1
|
Huerta MÁ, Molina-Álvarez M, García MM, Tejada MA, Goicoechea C, Ghasemlou N, Ruiz-Cantero MC, Cobos EJ. The role of neutrophils in pain: systematic review and meta-analysis of animal studies. Pain 2025; 166:1230-1249. [PMID: 39450928 DOI: 10.1097/j.pain.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004). Literature search (PubMed, January 19, 2023) identified 49 articles, which were meta-analyzed using a random-effects model. The risk of bias was evaluated using SYRCLE's tool. The pooled effect considering all studies showed that neutrophil depletion induced a consistent pain reduction. Inflammatory, joint, neuropathic, and visceral pain showed significant pain alleviation by neutrophil depletion with medium-large effect sizes. However, muscle and postoperative pain were not significantly alleviated by neutrophil depletion. Further analysis showed a differential contribution of neutrophils to pain outcomes. Neutrophils had a higher impact on mechanical hyperalgesia, followed by nociceptive behaviors and mechanical allodynia, with a smaller contribution to thermal hyperalgesia. Interspecies (mice or rats) differences were not appreciated. Analyses regarding intervention unveiled a lower pain reduction for some commonly used methods for neutrophil depletion, such as injection of antineutrophil serum or an anti-Gr-1 antibody, than for other agents such as administration of an anti-Ly6G antibody, fucoidan, vinblastine, CXCR1/2 inhibitors, and etanercept. In conclusion, the contribution of neutrophils to pain depends on pain etiology (experimental model), pain outcome, and the neutrophil depletion strategy. Further research is needed to improve our understanding on the mechanisms of these differences.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel M García
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Departments of Anesthesiology and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
2
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Huerta MÁ, Tejada MÁ, Nieto FR. Fucoidan as a Promising Drug for Pain Treatment: Systematic Review and Meta-Analysis. Mar Drugs 2024; 22:290. [PMID: 39057399 PMCID: PMC11277653 DOI: 10.3390/md22070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic effects. We performed a systematic review and meta-analysis to quantify the analgesic effects of pretreatment with fucoidan reported in the available preclinical studies. In addition, we summarized the articles which have studied the therapeutic effects of fucoidan in pathological pain at preclinical and clinical levels. The results of this systematic review reveal that pretreatment with fucoidan is a powerful tool which reduces neutrophil infiltration by 70-90% at early time points. This meta-analysis showed that preventative treatment with fucoidan produced a significant pain reduction. In addition, several preclinical studies have observed that fucoidan treatment reduces the pain that is associated with various pathologies. Finally, fucoidan has also been tested in several clinical trials, with some degree of analgesic efficacy, but they were mostly small pilot studies. Considering all the above information, it can be concluded that fucoidan is not only a preclinical tool for studying the role of neutrophils in pain but also a promising therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Á. Tejada
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Francisco R. Nieto
- Department of Pharmacology, University of Granada, 18016 Granada, Spain; (M.Á.H.); (M.Á.T.)
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
4
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
5
|
Damico MV, Gil CD, Godinho RO, Pacini ESA, Fortes-Dias CL, Moreira V. Effects of inhibition of 5-lipoxygenase and 12-lipoxygenase pathways on skeletal muscle fiber regeneration. Chem Biol Interact 2023; 379:110513. [PMID: 37116854 DOI: 10.1016/j.cbi.2023.110513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
We investigated the effect of inhibition of 5-lipoxigenase (LOX) and 12-LOX pathways on the regeneration of skeletal muscle fibers after injury induced by a myotoxin (MTX) phospholipase A2 from snake venom in an in vivo experimental model. Gastrocnemius muscles of mice injected with MTX presented an increase in 5-LOX protein expression, while 12-LOX was found to be a constitutive protein of skeletal muscle. Animals that received oral treatments with 5-LOX inhibitor MK886 or 12-LOX inhibitor baicalein 30 min and 48 h after MTX-induced muscle injury showed a reduction in the inflammatory process characterized by a significant decrease of cell influx and injured fibers in the degenerative phase (6 and 24 h after injury). In the beginning of the regeneration process (3 days), mice that received MK886 showed fewer new basophilic fibers, suggesting fewer proliferative events and myogenic cell fusion. Furthermore, in the progression of tissue regeneration (14-21 days), the mice treated with 5-LOX inhibitor presented a lower quantity of central nucleus fibers and small-caliber fibers, culminating in a muscle that is more resistant to the stimulus of fatigue during muscle regeneration with a predominance of slow fibers. In contrast, animals early treated with the 12-LOX inhibitor presented functional fibers with higher diameters, less resistant to fatigue and predominance of fast heavy-chain myosin fibers as observed in control animals. These effects were accompanied by an earlier expression of myogenic factor MyoD. Our results suggest that both 5-LOX and 12-LOX pathways represent potential therapeutic targets for muscle regeneration. It appears that inhibition of the 5-LOX pathway represses only the degenerative process by reducing tissue inflammation levels. Meanwhile, inhibition of the 12-LOX pathway also favors the anticipation of maturation and earlier recovery of muscle fiber activity function after injury.
Collapse
Affiliation(s)
- Marcio Vinícius Damico
- Department of Pharmacology, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Rosely Oliveira Godinho
- Department of Pharmacology, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Enio Setsuo Arakaki Pacini
- Department of Pharmacology, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Vanessa Moreira
- Department of Pharmacology, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.
| |
Collapse
|
6
|
de Matos Balsalobre N, Dos Santos E, Mariano Dos Santos S, Arena AC, Konkiewitz EC, Ziff EB, Nazari Formagio AS, Leite Kassuya CA. Potential anti-arthritic and analgesic properties of essential oil and viridiflorol obtained from Allophylus edulis leaves in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115785. [PMID: 36223847 DOI: 10.1016/j.jep.2022.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viridiflorol was identified and isolated from the essential oil of Allophylus edulis leaves (EOAE). A. edulis was used as "tereré", which is a drink made by the infusion of herbs in cold water, to treat pain (toothache and headache). All anti-nociceptive (analgesic) and anti-arthritic properties of EOAE and viridiflorol have not been completely scientifically clarified. AIM OF THE STUDY The aim of the present study was to investigate the analgesic (anti-hyperalgesic and anti-nociceptive) and anti-arthritic properties of EOAE and viridiflorol using in vivo models. MATERIALS AND METHODS The oral administration (p.o.) of EOAE (30, 100 and 300 mg/kg), viridiflorol (30, 100 and 200 mg/kg), morphine (1 mg/kg, subcutaneous route (s.c.)) and the intraplantar (local) administration (i.pl.) of viridiflorol (100 μg/paw) were tested using formalin model in Swiss mice. EOAE (100 mg/kg, p.o.), viridiflorol (200 mg/kg, p.o.), and dexamethasone (1 mg/kg, s.c.) were tested by zymosan-articular inflammation and in open-field models. Viridiflorol (0.3, 20 and 200 μg/paw) was also tested in carrageenan model, and viridiflorol (200 μg/paw) was also tested in tumor necrosis factor-α (TNF-α), and dopamine (DOPA) models. RESULTS The oral administration of EOAE (100 and 300 mg/kg, p.o.), viridiflorol (200 mg/kg, p.o.), morphine (1 mg/kg, s.c.) (MOR) and local administration of viridiflorol (100 μg/paw) significantly inhibited edema and nociception in formalin model. Oral treatments with EOAE and viridiflorol (200 mg/kg) did not cause motor impairment in the open field test since they did not reduce locomotor activity. EOAE, viridiflorol and dexamethasone significantly reduced mechanical hyperalgesia, edema, total leukocytes, polymorphonuclear cells, nitric oxide and protein exudation in the zymosan-induced articular inflammation model. The local administration of viridiflorol (200 μg/paw, i.pl.) significantly inhibited mechanical hyperalgesia and edema induced by carrageenan, TNF-α and DOPA. CONCLUSIONS This study confirms the potential anti-arthritic, anti-nocicepttive and anti-hyperalgesic properties of EOAE and viridiflorol. These properties could explain, at least in part, the folk use of A. edulis against including pain (toothache and headache). Viridiflorol could be partially responsible for the EOAE anti-hyperalgesic, anti-nociceptive and anti-arthritic properties and its mechanism of action could involve the inhibition of TNF-α and DOPA pathways.
