1
|
Niti A, Koliakos G, Michopoulou A. Stem Cell Therapies for Epidermolysis Bullosa Treatment. Bioengineering (Basel) 2023; 10:bioengineering10040422. [PMID: 37106609 PMCID: PMC10135837 DOI: 10.3390/bioengineering10040422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Epidermolysis bullosa (EB) includes a group of rare skin diseases characterized by skin fragility with bullous formation in the skin, in response to minor mechanical injury, as well as varying degrees of involvement of the mucous membranes of the internal organs. EB is classified into simplex, junctional, dystrophic and mixed. The impact of the disease on patients is both physical and psychological, with the result that their quality of life is constantly affected. Unfortunately, there are still no approved treatments available to confront the disease, and treatment focuses on improving the symptoms with topical treatments to avoid complications and other infections. Stem cells are undifferentiated cells capable of producing, maintaining and replacing terminally differentiated cells and tissues. Stem cells can be isolated from embryonic or adult tissues, including skin, but are also produced by genetic reprogramming of differentiated cells. Preclinical and clinical research has recently greatly improved stem cell therapy, making it a promising treatment option for various diseases in which current medical treatments fail to cure, prevent progression, or alleviate symptoms. So far, stem cells from different sources, mainly hematopoietic and mesenchymal, autologous or heterologous have been used for the treatment of the most severe forms of the disease each one of them with some beneficial effects. However, the mechanisms through which stem cells exert their beneficial role are still unknown or incompletely understood and most importantly further research is required to evaluate the effectiveness and safety of these treatments. The transplantation of skin grafts to patients produced by gene-corrected autologous epidermal stem cells has been proved to be rather successful for the treatment of skin lesions in the long term in a limited number of patients. Nevertheless, these treatments do not address the internal epithelia-related complications manifested in patients with more severe forms.
Collapse
|
2
|
Generating iPSCs with a High-Efficient, Non-Invasive Method-An Improved Way to Cultivate Keratinocytes from Plucked Hair for Reprogramming. Cells 2022; 11:cells11121955. [PMID: 35741085 PMCID: PMC9222083 DOI: 10.3390/cells11121955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Various somatic cell types are suitable for induced pluripotency reprogramming, such as dermal fibroblasts, mesenchymal stem cells or hair keratinocytes. Harvesting primary epithelial keratinocytes from plucked human hair follicles (HFs) represents an easy and non-invasive alternative to a fibroblast culture from invasive skin biopsies. Nevertheless, to facilitate and simplify the process, which can be divided into three main steps (collecting, culturing and reprogramming), the whole procedure of generating hair keratinocytes has to be revised and upgraded continuously. In this study, we address advancements and approaches which improve the generation and handling of primary HF-derived keratinocytes tremendously, e.g., for iPSCs reprogramming. We not only evaluated different serum- and animal-origin-free media, but also supplements and coating solutions for an enhanced protocol. Here, we demonstrate the importance of speed and accuracy in the collecting step, as well as the choice of the right transportation medium. Our results lead to a more defined approach that further increases the reliability of downstream experiments and inter-laboratory reproducibility. These improvements will make it possible to obtain keratinocytes from plucked human hair for the generation of donor-specific iPSCs easier and more efficient than ever before, whilst preserving a non-invasive capability.
Collapse
|
3
|
Tan LS, Chen JT, Lim LY, Teo AKK. Manufacturing clinical-grade human induced pluripotent stem cell-derived beta cells for diabetes treatment. Cell Prolif 2022; 55:e13232. [PMID: 35474596 PMCID: PMC9357357 DOI: 10.1111/cpr.13232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
The unlimited proliferative capacity of human pluripotent stem cells (hPSCs) fortifies it as one of the most attractive sources for cell therapy application in diabetes. In the past two decades, vast research efforts have been invested in developing strategies to differentiate hPSCs into clinically suitable insulin‐producing endocrine cells or functional beta cells (β cells). With the end goal being clinical translation, it is critical for hPSCs and insulin‐producing β cells to be derived, handled, stored, maintained and expanded with clinical compliance. This review focuses on the key processes and guidelines for clinical translation of human induced pluripotent stem cell (hiPSC)‐derived β cells for diabetes cell therapy. Here, we discuss the (1) key considerations of manufacturing clinical‐grade hiPSCs, (2) scale‐up and differentiation of clinical‐grade hiPSCs into β cells in clinically compliant conditions and (3) mandatory quality control and product release criteria necessitated by various regulatory bodies to approve the use of the cell‐based products.
