and SOD activities and/or T-AOC and, as expected, decreased MDA concentration. Moreover, at day 14 and/or day 49, OA1 and OA2 increased the jejunal mRNA levels of host defense peptides (PBD1, PBD2, NPG1, and NPG3) and tight junction genes (claudin-1) and decreased that of cytokines (IL-1β and IL-2). Additionally, the two acidifiers regulated the abundance of several cecum bacterial genera, including Blautia, Bulleidia, Coprococcus, Dorea, Eubacterium, Subdoligranulum, and YRC2. In conclusion, both of the organic acid blends improved piglet growth performance and health status, potentially by regulating intestinal redox homeostasis, immunity, and microflora.
Collapse
Affiliation(s)
- Xin-Dong Xiang
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
| | - Zhang-Chao Deng
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
| | - You-Wei Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan 442000, China;
| | - Hua Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangzhou 510640, China
- Correspondence: (L.W.); (J.-G.L.); (L.-H.S.)
| | - Yan-Ming Han
- Trouw Nutrition, 773811 Amersfoort, The Netherlands; (Y.-M.H.); (Y.-Y.W.)
| | - Yuan-Yuan Wu
- Trouw Nutrition, 773811 Amersfoort, The Netherlands; (Y.-M.H.); (Y.-Y.W.)
| | - Jian-Gao Liu
- Guangzhou Liuhe Feed Company Limited, Guangzhou 511400, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu 610110, China
- Correspondence: (L.W.); (J.-G.L.); (L.-H.S.)
| | - Lv-Hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.-D.X.); (Z.-C.D.); (H.S.)
- Correspondence: (L.W.); (J.-G.L.); (L.-H.S.)
| |
Collapse
|
32
|
Santos MCD, Fonseca da Silva K, Malcorra de Almeida L, Dzierva L, Antonio Dias Orlando U, Oliveira SGD, Maiorka A. Soybean oil supplementation for sows in the first three days after farrowing. Arch Anim Nutr 2021; 75:345-354. [PMID: 34617488 DOI: 10.1080/1745039x.2021.1974767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the main causes of death in newborn piglets is the low level of energy reserves to maintain their body temperature, which can lead to hypothermia and, subsequently, death. Thus, the objective of this study was to evaluate the effect of soybean oil supplementation to sows in the first three days after farrowing to save piglet fat reserves through the higher nutritional intake of sow milk. In total, 604.5, 750, 1000, 1250 and 1500 g of soybean oil were provided for each sow during the three days of supplementation. A total of 60 sows were evaluated per treatment, distributed in a random block design, supplemented in the first three days after farrowing with soybean oil added on top of the feed at the time of feeding. Performance and reproductive data and milk samples were collected from the sows to determine fat levels. Piglets were evaluated for fall-back rate and survival. There was no significant effect of soybean oil supplementation on any of the parameters evaluated for both sows and their milk. Therefore, soybean oil supplementation for sows in the first three days after farrowing does not influence performance parameters, reproduction and milk fat of the sows and mortality and fall-back rate of the piglets.