Collapse
Affiliation(s)
| | - Elisangela Dos Santos
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Sidney Mariano Dos Santos
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo State, Brazil.
| | | | | | - Anelise Samara Nazari Formagio
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | |
Collapse
|
7
|
Artero NA, Manchope MF, Carvalho TT, Saraiva-Santos T, Bertozzi MM, Carneiro JA, Franciosi A, Dionisio AM, Zaninelli TH, Fattori V, Ferraz CR, Piva M, Mizokami SS, Camilios-Neto D, Casagrande R, Verri WA. Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO 2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation. Molecules 2023; 28:molecules28020872. [PMID: 36677929 PMCID: PMC9864652 DOI: 10.3390/molecules28020872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.
Collapse
Affiliation(s)
- Nayara A. Artero
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marília F. Manchope
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thacyana T. Carvalho
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jessica A. Carneiro
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Amanda M. Dionisio
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Maiara Piva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sandra S. Mizokami
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
8
|
Corrêa LB, de Oliveira Henriques MDGM, Rosas EC, Santos-Oliveira R. Intra-articular use of radium dichloride ([ 223Ra] RaCl 2) showed relevant anti-inflammatory response on experimental arthritis model. Eur J Nucl Med Mol Imaging 2021; 49:336-344. [PMID: 34370060 DOI: 10.1007/s00259-021-05515-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory chronic autoimmune disease. The treatment of RA is difficult and, in many cases, ineffective, and the arsenal of drugs is limited. Due the longevity of the disease, RA may cause extreme musculoskeletal disorders with a high impact on quality of life. Also, RA is related with severe comorbidities decreasing the life expectancy. Finally, RA has been reported to impact in economy and healthy public. In this direction, the necessity to discover new strategies to efficiently treat RA is immediate. In this direction, we have reported the use of low doses of [223Ra] RaCl2 (radium dichloride) as intra-articular injection to treat RA. Mice were post-treated with [223Ra] RaCl2 (1.48 µCi; i.a.) 24 h after zymosan stimulus. Zymosan-induced arthrithis is responsible for leucocyte recruitment (total leukocytes, neutrophils, and mononuclear cells), which were inhibited by intra-articular injection of [223Ra] RaCl2 (69%, 77%, and 66%, respectively).
Collapse
Affiliation(s)
- Luana Barbosa Corrêa
- Laboratory of Nanoradiopharmaceticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, Brazil
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, FarmanguinhosRio de Janeiro, Oswaldo Cruz Foundation, 21041361, Brazil
| | - Maria das Graças Muller de Oliveira Henriques
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, FarmanguinhosRio de Janeiro, Oswaldo Cruz Foundation, 21041361, Brazil
| | - Elaine Cruz Rosas
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, FarmanguinhosRio de Janeiro, Oswaldo Cruz Foundation, 21041361, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
9
|
Oliveira-Costa KM, Menezes GB, Paula Neto HA. Neutrophil accumulation within tissues: A damage x healing dichotomy. Biomed Pharmacother 2021; 145:112422. [PMID: 34781139 DOI: 10.1016/j.biopha.2021.112422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/09/2023] Open
Abstract
The abundance of neutrophils in human circulation, their fast mobilization from blood to tissues, along with their alleged short life-span led to the image of neutrophils as a homogeneous cell type designed to fight infections and die in the process. Additionally, their granule content and capacity to produce molecules with considerable cytotoxic potential, lead to the general belief that neutrophil activation inexorably results in side effect of extensive tissue injury. Neutrophil activation in fact causes tissue injury as an adverse effect, but it seems that this is restricted to particular pathological situations and more of an "exception to the rule". Here we review evidences arising especially from intravital microscopy studies that demonstrate neutrophils as cells endowed with sophisticated mechanisms and able to engage in complex interactions as to minimize damage and optimize their effector functions. Moreover, neutrophil infiltration may even contribute to tissue healing and repair which may altogether demand a reexamination of current anti-inflammatory therapies that have neutrophil migration and activation as a target.
Collapse
Affiliation(s)
- Karen Marques Oliveira-Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Heitor A Paula Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Xu SX, Gray-Owen SD. Gonococcal Pelvic Inflammatory Disease: Placing Mechanistic Insights Into the Context of Clinical and Epidemiological Observations. J Infect Dis 2021; 224:S56-S63. [PMID: 34396410 DOI: 10.1093/infdis/jiab227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While infection by Neisseria gonorrhoeae is often asymptomatic in women, undetected infections can ascend into the upper genital tract to elicit an inflammatory response that manifests as pelvic inflammatory disease, with the outcomes depending on the intensity and duration of inflammation and whether it is localized to the endometrial, fallopian tube, ovarian, and/or other tissues. This review examines the contribution of N. gonorrhoeae versus other potential causes of pelvic inflammatory disease by considering new insights gained through molecular, immunological, and microbiome-based analyses, and the current epidemiological burden of infection, with an aim to highlighting key areas for future study.
Collapse
Affiliation(s)
- Stacey X Xu
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Borghi SM, Mizokami SS, Carvalho TT, Rasquel-Oliveira FS, Ferraz CR, Fattori V, Hayashida TH, Peron JPS, Camilios-Neto D, Ambrosio SR, Arakawa NS, Casagrande R, Verri WA. The diterpene from Sphagneticola trilobata (L.) Pruski, kaurenoic acid, reduces lipopolysaccharide-induced peritonitis and pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113980. [PMID: 33652112 DOI: 10.1016/j.jep.2021.113980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphagneticola trilobata (L.) Pruski is a plant species belonging to the Asteraceae family. Kaurenoid acid (KA) is a diterpene metabolite and one of the active ingredients of Sphagneticola trilobata (L.) Pruski. Extracts containing KA are used in traditional medicine to treat pain, inflammation, and infection. AIM The goal of the present study was to investigate the in vivo effects of KA (1-10 mg/kg, per oral gavage) upon LPS inoculation in mice by intraperitoneal (i.p.) or intraplantar (i.pl.; subcutaneous plantar injection) routes at the dose of 200 ng (200 μL or 25 μL, respectively). METHODS In LPS paw inflammation, mechanical and thermal hyperalgesia MPO activity and oxidative imbalance (TBARS, GSH, ABTS and FRAP assays) were evaluated. In LPS peritonitis we evaluated leukocyte migration, cytokine production, oxidative stress, and NF-κB activation. RESULTS KA inhibited LPS-induced mechanical and thermal hyperalgesia, MPO activity and modulated redox status in the mice paw. Pre- and post-treatment with KA inhibited migration of neutrophils and monocytes in LPS peritonitis. KA inhibited the pro-inflammatory/hyperalgesic cytokine (e.g., TNF-α, IL-1β and IL-33) production while enhanced anti-inflammatory/analgesic cytokine IL-10 in peritoneal cavity. In agreement with the effect of KA over pro-inflammatory cytokines it inhibited oxidative stress (total ROS, superoxide production and superoxide positive cells) and NF-κB activation during peritonitis. CONCLUSION KA efficiently dampens LPS-induced peritonitis and hyperalgesia in vivo, suggesting it as a suitable candidate to control excessive inflammation and pain during gram-negative bacterial infections and bringing mechanistic explanation to the ethnopharmacological application of Sphagneticola trilobata (L.) Pruski in inflammation and infection.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil; Centro de Pesquisa Em Ciências da Saúde, Universidade Norte Do Paraná, 86041-140, Londrina, Paraná, Brazil.
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Fernanda S Rasquel-Oliveira
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Camila R Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Thiago H Hayashida
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, 86038-350, Londrina, Paraná, Brazil.
| | - Jean P S Peron
- Department of Immunology, Institute of Biomedical Sciences, Ed. Biomédicas IV, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 1730, 05508-900, São Paulo, Brazil.