Collapse
Affiliation(s)
- Lay Shuen Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lillian Yuxian Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Stahnisch FW. A Century of Brain Regeneration Phenomena and Neuromorphological Research Advances, 1890s-1990s-Examining the Practical Implications of Theory Dynamics in Modern Biomedicine. Front Cell Dev Biol 2022; 9:787632. [PMID: 35071231 PMCID: PMC8773698 DOI: 10.3389/fcell.2021.787632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
The modern thesis regarding the "structural plastic" properties of the brain, as reactions to injuries, to tissue damage, and to degenerative cell apoptosis, can hardly be seen as expendable in clinical neurology and its allied disciplines (including internal medicine, psychiatry, neurosurgery, radiology, etc.). It extends for instance to wider research areas of clinical physiology and neuropsychology which almost one hundred years ago had been described as a critically important area for the brain sciences and psychology alike. Yet the mounting evidence concerning the range of structural neuroplastic phenomena beyond the significant early 3 years of childhood has shown that there is a progressive building up and refining of neural circuits in adaptation to the surrounding environment. This review essay explores the history behind multiple biological phenomena that were studied and became theoretically connected with the thesis of brain regeneration from Santiago Ramón y Cajal's pioneering work since the 1890s to the beginning of the American "Decade of the Brain" in the 1990s. It particularly analyzes the neuroanatomical perspectives on the adaptive capacities of the Central Nervous System (CNS) as well as model-like phenomena in the Peripheral Nervous System (PNS), which were seen as displaying major central regenerative processes. Structural plastic phenomena have assumed large implications for the burgeoning field of regenerative or restorative medicine, while they also pose significant epistemological challenges for related experimental and theoretical research endeavors. Hereafter, early historical research precursors are examined, which investigated brain regeneration phenomena in non-vertebrates at the beginning of the 20th century, such as in light microscopic studies and later in electron microscopic findings that substantiated the presence of structural neuroplastic phenomena in higher cortical substrates. Furthermore, Experimental physiological research in hippocampal in vivo models of regeneration further confirmed and corroborated clinical physiological views, according to which "structural plasticity" could be interpreted as a positive regenerative CNS response to brain damage and degeneration. Yet the underlying neuroanatomical mechanisms remained to be established and the respective pathway effects were only conveyed through the discovery of neural stem cells in in adult mammalian brains in the early 1990s. Experimental results have since emphasized the genuine existence of adult neurogenesis phenomena in the CNS. The focus in this essay will be laid here on questions of the structure and function of scientific concepts, the development of research schools among biomedical investigators, as well as the impact of new data and phenomena through innovative methodologies and laboratory instruments in the neuroscientific endeavors of the 20th century.
Collapse
Affiliation(s)
- Frank W. Stahnisch
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Department of History, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022; 10:biomedicines10010107. [PMID: 35052787 PMCID: PMC8773317 DOI: 10.3390/biomedicines10010107] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.
Collapse
Affiliation(s)
- Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
- Correspondence:
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Malaysia;
| | | | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| |
Collapse
|
6
|
Llorente IL, Hatanaka EA, Meadow ME, Xie Y, Lowry WE, Carmichael ST. Reliable generation of glial enriched progenitors from human fibroblast-derived iPSCs. Stem Cell Res 2021; 55:102458. [PMID: 34274773 PMCID: PMC8444576 DOI: 10.1016/j.scr.2021.102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
White matter stroke (WMS) occurs as small infarcts in deep penetrating blood vessels in the brain and affects the regions of the brain that carry connections, termed the subcortical white matter. WMS progresses over years and has devastating clinical consequences. Unlike large grey matter strokes, WMS disrupts the axonal architecture of the brain and depletes astrocytes, oligodendrocyte lineage cells, axons and myelinating cells, resulting in abnormalities of gait and executive function. An astrocytic cell-based therapy is positioned as a strong therapeutic candidate after WMS. In this study we report, the reliable generation of a novel stem cell-based therapeutic product, glial enriched progenitors (GEPs) derived from human induced pluripotent stem cells (hiPSCs). By transient treatment of hiPSC derived neural progenitors (hiPSC-NPCs) with the small molecule deferoxamine, a prolyl hydroxylase inhibitor, for three days hiPSC-NPCs become permanently biased towards an astrocytic fate, producing hiPSC-GEPs. In preparation for clinical application, we have developed qualification assays to ensure identity, safety, purity, and viability of the cells prior to manufacture. Using tailored q-RT-PCR-based assays, we have demonstrated the lack of pluripotency in our final therapeutic candidate cells (hiPSC-GEPs) and we have identified the unique genetic profile of hiPSC-GEPs that is clearly distinct from the parent lines, hiPSCs and iPSC-NPCs. After completion of the viability assay, we have stablished the therapeutic window of use for hiPSC-GEPs in future clinical applications (7 h). Lastly, we were able to reliably and consistently produce a safe therapeutic final product negative for contamination by any human or murine viral pathogens, selected bacteria, common laboratory mycoplasmas, growth of any aerobes, anaerobes, yeast, or fungi and 100 times less endotoxin levels than the maximum acceptable value. This study demonstrates the reliable and safe generation of patient derived hiPSC-GEPs that are clinically ready as a cell-based therapeutic approach for WMS.