Collapse
Affiliation(s)
| | | | | | - Letícia Dzierva
- Department of Animal Science, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Alex Maiorka
- Department of Animal Science, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
33
|
Luo X, Huo X, Zhang Y, Cheng Z, Chen S, Xu X. Increased intestinal permeability with elevated peripheral blood endotoxin and inflammatory indices for e-waste lead exposure in children. CHEMOSPHERE 2021; 279:130862. [PMID: 34134434 DOI: 10.1016/j.chemosphere.2021.130862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023]
Abstract
Lead (Pb) entering the body through different channels can damage the function of intestinal mucosal barrier and cause the body stressful inflammatory response to enhance. This study conducted a cross-sectional study to investigate the effects of Pb exposure on intestinal permeability in children by measuring the level of bacterial endotoxin and index of inflammatory cell types in peripheral blood. From November to December 2018, we recruited 187 participants aged 3-6 years by stratified randomization, from an electronic-waste-exposed group (n = 82) and a referent group (n = 105). General demographic information, past history of the digestive system in child, and family situation were informed by children's guardians with questionnaires. Children in the exposed group showed lower weight, height, and body mass index while more diarrhea in a month. Blood Pb and plasma endotoxin were elevated in exposed children than referent children and the positive relationship between them was shown in all children [B (95% CI): 0.072 (0.008, 0.137), P = 0.033]. Peripheral monocyte counts and leukotriene B4 (LTB4) levels were significantly increased in the exposed group. Endotoxin levels were positively correlated with neutrophils, monocytes, and LTB4 [B (95% CI): 0.054 (0.015, 0.093), 0.018 (0.005, 0.031), and 0.049 (0.011, 0.087), respectively, P < 0.05]. To sum up, the exposed children showed lower physical growth levels, poorer gut health, and increased intestinal permeability, which was related to high blood Pb and peripheral inflammatory indices. These results suggest the possible adverse impact of environmental Pb exposure on the intestinal health of children.
Collapse
Affiliation(s)
- Xiuli Luo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Shuqin Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
34
|
Rhouma M, Braley C, Thériault W, Thibodeau A, Quessy S, Fravalo P. Evolution of Pig Fecal Microbiota Composition and Diversity in Response to Enterotoxigenic Escherichia coli Infection and Colistin Treatment in Weaned Piglets. Microorganisms 2021; 9:1459. [PMID: 34361896 PMCID: PMC8306681 DOI: 10.3390/microorganisms9071459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charlotte Braley
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - William Thériault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Thibodeau
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sylvain Quessy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Conservatoire National des Arts et Métiers (CNAM), 292 rue Saint-Martin, 75003 Paris, France
| |
Collapse
|
35
|
Zhou J, Yao J, Bai L, Sun C, Lu J. Effects of Dietary Supplementation of gEGF on the Growth Performance and Immunity of Broilers. Animals (Basel) 2021; 11:ani11051394. [PMID: 34068418 PMCID: PMC8153569 DOI: 10.3390/ani11051394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
EGF has been shown to stimulate the growth of animals. In this study, the content of EGF in chicken embryos (gallus EGF, gEGF) aged from 1 to 20 days of incubation were determined by ELISA kit, and the 5-day-old chicken embryos with the highest content of 5593 pg/g were selected to make gEGF crude extracts. A total of 1500 1-day-old Xianju chickens were randomly divided into five groups with six replicates of 50 chickens each. The control group was fed a basal diet, and other treatment diets were supplemented with 4, 8, 16 and 32 ng/kg gEGF crude extract, respectively. The experiment lasted for 30 days. Chicks were harvested at the end of the experiment, and liver, spleen, thymus, bursa and serum samples were collected. Results showed that average daily gain (ADG) and average daily feed intake (ADFI) of 16 ng/kg group were higher than those in the control group (p < 0.05). The serum uric acid (UA) of the 16 ng/kg group was reduced (p < 0.01), and the serum alkaline phosphatase (AKP) of the 16 ng/kg group increased (p < 0.01). The gEGF extract also increased chick's antioxidant capacity, decreased malondialdehyde (MDA) and increased catalase (CAT) in the liver and serum of 16 ng/kg groups in compared to the control group (p < 0.01). Furthermore, immunity was improved by the addition of gEGF to broiler diets. The serum immunoglobin A (IgA) content of 8 and 16 ng/kg groups and the serum immunoglobin M (IgM) content of 4 and 8 ng/kg groups were increased (p < 0.05) compared to the control group. The bursa index of each experimental group was higher than the control group (p < 0.01). These findings demonstrate that the crude extract of gEGF prepared in this experiment could improve the growth performance, antioxidant capacity and immunity of broilers.