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina, 86057-970, Brazil.
| | - Sergio R Ambrosio
- Núcleo de Pesquisa Em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600, Franca, São Paulo, Brazil.
| | - Nilton S Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, 86038-350, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, 86038-350, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
12
|
Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone Exert Antinociceptive Activity in the Tail-Flick and Formalin Test in Rodents and Reveal Reduced Gastrotoxicity. Int J Mol Sci 2020; 21:ijms21249685. [PMID: 33353118 PMCID: PMC7766312 DOI: 10.3390/ijms21249685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the availability of the current drug arsenal for pain management, there is still a clinical need to identify new, more effective, and safer analgesics. Based on our earlier study, newly synthesized 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 10b and 13b, seem to be promising as potential analgesics. The current study was designed to investigate whether novel derivatives attenuate nociceptive response in animals subjected to thermal or chemical noxious stimulus, and to compare this effect to reference drugs. The antinociceptive effect of novel compounds was studied using the tail-flick and formalin test. Pretreatment with novel compounds at all studied doses increased the latency time in the tail-flick test and decreased the licking time during the early phase of the formalin test. New derivatives given at the medium and high doses also reduced the late phase of the formalin test. The achieved results indicate that new derivatives dose-dependently attenuate nociceptive response in both models of pain and exert a lack of gastrotoxicity. Both studied compounds act more efficiently than indomethacin, but not morphine. Compound 13b at the high dose exerts the greatest antinociceptive effect. It may be due to the reduction of nociceptor sensitization via prostaglandin E2 and myeloperoxidase levels decrease.
Collapse
|
13
|
Oliveira FFBD, Bingana RD, Morais PAF, Oliveira SRBD, Barbosa ALDR, Chaves LDS, Alencar PDOC, Soares PMG, Souza MHLP, Freitas ALP, Barros FCN, Medeiros JVR, Damasceno ROS. Sulfated polysaccharide from Gracilaria caudata reduces hypernociception and inflammatory response during arthritis in rodents. Int J Biol Macromol 2020; 161:1061-1069. [PMID: 32531369 DOI: 10.1016/j.ijbiomac.2020.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Polysaccharide from marine alga Gracilaria caudata has potential health benefits, such as anti-inflammatory, gastroprotective and antidiarrheal effects. Here, we investigated the effect of a sulfated polysaccharide from G. caudata (SP-GC) on hypernociception and inflammatory response in arthritis models. The animals received SP-GC (3, 10 or 30 mg/kg) 1 h before tibio-tarsal injection of zymosan. Hypernociception, histopathology, edema, vascular permeability, myeloperoxidase (MPO) activity, cell influx, interleukin (IL)-1β and nitric oxide (NO) levels were evaluated in acute phase. In another protocol, animals received SP-GC (30 mg/kg) 2 h post-complete Freund's adjuvant (CFA). Hypernociception, edema and arthritis index were determined in acute, sub-chronic and chronic phases. Rota-rod test measured the motor performance. SP-GC significantly reduced, in a dose-dependent manner, the zymosan-induced hypernociception with maximal effect at 30 mg/kg. The microscopic inflammation, joint edema, MPO activity, cell influx, IL-1β and NO levels were also reduced by SP-GC. In the CFA-induced arthritis, SP-GC inhibits the hypernociception, edema and arthritic index in acute, sub-chronic and chronic phases. SP-GC did not alter the motor performance of animals. In conclusion, SP-GC exerts protective effect in models of arthritis due to the modulation of cell influx, IL-1β and NO levels, culminating in the reduction of hypernociception and edema.
Collapse
Affiliation(s)
| | - Rudy Diavila Bingana
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-275 Fortaleza, CE, Brazil
| | - Pedro Almir Feitosa Morais
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-275 Fortaleza, CE, Brazil
| | | | - André Luiz Dos Reis Barbosa
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, 64202-020 Parnaíba, PI, Brazil
| | - Luciano de Sousa Chaves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil
| | | | - Pedro Marcos Gomes Soares
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-275 Fortaleza, CE, Brazil
| | | | - Ana Lúcia Ponte Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil
| | - Francisco Clark Nogueira Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil; Departamento de Pesquisa, Pós-Graduação e Inovação, 63040-540, Instituto Federal de Educação, Ciência e Tecnologia - CE, Brazil
| | - Jand-Venes Rolim Medeiros
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, 64202-020 Parnaíba, PI, Brazil
| | | |
Collapse
|
14
|
Rasquel-Oliveira FS, Manchope MF, Staurengo-Ferrari L, Ferraz CR, Saraiva-Santos T, Zaninelli TH, Fattori V, Artero NA, Badaro-Garcia S, de Freitas A, Casagrande R, Verri WA. Hesperidin methyl chalcone interacts with NFκB Ser276 and inhibits zymosan-induced joint pain and inflammation, and RAW 264.7 macrophage activation. Inflammopharmacology 2020; 28:979-992. [PMID: 32048121 DOI: 10.1007/s10787-020-00686-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/27/2020] [Indexed: 01/29/2023]
Abstract
Arthritis can be defined as a painful musculoskeletal disorder that affects the joints. Hesperidin methyl chalcone (HMC) is a flavonoid with analgesic, anti-inflammatory, and antioxidant effects. However, its effects on a specific cell type and in the zymosan-induced inflammation are unknown. We aimed at evaluating the effects of HMC in a zymosan-induced arthritis model. A dose-response curve of HMC (10, 30, or 100 mg/kg) was performed to determine the most effective analgesic dose after intra-articular zymosan stimuli. Knee joint oedema was determined using a calliper. Leukocyte recruitment was performed by cell counting on knee joint wash as well as histopathological analysis. Oxidative stress was measured by colorimetric assays (GSH, FRAP, ABTS and NBT) and RT-qPCR (gp91phox and HO-1 mRNA expression) performed. In vitro, oxidative stress was assessed by DCFDA assay using RAW 264.7 macrophages. Cytokine production was evaluated in vivo and in vitro by ELISA. In vitro NF-κB activation was analysed by immunofluorescence. We observed HMC reduced mechanical hypersensitivity and knee joint oedema, leukocyte recruitment, and pro-inflammatory cytokine levels. We also observed a reduction in zymosan-induced oxidative stress as per increase in total antioxidant capacity and reduction in gp91phox and increase in HO-1 mRNA expression. Accordingly, total ROS production and macrophage NFκB activation were diminished. HMC interaction with NFκB p65 at Ser276 was revealed using molecular docking analysis. Thus, data presented in this work suggest the usefulness of HMC as an analgesic and anti-inflammatory in a zymosan-induced arthritis model, possibly by targeting NFκB activation in macrophages.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Marilia F Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Nayara A Artero
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Andressa de Freitas
- Departament of Physiological Sciences, Centre of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil.
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, KM 380, PO Box 10.011, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
15
|
Propargylglycine decreases neuro-immune interaction inducing pain response in temporomandibular joint inflammation model. Nitric Oxide 2019; 93:90-101. [DOI: 10.1016/j.niox.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
|
16
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Walsh CM, Hill RZ, Schwendinger-Schreck J, Deguine J, Brock EC, Kucirek N, Rifi Z, Wei J, Gronert K, Brem RB, Barton GM, Bautista DM. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. eLife 2019; 8:48448. [PMID: 31631836 PMCID: PMC6884397 DOI: 10.7554/elife.48448] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch. Chronic itch is a debilitating disorder that can last for months or years. Eczema, or atopic dermatitis, is the most common cause for chronic itch, affecting one in ten people worldwide. Many treatments for the condition are ineffective, and the exact cause of the disease is unknown, but many different types of cells are likely involved. These include skin cells and inflammation-promoting immune cells, as well as nerve cells that detect inflammation, relay itch and pain information to the brain, and regulate the immune system. Learning more about how these cells interact in eczema may help scientists find better treatments for the condition. So far, a lot of research has focused on static ‘snapshots’ of mature eczema lesions from human skin or animal models. These studies have identified abnormalities in genes or cells, but have not revealed how these genes and cells interact over time to cause chronic itch and inflammation. Now, Walsh et al. reveal that immune cells called neutrophils trigger chronic itch in eczema. The experiments involved mice with a condition that mimics eczema, and showed that removing the neutrophils in these mice alleviated their itching. They also showed that dramatic and rapid changes occur in the nervous system of mice suffering from the eczema-like condition. For example, excess nerves grow in the animals’ damaged skin, genes in the nerves that detect sensations become hyperactive, and changes occur in the spinal cord that have been linked to nerve pain. When neutrophils are absent, these changes do not take place. These findings show that neutrophils play a key role in chronic itch and inflammation in eczema. Drugs that target neutrophils, which are already used to treat other diseases, might help with chronic itch, but they would need to be tested before they can be used on people with eczema.