Collapse
Affiliation(s)
- Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, USA
| | - Emily A Hatanaka
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Michael E Meadow
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, UCLA, USA
| | | |
Collapse
|
7
|
Zhang H, Su B, Jiao L, Xu ZH, Zhang CJ, Nie J, Gao ML, Zhang YV, Jin ZB. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:245. [PMID: 33708872 PMCID: PMC7940887 DOI: 10.21037/atm-20-4707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly due in large part to age-dependent atrophy of retinal pigment epithelium (RPE) cells. RPE cells form a monolayer located between the choroid and the outer segments of photoreceptors, playing multifarious roles in maintenance of visual function. Allogeneically induced pluripotent stem cell-derived RPE (iPSC-RPE or iRPE) has become a potential approach for providing an abundant source of donors for clinical cell products. Transplantation of iRPE has been proven effective in rescuing impaired retinas in Royal College of Surgeons (RCS) rats after approximately 5 to 6 weeks. Here, we explore the long-term (19 weeks) safety and efficacy of human iRPE cell transplantation in pre-clinical animal models. Methods The expression of human RPE-specific markers in iRPE cells was determined using immunofluorescence staining. For the proliferative test, Ki-67 expression was also verified by immunofluorescence and flow cytometric analysis. Then, iRPE cells were transplanted into the subretinal space of immune-deficient NOD/SCID/IL-2Rgcnull (NSG) mice to assess their safety. To evaluate whether the transplanted cells could survive and rescue visual function, we performed color fundus photography, focal electroretinogram and immunostaining after delivering iRPE cells into the subretinal space of RCS rats. Results Human iRPE cells expressed native RPE-specific markers, such as microphthalmia-associated transcription factor (MiTF), retinal pigment epithelium-specific 65-kDa protein (RPE65) and tight-junction associated structural protein (ZO-1), and their proliferative capacity (Ki-67 expression) was poor after 25 days of induction. A tumorigenicity test revealed no tumor formation or abnormal proliferation in the immunodeficient mice after subretinal injection of 5×105 iRPE cells. The transplanted iRPE cells survived for at least 19 weeks and maintained visual function for 15 weeks. Conclusions In the present study, we provided further evidence for the use of human iRPE transplantation to treat retinal degenerative disease in pre-clinical animal models. Therefore, we consider human iRPE cells a promising source of cell replacement therapy for AMD.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bingnan Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Luyan Jiao
- Nuwacell Biotechnologies Co., Ltd, Hefei, China
| | - Ze-Hua Xu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Jun Zhang
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinfu Nie
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ, Alexander JS. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 2019; 37:101421. [PMID: 30933723 DOI: 10.1016/j.scr.2019.101421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (I/RI), produced by an initial interruption of organ blood flow and its subsequent restoration, contributes significantly to the pathophysiologies of stroke, myocardial infarction, renal I/RI, intestinal I/RI and liver I/RI, which are major causes of disability (including transplant failure) and even mortality. While the restoration of blood flow is required to restore oxygen and nutrient requirements, reperfusion often triggers local and systemic inflammatory responses and subsequently elevate the ischemic insult where the duration of ischemia determines the magnitude of I/RI damage. I/RI increases vascular leakage, changes transcriptional and cell death programs, drives leukocyte entrapment and inflammation and oxidative stress in tissues. Therapeutic approaches which reduce complications associated with I/RI are desperately needed to address the clinical and economic burden created by I/RI. Stem cells (SC) represent ubiquitous and uncommitted cell populations with the ability to self-renew and differentiate into one or more developmental 'fates'. Like immune cells, stem cells can home to and penetrate I/R-injured tissues, where they can differentiate into target tissues and induce trophic paracrine signaling which suppress injury and maintain tissue functions perturbed by ischemia-reperfusion. This review article summarizes the present use and possible protective mechanisms underlying stem cell protection in diverse forms of ischemia-reperfusion.
Collapse
Affiliation(s)
- M Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - G Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - C J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA.
| |
Collapse
|
9
|
Abstract
In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425 Poland
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345 Poland
| |
Collapse
|
10
|
Foltz LP, Clegg DO. Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Prog Retin Eye Res 2018; 68:54-66. [PMID: 30217765 DOI: 10.1016/j.preteyeres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
The human retina is a highly complex tissue that makes up an integral part of our central nervous system. It is astonishing that our retina works seamlessly to provide one of our most critical senses, and it is equally devastating when a disease destroys a portion of the retina and robs people of their vision. After decades of research, scientists are beginning to understand retinal cells in a way that can benefit the millions of individuals suffering from inherited blindness. This understanding has come about in part with the ability to culture human embryonic stem cells and the innovation of induced pluripotent stem cells, which can be cultured from patients and used to model their disease. In this review, we highlight the successes of specific disease modelling studies and resulting molecular discoveries. The greatest strides in cellular modelling have come from mutations in genes with established and well-understood cellular functions in the context of the retina. We believe that the future of cellular modelling depends on emphasising reproducible production of retinal cell types, demonstrating functional rescue using site-specific programmable nucleases, and shifting towards unbiased screening using next generation sequencing.
