1
|
Thibaut MM, Roumain M, Piron E, Gillard J, Loriot A, Neyrinck AM, Rodriguez J, Massart I, Thissen JP, Huot JR, Pin F, Bonetto A, Delzenne NM, Muccioli GG, Bindels LB. The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia. Gut Microbes 2025; 17:2449586. [PMID: 39780051 PMCID: PMC11730681 DOI: 10.1080/19490976.2025.2449586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.
Collapse
Affiliation(s)
- Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Edwige Piron
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Massart
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Lin Y, Wang J, Bu F, Zhang R, Wang J, Wang Y, Huang M, Huang Y, Zheng L, Wang Q, Hu X. Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis. Gut Microbes 2025; 17:2452229. [PMID: 39840620 DOI: 10.1080/19490976.2025.2452229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.
Collapse
Affiliation(s)
- Yuling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Li X, Xiao X, Wang S, Wu B, Zhou Y, Deng P. Uncovering de novo polyamine biosynthesis in the gut microbiome and its alteration in inflammatory bowel disease. Gut Microbes 2025; 17:2464225. [PMID: 39924644 PMCID: PMC11812404 DOI: 10.1080/19490976.2025.2464225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
Polyamines are important gut microbial metabolites known to affect host physiology, yet the mechanisms behind their microbial production remain incompletely understood. In this study, we developed a stable isotope-resolved metabolomic (SIRM) approach to track polyamine biosynthesis in the gut microbiome. Viable microbial cells were extracted from fresh human and mouse feces and incubated anaerobically with [U-13C]-labeled inulin (tracer). Liquid chromatography-high resolution mass spectrometry analysis revealed distinct 13C enrichment profiles for spermidine (SPD) and putrescine (PUT), indicating that the arginine-agmatine-SPD pathway contributes to SPD biosynthesis in addition to the well-known spermidine synthase pathway (PUT aminopropylation). Species differences were observed in the 13C enrichments of polyamines and related metabolites between the human and mouse microbiome. By analyzing the fecal metabolomics and metatranscriptomic data from an inflammatory bowel disease (IBD) cohort, we found significantly higher polyamine levels in IBD patients compared to healthy controls. Further investigations using single-strain SIRM and in silico analyses identified Bacteroides spp. as key contributors to polyamine biosynthesis, harboring essential genes for this process and potentially driving the upregulation of polyamines in IBD. Taken together, this study expands our understanding of polyamine biosynthesis in the gut microbiome and will facilitate the development of precision therapies to target polyamine-associated diseases.
Collapse
Affiliation(s)
- Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Lin M, Huang R, Li W, Peng H, Chen J, Qiu Y, Liu Y, Chen L. Dysbiosis of the gut micro-flora aggravates symptoms and accelerates disease progression in MASLD-IBD Co-morbid mice through host-microbial metabolic imbalance. Arch Biochem Biophys 2025; 769:110441. [PMID: 40320060 DOI: 10.1016/j.abb.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Studies have shown that dysregulation of intestinal microbial structure and co-metabolic imbalance caused by diet and other factors play important role in MASLD and IBD. However, it is unclear how host-microbial interactions differ in the two diseases, and what potential impact they have on accelerating disease progression. Our study aims to find the disease characteristics in MASLD, IBD and their complication from the perspective of host-microbial metabolism. In our study, mouse models of MASLD, IBD, and MASLD-IBD induced by high-fat diet and dextran sulfate sodium. Detecting the pathological changes of colon and liver. Using 16s rRNA to screen out specific micro-flora, and UPLC-MS to monitor the changes of metabolites in feces. The micro-flora-metabolite co-expression network was constructed by Cytoscape software. The result showed that MASLD-IBD mice aggravate intestinal barrier damage, hepatic steatosis and fibrosis, immune inflammation and other pathological changes. In MASLD-IBD mice, the structural change of gut micro-flora is similar to IBD mice, which significantly reduced the abundance of Actinobacteriota, Desulfobacterota while increasing the abundance of Proteobacteria, and the metabolic disorder include nine metabolic pathways, such as tryptophan, bile acids and short-chain fatty acids, is similar to MASLD mice. Their co-expression network indicates that different specific micro-flora are closely related to the metabolic disorder and disease symptoms of MASLD-IBD mice. Analyzing the relationship between intestinal microbial dysregulation and hoetic co-metabolic imbalance is helpful to understand the mechanism of MASLD and IBD comorbidity, which suggesting that combined liver-gut therapy may be a new method for the treatment of MASLD-IBD complication.
Collapse
Affiliation(s)
- Minling Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanyu Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Peng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Huang Y, Xu W, Dong W, Chen G, Sun Y, Zeng X. Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism. J Adv Res 2025; 72:17-35. [PMID: 38969095 DOI: 10.1016/j.jare.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3β) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.
Collapse
Affiliation(s)
- Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
6
|
Fan F, Chen L, Sun H, Liu J, Yang K, Gu F. Longitudinal dynamics of plasma bile acids and their associations with physiological parameters and fecal microbiome during the transition period in dairy cows. Anim Biosci 2025; 38:1194-1205. [PMID: 40045625 PMCID: PMC12061570 DOI: 10.5713/ab.24.0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/07/2024] [Accepted: 12/12/2024] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE The aim of this study is to investigate the dynamic changes of plasma bile acids (BA) and their correlations with physiological parameters and fecal microbiome in transitional dairy cows. METHODS Twenty multiparous dairy cows were selected, the blood and fecal samples were collected on d -21, -7, +7, and +21 of calving. The targeted metabolome and 16s rDNA ampicon sequencing were utilized to identify BA profiles and fecal microbial composition, respectively. RESULTS A total of 32 BAs were found, comprising 9 primary BAs (PBA) and 23 secondary BAs (SBA). Majority of the PBAs (7 out to 9) and SBAs (15 out to 23) exhibited significant increases postpartum compared to prepartum levels. Notably, ursodeoxycholic acid, taurocholic acid and 7-ketodeoxycholic acid showed higher importance. Correlation analysis showed the BAs concentrations positively correlated with the concentrations of aspartate aminotransferase, total antioxidant capacity, and glutathione peroxidase, while exhibiting substantial negative correlation with triglyceride concentrations. A decline in bacterial alpha diversity in postpartum and significantly different β-diversity were observed. Furthermore, 30 distingtive genera were identified over the transition period. Among these, six and eleven biomarkers such as Alistipes and Ruminococcaceae_UCG_014 were identified at +7 d and +21 d, respectively. Furthermore, the abundances of choloylglycine hydrolase and 7-alpha-hydroxysteroid dehydrogenase which are involved in SBA biosynthesis were significantly higher postpartum as determined by PICRUSt2 analysis over the transition period. CONCLUSION The BA profile and concentrations underwent significant changes during the transition period in dairy cows and these changes are closely related to the periparturient health of the cows. Ursodeoxycholic acid and Alistipes was identified as the pivotal BA and microbial genus. Our study elucidates these metabolic processes, providing useful insights into strategies for enhancing the nutrition and well-being of perinatal dairy cows.
Collapse
Affiliation(s)
- Feixiang Fan
- College of Animal Sciences, Xinjiang Key Laboratory of Herbivorous Nutrition for Meat & Milk, Xinjiang Agricultural University, Urumqi,
China
| | - Liang Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou,
China
| | - Huizeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou,
China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou,
China
| | - Kailun Yang
- College of Animal Sciences, Xinjiang Key Laboratory of Herbivorous Nutrition for Meat & Milk, Xinjiang Agricultural University, Urumqi,
China
| | - Fengfei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou,
China
| |
Collapse
|
7
|
Lu W, Liu Z, Song Z, Wang C, Yu Z, Peng S, Tian Z, Lyu A, Ning Z. Vinegar-processed frankincense ameliorates ulcerative colitis by targeting BSH-active bacteria preference-mediated GDCA hydrolysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119845. [PMID: 40287117 DOI: 10.1016/j.jep.2025.119845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Frankincense, is extensively used in both traditional Chinese medicine (TCM) and Indian practices for the treatment of ulcerative colitis (UC). In TCM, it is typically subjected to process with vinegar, which is believed to enhance its therapeutic efficacy. However, the underlying mechanism has yet to be elucidated. AIM OF THE STUDY To elucidate the underlying mechanism of frankincense vinegar processing from the perspective of bile salt hydrolase (BSH)-active bacteria preference and glycodeoxycholic acid (GDCA) hydrolysis. MATERIALS AND METHODS Dextran sodium sulfate (DSS)-induced UC model was used to elucidate the superior improving effects of vinegar-processed frankincense (PF). 16S rRNA and metagenomic sequencing along with ultra-high performance liquid chromatography-triple quadrupole mass spectroscopy (UHPLC-TQ-MS) were employed to reveal the differential bacteria and its related disturbance of GDCA. The effects of PF and GDCA on BSH-active bacteria were confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and in vitro experiments. Finally, the pro-inflammatory effects of GDCA and the mechanisms by which PF ameliorates UC were verified by establishing a UC pseudo-sterile mice model with GDCA intervention. RESULTS PF exhibited remarkable mitigating effects on UC (P < 0.05 or P < 0.01). Specifically, PF enhanced the BSH activity of Bifidobacterium longum and Lactobacillus acidophilus (P < 0.01), thereby promoting their dissociation efficiency toward glycine-conjugated bile acids (G-CBAs), particularly GDCA (P < 0.01). Furthermore, PF reduced GDCA levels by regulating the dissociation efficiency of Bifidobacterium longum and Lactobacillus acidophilus toward GDCA, thereby alleviating GDCA-induced exacerbation of UC. CONCLUSION PF exhibits its superior amelioration effects on UC by enhancing the dissociation efficiency of Bifidobacteruum longum and Lactobacillus acidophilus towards G-CBAs, particularly GDCA.