Collapse
Affiliation(s)
- Carolyn M Walsh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rose Z Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Jacques Deguine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Emily C Brock
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Natalie Kucirek
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ziad Rifi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jessica Wei
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.,Buck Institute for Research on Aging, Novato, United States
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
18
|
Kaliyaperumal S, Wilson K, Aeffner F, Dean C. Animal Models of Peripheral Pain: Biology Review and Application for Drug Discovery. Toxicol Pathol 2019; 48:202-219. [PMID: 31269874 DOI: 10.1177/0192623319857051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pain is a complex constellation of cognitive, unpleasant sensory, and emotional experiences that primarily serves as a survival mechanism. Pain arises in the peripheral nervous system and pain signals synapse with nerve tracts extending into the central nervous system. Several different schemes are used to classify pain, including the underlying mechanism, tissues primarily affected, and time-course. Numerous animal models of pain, which should be employed with appropriate Institutional Animal Care and Use approvals, have been developed to elucidate pathophysiology mechanisms and aid in identification of novel therapeutic targets. The variety of available models underscores the observations that pain phenotypes are driven by several distinct mechanisms. Pain outcome measurement encompasses both reflexive (responses to heat, cold, mechanical and electrical stimuli) and nonreflexive (spontaneous pain responses to stimuli) behaviors. However, the question of translatability to human pain conditions and potential treatment outcomes remains a topic of continued scrutiny. In this review we discuss the different types of pain and their mechanisms and pathways, available rodent pain models with an emphasis on type of pain stimulations and pain outcome measures and discuss the role of pathologists in assessing and validating pain models.
Collapse
Affiliation(s)
| | | | | | - Charles Dean
- Amgen, Inc, Thousand Oaks, CA, USA *Both authors equally contributed to the manuscript
| |
Collapse
|
19
|
Spiller F, Oliveira Formiga R, Fernandes da Silva Coimbra J, Alves-Filho JC, Cunha TM, Cunha FQ. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide 2019; 89:32-40. [PMID: 31051258 DOI: 10.1016/j.niox.2019.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/22/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is produced by enzymatic activity of neuronal (nNOS), endothelial (eNOS), and inducible nitric oxide synthase (iNOS) and modulates a broad spectrum of physiological and pathophysiological conditions. The iNOS isoform is positively regulated at transcriptional level and produces high levels of NO in response to inflammatory mediators and/or to pattern recognition receptor signaling, such as Toll-like receptors. In this review, we compiled the main contributions of our group for understanding of the role of NO in sepsis and arthritis outcome and the peripheral contributions of NO to inflammatory pain development. Although neutrophil iNOS-derived NO is necessary for bacterial killing, systemic production of high levels of NO impairs neutrophil migration to infections through inhibiting neutrophil adhesion on microcirculation and their locomotion. Moreover, neutrophil-derived NO contributes to multiple organ dysfunction in sepsis. In arthritis, NO is chief for bacterial clearance in staphylococcal-induced arthritis; however, it contributes to articular damage and bone mass degradation. NO produced in inflammatory sites also downmodulates pain. The mechanism involved in analgesic effect and inhibition of neutrophil migration is dependent on the activation of the classical sGC/cGMP/PKG pathway. Despite the increasing number of studies performed after the identification of NO as an endothelium-derived relaxing factor, the underlying mechanisms of NO in inflammatory diseases remain unclear.
Collapse
Affiliation(s)
- Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil.
| | | | | | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeiro Preto Medical School, University of Sao Paulo, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeiro Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
20
|
Cook AD, Lee MC, Saleh R, Khiew HW, Christensen AD, Achuthan A, Fleetwood AJ, Lacey DC, Smith JE, Förster I, Hamilton JA. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight 2018; 3:99249. [PMID: 29563337 DOI: 10.1172/jci.insight.99249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
TNF and granulocyte macrophage-colony stimulating factor (GM-CSF) have proinflammatory activity and both contribute, for example, to rheumatoid arthritis pathogenesis. We previously identified a new GM-CSF→JMJD3 demethylase→interferon regulatory factor 4 (IRF4)→CCL17 pathway that is active in monocytes/macrophages in vitro and important for inflammatory pain, as well as for arthritic pain and disease. Here we provide evidence for a nexus between TNF and this pathway, and for TNF and GM-CSF interdependency. We report that the initiation of zymosan-induced inflammatory pain and zymosan-induced arthritic pain and disease are TNF dependent. Once arthritic pain and disease are established, blockade of GM-CSF or CCL17, but not of TNF, is still able to ameliorate them. TNF is required for GM-CSF-driven inflammatory pain and for initiation of GM-CSF-driven arthritic pain and disease, but not once they are established. TNF-driven inflammatory pain and TNF-driven arthritic pain and disease are dependent on GM-CSF and mechanistically require the same downstream pathway involving GM-CSF→CCL17 formation via JMJD3-regulated IRF4 production, indicating that GM-CSF and CCL17 can mediate some of the proinflammatory and algesic actions of TNF. Given we found that TNF appears important only early in arthritic pain and disease progression, targeting a downstream mediator, such as CCL17, which appears to act throughout the course of disease, could be effective at ameliorating chronic inflammatory conditions where TNF is implicated.
Collapse
Affiliation(s)
- Andrew D Cook
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ming-Chin Lee
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Reem Saleh
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Hsu-Wei Khiew
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anne D Christensen
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Adrian Achuthan
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew J Fleetwood
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Derek C Lacey
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Julia E Smith
- Cytokine, Chemokine and Complement DPU, Immunoinflammation TA, GSK Medicines Research Centre, Stevenage, Hertfordshire, United Kingdom
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute University of Bonn, Bonn, Germany
| | - John A Hamilton
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Guazelli CFS, Staurengo-Ferrari L, Zarpelon AC, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Vicentini FTMC, Vignoli JA, Camilios-Neto D, Georgetti SR, Baracat MM, Casagrande R, Verri WA. Quercetin attenuates zymosan-induced arthritis in mice. Biomed Pharmacother 2018; 102:175-184. [PMID: 29554596 DOI: 10.1016/j.biopha.2018.03.057] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by articular lesions, recruitment of inflammatory cells and increased levels of pro-inflammatory cytokine. The intra-articular administration of zymosan is an experimental model that promotes inflammatory parameters resembling RA. Therefore, this model was used to investigate the efficacy of quercetin as a treatment of articular inflammation. Treatment with quercetin dose-dependently reduced zymosan-induced hyperalgesia, articular edema and the recruitment of neutrophils to the knee joint cavity. Histological analysis confirmed that quercetin inhibited zymosan-induced arthritis. The treatment with quercetin also inhibited zymosan-induced depletion of reduced glutathione (GSH) levels, TNFα and IL-1β production, and gp91phox, prepro-endothelin-1 (preproET-1), and cyclooxygenase-2 mRNA expression. These molecular effects of quercetin were related to the inhibition of the nuclear factor kappa-B and induction of Nuclear factor erythroid 2- related factor (Nrf2)/home oxygenase (HO-1) pathway. Thus, quercetin exerted anti-inflammatory, analgesic and antioxidant effects in experimental arthritis, suggesting quercetin is a possible candidate for arthritis treatment.
Collapse
Affiliation(s)
- Carla F S Guazelli
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil
| | - Fabiana T M C Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 728, Lagoinha, 14095-250 Ribeirão Preto, Brazil
| | - Josiane A Vignoli
- Departamento de Bioquímica e Biotecnologia - Centro de Ciências Exatas, Universidade Estadual de Londrina 86057-970, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia - Centro de Ciências Exatas, Universidade Estadual de Londrina 86057-970, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina 86038-350, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina 86038-350, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina 86038-350, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86051-990, Brazil.
| |
Collapse
|
22
|
Zarpelon AC, Fattori V, Souto FO, Pinto LG, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Turato WM, Cunha TM, da Costa FB, Cunha FQ, Casagrande R, Arakawa NS, Verri WA. The Sesquiterpene Lactone, Budlein A, Inhibits Antigen-Induced Arthritis in Mice: Role of NF-κB and Cytokines. Inflammation 2017; 40:2020-2032. [DOI: 10.1007/s10753-017-0642-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Santos DFDSD, Melo Aquino BD, Jorge CO, Azambuja GD, Schiavuzzo JG, Krimon S, Neves JDS, Parada CA, Oliveira-Fusaro MCG. Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms. Neuroscience 2017; 358:58-69. [PMID: 28673715 DOI: 10.1016/j.neuroscience.2017.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/12/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022]
Abstract
Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. We also evaluated the involvement of neutrophil migration, bradykinin, sympathetic amines and prostanoids. A single session of sustained static contraction of gastrocnemius muscle induced acute mechanical muscle hyperalgesia without affecting locomotor activity and with no evidence of structural damage in muscle tissue. Static contraction increased levels of creatine kinase but not lactate dehydrogenase, and induced neutrophil migration. Dexamethasone (glucocorticoid anti-inflammatory agent), DALBK (bradykinin B1 antagonist), Atenolol (β1 adrenoceptor antagonist), ICI 118,551 (β2 adrenoceptor antagonist), indomethacin (cyclooxygenase inhibitor), and fucoidan (non-specific selectin inhibitor) all reduced static contraction-induced muscle hyperalgesia; however, the bradykinin B2 antagonist, bradyzide, did not have an effect on static contraction-induced muscle hyperalgesia. Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg9-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain.