Collapse
Affiliation(s)
- Leah P Foltz
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA.
| | - Dennis O Clegg
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
11
|
Inside out: regenerative medicine for recessive dystrophic epidermolysis bullosa. Pediatr Res 2018; 83:318-324. [PMID: 29593249 DOI: 10.1038/pr.2017.244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Epidermolysis bullosa is classified as a genodermatosis, an inherited genetic skin disorder that results in severe, chronic skin blistering with painful and life-threatening complications. Although there is currently no cure for epidermolysis bullosa, concurrent advances in gene and stem cell therapies are converging toward combinatorial therapies that hold the promise of clinically meaningful and lifelong improvement. Recent studies using hematopoietic stem cells and mesenchymal stromal/stem cells to treat epidermolysis bullosa have demonstrated the potential for sustained, effective management of the most severe cases. Furthermore, advances in the use of gene therapy and gene-editing techniques, coupled with the development of induced pluripotent stem cells from patients with epidermolysis bullosa, allow for autologous therapies derived from a renewable population of cells that are patient-specific. Here we describe emerging treatments for epidermolysis bullosa and other genodermatoses, along with a discussion of their benefits and limitations as effective therapies.
Collapse
|
12
|
Kehler J, Greco M, Martino V, Pachiappan M, Yokoe H, Chen A, Yang M, Auerbach J, Jessee J, Gotte M, Milanesi L, Albertini A, Bellipanni G, Zucchi I, Reinbold RA, Giordano A. RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy. J Cell Physiol 2016; 232:1262-1269. [DOI: 10.1002/jcp.25597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Affiliation(s)
- James Kehler
- ITB-CNR; Segrate Milan Italy
- National Institutes of Health; NIDDK; Laboratory of Cell and Molecular Biology; Rockville Pike Bethesda Maryland
- MTI-GlobalStem; Gaithersburg Maryland
| | | | | | | | | | | | | | | | | | - Martin Gotte
- Department of Gynecology and Obstetrics; Muenster University Hospital; Muenster Germany
| | | | | | - Gianfranco Bellipanni
- Department of Biology; College of Science and Technology; Temple University; Philadelphia Pennsylvania
- Sbarro Institute for Cancer Research and Molecular Medicine; College of Science and Technology; Temple University; Philadelphia Pennsylvania
| | | | | | - Antonio Giordano
- Department of Biology; College of Science and Technology; Temple University; Philadelphia Pennsylvania
- Sbarro Institute for Cancer Research and Molecular Medicine; College of Science and Technology; Temple University; Philadelphia Pennsylvania
| |
Collapse
|
13
|
Ni Y, Zhao Y, Warren L, Higginbotham J, Wang J. cGMP Generation of Human Induced Pluripotent Stem Cells with Messenger RNA. ACTA ACUST UNITED AC 2016; 39:4A.6.1-4A.6.25. [PMID: 31816187 DOI: 10.1002/cpsc.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reprogramming somatic cells to generate induced pluripotent stem cells (iPSCs) has presented the biomedical community with a powerful platform to develop new models for human disease. To fully realize the promise of this technology in cell therapy and regenerative medicine, creating iPSCs under current Good Manufacture Practice (cGMP) conditions is paramount. Some reports have described efforts in this regard, resulting in iPSC lines that are cGMP compliant. The technology developed at Allele Biotechnology for footprint-free, feeder-free, and xeno-free reprogramming using only mRNA is very suitable for creating iPSC lines through an established cGMP process. This technology has resulted in a licensing agreement between Allele Biotechnology and Ocata (formerly ACT, now a wholly owned division of Astellas) for clinical applications. All reagents and vessels are certified as cGMP-produced, all equipment and software are certifiable, and all procedures are carried out in Industry ISO 7 or Class 10,000-grade cleanrooms. In this revised version of the unit, we describe the core improvements to implement steps toward cGMP-compliant generation of iPSCs. Recreating a process close to cGMP production in academic research will make these findings more applicable to translational research. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yuhui Ni
- Allele Biotechnology and Pharmaceuticals, Inc, San Diego, California
| | - Yuanyuan Zhao
- Allele Biotechnology and Pharmaceuticals, Inc, San Diego, California
| | | | - Jennifer Higginbotham
- Allele Biotechnology and Pharmaceuticals, Inc, San Diego, California.,Scintillon Institute, San Diego, California
| | - Jiwu Wang
- Allele Biotechnology and Pharmaceuticals, Inc, San Diego, California.,Scintillon Institute, San Diego, California
| |
Collapse
|
14
|
Salem H, Rocha NP, Colpo GD, Teixeira AL. Moving from the Dish to the Clinical Practice: A Decade of Lessons and Perspectives from the Pre-Clinical and Clinical Stem Cell Studies for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:1209-30. [DOI: 10.3233/jad-160250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haitham Salem
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- Regenerative Medicine Program, University of Lübeck, Schleswig-Holstein, Germany
| | - Natalia Pessoa Rocha
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
15
|
Vega-Crespo A, Truong B, Hermann KJ, Awe JP, Chang KM, Lee PC, Schoenberg BE, Wu L, Byrne JA, Lipshutz GS. Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16050. [PMID: 27500178 PMCID: PMC4954563 DOI: 10.1038/mtm.2016.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics.