Collapse
Affiliation(s)
- Wenjie Lu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zheng Yu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Chinese Medicine, Hong Kong Baptist University, Hongkong, 00825, China
| | - Ziqi Tian
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hongkong, 00825, China.
| | - Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Wang J, Gao J, Zhang Q, Lu J, Yang Y, Cai X, Dong H, Lu L. Ileal FXR Knockdown Ameliorates MASLD Progression in Rats via Modulating Bile Acid Metabolism Mediated by Gut Microbiota. J Gastroenterol Hepatol 2025. [PMID: 40411313 DOI: 10.1111/jgh.17017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/11/2025] [Accepted: 05/11/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND AND AIM Metabolic dysfunction associated steatotic liver disease (MASLD) is the predominant cause of chronic liver disease, with dysregulation of bile acid (BA) metabolism and intestinal microbiota being intricately associated with MASLD progression. In this study, we investigated the role of ileal FXR in MASLD progression and BA metabolism in portal blood. METHODS Sprague-Dawley rats were fed a typical western diet for 20 weeks, followed by local perfusion of AAV2-shNr1h4 to downregulate Nr1h4 expression in ileum tissue. To investigate the effect of ileal FXR on BA reabsorption and gut microbiota, portal blood and cecal fecal samples were collected from MASLD rats injected with AAV2-Ctrl or AAV2-shNr1h4 for metabolomics targeting BAs and 16S rRNA sequencing analysis. RESULTS Our results showed that hepatic steatosis and inflammation were alleviated, whereas the reabsorption of secondary BAs and unconjugated BAs into the portal blood was enhanced when ileal FXR was knocked down. Furthermore, knockdown of ileal FXR resulted in a significant alteration in composition of the cecal microbiota, characterized by an increasing abundance of microbes involved in secondary BA production, including Escherichia, Adlercreutzia, Eubacterium, and Clostridium. CONCLUSION These findings suggest that downregulation of ileal FXR ameliorates the progression of MASLD in rats by modulating BA metabolism mediated by the gut microbiota, indicating that ileal FXR might be a potential therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Gao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Feng J, He L, Ma X, Yin X, Mueller EG, Zhou Z, Feng W, McClain CJ, Zhang X. Comparison of liver bile acid profiles in chronic alcohol feeding and NIAAA binge-on-chronic alcohol feeding mouse models. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1262:124650. [PMID: 40413821 DOI: 10.1016/j.jchromb.2025.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Alcohol-associated liver disease (ALD) is associated with disturbances in bile acid (BA) metabolism. Several mouse models have been established to mimic human ALD in the clinical setting for mechanistic investigations, and differences in BA metabolism between these models have not been systematically studied. We quantified BA alterations by liquid chromatography-mass spectrometry (LC-MS) in the livers of two widely used mouse models: the chronic Lieber-DeCarli ethanol diet (CLD) model and the National Institute on Alcohol Abuse and Alcoholism binge-on-chronic alcohol feeding (NIAAA) model, both of which aim to mimic the early stages of human ALD. Statistical analysis showed that total BA levels did not change significantly in either model. However, unconjugated BAs were elevated in both models, and glycol-conjugated BAs were significantly increased only in the NIAAA model. The deconjugation capacity of ursodeoxycholic acid (UDCA) and β-muricholic acid (β-MCA) was increased in the CLD model, whereas that of cholic acid (CA) and lithocholic acid (LCA) was increased in the NIAAA model. NIAAA mice showed increased FXR affinity, implying that the classical biosynthetic pathway of hepatic BAs was inhibited. In conclusion, although total BA levels remained unchanged in the early stages of ALD in both models, the BA composition was more altered in the NIAAA model than in the CLD model, suggesting that different ALD mouse models may exhibit divergent regulatory mechanisms for BA metabolism.
Collapse
Affiliation(s)
- Jing Feng
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Eugene G Mueller
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Wenke Feng
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J McClain
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
10
|
Yao F, Liu C, Luo D, Zhou Y, Li Q, Huang H, Xu H. Metabolites of Microbiota: A Novel Therapy for Heart Disease. FOOD REVIEWS INTERNATIONAL 2025; 41:1099-1115. [DOI: 10.1080/87559129.2024.2437410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Fei Yao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University
| | | | - Duo Luo
- Guangzhou Medical University
| | | | | | | | | |
Collapse
|
11
|
Zhang H, Feng S, Song S, Zhao Q, Gao Y, Zhang T. First evidence in the association of phenolic endocrine-disrupting chemicals with secondary non-alcoholic fatty liver disease: A case-control study in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126086. [PMID: 40118363 DOI: 10.1016/j.envpol.2025.126086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
The presence of phenolic endocrine disrupting chemicals (EDCs) in patients with secondary non-alcoholic fatty liver disease (S-NAFLD) and their associations with S-NAFLD incidence have not been previously documented. In this study, serum concentrations of 32 phenolic EDCs, including parabens, benzophenone-type UV-filters, bisphenols, and bisphenol A diglycidyl ether derivatives, were detected in patients with S-NAFLD as well as healthy population from South China. These target EDCs were ubiquitous in serum samples from both cohorts. Interestingly, significantly higher (p < 0.05) serum levels of most analytes were detected in individuals with S-NAFLD compared to those in the healthy population. Through multiple modeling analyses, we observed that parabens and bisphenols mixtures were positively associated with S-NAFLD incidence. A list of high-risk EDCs for S-NAFLD-related diseases was identified, including propyl paraben (PrP), butyl paraben (BuP), bisphenol A (BPA), and bisphenol AP (BPAP). Furthermore, significant positive correlations were found between the serum levels of these high-risk analytes and liver clinic indices. To the best of our knowledge, this study firstly examined the serum levels of multiple phenolic EDCs in patients with S-NAFLD, aiming to provide novel insights into high-risk EDCs associated with S-NAFLD incidence and their associations with clinic liver indices.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuai Feng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qing Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Liu Y, Pei Y, Wang H, Yang Z. Lead promoted bile acid deconjugation by modulating gut bacteria encoding bile salt hydrolase (BSH) in Rana chensinensis tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126187. [PMID: 40185186 DOI: 10.1016/j.envpol.2025.126187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Bile salt hydrolase (BSH) is produced by gut bacteria and is responsible for deconjugating amino acids from the aliphatic side chains of conjugated bile acids (BAs), initiating the critical first step in BAs metabolism. Lead (Pb) is known to cause gut microbial dysbiosis, but whether it affects BAs profiles by reshaping the gut microbiota remains elusive. Here, using targeted BAs metabolomics and metagenomics sequencing, we found that 200 μg/L Pb treatment led to a significant increase in the abundance of BSH-producing microbiota (e.g., Eubacterium and Yersinia), thus promoting the deconjugation of taurocholic acid (TCA) and taurochenodeoxycholic acid (TCDCA). Consequently, the accumulation of relatively hydrophobic BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) may cause damage to enterocytes (e.g., reduced microvilli and enterocyte heights), which attenuated tadpole digestion and ultimately led to significant reductions in morphological parameters. The inhibition of tadpole growth by Pb toxicity may negatively affect their survival and even increase their risk of death. Overall, these results revealed for the first time the toxicological mechanism by which Pb reshapes the gut microbiota and thus disrupts the BAs profile, shedding new insights into the detrimental effects of Pb toxicity on amphibian growth.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yuebin Pei
- Cotton Research Institute, Shanxi Agriculture University, Yuncheng, Shanxi, 044000, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhangmin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
13
|
Wang Z, Xu Q, Hou L, He Z, Christian M, Dai X. Food-derived polysaccharides and anti-obesity effects through enhancing adipose thermogenesis: structure-activity relationships, mechanisms, and regulation of gut microecology. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 40351151 DOI: 10.1080/10408398.2025.2500675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Polysaccharides represent a crucial and extensively utilized bioactive fraction in natural products, which are employed in the treatment of metabolic disorders due to their significant therapeutic potential. Recently, food-derived polysaccharides (FPs) have emerged as significant substances in obesity management, valued for their ability to activate thermogenic fat. This review discusses the correlation between the structural features of FPs and their efficacy in combating obesity. Moreover, the molecular mechanism by which FPs regulate thermogenic fat and how the intestinal microecology induces thermogenic fat activity is elucidated. The anti-obesity effects of FPs depend on their structure, including molecular weight, composition, linkages, conformation, and branching. Furthermore, FPs regulate fat thermogenesis via multiple mechanisms, including AMPK, p38, AKT, PGC-1α-FNDC5/irisin, and miRNA signaling pathways. Importantly, gut microbiota, together with its associated metabolites and gut-derived hormones, are pivotal in the regulatory control of brown fat by FPs. This work provides an in-depth examination of how adipose tissue thermogenesis contributes to the anti-obesity effects of FPs, shedding light on their potential in preventing obesity and informing the formulation of natural weight-loss remedies.