Collapse
Affiliation(s)
- Diogo Francisco da Silva Dos Santos
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Bruna de Melo Aquino
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Carolina Ocanha Jorge
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Graciana de Azambuja
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Jalile Garcia Schiavuzzo
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Suzy Krimon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Monteiro Lobato 255, Campinas, Sao Paulo, Brazil
| | - Juliana Dos Santos Neves
- Department of Morphology, Piracicaba Dental School, State University of Campinas, Limeira 901, Piracicaba, Sao Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Monteiro Lobato 255, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
24
|
Abstract
Neutrophil swarms protect healthy tissues by sealing off sites of infection. In the absence of swarming, microbial invasion of surrounding tissues can result in severe infections. Recent observations in animal models have shown that swarming requires rapid neutrophil responses and well-choreographed neutrophil migration patterns. However, in animal models physical access to the molecular signals coordinating neutrophil activities during swarming is limited. Here, we report the development and validation of large microscale arrays of zymosan-particle clusters for the study of human neutrophils during swarming ex vivo. We characterized the synchronized swarming of human neutrophils under the guidance of neutrophil-released chemokines, and measured the mediators released at different phases of human-neutrophil swarming against targets simulating infections. We found that the network of mediators coordinating human-neutrophil swarming includes start and stop signals, proteolytic enzymes and enzyme inhibitors, as well as modulators of activation of other immune and non-immune cells. We also show that the swarming behavior of neutrophils from patients following major trauma is deficient and gives rise to smaller swarms than those of neutrophils from healthy individuals.
Collapse
|
25
|
Dias RG, Sampaio SC, Sant'Anna MB, Cunha FQ, Gutiérrez JM, Lomonte B, Cury Y, Picolo G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A 2: activation of endogenous phospholipases contributes to the pronociceptive effect. J Venom Anim Toxins Incl Trop Dis 2017; 23:18. [PMID: 28344594 PMCID: PMC5364601 DOI: 10.1186/s40409-017-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
Collapse
Affiliation(s)
- Renata Gonçalves Dias
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Healthy Sciences Institute, Paulista University (UNIP), São Paulo, SP Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP Brazil.,Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Morena Brazil Sant'Anna
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yara Cury
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Gisele Picolo
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
26
|
Borghi SM, Fattori V, Conchon-Costa I, Pinge-Filho P, Pavanelli WR, Verri WA. Leishmania infection: painful or painless? Parasitol Res 2016; 116:465-475. [PMID: 27933392 DOI: 10.1007/s00436-016-5340-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The complex life cycle and immunopathological features underpinning the interaction of Leishmania parasites and their mammalian hosts poses frequent poorly explored and inconclusively resolved questions. The altered nociceptive signals over the course of leishmaniasis remain an intriguing issue for nociceptive and parasitology researchers. Experimental investigations have utilized behavioral, morphological, and neuro-immune approaches in the study of experimental cutaneous leishmaniasis (CL). The data generated indicates new venues for the study of the pathological characteristics of nociceptive processing in this parasitic disease. Leishmania-induced pain may be easily observed in mice and rats. However, nociceptive data is more complex in human investigations, including the occurrence of painless lesions in mucocutaneous and cutaneous leishmaniasis. Data from recent decades indicate that humans can also be affected by pain-related symptoms, often distinct from the region of body infection. The molecular and cellular mechanisms underlying such variable nociceptive states in humans during the course of leishmaniasis are an active area of research. The present article reviews nociception in leishmaniasis, including in experimental models of CL and clinical reports.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
27
|
Esculetin reduces leukotriene B4 level in plasma of rats with adjuvant-induced arthritis. Reumatologia 2016; 54:161-164. [PMID: 27826169 PMCID: PMC5090023 DOI: 10.5114/reum.2016.62469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
Objectives Esculetin (6,7-dihydroxycoumarin) is a natural coumarin with anti-oxidant, anti-inflammatory and anti-nociceptive activity. It acts as a potent inhibitor of lipoxygenases (5-LOX and 12-LOX) and decreases the production of matrix metalloproteinases (MMP-1, MMP-3 and MMP-9). Because both inhibition of lipoxygenases and inhibition of matrix metalloproteinases are effective strategies in the treatment of rheumatoid arthritis, we investigated whether esculetin may be effective in adjuvant-induced arthritis in rats. Material and methods The study was performed on male Lewis rats, in the adjuvant-induced arthritis model. Rats were divided into two groups: control (treated with 1% methylcellulose) and experimental (treated with esculetin – 10 mg/kg ip.). The tested compound was administered for 5 consecutive days starting on the 21st day after induction of arthritis. Each group consisted of 7 animals. After 5 days of treatment, rats were anesthetized. The concentration of leukotriene B4 (LTB4) in plasma was determined by a competitive enzyme immunoassay. Results The LTB4 level in plasma of rats with adjuvant-induced arthritis is increased in comparison to rats without inflammation (362 ±34 vs. 274 ±15 pg/ml, p < 0.01, respectively). Five-day treatment with esculetin in adjuvant-induced arthritis rats decreases the LTB4 level to a level comparable with rats without inflammation (284 ±23 pg/ml, p < 0.01). Conclusions LTB4 is the most potent chemotactic agent influencing neutrophil migration into the joint. It is known that its level in serum of patients with active rheumatoid arthritis is increased and correlates with disease severity. Some other lipoxygenase inhibitors have already been tested as potential drug candidates in clinical and preclinical trials for rheumatoid arthritis (Zileuton, PF-4191834). Because esculetin decreases the LTB4 level in plasma of rats in adjuvant-induced arthritis, it may also be considered as an attractive drug candidate for patients with rheumatoid arthritis.
Collapse
|
28
|
Spilker ME, Chung H, Visswanathan R, Bagrodia S, Gernhardt S, Fantin VR, Ellies LG. Leveraging model-based study designs and serial micro-sampling techniques to understand the oral pharmacokinetics of the potent LTB4 inhibitor, CP-105696, for mouse pharmacology studies. Xenobiotica 2016; 47:600-606. [PMID: 27435693 DOI: 10.1080/00498254.2016.1207112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Leukotriene B4 (LTB4) is a proinflammatory mediator important in the progression of a number of inflammatory diseases. Preclinical models can explore the role of LTB4 in pathophysiology using tool compounds, such as CP-105696, that modulate its activity. To support preclinical pharmacology studies, micro-sampling techniques and mathematical modeling were used to determine the pharmacokinetics of CP-105696 in mice within the context of systemic inflammation induced by a high-fat diet (HFD). 2. Following oral administration of doses > 35 mg/kg, CP-105696 kinetics can be described by a one-compartment model with first order absorption. The compound's half-life is 44-62 h with an apparent volume of distribution of 0.51-0.72 L/kg. Exposures in animals fed an HFD are within 2-fold of those fed a normal chow diet. Daily dosing at 100 mg/kg was not tolerated and resulted in a >20% weight loss in the mice. 3. CP-105696's long half-life has the potential to support a twice weekly dosing schedule. Given that most chronic inflammatory diseases will require long-term therapies, these results are useful in determining the optimal dosing schedules for preclinical studies using CP-105696.