Collapse
Affiliation(s)
- Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Brian Truong
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Kip J Hermann
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California , Los Angeles, alifornia, USA
| | - Jason P Awe
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Katherine M Chang
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Patrick C Lee
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Benjamen E Schoenberg
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California , Los Angeles, alifornia, USA
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA; Department of Surgery, UCLA, Los Angeles, California, USA; Department of Medicine, UCLA, Los Angeles, California USA; Department of Psychiatry, Los Angeles, California USA; Department of Urology, UCLA, Los Angeles, California USA; The Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California USA; The Semel Institute for Neuroscience, Los Angeles, California USA
| |
Collapse
|
16
|
Asprer JST, Lakshmipathy U. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells. Stem Cell Rev Rep 2016; 11:357-72. [PMID: 25504379 DOI: 10.1007/s12015-014-9580-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) are powerful tools for basic scientific research and promising agents for drug discovery and regenerative medicine. Technological advances have made it increasingly easy to generate PSCs but the various lines generated may differ in their characteristics based on their origin, derivation, number of passages, and culture conditions. In order to confirm the pluripotency, quality, identity, and safety of pluripotent cell lines as they are derived and maintained, it is critical to perform a panel of characterization assays. Functional pluripotency is determined using tests that rely on the expression of specific markers in the undifferentiated and differentiated states; tests for quality, identity and safety are less specialized. This article provides a comprehensive review of current practices in PSC characterization and explores challenges in the field, from the selection of markers to the development of simple and scalable methods. It also delves into emerging trends like the adoption of alternative assays that could be used to supplement or replace traditional methods, specifically the use of in silico assays for determining pluripotency.
Collapse
Affiliation(s)
- Joanna S T Asprer
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008, USA
| | | |
Collapse
|
17
|
Wang J, Hao J, Bai D, Gu Q, Han W, Wang L, Tan Y, Li X, Xue K, Han P, Liu Z, Jia Y, Wu J, Liu L, Wang L, Li W, Liu Z, Zhou Q. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Res Ther 2015; 6:223. [PMID: 26564165 PMCID: PMC4643509 DOI: 10.1186/s13287-015-0206-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 03/31/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs) are considered as one of the most promising seed cell sources in regenerative medicine. Now hiPSC-based clinical trials are underway. To ensure clinical safety, cells used in clinical trials or therapies should be generated under GMP conditions, and with Xeno-free culture media to avoid possible side effects like immune rejection that induced by the Xeno reagents. However, up to now there are no reports for hiPSC lines developed completely under GMP conditions using Xeno-free reagents. Methods Clinical-grade human foreskin fibroblast (HFF) cells used as feeder cells and parental cells of the clinical-grade hiPSCs were isolated from human foreskin tissues and cultured in Xeno-free media. Clinical-grade hiPSCs were derived by integration-free Sendai virus-based reprogramming kit in Xeno-free pluriton™ reprogramming medium or X medium. Neural cells and cardiomyocytes differentiation were conducted following a series of spatial and temporal specific signals induction according to the corresponding lineage development signals. Biological safety evaluation of the clinical-grade HFF cells and hiPSCs were conducted following the guidance of the “Pharmacopoeia of the People's Republic of China, Edition 2010, Volume III”. Results We have successfully derived several integration-free clinical-grade hiPSC lines under GMP-controlled conditions and with Xeno-free reagents culture media in line with the current guidance of international and national evaluation criteria. As for the source of hiPSCs and feeder cells, biological safety evaluation of the HFF cells have been strictly reviewed by the National Institutes for Food and Drug Control (NIFDC). The hiPSC lines are pluripotent and have passed the safety evaluation. Moreover, one of the randomly selected hiPSC lines was capable of differentiating into functional neural cells and cardiomyocytes in Xeno-free culture media. Conclusion The clinical-grade hiPSC lines therefore could be valuable sources for future hiPSC-based clinical trials or therapies and for drug screening. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0206-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Wang
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Science, Northeast Agricultural University of China, Harbin, 150030, China.
| | - Jie Hao
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Donghui Bai
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qi Gu
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weifang Han
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Graduate School of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Wang
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuanqing Tan
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Graduate School of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xia Li
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Science, Northeast Agricultural University of China, Harbin, 150030, China.
| | - Ke Xue
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Pencheng Han
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhengxin Liu
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yundan Jia
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Wu
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Liu
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liu Wang
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Li
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030, China.
| | - Qi Zhou
- State Key of Stem Cells and Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
The development of induced pluripotent stem cells offers the possibility of the scalable manufacture of cellular therapies for regenerative medicine. Moreover, donors can be selected on the basis of major transplant antigen systems to match the widest possible number of recipients worldwide, reducing the likely risk of immunological rejection and the degree of immune suppression or tolerance required. If such cell lines are to be broadly available, there will need to be mutual recognition of common standards across different jurisdictions. Extensive international collaboration will be required around issues such as determination of the optimal homozygous human leukocyte antigens (HLA) panel, donor selection, screening and consent, good manufacturing practice (GMP), standards and quality control and regulatory legislation. The challenges in establishing a global GMP induced pluripotent stem cell (iPSC) haplobank are formidable. We argue that now is the time to attempt to reach international agreement around common standards for GMP iPSC manufacture before the field develops in a fragmented manner.