Collapse
Affiliation(s)
- Zhenyu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qiyu Xu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lijuan Hou
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
14
|
Tessier MEM, Shneider BL, Petrosino JF, Preidis GA. Bile acid and microbiome interactions in the developing child. J Pediatr Gastroenterol Nutr 2025; 80:832-839. [PMID: 39959949 PMCID: PMC12068970 DOI: 10.1002/jpn3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 05/13/2025]
Abstract
Interactions between the gut microbiome and bile acids are complex and are linked to outcomes in pediatric liver disease by mechanisms that are incompletely understood. In adults, primary bile acids are synthesized in the liver and secreted into the intestine, where complex communities of gut microbes deconjugate, oxidize, epimerize, and 7α-dehydroxylate bile acids into a diverse array of unconjugated, secondary, allo-, iso-, and oxo-bile acids. In contrast, the infant gut microbiota contains a simple, Bifidobacterium-dominant community that transitions to a more diverse, adult-like community as additional microbes colonize the gut. This microbial succession gradually confers deconjugation, oxidation, epimerization, and 7α-dehydroxylation activities that mature the bile acid pool from a profile dominated by primary bile acids early in life to a more diverse, adult-like bile acid profile in later childhood. Altered bile acid profiles in pediatric cholestatic disorders have the potential to change the developmental trajectory of the microbiome. Conversely, alterations in the gut microbiome may re-shape the bile acid pool and hepatic bile acid metabolism. Understanding the mechanisms underlying these interactions will increase our understanding of liver pathophysiology and will motivate new therapeutic strategies for pediatric hepatic disorders. This review aims to highlight differences between the pediatric and adult intestinal microbiome and bile acid pool, and to discuss interactions between gut microbes and bile acids that are critical in early life and that may impact outcomes in infants and children with cholestatic liver disease, including biliary atresia.
Collapse
Affiliation(s)
- Mary Elizabeth M. Tessier
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/ Texas Children’s Hospital, Houston, TX, United States
| | - Benjamin L. Shneider
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/ Texas Children’s Hospital, Houston, TX, United States
| | - Joseph F. Petrosino
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Geoffrey A Preidis
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/ Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
15
|
Pang F, Jiang Q, Li K, Tang X. Integrative gut microbiota, metabolomics and proteomics studies unraveled the mechanism of Shaoteng decoction in treating Sjogren's syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156631. [PMID: 40088738 DOI: 10.1016/j.phymed.2025.156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Sjögren's syndrome (SS) is a complicated autoimmune disorder, encompassing multifaceted pathogenesis of inflammatory response, immune dysregulation and metabolic abnormalities. Shaoteng Decoction (STD) is a type of traditional Chinese medicine preparation that has been shown to effectively improve inflammatory damage and immune dysfunction in patients with SS. Nevertheless, the exact mechanism has not been unspecified. PURPOSE This work aims to determine the mechanism of STD treatment on SS, identifying potential therapeutic targets and their relationships. METHODS Non-obese diabetic mice served as a disease model. This study analyzes potential signaling pathways of STD treatment for SS through network pharmacology, and assesses the role of STD in reducing inflammatory damage using pathological staining, ELISA, and immunohistochemistry. Additionally, the study apply gut microbiota, metabolomics, and proteomics analyses to identify the key microbiota, metabolites and proteins, aiming to find potential action targets of STD. We use Western blotting and immunohistochemistry to verify the authenticity of the relevant targets and study the interactions among gut microbiota, metabolites, and proteins. RESULTS Proteobacteria is the important intestinal bacteria, Bile Acid Biosynthesis is the main metabolic pathway, IfI30, Ndufv3, and Ndufs6 are the crucial differential expressed proteins. Moreover, there is a strong correlation among the three. STD treats SS by reducing the abundance of Proteobacteria, increasing Bile Acid Biosynthesis, decreasing IfI30 expression, and increasing the expression of Ndufv3 and Ndufs6. CONCLUSION STD inhibits inflammatory responses, improves immune dysregulation and energy metabolism abnormalities, and prevents the progression of SS through regulating the gut microbiota, enhancing Bile Acid Biosynthesis, and modulating proteins expression levels.
Collapse
Affiliation(s)
- Fengtao Pang
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Quan Jiang
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Kesong Li
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
| | - Xiaopo Tang
- Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
17
|
Zhang S, Yu J, Bai S, Li S, Qiu Q, Kong X, Xiang C, Liu Z, Yu P, Teng Y. Compound 3d Attenuates Metabolic Dysfunction-Associated Steatohepatitis via Peroxisome Proliferator-Activated Receptor Pathway Activation and Inhibition of Inflammatory and Apoptotic Signaling. Metabolites 2025; 15:296. [PMID: 40422873 DOI: 10.3390/metabo15050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and in vivo approaches were employed. In vitro, free fatty acid (FFA)-induced lipid accumulation in L02 hepatocytes and lipopolysaccharides (LPSs)-stimulated inflammatory responses in RAW264.7 macrophages were used to evaluate lipid metabolism and anti-inflammatory effects. In vivo, a high-fat diet (HFD)-induced MASH model in C57BL/6 mice assessed serum biochemical parameters (triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor-α (TNF-α), nitric oxide (NO), and interleukin-6 (IL-6)), liver histopathology (H&E, Oil Red O, Masson staining), and proteomic profiling. Gut microbiota composition was analyzed via 16S rRNA sequencing. Western blotting quantified PPAR isoforms (γ/δ), downstream targets (Acox1, EHHADH, Acaa1), and p38 MAPK pathway proteins (p-p38, caspase-8, Bcl-2). Results: In vitro, 3d significantly reduced lipid accumulation (reduction in TG, p < 0.01) and inflammation (decrease in ALT activity, p < 0.05) in hepatocytes, while suppressing LPSs-induced TNF-α (63% reduction), NO (51% decrease), and IL-6 (48% reduction) in macrophages (p < 0.01). In vivo, 3d (30 mg/kg) lowered serum TG (39% decrease), TC (32% reduction), LDL-C (45% decline), and TNF-α (57% reduction) in HFD-fed mice (p < 0.05 vs. model), normalized AST/ALT levels, and ameliorated hepatic steatosis, ballooning, and fibrosis. Proteomics demonstrated PPARγ/δ activation (2.3-3.1-fold upregulation of Acox1, EHHADH, Acaa1; p < 0.001) and p38 MAPK pathway inhibition (54% reduction in p-p38, 61% decrease in caspase-8; 1.8-fold increase in Bcl-2; p < 0.01). Gut microbiota analysis revealed enrichment of beneficial taxa (Lactobacillus: 2.7-fold increase; Bifidobacterium: 1.9-fold rise) and reduced pathogenic Proteobacteria (68% decrease, p < 0.05). Conclusions: Compound 3d alleviates MASH via PPAR-mediated lipid metabolism enhancement and p38 MAPK-driven inflammation/apoptosis suppression, with additional gut microbiota modulation. These findings highlight 3d as a multi-target therapeutic candidate for MASH.
Collapse
Affiliation(s)
- Shouqing Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiajia Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sule Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanyuan Qiu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangshun Kong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
18
|
Fu Y, Guzior DV, Okros M, Bridges C, Rosset SL, González CT, Martin C, Karunarathne H, Watson VE, Quinn RA. Balance between bile acid conjugation and hydrolysis activity can alter outcomes of gut inflammation. Nat Commun 2025; 16:3434. [PMID: 40210868 PMCID: PMC11985902 DOI: 10.1038/s41467-025-58649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Conjugated bile acids (BAs) are multi-functional detergents in the gastrointestinal (GI) tract produced by the liver enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) and by the microbiome from the acyltransferase activity of bile salt hydrolase (BSH). Humans with inflammatory bowel disease (IBD) have an enrichment in both host and microbially conjugated BAs (MCBAs), but their impacts on GI inflammation are not well understood. We investigated the role of host-conjugated BAs in a mouse model of colitis using a BAAT knockout background. Baat-/- KO mice have severe phenotypes in the colitis model that were rescued by supplementation with taurocholate (TCA). Gene expression and histology showed that this rescue was due to an improved epithelial barrier integrity and goblet cell function. However, metabolomics also showed that TCA supplementation resulted in extensive metabolism to secondary BAs. We therefore investigated the BSH activity of diverse gut bacteria on a panel of conjugated BAs and found broad hydrolytic capacity depending on the bacterium and the amino acid conjugate. The complexity of this microbial BA hydrolysis led to the exploration of bsh genes in metagenomic data from human IBD patients. Certain bsh sequences were enriched in people with Crohn's disease particularly that from Ruminococcus gnavus. This study shows that both host and microbially conjugated BAs may provide benefits to those with IBD, but this is dictated by a delicate balance between BA conjugation/deconjugation based on the bsh genes present.