Collapse
Affiliation(s)
- Mary E Spilker
- a Pfizer Worldwide Research and Development, La Jolla Laboratories , San Diego , CA , USA
| | - Heekyung Chung
- b Department of Medicine , University of California San Diego, La Jolla, CA , USA
| | - Ravi Visswanathan
- a Pfizer Worldwide Research and Development, La Jolla Laboratories , San Diego , CA , USA
| | - Shubha Bagrodia
- a Pfizer Worldwide Research and Development, La Jolla Laboratories , San Diego , CA , USA
| | | | | | - Lesley G Ellies
- e Department of Pathology , University of California San Diego, La Jolla, CA , USA
| |
Collapse
|
29
|
Correa LB, Pádua TA, Seito LN, Costa TEMM, Silva MA, Candéa ALP, Rosas EC, Henriques MG. Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages. JOURNAL OF NATURAL PRODUCTS 2016; 79:1554-1566. [PMID: 27227459 DOI: 10.1021/acs.jnatprod.5b01115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methyl gallate (MG) is a prevalent phenolic acid in the plant kingdom, and its presence in herbal medicines might be related to its remarkable biological effects, such as its antioxidant, antitumor, and antimicrobial activities. Although some indirect evidence suggests anti-inflammatory activity for MG, there are no studies demonstrating this effect in animal models. Herein, we demonstrated that MG (0.7-70 mg/kg) inhibited zymosan-induced experimental arthritis in a dose-dependent manner. The oral administration of MG (7 mg/kg) attenuates arthritis induced by zymosan, affecting edema formation, leukocyte migration, and the production of inflammatory mediators (IL-1β, IL-6, TNF-α, CXCL-1, LTB4, and PGE2). Pretreatment with MG inhibited in vitro neutrophil chemotaxis elicited by CXCL-1, as well as the adhesion of these cells to TNF-α-primed endothelial cells. MG also impaired zymosan-stimulated macrophages by inhibiting IL-6 and NO production, COX-2 and iNOS expression, and intracellular calcium mobilization. Thus, MG is likely to present an anti-inflammatory effect by targeting multiple cellular events such as the production of various inflammatory mediators, as well as leukocyte activation and migration.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Tatiana Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Thadeu Estevam Moreira Maramaldo Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Magaiver Andrade Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - André Luis Peixoto Candéa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Pinho-Ribeiro FA, Fattori V, Zarpelon AC, Borghi SM, Staurengo-Ferrari L, Carvalho TT, Alves-Filho JC, Cunha FQ, Cunha TM, Casagrande R, Verri WA. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress. Inflammopharmacology 2016; 24:97-107. [PMID: 27160222 DOI: 10.1007/s10787-016-0266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Jose C Alves-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Fernando Q Cunha
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Hospital Universitário, Universidade Estadual de Londrina, Av. Robert Koch, 60, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
31
|
Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA. Naringenin reduces inflammatory pain in mice. Neuropharmacology 2016; 105:508-519. [PMID: 26907804 DOI: 10.1016/j.neuropharm.2016.02.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/23/2016] [Accepted: 02/15/2016] [Indexed: 11/29/2022]
Abstract
Naringenin is a flavonoid widely consumed by humans that present anti-inflammatory activity and low toxicity. Recently, the analgesic effect of naringenin has been demonstrated in neuropathic pain models. Herein, we tested the analgesic effects of naringenin in several models of inflammatory pain. Mice received treatment with naringenin (16.7-150 mg/kg, per oral), or with the controls anti-inflammatory drugs indomethacin (5 mg/kg, intraperitoneal) or dipyrone (80 mg/kg, intraperitoneal) prior the inflammatory stimuli injection. For acute pain, we used acetic acid- and PBQ-induced visceral pain (abdominal writhings), and formalin-, capsaicin-, and CFA-induced paw flinching and licking. By using an electronic version of von Frey filaments, we also investigated the effects of naringenin in pain intensity to a mechanical stimulus (mechanical hyperalgesia) after carrageenan, capsaicin, CFA, or PGE2 intraplantar injection. Naringenin (50 mg/kg) reduced acute pain behaviors induced by all tested stimuli, including both phases of formalin test, suggesting a direct nociceptor modulatory effect of this compound besides its anti-inflammatory activity. Accordingly, naringenin also inhibited the increased sensitivity to mechanical stimulus induced by carrageenan, capsaicin, and PGE2. Daily treatment with naringenin during 7 days also reduced CFA-induced mechanical hyperalgesia without gastric or hepatic toxicity. The mechanisms of naringenin involve the inhibition of carrageenan-induced oxidative stress, hyperalgesic cytokines (IL-33, TNF-α, and IL-1β) production and NF-κB activation in the paw skin. Naringenin also activated the analgesic NO-cyclic GMP-PKG-ATP sensitive K(+) channel signaling pathway to inhibit carrageenan-induced mechanical hyperalgesia and neutrophil recruitment. These results suggest that naringenin inhibits both inflammatory pain and neurogenic inflammation.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Marília F Manchope
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, 86039440 Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil.
| |
Collapse
|
32
|
Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol Res 2016; 112:84-98. [PMID: 26826283 DOI: 10.1016/j.phrs.2016.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Abstract
The inflammatory response in the joint can induce an intense accumulation of leukocytes in the tissue that frequently results in severe local damage and loss of function. Neutrophils are essential cells to combat many pathogens, but their arsenal can contribute or aggravate articular inflammation. Here we summarized some aspects of neutrophil biology, their role in inflammation and indicated how the modulation of neutrophil functions could be useful for the treatment of different forms of arthritis.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
33
|
Rosas EC, Correa LB, Pádua TDA, Costa TEMM, Mazzei JL, Heringer AP, Bizarro CA, Kaplan MAC, Figueiredo MR, Henriques MG. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:490-8. [PMID: 26453933 DOI: 10.1016/j.jep.2015.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schinus terebinthifolius is a species of plant from the Anacardiaceae family, which can be found in different regions of Brazil. Schinus is popularly known as aroeirinha, aroeira-vermelha, or Brazilian pepper. In folk medicine, S. terebinthifolius is used for several disorders, including inflammatory conditions, skin wounds, mucosal membrane ulcers, respiratory problems, gout, tumors, diarrhea and arthritis. According to chemical analyses, gallic acid, methyl gallate and pentagalloylglucose are the main components of hydroalcoholic extracts from S. terebinthifolius leaves. In the present study, we demonstrated the ability of a hydroalcoholic extract to inhibit cell migration in arthritis and investigated the mechanisms underlying this phenomenon. MATERIALS AND METHODS The anti-inflammatory effect of S. terebinthifolius hydroalcoholic leaf extract (ST-70) was investigated in a zymosan-induced experimental model of inflammation. Male Swiss and C57Bl/6 mice received zymosan (100 µg/cavity) via intra-thoracic (i.t.) or intra-articular (i.a.) injection after oral pre-treatment with ST-70. The direct action of ST-70 on neutrophils was evaluated via chemotaxis. RESULTS ST-70 exhibited a dose-dependent effect in the pleurisy model. The median effective dose (ED50) was 100mg/kg, which inhibited 70% of neutrophil accumulation when compared with the control group. ST-70 reduced joint diameter and neutrophil influx for synovial tissues at 6h and 24h in zymosan-induced arthritis. Additionally, ST-70 inhibited synovial interleukin (IL)-6, IL-1β, keratinocyte-derived chemokine (CXCL1/KC) and Tumor Necrosis Factor (TNF)-α production at 6h and CXCL1/KC and IL-1β production at 24h. The direct activity of ST-70 on neutrophils was observed via the impairment of CXCL1/KC-induced chemotaxis in neutrophils. Oral administration of ST-70 did not induce gastric damage. Daily administration for twenty days did not kill any animals. In contrast, similar administrations of diclofenac induced gastric damage and killed all animals by the fifth day. CONCLUSIONS Our results demonstrated significant anti-inflammatory effects of ST-70, suggesting a putative use of this herb for the development of phytomedicines to treat inflammatory diseases, such as joint inflammation.