Collapse
Affiliation(s)
- Jacqueline Barry
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Johan Hyllner
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- Division of Biotechnology/IFM, Linköping University, Linköping, Sweden
| | - Glyn Stacey
- National Institute of Biological Standards and Controls, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG UK
| | - Craig J. Taylor
- Histocompatibility and Immunogenetics (Tissue Typing) Laboratory (Box 209), Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Marc Turner
- Scottish National Blood Transfusion Service, 21 Ellen’s Glen Road, Edinburgh, EH17 7QT Scotland UK
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland UK
| |
Collapse
|
20
|
Meyer S, Wörsdörfer P, Günther K, Thier M, Edenhofer F. Derivation of Adult Human Fibroblasts and their Direct Conversion into Expandable Neural Progenitor Cells. J Vis Exp 2015:e52831. [PMID: 26275015 DOI: 10.3791/52831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Generation of induced pluripotent stem cell (iPSCs) from adult skin fibroblasts and subsequent differentiation into somatic cells provides fascinating prospects for the derivation of autologous transplants that circumvent histocompatibility barriers. However, progression through a pluripotent state and subsequent complete differentiation into desired lineages remains a roadblock for the clinical translation of iPSC technology because of the associated neoplastic potential and genomic instability. Recently, we and others showed that somatic cells cannot only be converted into iPSCs but also into different types of multipotent somatic stem cells by using defined factors, thereby circumventing progression through the pluripotent state. In particular, the direct conversion of human fibroblasts into induced neural progenitor cells (iNPCs) heralds the possibility of a novel autologous cell source for various applications such as cell replacement, disease modeling and drug screening. Here, we describe the isolation of adult human primary fibroblasts by skin biopsy and their efficient direct conversion into iNPCs by timely restricted expression of Oct4, Sox2, Klf4, as well as c-Myc. Sox2-positive neuroepithelial colonies appear after 17 days of induction and iNPC lines can be established efficiently by monoclonal isolation and expansion. Precise adjustment of viral multiplicity of infection and supplementation of leukemia inhibitory factor during the induction phase represent critical factors to achieve conversion efficiencies of up to 0.2%. Thus far, patient-specific iNPC lines could be expanded for more than 12 passages and uniformly display morphological and molecular features of neural stem/progenitor cells, such as the expression of Nestin and Sox2. The iNPC lines can be differentiated into neurons and astrocytes as judged by staining against TUJ1 and GFAP, respectively. In conclusion, we report a robust protocol for the derivation and direct conversion of human fibroblasts into stably expandable neural progenitor cells that might provide a cellular source for biomedical applications such as autologous neural cell replacement and disease modeling.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Anatomy and Cell Biology, University of Würzburg; Institute of Reconstructive Neurobiology, University of Bonn
| | | | | | - Marc Thier
- Institute of Reconstructive Neurobiology, University of Bonn; German Cancer Research Center, Heidelberg
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg; Institute of Reconstructive Neurobiology, University of Bonn;
| |
Collapse
|
21
|
Wenker SD, Casalía M, Candedo VC, Casabona JC, Pitossi FJ. Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Lett 2015; 589:3396-406. [PMID: 26226418 DOI: 10.1016/j.febslet.2015.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Adult cells from patients can be reprogrammed to induced pluripotent stem cells (iPSCs) which successively can be used to obtain specific cells such as neurons. This remarkable breakthrough represents a new way of studying diseases and brought new therapeutic perspectives in the field of regenerative medicine. This is particular true in the neurology field, where few techniques are amenable to study the affected tissue of the patient during illness progression, in addition to the lack of neuroprotective therapies for many diseases. In this review we discuss the advantages and unresolved issues of cell reprogramming and neuronal differentiation. We reviewed evidence using iPSCs-derived neurons from neurological patients. Focusing on data obtained from Parkinson's disease (PD) patients, we show that iPSC-derived neurons possess morphological and functional characteristics of this disease and build a case for the use of this technology to study PD and other neuropathologies while disease is in progress. These data show the enormous impact that this new technology starts to have on different purposes such as the study and design of future therapies of neurological disease, especially PD.