Collapse
Affiliation(s)
- Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Maxwell Okros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher Bridges
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sabrina L Rosset
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Cely T González
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Hansani Karunarathne
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Victoria E Watson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Qi Y, Du S, Li W, Qiu X, Zhou F, Bai L, Zhang B, Mi Z, Qian W, Li L, Zhao X, Li Y. Sanye tablet regulates gut microbiota and bile acid metabolism to attenuate hepatic steatosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119514. [PMID: 39971018 DOI: 10.1016/j.jep.2025.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanye Tablet (SYT), a patent traditional Chinese prescription, is commonly used in treating type 2 diabetes mellitus and hyperlipidemia. Both clinical and animal studies suggest that SYT effectively regulates lipid metabolism. However, its mode of action on hepatic steatosis has yet to be fully elucidated. AIM OF STUDY This study investigates the lipid-regulating effects and underlying mechanism of SYT in high-fat diet (HFD)-induced hepatic steatosis mice. MATERIAL AND METHODS The inhibitory effects of SYT on developing hepatic steatosis were investigated in HFD-fed C57BL/6N mice. Biochemical markers, including total cholesterol (TC) and triglycerides (TG), were measured using specific kits. Hepatic histological alterations were determined by Hematoxylin and Eosin (H&E) and Oil Red O staining. Hepatic, fecal, and systemic bile acids (BAs) profiles were detected by UPLC-MS. mRNA and protein levels of BAs synthesis-related enzymes and critical nodes of farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15)/fibroblast growth factor receptor 4 (FGFR4) signaling were detected. Fecal microbial composition was analyzed by 16S rRNA gene sequencing and the antimicrobial activity of SYT was further evaluated in vitro. RESULTS SYT alleviated HFD-induced hepatic steatosis by decreasing TG and TC levels, relieving hepatocyte ballooning, and promoting hepatic BAs synthesis. Moreover, SYT significantly increased the levels of taurine-conjugated BAs in the liver and feces, which in turn inhibited the FXR/FGF15/FGFR4 signaling. Consequently, the hepatic BAs synthesis-related enzyme expression was promoted to reduce lipid accumulation. Notably, SYT remodeled the gut microbiota composition of HFD-fed mice, especially inhibiting the growth of bile salt hydrolase (BSH)-producing bacteria, such as Lactobacillus murinus, Lactobacillus johnsonii, and Enterococcus faecalis. CONCLUSION The findings illustrated that SYT prevented hepatic steatosis by improving hepatic lipid accumulation, which is reflected in modulating the gut-liver axis. SYT corrects BAs profile, restores perturbed FXR/FGF15/FGFR4 signaling and promotes hepatic BAs synthesis, which is associated with modulation on certain BSH-producing bacteria.
Collapse
Affiliation(s)
- Yulin Qi
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siqi Du
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenwen Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xianzhe Qiu
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fengjie Zhou
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liding Bai
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boli Zhang
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhuoxin Mi
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weiqiang Qian
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Zhao
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
20
|
Xiong S. Gut-Microbiota-Driven Lipid Metabolism: Mechanisms and Applications in Swine Production. Metabolites 2025; 15:248. [PMID: 40278377 PMCID: PMC12029090 DOI: 10.3390/metabo15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: The gut microbiota plays a pivotal role in host physiology through metabolite production, with lipids serving as essential biomolecules for cellular structure, metabolism, and signaling. This review aims to elucidate the interactions between gut microbiota and lipid metabolism and their implications for enhancing swine production. Methods: We systematically analyzed current literature on microbial lipid metabolism, focusing on mechanistic studies on microbiota-lipid interactions, key regulatory pathways in microbial lipid metabolism, and multi-omics evidence (metagenomic/metabolomic) from swine models. Results: This review outlines the structural and functional roles of lipids in bacterial membranes and examines the influence of gut microbiota on the metabolism of key lipid classes, including cholesterol, bile acids, choline, sphingolipids, and fatty acids. Additionally, we explore the potential applications of microbial lipid metabolism in enhancing swine production performance. Conclusions: Our analysis establishes a scientific framework for microbiota-based strategies to optimize lipid metabolism. The findings highlight potential interventions to improve livestock productivity through targeted manipulation of gut microbial communities.
Collapse
Affiliation(s)
- Shuqi Xiong
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
21
|
Florio M, Crudele L, Sallustio F, Moschetta A, Cariello M, Gadaleta RM. Disentangling the nutrition-microbiota liaison in inflammatory bowel disease. Mol Aspects Med 2025; 102:101349. [PMID: 39922085 DOI: 10.1016/j.mam.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a set of chronic intestinal inflammatory disorders affecting the gastrointestinal (GI) tract. Beside compromised intestinal barrier function and immune hyperactivation, a common IBD feature is dysbiosis, characterized by a reduction of some strains of Firmicutes, Bacteroidetes, Actinobacteria and an increase in Proteobacteria and pathobionts. Emerging evidence points to diet and nutrition-dependent gut microbiota (GM) modulation, as etiopathogenetic factors and adjuvant therapies in IBD. Currently, no nutritional regimen shows universal efficacy, and advice are controversial, especially those involving restrictive diets potentially resulting in malnutrition. This review provides an overview of the role of macronutrients, dietary protocols and GM modulation in IBD patients. A Western-like diet contributes to an aberrant mucosal immune response to commensal bacteria and impairment of the intestinal barrier integrity, thereby triggering intestinal inflammation. Conversely, a Mediterranean nutritional pattern appears to be one of the most beneficial dietetic regimens able to restore the host intestinal physiology, by promoting eubiosis and preserving the intestinal barrier and immune function, which in turn create a virtuous cycle improving patient adherence to the pattern. Further clinical studies are warranted, to corroborate current IBD nutritional guidelines, and develop more accurate models to move forward precision nutrition and ameliorate patients' quality of life.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Raffaella M Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
22
|
Liu Y, Wang R, Zhou J, Lyu Q, Zhao X, Yang X, Chen K, Gao Z, Li X. Myricetin alleviates high-fat diet-induced atherosclerosis in ApoE -/- mice by regulating bile acid metabolism involved in gut microbiota remodeling. Food Funct 2025; 16:2737-2749. [PMID: 40059779 DOI: 10.1039/d5fo00374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Atherosclerosis poses a significant threat to global health. This study aimed to investigate the effects of myricetin (MYR) on high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice. Our findings demonstrated that MYR treatment significantly reduced the formation of atherosclerotic plaques, particularly at a high dose of 100 mg kg-1 day-1. Additionally, MYR markedly attenuated lipid metabolism disorders in ApoE-/- mice by decreasing body weight, improving serum lipid profiles, and reducing lipid deposition. Analysis of 16S rRNA sequencing revealed that MYR treatment enhanced the abundance of probiotic g_Lachnospiraceae_NK4A136, while it reduced that of obesity-associated genera, including Rikenellaceae_RC9_gut_group and Alistipes. Metabolomic analysis and RT-qPCR tests indicated that MYR upregulated hepatic bile acid biosynthesis, evidenced by increased total bile acid levels and enhanced expression of key enzymes CYP7A1 and CYP8B1, particularly through the classical biosynthetic pathway. Spearman's correlation analysis revealed strong associations between the regulated bile acids and these aforementioned bacteria. Therefore, our results demonstrated that MYR exerts an anti-atherosclerotic effect by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Ruoqi Wang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Jinren Zhou
- Department of Vascular Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Zhiwei Gao
- Department of Vascular Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
23
|
Yakut A. Gut microbiota in the development and progression of chronic liver diseases: Gut microbiota-liver axis. World J Hepatol 2025; 17:104167. [PMID: 40177197 PMCID: PMC11959663 DOI: 10.4254/wjh.v17.i3.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The gut microbiota (GM) is a highly dynamic ecology whose density and composition can be influenced by a wide range of internal and external factors. Thus, "How do GM, which can have commensal, pathological, and mutualistic relationships with us, affect human health?" has become the most popular research issue in recent years. Numerous studies have demonstrated that the trillions of microorganisms that inhabit the human body can alter host physiology in a variety of systems, such as metabolism, immunology, cardiovascular health, and neurons. The GM may have a role in the development of a number of clinical disorders by producing bioactive peptides, including neurotransmitters, short-chain fatty acids, branched-chain amino acids, intestinal hormones, and secondary bile acid conversion. These bioactive peptides enter the portal circulatory system through the gut-liver axis and play a role in the development of chronic liver diseases, cirrhosis, and hepatic encephalopathy. This procedure is still unclear and quite complex. In this study, we aim to discuss the contribution of GM to the development of liver diseases, its effects on the progression of existing chronic liver disease, and to address the basic mechanisms of the intestinal microbiota-liver axis in the light of recent publications that may inspire the future.
Collapse
Affiliation(s)
- Aysun Yakut
- Department of Gastroenterology, İstanbul Medipol University Sefakoy Health Practice Research Center, İstanbul 38000, Türkiye.