Collapse
Affiliation(s)
- Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| | - Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Tatiana de Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thadeu Estevam Moreira Maramaldo Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - José Luiz Mazzei
- Analytical Center, Farmanguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Alan Patrick Heringer
- Natural Products Laboratory, Farmanguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Bizarro
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | - Maria Raquel Figueiredo
- Natural Products Laboratory, Farmanguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
de Oliveira FFB, de Araújo JCB, Pereira AF, Brito GAC, Gondim DV, Ribeiro RDA, de Menezes IRA, Vale ML. Antinociceptive and anti-inflammatory effects of Caryocar coriaceum Wittm fruit pulp fixed ethyl acetate extract on zymosan-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:452-463. [PMID: 26341615 DOI: 10.1016/j.jep.2015.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/14/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
The ethyl acetate extract from the fruit pulp of Caryocar coriaceum Wittm (Caryocaraceae), popularly known as pequi, has wide applications in popular medicine. Preclinical tests have demonstrated the therapeutic properties of the oil. We investigated the antinociceptive and anti-inflammatory effects of Pequi C. coriaceum Wittm ethyl acetate extract (PCCO) on zymosan-induced arthritis in rat knee joint. The animals were pretreated with PCCO for 7 consecutive days or with a single dose. Paw elevation time (PET), leukocyte infiltration, myeloperoxidase activity (MPO) and cytokine levels were assessed 4h after zymosan injection. Synovial tissue was harvested for immunohistochemical analysis, edema and vascular permeability. We observed a significant decrease in PET with PCCO pretreatment. PCCO showed a significant reduction of leukocyte migration and a decrease in MPO. Decreases were observed in cytokine release in the synovial fluid and TNF-α and cyclooxygenase-1 immunostaining in synovial tissue. Edema was inhibited by treatment with all doses of PCCO. The data suggest that PCCO exerts antinociceptive and anti-inflammatory effects on arthritis in rats.
Collapse
Affiliation(s)
- Francisco Fábio Bezerra de Oliveira
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Laboratório de Farmacologia da Inflamação e do Câncer, Fortaleza, CE, Brazil
| | - Joana Cláudia Bezerra de Araújo
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Laboratório de Farmacologia da Inflamação e do Câncer, Fortaleza, CE, Brazil
| | - Anamaria Falcão Pereira
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Laboratório de Farmacologia da Inflamação e do Câncer, Fortaleza, CE, Brazil
| | - Gerly Anne Castro Brito
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Laboratório de Farmacologia da Inflamação e do Câncer, Fortaleza, CE, Brazil; Programa de Pós-Graduação em Ciências Morfofuncionais, Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Delane Viana Gondim
- Programa de Pós-Graduação em Ciências Morfofuncionais, Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ronaldo de Albuquerque Ribeiro
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Laboratório de Farmacologia da Inflamação e do Câncer, Fortaleza, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Programa de Pós-Graduação em Bioprospecção Molecular, Departamento de Química Biológica, Universidade Regional do Cariri, Laboratório de Farmacologia e Química Molecular, Crato, CE, Brazil
| | - Mariana Lima Vale
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Laboratório de Farmacologia da Inflamação e do Câncer, Fortaleza, CE, Brazil; Programa de Pós-Graduação em Ciências Morfofuncionais, Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
35
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
36
|
Calixto-Campos C, Carvalho TT, Hohmann MSN, Pinho-Ribeiro FA, Fattori V, Manchope MF, Zarpelon AC, Baracat MM, Georgetti SR, Casagrande R, Verri WA. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice. JOURNAL OF NATURAL PRODUCTS 2015; 78:1799-808. [PMID: 26192250 DOI: 10.1021/acs.jnatprod.5b00246] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-β-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Cássia Calixto-Campos
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Thacyana T Carvalho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Miriam S N Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Marília F Manchope
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina , 86039440 Londrina, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina , 86039440 Londrina, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina , 86039440 Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina , 86057970 Londrina, Brazil
| |
Collapse
|
37
|
Serafim KGG, Navarro SA, Zarpelon AC, Pinho-Ribeiro FA, Fattori V, Cunha TM, Alves-Filho JC, Cunha FQ, Casagrande R, Verri WA. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1211-21. [PMID: 26246053 DOI: 10.1007/s00210-015-1160-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/27/2015] [Indexed: 01/24/2023]
Abstract
Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.
Collapse
Affiliation(s)
- Karla G G Serafim
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Suelen A Navarro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Hospital Universitário, Universidade Estadual de Londrina, Av. Robert Koch, 60, Londrina, Paraná, 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR445 KM380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
38
|
Maioli NA, Zarpelon AC, Mizokami SS, Calixto-Campos C, Guazelli CFS, Hohmann MSN, Pinho-Ribeiro FA, Carvalho TT, Manchope MF, Ferraz CR, Casagrande R, Verri WA. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. ACTA ACUST UNITED AC 2015; 48:321-31. [PMID: 25714890 PMCID: PMC4418362 DOI: 10.1590/1414-431x20144187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
Abstract
It is currently accepted that superoxide anion (O2•−) is an important mediator in pain and inflammation. The role of
superoxide anion in pain and inflammation has been mainly determined indirectly by
modulating its production and inactivation. Direct evidence using potassium
superoxide (KO2), a superoxide anion donor, demonstrated that it induced
thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be
determined whether KO2 is capable of inducing other inflammatory and
nociceptive responses attributed to superoxide anion. Therefore, in the present
study, we investigated the nociceptive and inflammatory effects of KO2.
The KO2-induced inflammatory responses evaluated in mice were: mechanical
hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot
plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt
pain-like behaviors (flinches, time spent licking and writhing score), leukocyte
recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative
PCR). Administration of KO2 induced mechanical hyperalgesia, thermal
hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching,
and paw licking in a dose-dependent manner. KO2 also induced
time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive,
inflammatory, and oxidative stress components of KO2-induced responses
were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid),
and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In
conclusion, the well-established superoxide anion donor KO2 is a valuable
tool for studying the mechanisms and pharmacological susceptibilities of superoxide
anion-triggered nociceptive and inflammatory responses ranging from mechanical and
thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte
recruitment.
Collapse
Affiliation(s)
- N A Maioli
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - A C Zarpelon
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - S S Mizokami
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - C Calixto-Campos
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - C F S Guazelli
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - M S N Hohmann
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - F A Pinho-Ribeiro
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - T T Carvalho
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - M F Manchope
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - C R Ferraz
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - R Casagrande
- Centro de Ciências da Saúde, Hospital Universitário, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - W A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| |
Collapse
|
39
|
Effect of gedunin on acute articular inflammation and hypernociception in mice. Molecules 2015; 20:2636-57. [PMID: 25654532 PMCID: PMC6272452 DOI: 10.3390/molecules20022636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/24/2015] [Indexed: 12/20/2022] Open
Abstract
Gedunin, a natural limonoid from Meliaceae species, has been previously described as an antiinflammatory compound in experimental models of allergic inflammation. Here, we report the antiinflammatory and antinociceptive effects of gedunin in an acute model of articular inflammation induced by zymosan (500 μg/cavity; intra-articular) in C57BL/6 mice. Intraperitoneal (i.p.) pretreatment with gedunin (0.005–5 mg/kg) impaired zymosan-induced edema formation, neutrophil accumulation and hypernociception in mouse knee joints, due to decreased expression of preproET-1 mRNA and production of LTB4, PGE2, TNF-α and IL-6. Mouse post-treatment with gedunin (0.05 mg/kg; i.p.) 1 and 6 h after stimulation also impaired articular inflammation, by reverting edema formation, neutrophil accumulation and the production of lipid mediators, cytokines and endothelin. In addition, gedunin directly modulated the functions of neutrophils and macrophages in vitro. The pre-incubation of neutrophil with gedunin (100 µM) impaired shape change, adhesion to endothelial cells, chemotaxis and lipid body formation triggered by different stimuli. Macrophage pretreatment with gedunin impaired intracellular calcium mobilization, nitric oxide production, inducible nitric oxide synthase expression and induced the expression of the antiinflammatory chaperone heat shock protein 70. Our results demonstrate that gedunin presents remarkable antiinflammatory and anti-nociceptive effects on zymosan-induced inflamed knee joints, modulating different cell populations.