Collapse
|
22
|
Batalov I, Feinberg AW. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture. Biomark Insights 2015; 10:71-6. [PMID: 26052225 PMCID: PMC4447149 DOI: 10.4137/bmi.s20050] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (PSCs) are a promising cell source for cardiac tissue engineering and cell-based therapies for heart repair because they can be expanded in vitro and differentiated into most cardiovascular cell types, including cardiomyocytes. During embryonic heart development, this differentiation occurs under the influence of internal and external stimuli that guide cells to go down the cardiac lineage. In order to differentiate PSCs in vitro, these or similar stimuli need to be provided in a controlled manner. However, because it is not possible to completely recapitulate the embryonic environment, the factors essential for cardiac differentiation of PSCs in vitro need to be experimentally determined and validated. Since PSCs were first developed, significant progress has been made in optimizing techniques for their differentiation toward cardiomyocytes. In this review, we will summarize recent advances in these techniques, with particular focus on monolayer-based methods that have improved the efficiency and scalability of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. ; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 2015; 50:20-9. [PMID: 25736492 PMCID: PMC4350019 DOI: 10.1016/j.biomaterials.2015.01.051] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 01/30/2023]
Abstract
Clinical interventions to preserve fertility and restore hormone levels in female patients with therapy-induced ovarian failure are insufficient, particularly for pediatric cancer patients. Laparoscopic isolation of cortical ovarian tissue followed by cryopreservation with subsequent autotransplantation has temporarily restored fertility in at least 27 women who survived cancer, and aided in pubertal transition for one pediatric patient. However, reintroducing cancer cells through ovarian transplantation has been a major concern. Decellularization is a process of removing cellular material, while maintaining the organ skeleton of extracellular matrices (ECM). The ECM that remains could be stripped of cancer cells and reseeded with healthy ovarian cells. We tested whether a decellularized ovarian scaffold could be created, recellularized and transplanted to initiate puberty in mice. Bovine and human ovaries were decellularized, and the ovarian skeleton microstructures were characterized. Primary ovarian cells seeded onto decellularized scaffolds produced estradiol in vitro. Moreover, the recellularized grafts initiated puberty in mice that had been ovariectomized, providing data that could be used to drive future human transplants and have broader implications on the bioengineering of other organs with endocrine function.
Collapse
Affiliation(s)
- Monica M Laronda
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam E Jakus
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Kelly A Whelan
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason A Wertheim
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ramille N Shah
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Chou BK, Gu H, Gao Y, Dowey SN, Wang Y, Shi J, Li Y, Ye Z, Cheng T, Cheng L. A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Stem Cells Transl Med 2015; 4:320-32. [PMID: 25742692 DOI: 10.5966/sctm.2014-0214] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10-50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications.
Collapse
Affiliation(s)
- Bin-Kuan Chou
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haihui Gu
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongxing Gao
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sarah N Dowey
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Wang
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jun Shi
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanxin Li
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhaohui Ye
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Cheng
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Rony IK, Baten A, Bloomfield JA, Islam ME, Billah MM, Islam KD. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif 2015; 48:140-56. [PMID: 25643745 DOI: 10.1111/cpr.12162] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.
Collapse
Affiliation(s)
- I K Rony
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | | | | | | | | | | |
Collapse
|
26
|
Awe JP, Gschweng EH, Vega-Crespo A, Voutila J, Williamson MH, Truong B, Kohn DB, Kasahara N, Byrne JA. Putative immunogenicity expression profiling using human pluripotent stem cells and derivatives. Stem Cells Transl Med 2015; 4:136-45. [PMID: 25575527 DOI: 10.5966/sctm.2014-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autologous human induced pluripotent stem cells (hiPSCs) should allow cellular therapeutics without an associated immune response. This concept has been controversial since the original report that syngeneic mouse iPSCs elicited an immune response after transplantation. However, an investigative analysis of any potential acute immune responses in hiPSCs and their derivatives has yet to be conducted. In the present study, we used correlative gene expression analysis of two putative mouse "immunogenicity" genes, ZG16 and HORMAD1, to assay their human homologous expression levels in human pluripotent stem cells and their derivatives. We found that ZG16 expression is heterogeneous across multiple human embryonic stem cell and hiPSC-derived cell types. Additionally, ectopic expression of ZG16 in antigen-presenting cells is insufficient to trigger a detectable response in a peripheral blood mononuclear cell coculture assay. Neither of the previous immunogenicity-associated genes in the mouse currently appears to be relevant in a human context.
Collapse
Affiliation(s)
- Jason P Awe
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Eric H Gschweng
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jon Voutila
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mary H Williamson
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Brian Truong
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Noriyuki Kasahara
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, Department of Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Department of Pediatrics, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, and Department of Medicine, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
27
|
Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry ABC, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ. A comparison of non-integrating reprogramming methods. Nat Biotechnol 2015; 33:58-63. [PMID: 25437882 PMCID: PMC4329913 DOI: 10.1038/nbt.3070] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/14/2014] [Indexed: 01/06/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.