| |
Collapse
|
24
|
Beyoğlu D, Idle JR. The Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:2882. [PMID: 40243472 PMCID: PMC11988851 DOI: 10.3390/ijms26072882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition wherein excessive fat accumulates in the liver, leading to inflammation and potential liver damage. In this narrative review, we evaluate the tissue microbiota, how they arise and their constituent microbes, and the role of the intestinal and hepatic microbiota in MASLD. The history of bacteriophages (phages) and their occurrence in the microbiota, their part in the potential causation of MASLD, and conversely, "phage therapy" for antibiotic resistance, obesity, and MASLD, are all described. The microbiota metabolism of bile acids and dietary tryptophan and histidine is defined, together with the impacts of their individual metabolites on MASLD pathogenesis. Both periodontitis and intestinal microbiota dysbiosis may cause MASLD, and how individual microorganisms and their metabolites are involved in these processes is discussed. Novel treatment opportunities for MASLD involving the microbiota exist and include fecal microbiota transplantation, probiotics, prebiotics, synbiotics, tryptophan dietary supplements, intermittent fasting, and phages or their holins and endolysins. Although FDA is yet to approve phage therapy in clinical use, there are multiple FDA-approved clinical trials, and this may represent a new horizon for the future treatment of MASLD.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| | - Jeffrey R. Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
25
|
Wang J, Ma Z, Xu Q, Wei B, Wang M, Liu Y, Tian Y, Zhang H, Xiao L, Zhong Y, Zou Y. Lacticaseibacillus rhamnosus OF44 with Potent Antimicrobial Activity: Evidence from the Complete Genome and Phenotypic Analysis. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10515-4. [PMID: 40106191 DOI: 10.1007/s12602-025-10515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Lacticaseibacillus rhamnosus is extensively studied, with some strains widely applied for enhancing human health. Complete genome analysis is crucial for the functional exploration of probiotics. This study aimed to investigate the potential of L. rhamnosus OF44 (OF44) to promote human health through complete genome and phenotypic analysis. The complete genome sequence of OF44 was 2,978,769 bp, with 2791 CDSs and an average GC content of 47%. In vitro experiments demonstrated that OF44 had a broad carbon source fermentation capacity. Resistance gene analysis and simulated digestion tests confirmed the favorable tolerance of OF44 under harsh conditions, suggesting its potential as an oral supplement. OF44 possessed various potential genes related to bioactive substances with antimicrobial activity, such as antimicrobial peptides, lactic acid, hydrogen peroxide, and exopolysaccharides, most of which were detected in vitro. Further, OF44 exhibited significant growth inhibition capacities against pathogens from the gut, vagina, skin, and mouth, likely due to high co-aggregation with pathogens, multiple antimicrobial peptide clusters, and adhesin gene clusters. Additionally, oral administration of OF44 was found to reduce the pH and inflammation levels in the vaginal microenvironment of rats with bacterial vaginosis. Therefore, OF44 exhibited probiotic properties in improving reproductive tract bacterial infections by modulating vaginal microbiota balance and inhibiting pathogen growth. In summary, this study provided a new perspective on the application of OF44 as a supplement in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Jinhong Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihui Ma
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China
| | - Qianyue Xu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benliang Wei
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Liu
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China
| | - Yu Tian
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China
| | - Liang Xiao
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Yiyi Zhong
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, 518083, China.
| | - Yuanqiang Zou
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
26
|
He S, Song L, Xiao Y, Huang Y, Ren Z. Genomic, Probiotic, and Functional Properties of Bacteroides dorei RX2020 Isolated from Gut Microbiota. Nutrients 2025; 17:1066. [PMID: 40292459 PMCID: PMC11944543 DOI: 10.3390/nu17061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gut microbiota is essential for maintaining host immune homeostasis and has been confirmed to be closely related to some intestinal and extraintestinal diseases. Bacteroides, as the dominant bacterial genus in the human gut, has attracted great attention due to its excellent metabolic activity, but there are few studies on Bacteroides dorei species. In our previous study, a gut commensal strain, Bacteroides dorei RX2020 (B. dorei), was isolated from healthy human feces and exhibited superior flavonoid metabolic activity, prompting further analysis of its uncharacterized genomic features, probiotic potential, safety, and immunomodulatory activity. RESULTS The results showed that B. dorei exhibited intrinsic probiotic functionalities with preserved genomic and phenotypic stability, demonstrated safety profiles in murine models through in vivo assessments, and conferred antagonistic activity against enteric foodborne pathogens via competitive exclusion. The strain also demonstrated abundant metabolic activity and was involved in the metabolism of tryptophan and bile acids (BAs). Moreover, B. dorei can promote the production of IFNβ by dendritic cells (DCs) to inhibit the replication of influenza virus in epithelial cells, which may be achieved by regulating host metabolism. CONCLUSIONS This study reveals the potential of B. dorei as next-generation probiotics (NGPs), contributing to a broader understanding and application of these novel probiotics in health and disease management.
Collapse
Affiliation(s)
| | | | | | | | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (S.H.)
| |
Collapse
|
27
|
Rodríguez-Moro G, Cabrera-Rubio R, Selma-Royo M, Gómez-Morlote JA, Collado MC, Abril N, García-Barrera T. Modulation of the gut microbiota and the microbial-produced gut metabolites by diclofenac exposure and selenium supplementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36233-6. [PMID: 40102351 DOI: 10.1007/s11356-025-36233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Diclofenac (DCF) exposure is of great concern due to the ecotoxicological risk linked with a decline of vulture populations in Southeast Asia, but also because it can affect the reproduction and neurotoxicity in mammals. Otherwise, selenium (Se) is an antioxidant essential element with key roles in health and with antagonistic action against pollutants, but in some cases with a synergistic effect. To investigate the potential intertwined mechanisms between DCF, Se, and gut microbiota, gut metabolomic and gut microbiota profiles were determined in mice after DCF exposure and Se supplementation. Speciation of selenoproteins in plasma was carried out by isotopic dilution analysis to quantify the levels of selenoproteins. Significant differences in the levels of 79% of the gut metabolites were determined after DCF exposure. The most significant altered pathway in DCF and DCF-Se groups is the primary bile biosynthesis, being the only pathway altered in mice exposed to DCF, while in DCF-Se, the metabolism of galactose and linoleic acid is also altered. Moreover, specific associations between specific gut microbiota and metabolites were determined in the studied mice groups suggesting intertwined mechanisms. Selenium supplementation modulated the gut metabolic and microbiota profiles affected by DCF.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - José Antonio Gómez-Morlote
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain.
| |
Collapse
|
28
|
Zhang R, Xiao C, Yong T, Huang L, Hu H, Xie Y, Wu Q. Grifola frondosa Polysaccharide F2 Ameliorates Disordered Glucose and Lipid Metabolism in Prediabetic Mice by Modulating Bile Acids. Foods 2025; 14:955. [PMID: 40232013 PMCID: PMC11941230 DOI: 10.3390/foods14060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Prediabetes (pre-DM) is the buffer period before developing overt type 2 diabetes (T2DM), and the search for novel food agents to protect against pre-DM is in high demand. Our team previously reported that the Grifola frondosa (maitake mushroom) polysaccharide F2 reduced insulin resistance in T2DM rats induced by streptozocin (STZ) combined with a high-fat diet (HFD). This study aimed to evaluate the effects of G. frondosa polysaccharide F2 on disordered lipid and glucose metabolism and to investigate its mechanisms in pre-DM mice. F2 (30 and 60 mg/kg/d) was administered (i.g.) for 5 weeks to pre-DM mice. The results showed that F2 decreased the fasting blood glucose and lipid profile index of pre-DM mice (p < 0.05 or 0.0001). An untargeted metabolomics analysis of feces from pre-DM mice showed that F2 reduced the content of conjugated bile acids, including taurochenodeoxycholic acid and taurocholic acid, and increased the free bile acids of lithocholic acid. The results of 16S rDNA sequencing of feces from pre-DM mice showed that bile salt hydrolase (BSH)-producing bacteria, including Bacillus, Bifidobacterium, and Lactococcus, may be the therapy targets of F2 in pre-DM mice. Through the integrated analysis of untargeted metabolomics and 16S rDNA sequencing, it was found that F2 may ameliorate glucose and lipid metabolism disorders by promoting bile acid metabolism while regulating the abundance of BSH-producing bacteria (Lactococcus spp.), suggesting its potential as a functional food ingredient for the prevention of T2DM.
Collapse
Affiliation(s)
- Ruifang Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
| | - Tianqiao Yong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Science Institute of Microbiology, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou 510070, China; (R.Z.); (H.H.)
| |
Collapse
|
29
|
Poopan B, Kasorn A, Puttarat N, Kasemwong K, Pachekrepapol U, Taweechotipatr M. Freeze drying microencapsulation using whey protein, maltodextrin and corn powder improved survivability of probiotics during storage. Food Sci Biotechnol 2025; 34:959-970. [PMID: 39974862 PMCID: PMC11832850 DOI: 10.1007/s10068-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 02/21/2025] Open
Abstract
Various studies demonstrated that probiotics play important roles in maintaining the balance of microorganisms in the body. Some strains produce bile salt hydrolase enzyme (BSH), which is an indirect mechanism for lowering cholesterol. BSH-producing probiotics as a supplement might be an alternative way to help reducing cholesterol in the body. The aim of this study was to investigate the effects of different microcapsule formulations with selected vegetable powders on growth characteristics of 3 Thai probiotic strains, Lactobacillus gasseri TM1, Lacticaseibacillus rhamnosus TM7, and L. rhamnosus TM14. Probiotics were cultured in MRS broth supplemented with 5 vegetable powders. Corn powder significantly increased growth rate of probiotics from 109 to 1012 CFU/ml. Therefore, different microcapsule formulations by Maillard reaction of whey protein isolate and maltodextrin mixed with and without corn powder were studied. The results showed that probiotic microcapsules formulated with corn powder significantly effectively sustained probiotic viability under gastrointestinal and storage conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01706-w.