Collapse
Affiliation(s)
- Jianyong Zhou
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China;
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Jingyi Yao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Luhong Bai
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Chuansong Sun
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Jianjun Lu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
- Correspondence: ; Tel.: +86-571-88982511
| |
Collapse
|
36
|
Wang D, Zhou L, Zhou H, Hu H, Hou G. Chemical composition and protective effect of guava (Psidium guajava L.) leaf extract on piglet intestines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2767-2778. [PMID: 33140438 DOI: 10.1002/jsfa.10904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Dietary intervention is an important approach to improve intestinal function of weaned piglets. Phytogenic and herbal products have received increasing attention as in-feed antibiotic alternatives. This study investigated the chemical composition of guava leaf extract (GE) by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Meanwhile, we investigated the effects of dietary supplementation with GE on diarrhea in relation to immune responses and intestinal health in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC). RESULTS In total, 323 characterized compounds, which including 91 phenolic compounds and 232 other compounds were identified. Animal experiment results showed that the supplementation of 50-200 mg kg-1 of GE in the diet could reduce diarrhea incidence, increase activities of superoxide dismutase, glutathione peroxidase and total anti-oxidant capacity in the serum (P < 0.05), decrease the levels of interleukin 1β, interleukin 6 and tumor necrosis factor α in the serum or jejunum mucosa (P < 0.05), and increase villus height and villus height to crypt depth ratio (P < 0.05) in the jejuna of piglets challenged by oral ETEC compared with negative control group (NC). Meanwhile, diet supplementation with 50-200 mg kg-1 GE reduced the levels of D-lactate, endothelin-1 and diamine oxidase in the serum, and increased the expression of zonula occludens-1, Claudin-1, Occludin and Na+ /H+ exchanger 3 (P < 0.05) in the jejuna mucosa of piglets challenged by ETEC compared with the NC. CONCLUSIONS These results suggested that GE could attenuate diarrhea and improve intestinal barrier function of piglets challenged by ETEC. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haichao Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
37
|
Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol 2021; 11:1463-1482. [PMID: 33610769 PMCID: PMC8025057 DOI: 10.1016/j.jcmgh.2021.02.007] [Citation(s) in RCA: 369] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract (GI) harbors a diverse population of microbial life that continually shapes host pathophysiological responses. Despite readily available abundant metagenomic data, the functional dynamics of gut microbiota remain to be explored in various health and disease conditions. Microbiota generate a variety of metabolites from dietary products that influence host health and pathophysiological functions. Since gut microbial metabolites are produced in close proximity to gut epithelium, presumably they have significant impact on gut barrier function and immune responses. The goal of this review is to discuss recent advances on gut microbial metabolites in the regulation of intestinal barrier function. While the mechanisms of action of these metabolites are only beginning to emerge, they mainly point to a small group of shared pathways that control gut barrier functions. Amidst expanding technology and broadening knowledge, exploitation of beneficial microbiota and their metabolites to restore pathophysiological balance will likely prove to be an extremely useful remedial tool.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Caleb Samuel Whitley
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
38
|
Kyoung H, Lee JJ, Cho JH, Choe J, Kang J, Lee H, Liu Y, Kim Y, Kim HB, Song M. Dietary Glutamic Acid Modulates Immune Responses and Gut Health of Weaned Pigs. Animals (Basel) 2021; 11:ani11020504. [PMID: 33671988 PMCID: PMC7919271 DOI: 10.3390/ani11020504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Weaning stress can lead to intestinal barrier dysfunction, immune system destruction, and intestinal microbiota disruption, thereby reducing the absorption of nutrients and causing intestinal diseases. Glutamic acid is a non-essential amino acid that is abundantly present in the body and plays an essential function in cellular metabolism and immune responses. In this study, the effects of dietary glutamic acid on the growth performance, nutrient digestibility, immune responses, and