Collapse
Affiliation(s)
- Thorsten M Schlaeger
- 1] Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Karrie Chan
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amelia Cianci
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander DeVine
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Andrew Ettenger
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kelly Fitzgerald
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michelle Godfrey
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dipti Gupta
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jade McPherson
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Prerana Malwadkar
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Manav Gupta
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Blair Bell
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Akiko Doi
- 1] Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Namyoung Jung
- Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xin Li
- Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Emily Brookes
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Anne B C Cherry
- 1] Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Didem Demirbas
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alexander M Tsankov
- 1] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA
| | - Leonard I Zon
- 1] Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Lee L Rubin
- 1] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Andrew P Feinberg
- Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander Meissner
- 1] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA
| | - Chad A Cowan
- 1] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA. [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [4] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - George Q Daley
- 1] Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [3] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. [4] Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Awe JP, Vega-Crespo A, Byrne JA. Derivation and characterization of a transgene-free human induced pluripotent stem cell line and conversion into defined clinical-grade conditions. J Vis Exp 2014:e52158. [PMID: 25490111 DOI: 10.3791/52158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology--provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications--for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
Collapse
Affiliation(s)
- Jason P Awe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA)
| | - Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA)
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA); Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA);
| |
Collapse
|
29
|
Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 2014; 23:1285-300. [PMID: 24524728 PMCID: PMC4046204 DOI: 10.1089/scd.2013.0620] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) via the ectopic expression of reprogramming factors is a simple, advanced, yet often perplexing technology due to low efficiency, slow kinetics, and the use of numerous distinct systems for factor delivery. Scientists have used almost all available approaches for the delivery of reprogramming factors. Even the well-established retroviral vectors confuse some scientists due to different tropisms in use. The canonical virus-based reprogramming poses many problems, including insertional mutagenesis, residual expression and re-activation of reprogramming factors, uncontrolled silencing of transgenes, apoptosis, cell senescence, and strong immunogenicity. To eliminate or alleviate these problems, scientists have tried various other approaches for factor delivery and transgene removal. These include transient transfection, nonintegrating viral vectors, Cre-loxP excision of transgenes, excisable transposon, protein transduction, RNA transfection, microRNA transfection, RNA virion, RNA replicon, nonintegrating replicating episomal plasmids, minicircles, polycistron, and preintegration of inducible reprogramming factors. These alternative approaches have their own limitations. Even iPSCs generated with RNA approaches should be screened for possible transgene insertions mediated by active endogenous retroviruses in the human genome. Even experienced researchers may encounter difficulty in selecting and using these different technologies. This survey presents overviews of iPSC technologies with the intention to provide a quick yet comprehensive reference for both new and experienced reprogrammers.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Insitute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
30
|
Abstract
Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer’s disease. Currently, no effective therapies for Alzheimer’s disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer’s disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer’s disease.
Collapse
|
31
|
Blurton-Jones M, Spencer B, Michael S, Castello NA, Agazaryan AA, Davis JL, Müller FJ, Loring JF, Masliah E, LaFerla FM. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 2014; 5:46. [PMID: 25022790 PMCID: PMC4055090 DOI: 10.1186/scrt440] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer's disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches. METHODS To begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined. RESULTS Our findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region. CONCLUSIONS Taken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Mathew Blurton-Jones
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Michael
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas A Castello
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Andranik A Agazaryan
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Joy L Davis
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Franz-Josef Müller
- Center for Regenerative Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Psychiatry (ZIP Kiel), University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Jeanne F Loring
- Center for Regenerative Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions. PLoS One 2014; 9:e94231. [PMID: 24718618 PMCID: PMC3981795 DOI: 10.1371/journal.pone.0094231] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/12/2014] [Indexed: 11/20/2022] Open
Abstract
Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs) will be realized. Nonetheless, clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP). Optimally, derivation of hiPSCs should be rapid and efficient in order to minimize manipulations, reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here, we provide an optimized, fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity, purity, stability and safety at a GMP facility and cryopreserved. To our knowledge, as a proof of principle, these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes.
Collapse
|
33
|
Kadari A, Lu M, Li M, Sekaran T, Thummer RP, Guyette N, Chu V, Edenhofer F. Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Res Ther 2014; 5:47. [PMID: 24713299 PMCID: PMC4055111 DOI: 10.1186/scrt435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/12/2014] [Indexed: 12/18/2022] Open
Abstract
Integrating viruses represent robust tools for cellular reprogramming; however, the presence of viral transgenes in induced pluripotent stem cells (iPSCs) is deleterious because it holds the risk of insertional mutagenesis leading to malignant transformation. Here, we combine the robustness of lentiviral reprogramming with the efficacy of Cre recombinase protein transduction to derive iPSCs devoid of transgenes. By genome-wide analysis and targeted differentiation towards the cardiomyocyte lineage, we show that transgene-free iPSCs are superior to iPSCs before Cre transduction. Our study provides a simple, rapid and robust protocol for the generation of clinical-grade iPSCs suitable for disease modeling, tissue engineering and cell replacement therapies.
Collapse
|
34
|
Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan ACA. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 2014; 35:2816-26. [PMID: 24411336 DOI: 10.1016/j.biomaterials.2013.12.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/24/2022]
Abstract
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However, standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium, imposing a significant obstacle to clinical translation. Here, we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions, we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently, transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal, normal karyotype and pluripotency, as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly, we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications.
Collapse
Affiliation(s)
- Hong Fang Lu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Chou Chai
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tze Chiun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jia Kai Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Kah Leong Lim
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
35
|
Ilic D. Industry update: Latest developments in stem cell research and regenerative medicine. Regen Med 2013; 8:689-94. [PMID: 24147524 DOI: 10.2217/rme.13.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College London School of Medicine, London, UK.
| |
Collapse
|