Collapse
Affiliation(s)
- Benjamaporn Poopan
- Molecular Biology Program, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110 Thailand
- Center of Excellence in Probiotics, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110 Thailand
| | - Anongnard Kasorn
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Wachira Phayaban, Dusit District, Bangkok, 10300 Thailand
| | - Narathip Puttarat
- Center of Excellence in Probiotics, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110 Thailand
| | - Kittiwut Kasemwong
- NANOTEC Research Unit, National Nanotechnology Center, National Science and Technology Development Agency, 130 Thailand Science Park, Paholyothin Road, Khlong Luang, Pathumthani, 12120 Thailand
| | - Ulisa Pachekrepapol
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, 63 Village No.7, Khlong 16 Road, Ongkharak, Nakornnayok, 26120 Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110 Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110 Thailand
| |
Collapse
|
30
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
31
|
Zhang J, Zhang X, Li G, Ge J, Feng X. Loureirin B Ameliorates Glycolipid Metabolism Disorders in Ob/ob Mice by Regulating Bile Acid Levels and Modulating Gut Microbiota Composition. Chem Biodivers 2025; 22:e202401793. [PMID: 39431713 DOI: 10.1002/cbdv.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Loureirin B (LB), an active component of Resina Draconis, exhibits hypoglycemic and hypolipidemic effects; however, its mode of action remains unclear. Here, ob/ob mice were utilized to investigate the effects of LB on the regulation of glucolipid metabolism disorders. Non-targeted metabolomics and 16S rDNA sequencing were performed to elucidate the potential mechanisms involved. Results indicated that LB treatment (45 mg/kg) significantly improved glucose intolerance and insulin resistance, reduced lipid levels, and alleviated hepatic steatosis. Non-targeted metabolomics analysis revealed that LB treatment regulated bile acid levels. Quantification of liver bile acids demonstrated that LB treatment significantly decreased the ratio of 12α-OH to non-12α-OH bile acids in the liver. 16S rDNA sequencing results showed that LB treatment increased the abundance of short-chain fatty acid-producing microbiota while decreasing the abundance of bile salt hydrolase (BSH) enzyme-producing microbiota. In conclusion, LB ameliorates glucolipid metabolism disorders by regulating liver bile acid levels and modulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Junyang Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, China
| | - Xiaoyan Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, China
| | - Gen Li
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, China
| | - Jun Ge
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, China
| | - Xinchi Feng
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, China
| |
Collapse
|
32
|
Li X, Huang G, Khan I, Ding Z, Hsiao WLW, Liu Z. The Prebiotic Effect of Kaempferol in Regulating Bile Acid Metabolism. Food Sci Nutr 2025; 13:e70023. [PMID: 40008236 PMCID: PMC11848346 DOI: 10.1002/fsn3.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/27/2025] Open
Abstract
Kaempferol (Kae), as a homologous flavonoid, plays a pivotal role in human nutrition and disease treatment. This study endeavors to elucidate the in vivo metabolism of Kae and its potential to modulate the interplay between bile acids (BAs) and gut microbiota (GM). After Kae administration, we analyzed pharmacokinetics, BA levels, and drug metabolic enzymes (DMEs) amount using LC-MS/MS. Subsequently, we checked the gene and protein expression with qRT-PCR and western blot and studied the changes in GM using 16S rRNA sequencing, accompanying in-depth data analysis. Finally, molecular docking was employed to explore Kae's interaction with the Farnesoid X receptor (FXR). Kae enhances its own absorption and metabolic circulation in vivo by upregulating the UDP-Glucuronosyltransferases (UGTs) expression. Furthermore, Kae significantly suppressed the expression of cholesterol 7α-hydroxylase (CYP7A1) while concurrently elevating the sterol 27-hydroxylase (CYP27A1) expression, by activating the liver FXR, a nuclear transcription factor involved in the regulation of CYPs and UGTs enzymes. For BA analysis, Kae induced the upregulation of tauro-BAs by attenuating the activity of bile salt hydrolases (BSH), which correlated with shifts in the GM composition. Specifically, Kae increased the abundance of beneficial bacteria such as Bacteroides acidifaciens and Bifidobacterium choerinum, while reduced populations of species associated with BSH deconjugation. The study indicates that Kae may serve as a prebiotic, modulating the BA-GM interaction to confer nutritional and therapeutic advantages.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhouZhejiangChina
- International Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Guoxin Huang
- Clinical Research CenterShantou Central HospitalShantouChina
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life SciencesAbdul Wali Khan University MardanMardanKhyber PakhtunkhwaPakistan
| | - Zhishan Ding
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Wen Luan Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Zhongqiu Liu
- International Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
33
|
Tang J, Xu W, Yu Y, Yin S, Ye BC, Zhou Y. The role of the gut microbial metabolism of sterols and bile acids in human health. Biochimie 2025; 230:43-54. [PMID: 39542125 DOI: 10.1016/j.biochi.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Sterols and bile acids are vital signaling molecules that play key roles in systemic functions, influencing the composition of the human gut microbiota, which maintains a symbiotic relationship with the host. Additionally, gut microbiota-encoded enzymes catalyze the conversion of sterols and bile acids into various metabolites, significantly enhancing their diversity and biological activities. In this review, we focus on the microbial transformations of sterols and bile acids in the gut, summarize the relevant bacteria, genes, and enzymes, and review the relationship between the sterols and bile acids metabolism of gut microbiota and human health. This review contributes to a deeper understanding of the crucial roles of sterols and bile acids metabolism by gut microbiota in human health, offering insights for further investigation into the interactions between gut microbiota and the host.
Collapse
Affiliation(s)
- Jiahui Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwu Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangfan Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shengxiang Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yunyan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
34
|
Kang MH, Elnar AG, Kim GB. Review on the Function, Substrate Affinity, and Potential Application of Bile Salt Hydrolase Originated from Probiotic Strains of Lactobacillus, Bifidobacterium, and Enterococcus. Food Sci Anim Resour 2025; 45:353-374. [PMID: 40093624 PMCID: PMC11907429 DOI: 10.5851/kosfa.2025.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
Bile salt hydrolase (BSH: EC.3.5.1.24) has been used as a biomarker for probiotics for an extended period. It is mostly present in the gut environment of vertebrates. Additionally, it influences the viability of probiotics. This biomarker is considered a promising nutritional supplement due to its unique ability to effectively address elevated blood cholesterol levels, a common issue in modern society. However, the commercialization of BSH has been limited by an incomplete understanding of the intestinal microbiota and the function of BSH. Hence, in this review, we aim to reveal the current advancements in BSH research and outline the necessary areas of investigation for future studies. The review highlights key findings related to the substrate affinity of BSH in probiotic bacteria and its BSH gene phylogeny that have been researched until today, suggesting further research regarding the differences in multiple BSH genes and corresponding differences in BSH affinity.
Collapse
Affiliation(s)
- Mo Hyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Arxel G. Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
35
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
36
|
Huang X, Johnson AE, Brehm JN, Do TVT, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. mSphere 2025; 10:e0104924. [PMID: 39817755 PMCID: PMC11852769 DOI: 10.1128/msphere.01049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Furthermore, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to the persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. The inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. The data provide further support for the importance of bile salt-independent mechanisms in regulating the colonization of C. difficile.IMPORTANCEClostridioides difficile is one of the leading causes of hospital-acquired infections and antibiotic-associated diarrhea. Several potential mechanisms through which the microbiota can limit C. difficile infection have been identified and are potential targets for new therapeutics. However, it is unclear which mechanisms of C. difficile inhibition represent the best targets for the development of new therapeutics. These studies demonstrate that in a complex in vitro model of C. difficile infection, colonization resistance is independent of microbial bile salt metabolism. Instead, the ability of C. difficile to colonize is dependent upon its ability to metabolize proline, although proline-dependent colonization is context dependent and is not observed in all disrupted communities. Altogether, these studies support the need for further work to understand how bile-independent mechanisms regulate C. difficile colonization.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, Texas, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
37
|
Francini E, Badillo Pazmay GV, Fumarola S, Procopio AD, Olivieri F, Marchegiani F. Bi-Directional Relationship Between Bile Acids (BAs) and Gut Microbiota (GM): UDCA/TUDCA, Probiotics, and Dietary Interventions in Elderly People. Int J Mol Sci 2025; 26:1759. [PMID: 40004221 PMCID: PMC11855466 DOI: 10.3390/ijms26041759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota (GM), the set of microorganisms that colonizes our intestinal tract, can undergo many changes, some of which are age related. Several studies have shown the importance of maintaining a healthy GM for a good quality of life. In the elderly, maintaining a good GM may become a real defense against infection by pathogens, such as C. difficile. In addition to the GM, bile acids (BAs) have been shown to provide an additional defense mechanism against the proliferation of pathogenic bacteria and to regulate bacterial colonization of the gut. BAs are molecules produced in the host liver and secreted with the bile into the digestive tract, and they are necessary for the digestion of dietary lipids. In the gut, host-produced BAs are metabolized by commensal bacteria to secondary BAs. In general GM and host organisms interact in many ways. This review examines the relationship between GM, BAs, aging, and possible new approaches such as dietary interventions, administration of ursodesoxycholic acid/tauroursodesoxycholic acid (UDCA/TUDCA), and probiotics to enrich the microbial consortia of the GM in the elderly and achieve a eubiotic state necessary for maintaining good health. The presence of Firmicutes and Actinobacteria together with adequate levels of secondary BAs would provide protection and improve the frailty state in the elderly. In fact, an increase in secondary BAs has been observed in centenarians who have reached old age without serious health issues, which may justify their active role in achieving longevity.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| | - Gretta V. Badillo Pazmay
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Stefania Fumarola
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| |
Collapse
|
38
|
Peterson D, Weidenmaier C, Timberlake S, Gura Sadovsky R. Depletion of key gut bacteria predicts disrupted bile acid metabolism in inflammatory bowel disease. Microbiol Spectr 2025; 13:e0199924. [PMID: 39670752 PMCID: PMC11792471 DOI: 10.1128/spectrum.01999-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
The gut microbiome plays a key role in bile acid (BA) metabolism, where a diversity of metabolic products contribute to human health and disease. In particular, Inflammatory Bowel Disease (IBD) is characterized by a low concentration of secondary bile acids (SBAs), whose transformation from primary bile acids (PBAs) is an essential function performed solely by gut bacteria. BA-transformation activity mediated by the bile acid inducible (bai) operon has been functionally characterized in the genus Clostridium, and homologous bai gene sequences have been found in metagenome-assembled genomes (MAGs) belonging to other taxa in the human gut, but it is unclear which species of bai-carrying bacteria perform physiologically significant amounts of bile acid transformation in healthy and sick individuals. Here, we analyzed hundreds of stool samples with paired metagenomic and metabolomic data from IBD patients and controls and found that the abundance of the bai operon in metagenomic samples was highly predictive of that sample's high- or low-SBA metabolic state. We further found that bai genes from the Clostridium species best characterized as BA transformers were more prevalent in IBD patients than in non-IBD controls, while bai genes from uncharacterized taxa known only from MAGs were much more physiologically relevant in non-IBD samples. These un-isolated clades of BA-transforming bacteria merit further research; as beyond their prevalence in the human population, we found some cases in which they engrafted in IBD patients who had undergone fecal microbiota transplantation and experienced a clinical response.IMPORTANCEIn this paper, we identify specific bacteria that perform an important metabolic function in the human gut and demonstrate that in the guts of a large subset of patients with IBD, these bacteria are missing and the function is defective. This is a rare example where the correlation between the absence of specific bacteria and the dysfunction of metabolism is directly observed, not in mice nor in the lab, but in physiologic microbial communities in the human gut. Our results point to a path for studying how a small but important set of bacteria is affected by conditions in the IBD gut and perhaps to the development of interventions to mitigate the loss of these bacteria in IBD.