intestinal health of weaned pigs were evaluated. Based on the results, dietary glutamic acid increased growth performance, nutrient digestibility, intestinal morphology, and ileal gene expression of tight junction proteins of weaned pigs and modified immune responses and gut microbiota. This study provides information to understand the functional use of dietary glutamic acid as a feed additive for improving the growth performance and intestinal health of weaned pigs. Abstract Dietary glutamic acid (GLU) is used as a feed additive because of its functional characteristics that may affect the growth performance and health of pigs. This study was carried out to determine the effects of dietary GLU on growth performance, nutrient digestibility, immune responses, and intestinal health of weaned pigs. A total of ninety-six weaned pigs (8.07 ± 1.17 kg of body weight; 28 days of age) were assigned to two dietary treatments (8 pigs/pen; 6 replicates/treatment) in a randomized complete block design (block: body weight): (1) a typical weaner diet (CON) and (2) CON supplemented with 0.5% GLU. The experimental period was for 4 weeks. All data and sample collections were performed at the specific time points during the experimental period. Pigs fed GLU had higher average daily gain and average daily feed intake for the first two weeks and nutrient digestibility than pigs fed CON. In addition, dietary GLU increased villus height to crypt depth ratio, number of goblet cells, and ileal gene expression of claudin family and occludin compared with CON, but decreased serum TNF-α and IL-6 and ileal gene expression of TNF-α. Moreover, pigs fed GLU had increased relative composition of bacterial communities of genus Prevotella and Anaerovibrio and decreased genus Clostridium and Terrisporobacter compared with those fed CON. This study suggests that dietary GLU influences growth performance and health of weaned pigs by modulating nutrient digestibility, intestinal morphology, ileal gene expression of tight junction proteins and cytokines, immune responses, and microbial community in the gut.
Collapse
Affiliation(s)
- Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
| | - Jeong Jae Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Jeehwan Choe
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Joowon Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
| | - Hanbae Lee
- Pathway Intermediates, Seoul 06253, Korea;
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
- Correspondence: (H.B.K.); (M.S.)
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (H.K.); (J.J.L.); (J.K.)
- Correspondence: (H.B.K.); (M.S.)
| |
Collapse
|
39
|
Koval L, Zemskaya N, Aliper A, Zhavoronkov A, Moskalev A. Evaluation of the geroprotective effects of withaferin A in Drosophila melanogaster. Aging (Albany NY) 2021; 13:1817-1841. [PMID: 33498013 PMCID: PMC7880378 DOI: 10.18632/aging.202572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Withanolides are a class of compounds usually found in plant extracts which are an attractive geroprotective drug design starting point. We evaluated the geroprotective properties of Withaferin A (WA) in vivo using the Drosophila model. Flies were supplemented by nutrient medium with WA (at a concentration of 1, 10, or 100 μM dissolved in ethanol) for the experiment group and 30 μM of ethanol for the control group. WA treatment at 10 and 100 μM concentrations prolong the median life span of D. melanogaster's male by 7.7, 9.6% (respectively) and the maximum life span (the age of death 90% of individuals) by 11.1% both. Also WA treatment at 1, 10 and 100 μM improved the intestinal barrier permeability in older flies and affected an expression of genes involved in antioxidant defense (PrxV), recognition of DNA damage (Gadd45), heat shock proteins (Hsp68, Hsp83), and repair of double-strand breaks (Ku80). WA was also shown to have a multidirectional effect on the resistance of flies to the prooxidant paraquat (oxidative stress) and 33° C hyperthermia (heat shock). WA treatment increased the resistance to oxidative stress in males at 4 and 7 week old and decreased it at 6 weeks old. It increased the male's resistance to hyperthermia at 2, 4 and 7 weeks old and decreased it at 3, 5 and 8 weeks old. WA treatment decreased the resistance to hyperthermia in females at 1, 2 and 3 weeks old and not affected on their resistance to oxidative stress.
Collapse
Affiliation(s)
- Liubov Koval
- Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Alexander Aliper
- Deep Longevity Ltd, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alex Zhavoronkov
- Deep Longevity Ltd, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alexey Moskalev
- Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| |
Collapse
|