Collapse
|
39
|
Yan Y, Zhang K, Li F, Lin L, Chen H, Zhuo LB, Xu J, Jiang Z, Zheng JS, Chen YM. The gut-liver axis links the associations between serum carotenoids and non-alcoholic fatty liver in a 7.8-year prospective study. Hepatobiliary Surg Nutr 2025; 14:16-32. [PMID: 39925899 PMCID: PMC11806141 DOI: 10.21037/hbsn-23-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/15/2024] [Indexed: 02/11/2025]
Abstract
Background Many studies have shown that carotenoids are beneficial to non-alcoholic fatty liver disease (NAFLD). Therefore, we explored potential biomarkers of gut microbiota and fecal and serum metabolites linking the association between serum carotenoids and NAFLD in adults. Methods This 7.8-year prospective study included 2921 participants with serum carotenoids at baseline and determined NAFLD by ultrasonography (ULS-NAFLD) every 3 years. A total of 828 subjects additionally underwent magnetic resonance imaging to identify NAFLD (MRI-NAFLD). Gut microbiota was analyzed by 16S rRNA sequencing in 1,661 participants, and targeted metabolomics profiling in 893 feces and 896 serum samples was performed by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in the middle term. Results A total of 2,522 participants finished follow-up visits. Of these participants, 770, 301, 474, and 977 were categorized into NAFLD-free, improved, new-onset, and persistent NAFLD groups based on their ULS-NAFLD status changes, respectively, and 342/828 were MRI-verified NALFD. Longitudinal analyses showed an inverse association between carotenoids and NALFD risk/presence (P-trend <0.05). Multivariable-adjusted odds ratios (ORs)/hazard ratio (HR) [95% confidence intervals (CIs)] of NAFLD for quartile 4 (vs. quartile 1) of total carotenoids were 0.63 (0.50, 0.80) for incident ULS-NAFLD, 0.20 (0.15, 0.27) for persistent ULS-NAFLD, 1.53 (1.10, 2.12) for improved-NAFLD, and 0.58 (0.39, 0.87) for MRI-NAFLD. The biomarkers in the gut-liver axis significantly associated with both serum carotenoids and NAFLD included sixteen microbial genera mainly in Ruminococcaceae and Veillonellaceae family, nineteen fecal metabolites containing medium-chain fatty acids (MCFAs), bile acids, and carnitines, and sixteen serum metabolites belonging to organic acids and amino acids. The total carotenoids-related scores of significant microbial genera, fecal and serum metabolites mediated the carotenoids-NAFLD association by 8.72%, 12.30%, and 16.83% (all P<0.05) for persistent NAFLD and 9.46%, 8.74%, and 15.7% for incident-NAFLD, respectively. Conclusions Our study reveals a beneficial association of serum carotenoids and incident and persistent NAFLD. The identified gut-liver axis biomarkers provided mechanistic linkage for the epidemiological association.
Collapse
Affiliation(s)
- Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Fanqin Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lishan Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hanzu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinjian Xu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Lucas LN, Mallikarjun J, Cattaneo LE, Gangwar B, Zhang Q, Kerby RL, Stevenson D, Rey FE, Amador-Noguez D. Investigation of Bile Salt Hydrolase Activity in Human Gut Bacteria Reveals Production of Conjugated Secondary Bile Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633392. [PMID: 39868271 PMCID: PMC11760432 DOI: 10.1101/2025.01.16.633392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Through biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur. Here, we show that BSH activity is common among human gut bacterial isolates spanning seven major phyla. We observed variation in both the extent and the specificity of deconjugation of BAs among the tested taxa. Unexpectedly, we discovered that certain strains were capable of directly dehydrogenating conjugated BAs via hydroxysteroid dehydrogenases (HSD) to produce conjugated secondary BAs. These results challenge the prevailing notion that deconjugation is a prerequisite for further BA modifications and lay a foundation for new hypotheses regarding how bacteria act individually or in concert to diversify the BA pool and influence host physiology.
Collapse
Affiliation(s)
- Lauren N. Lucas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillella Mallikarjun
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lea E. Cattaneo
- Doctoral Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Bhavana Gangwar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Han L, Pendleton A, Singh A, Xu R, Scott SA, Palma JA, Diebold P, Malarney KP, Brito IL, Chang PV. Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases. Cell Chem Biol 2025; 32:145-156.e9. [PMID: 38889717 PMCID: PMC11632149 DOI: 10.1016/j.chembiol.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raymond Xu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Samantha A Scott
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jaymee A Palma
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Peter Diebold
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Correa Lopes B, Turck J, Tolbert MK, Giaretta PR, Suchodolski JS, Pilla R. Prolonged storage reduces viability of Peptacetobacter (Clostridium) hiranonis and core intestinal bacteria in fecal microbiota transplantation preparations for dogs. Front Microbiol 2025; 15:1502452. [PMID: 39839105 PMCID: PMC11747423 DOI: 10.3389/fmicb.2024.1502452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess Peptacetobacter (Clostridium) hiranonis viability through culture to further characterize bacterial viability in different protocols for FMT preparations. Methods Bacterial abundances were assessed in feces from six healthy dogs by qPCR after propidium monoazide (PMA-qPCR) treatment for selective quantitation of viable bacteria. Conservation methods tested included lyophilization (stored at 4°C and at -20°C) and freezing with glycerol-saline solution (12.5%) and without any cryoprotectant (stored at -20°C). Additionally, the abundance of P. hiranonis was quantified using bacterial culture. Results Using PMA-qPCR, the viability of Faecalibacterium, Escherichia coli, Streptococcus, Blautia, Fusobacterium, and P. hiranonis was reduced in lyophilized fecal samples kept at 4°C and -20°C up to 6 months (p < 0.05). In frozen feces without cryoprotectant, only Streptococcus and E. coli were not significantly reduced for up to 3 months (p > 0.05). Lastly, no differences were observed in the viability of those species in glycerol-preserved samples up to 6 months (p > 0.05). When using culture to evaluate the viability of P. hiranonis, we observed that P. hiranonis abundance was lower in lyophilized samples kept at 4°C than -20°C; and P. hiranonis abundance was higher in glycerol-preserved samples for up to 6 months than in samples preserved without glycerol for up to 3 months. Moreover, the highest abundance of P. hiranonis was observed in glycerol-preserved feces. After 3 months, P. hiranonis was undetectable by culture in 83% (5/6) of the frozen samples without glycerol. Discussion While the lyophilization procedure initially reduced P. hiranonis abundance, P. hiranonis viability was stable thereafter for up to 6 months at -20°C. The higher bacterial viability detected in fecal samples preserved with glycerol confirms the use of this cryoprotectant as a reliable method to keep bacteria alive in the presence of fecal matrix for FMT purposes.
Collapse
Affiliation(s)
- Bruna Correa Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jonathan Turck
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| |
Collapse
|
43
|
Zhou L, Gong L, Liu Z, Xiang J, Ren C, Xu Y. Probiotic interventions with highly acid-tolerant Levilactobacillus brevis strains improve lipid metabolism and gut microbial balance in obese mice. Food Funct 2025; 16:112-132. [PMID: 39621366 DOI: 10.1039/d4fo03417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Many studies have shown that specific lactic acid bacteria (LAB) strains can delay obesity, offering a viable alternative to medications and surgeries. However, the mining and development of highly effective LAB strains for obesity control is still limited. In this study, the naturally highly acid-tolerant and gamma-aminobutyric acid-producing Levilactobacillus brevis D17 and its glnR deletion strain were used to investigate their anti-obesity effects. In an 8-week mouse experiment, L. brevis D17 and its glnR-deletion strain D17ΔglnR significantly reduced weight gain by 28.4% and 29.1%, respectively, improving abnormal serum indicators and glucose metabolism caused by a high-fat diet. Furthermore, L. brevis D17 and its glnR-deletion strain D17ΔglnR successfully colonized in the gut. Both D17 and D17ΔglnR interventions significantly restored the relative abundance of Muribaculaceae, Ileibacterium valens, Lactobacillus, Faecalibaculum, Bifidobacterium globosum, Akkermansia muciniphila, and Romboutsia ilealis, whereas they significantly reduced potentially harmful bacteria like Leptogranulimonas, Flintibacter, and Alistipes. Additionally, L. brevis intervention effectively decreased the levels of primary bile acids and increased secondary bile acids in the gut, thus balancing bile acid metabolism. The transcriptional analysis suggested that D17 and D17ΔglnR interventions may activate the AMPK signaling pathway in the liver to inhibit lipogenesis, activate the cAMP pathway to promote lipolysis, and inhibit pro-inflammatory macrophage infiltration to block inflammatory responses. These results indicate that L. brevis D17 and its glnR-deletion mutant strain D17ΔglnR show great potential in combating obesity. Moreover, these results also provide insights into the underlying mechanism behind their anti-obesity properties.
Collapse
Affiliation(s)
- Liping Zhou
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Luchan Gong
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Zhihao Liu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Jinfeng Xiang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Cong Ren
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| |
Collapse
|
44
|
Zhu P, Savova MV, Kindt A, the PRESTO study team, Wopereis H, Belzer C, Harms AC, Hankemeier T. Exploring the Fecal Metabolome in Infants With Cow's Milk Allergy: The Distinct Impacts of Cow's Milk Protein Tolerance Acquisition and of Synbiotic Supplementation. Mol Nutr Food Res 2025; 69:e202400583. [PMID: 39665335 PMCID: PMC11704826 DOI: 10.1002/mnfr.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
SCOPE Cow's milk allergy (CMA) is one of the most prevalent food allergies in early childhood, often treated via elimination diets including standard amino acid-based formula or amino acid-based formula supplemented with synbiotics (AAF or AAF-S). This work aimed to assess the effect of cow's milk (CM) tolerance acquisition and synbiotic (inulin, oligofructose, Bifidobacterium breve M-16 V) supplementation on the fecal metabolome in infants with IgE-mediated CMA. METHODS AND RESULTS The CMA-allergic infants received AAF or AAF-S for a year during which fecal samples were collected. The samples were subjected to metabolomics analyses covering gut microbial metabolites including SCFAs, tryptophan metabolites, and bile acids (BAs). Longitudinal data analysis suggested amino acids, BAs, and branched SCFAs alterations in infants who outgrew CMA during the intervention. Synbiotic supplementation significantly modified the fecal metabolome after 6 months of intervention, including altered purine, BA, and unsaturated fatty acid levels, and increased metabolites of infant-type Bifidobacterium species: indolelactic acid and 4-hydroxyphenyllactic acid. CONCLUSION This study offers no clear conclusion on the impact of CM-tolerance acquisition on the fecal metabolome. However, our results show that 6 months of synbiotic supplementation successfully altered fecal metabolome and suggest induced bifidobacteria activity, which subsequently declined after 12 months of intervention.
Collapse
Affiliation(s)
- Pingping Zhu
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Mariyana V. Savova
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Alida Kindt
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | | | - Clara Belzer
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
45
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Lai Y, Huang X, Sun H, Hui Q, Hu S. Research Progress in the Relationship between Intestinal Flora and Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2025; 25:281-290. [PMID: 38956918 DOI: 10.2174/0118715303308965240624054156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus is a common chronic metabolic disease characterized by a high incidence and disability rate. Intestinal flora refers to the microbial community that lives in the intestines and plays a crucial role in maintaining intestinal health and the human immune system. In recent years, an increasing body of research has revealed a close relationship between intestinal flora and diabetes. The pathophysiological mechanisms between them have also been constantly uncovered, and the regulation of intestinal flora has shown promising efficacy in the adjuvant treatment of diabetes. This study mainly summarized the characteristics and mechanisms of intestinal flora in patients with diabetes in recent years, as well as the methods of regulating intestinal flora to prevent and treat diabetes, and prospected the future research direction. This will offer a theoretical basis for the clinical adjuvant treatment of diabetes with intestinal flora and the development of new drugs.
Collapse
Affiliation(s)
- Yingji Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianfeng Huang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
47
|
Huang X, Johnson AE, Brehm JN, Thanh Do TV, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603937. [PMID: 39071387 PMCID: PMC11275744 DOI: 10.1101/2024.07.17.603937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth, and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with six clinically-used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Further, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. Inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. This data provides further support for the importance of bile salt-independent mechanisms in regulating colonization of C. difficile.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, TX USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
48
|
Li Y, Wang L, Yi Q, Luo L, Xiong Y. Regulation of bile acids and their receptor FXR in metabolic diseases. Front Nutr 2024; 11:1447878. [PMID: 39726876 PMCID: PMC11669848 DOI: 10.3389/fnut.2024.1447878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases. Bile acids can not only emulsify lipids in the intestine and promote lipid absorption, but also act as signaling molecules that play an indispensable role in regulating bile acid homeostasis, energy expenditure, glucose and lipid metabolism, immunity. Disorders of bile acid metabolism are therefore important risk factors for metabolic diseases. The farnesol X receptor, a member of the nuclear receptor family, is abundantly expressed in liver and intestinal tissues. Bile acids act as endogenous ligands for the farnesol X receptor, and erroneous FXR signaling triggered by bile acid dysregulation contributes to metabolic diseases, including obesity, non-alcoholic fatty liver disease and diabetes. Activation of FXR signaling can reduce lipogenesis and inhibit gluconeogenesis to alleviate metabolic diseases. It has been found that intestinal FXR can regulate hepatic FXR in an organ-wide manner. The crosstalk between intestinal FXR and hepatic FXR provides a new idea for the treatment of metabolic diseases. This review focuses on the relationship between bile acids and metabolic diseases and the current research progress to provide a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
49
|
Biagioli M, Di Giorgio C, Massa C, Marchianò S, Bellini R, Bordoni M, Urbani G, Roselli R, Lachi G, Morretta E, Piaz FD, Charlier B, Fiorillo B, Catalanotti B, Cari L, Nocentini G, Ricci P, Distrutti E, Festa C, Sepe V, Zampella A, Monti MC, Fiorucci S. Microbial-derived bile acid reverses inflammation in IBD via GPBAR1 agonism and RORγt inverse agonism. Biomed Pharmacother 2024; 181:117731. [PMID: 39657506 DOI: 10.1016/j.biopha.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
The interplay between the dysbiotic microbiota and bile acids is a critical determinant for development of a dysregulated immune system in inflammatory bowel disease (IBD). Here we have investigated the fecal bile acid metabolome, gut microbiota composition, and immune responses in IBD patients and murine models of colitis and found that IBD associates with an elevated excretion of primary bile acids while secondary, allo- and oxo- bile acids were reduced. These changes correlated with the disease severity, mucosal expression of pro-inflammatory cytokines and chemokines, and reduced inflow of anti-inflammatory macrophages and Treg in the gut. Analysis of bile acids metabolome in the feces allowed the identification of five bile acids: 3-oxo-DCA, 3-oxo-LCA, allo-LCA, iso-allo-LCA and 3-oxo-UDCA, whose excretion was selectively decreased in IBD patients and diseased mice. By transactivation assay and docking calculations all five bile acids were shown to act as GPBAR1 agonists and RORγt inverse agonists, skewing Th17/Treg ratio and macrophage polarization toward an M2 phenotype. In a murine model of colitis, administration of 3-oxo-DCA suffices to reverse colitis development and intestinal dysbiosis in a GPBAR1-dependent manner. In vivo administration of 3-oxo-DCA to colitic mice also reverses disease severity and RORγt activation induced by a RORγt agonist and IL-23, a Th17 inducing cytokine. These results demonstrated that intestinal excretion of 3-oxoDCA, a dual GPBAR1 agonist and RORγt inverse agonist, is reduced in IBD and in models of colitis and its restitution protects against colitis development, highlighting a potential role for this agent in IBD management.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Bar Pharmaceuticals s.r.l., Via Gramsci 88/A, Reggio Emilia 42124, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Bruno Charlier
- University hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
50
|
Saadh MJ, Ahmed HH, Al-Hussainy AF, Kaur I, Kumar A, Chahar M, Saini S, Taher WM, Alwan M, Jawad MJ, Darvishi M, Alsaikhan F. Bile's Hidden Weapon: Modulating the Microbiome and Tumor Microenvironment. Curr Microbiol 2024; 82:25. [PMID: 39614901 DOI: 10.1007/s00284-024-04004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The human gut microbiome is a dynamic and intricate ecosystem, composed of trillions of microorganisms that play a pivotal role in maintaining overall health and well-being. However, the gut microbiome is constantly exposed to various environmental factors, including the bile produced by the liver, which can significantly impact its composition and function. Bile acids, secreted by the liver and stored in the gallbladder, modulate the gut microbiome, influencing its composition and function. This altered microbiome profile can, in turn, impact the tumor microenvironment (TME), promoting an immunosuppressive environment that favors tumor growth and metastasis. Furthermore, changes in the gut microbiome can also influence the production of bile acids and other metabolites that directly affect cancer cells and their behavior. Moreover, bile acids have been shown to shape the microbiome and increase antibiotic resistance, underscoring the need for targeted interventions. This review provides a comprehensive overview of the intricate relationships between bile, the gut microbiome, and the TME, highlighting the mechanisms by which this interplay drives cancer progression and resistance to therapy. Understanding these complex interactions is crucial for developing novel therapeutic strategies that target the gut-bile-TME axis and improve patient outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|