Collapse
|
40
|
Rzodkiewicz P, Gasinska E, Maslinski S, Bujalska-Zadrozny M. Antinociceptive properties of esculetin in non-inflammatory and inflammatory models of pain in rats. Clin Exp Pharmacol Physiol 2015; 42:213-9. [DOI: 10.1111/1440-1681.12346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Przemyslaw Rzodkiewicz
- Department of Biochemistry and Molecular Biology; Institute of Rheumatology; Warsaw Poland
- Department of Pharmacodynamics; Centre for Preclinical Research and Technology; Medical University of Warsaw; Warsaw Poland
| | - Emilia Gasinska
- Department of Pharmacodynamics; Centre for Preclinical Research and Technology; Medical University of Warsaw; Warsaw Poland
| | - Slawomir Maslinski
- Department of General and Experimental Pathology; Medical University of Warsaw; Warsaw Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics; Centre for Preclinical Research and Technology; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
41
|
Staurengo-Ferrari L, Mizokami SS, Fattori V, Silva JJ, Zanichelli PG, Georgetti SR, Baracat MM, da França LG, Pavanelli WR, Casagrande R, Verri WA. The ruthenium nitric oxide donor, [Ru(HEDTA)NO], inhibits acute nociception in mice by modulating oxidative stress, cytokine production and activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1053-68. [PMID: 25116441 DOI: 10.1007/s00210-014-1030-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Nitric oxide plays an important role in various biological processes including antinociception. The control of its local concentration is crucial for obtaining the desired effect and can be achieved with exogenous nitric oxide-carriers such as ruthenium complexes. Therefore, we evaluated the analgesic effect and mechanism of action of the ruthenium nitric oxide donor [Ru(HEDTA)NO] focusing on the role of cytokines, oxidative stress and activation of the cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway. It was observed that [Ru(HEDTA)NO] inhibited in a dose-dependent (1-10 mg/kg) manner the acetic acid-induced writhing response. At the dose of 1 mg/kg, [Ru(HEDTA)NO] inhibited the phenyl-p-benzoquinone-induced writhing response, and formalin- and complete Freund's adjuvant-induced licking and flinching responses. Systemic and local treatments with [Ru(HEDTA)NO] also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity in paw skin samples. Mechanistically, [Ru(HEDTA)NO] inhibited carrageenin-induced production of the hyperalgesic cytokines tumor necrosis factor-α and interleukin-1β, and decrease of reduced glutathione levels. Furthermore, the inhibitory effect of [Ru(HEDTA)NO] in the carrageenin-induced hyperalgesia and myeloperoxidase activity was prevented by the treatment with ODQ (soluble guanylyl cyclase inhibitor), KT5823 (protein kinase G inhibitor) and glybenclamide (ATP-sensitive potassium channel inhibitor), indicating that [Ru(HEDTA)NO] inhibits inflammatory hyperalgesia by activating the cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that [Ru(HEDTA)NO] exerts its analgesic effect in inflammation by inhibiting pro-nociceptive cytokine production, oxidative imbalance and activation of the nitric oxide/cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway in mice.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hong Y, Kim H, Lee Y, Lee S, Kim K, Jin Y, Lee SR, Chang KT, Hong Y. Salutary effects of melatonin combined with treadmill exercise on cartilage damage. J Pineal Res 2014; 57:53-66. [PMID: 24816289 DOI: 10.1111/jpi.12143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/05/2014] [Indexed: 01/21/2023]
Abstract
Osteoarthritis (OA) is a major cause of disability in the adult population. The purpose of this study was to evaluate the effects of melatonin with graded dosage on extracellular matrix synthesis and cellular death in response to cartilage damage in vitro and in vivo. TNF-α reduced the viability of primary cultured chondrocytes and extracellular matrix protein, but melatonin at concentrations of 1 μm and 1 nm restored them. Rats with knee instability induced by intra-articular collagenase were used for the in vivo study. Joint parameters were significantly augmented in the collagenase injection-only group but not in the melatonin-alone or melatonin+exercise groups, as cartilage degeneration progressed. Serum TNF-α and IL-6 were upregulated by collagenase injection, which was attenuated by melatonin with and without exercise in the early phase. TGF-β1 mRNA was either conserved or enhanced by melatonin with and without exercise at the early phase. In particular, melatonin combined with exercise dramatically decreased the expression of not only catabolic mediators but also cellular death markers with lower mineralization. At the advanced phase, prolonged melatonin treatment promoted mineralization through caspase-3-mediated chondrocyte apoptosis. However, co-intervention induced extracellular matrix remodeling through increases in IL-6, EPAS-1, and MMP-13. Reconstructed micro-CT images showed that collagenase injection induced subchondral bone erosion, formation of parameniscal osteophytes, and reduction of trabecular bone thickness regardless of the intervention, which was minimized by combined intervention. In conclusion, we suggest that melatonin with treadmill exercise may have both preventive and synergistic effects on rescue from cartilage degeneration and is more effective in the initial phase.
Collapse
Affiliation(s)
- Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea; Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea; Ubiquitous Healthcare Research Center, Inje University, Gimhae, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Calil IL, Zarpelon AC, Guerrero ATG, Alves-Filho JC, Ferreira SH, Cunha FQ, Cunha TM, Verri WA. Lipopolysaccharide induces inflammatory hyperalgesia triggering a TLR4/MyD88-dependent cytokine cascade in the mice paw. PLoS One 2014; 9:e90013. [PMID: 24595131 PMCID: PMC3940714 DOI: 10.1371/journal.pone.0090013] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/29/2014] [Indexed: 01/18/2023] Open
Abstract
Inflammatory pain can be triggered by different stimuli, such as trauma, radiation, antigen and infection. In a model of inflammatory pain caused by infection, injection in the mice paw of lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, produces mechanical hyperalgesia. We identify here the TLR4 linked signaling pathways that elicit this response. Firstly, LPS paw injection in wild type (WT) mice produced mechanical hyperalgesia that was not altered in TRIF-/- mice. On the other hand, this response was absent in TLR4 mutant and MyD88 null mice and reduced in TNFR1 null mice. Either an IL-1 receptor antagonist, anti-KC/CXCL1 antibody, indomethacin or guanethidine injection also lessened this response. Moreover, LPS-induced time dependent increases in TNF-α, KC/CXCL1 and IL-1β expression in the mice paw, which were absent in TLR4 mutant and MyD88 null mice. Furthermore, in TNFR1 deficient mice, the LPS-induced rises in KC/CXCL1 and IL-1β release were less than in their wild type counterpart. LPS also induced increase of myeloperoxidase activity in the paw skin, which was inhibited in TLR4 mutant and MyD88 null mice, and not altered in TRIF-/- mice. These results suggest that LPS-induced inflammatory pain in mice is solely dependent on the TLR4/MyD88 rather than the TLR4/TRIF signaling pathway. This pathway triggers pronociceptive cytokine TNF-α release that in turn mediates rises in KC/CXCL1 and IL-1β expression. Finally, these cytokines might be involved in stimulating production of directly-acting hyperalgesic mediators such as prostaglandins and sympathomimetic amine.
Collapse
Affiliation(s)
- Igor L. Calil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C. Zarpelon
- Departamento de Patologia, Centro de Ciências Biologicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Jose C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sergio H. Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail: (WAV); (TMC)
| | - Waldiceu A. Verri
- Departamento de Patologia, Centro de Ciências Biologicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- * E-mail: (WAV); (TMC)
| |
Collapse
|
44
|
Borghi SM, Zarpelon AC, Pinho-Ribeiro FA, Cardoso RDR, Cunha TM, Alves-Filho JC, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. Targeting interleukin-1β reduces intense acute swimming-induced muscle mechanical hyperalgesia in mice. J Pharm Pharmacol 2014; 66:1009-20. [DOI: 10.1111/jphp.12226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/01/2014] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
The role of interleukin (IL)-1β in intense acute swimming-induced muscle mechanical hyperalgesia was investigated in mice.
Methods
Untrained mice were submitted to one session of intense acute swimming for 120 min or were submitted to sham conditions (30 s exposure to water), and muscle mechanical hyperalgesia (before and 6–48 h after swimming session), IL-1β production (skeletal muscle and spinal cord), myeloperoxidase activity, reduced glutathione (GSH) levels (skeletal muscle and spinal cord), and cortisol, glucose, lactate and creatine kinase (CK) levels (plasma) were analysed.
Key findings
Intense acute swimming-induced muscle mechanical hyperalgesia was dose-dependently inhibited by IL-1ra treatment. IL-1β levels were increased in soleus, but not gastrocnemius muscle and spinal cord 2 and 4 h after the session, respectively. Intense acute swimming-induced increase of myeloperoxidase activity and reduced GSH levels in soleus muscle were reversed by IL-1ra treatment. In the spinal cord, exercise induced an increase of GSH levels, which was reduced by IL-1ra. Finally, IL-1ra treatment reduced plasma levels of CK, an indicator of myocyte damage.
Conclusions
IL-1β mediates intense acute swimming-induced muscle mechanical hyperalgesia by peripheral (soleus muscle) and spinal cord integrative mechanisms and could be considered a potential target to treat exercise-induced muscle pain.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Renato D R Cardoso
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sergio H Ferreira
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
45
|
The transition from acute to chronic pain: understanding how different biological systems interact. Can J Anaesth 2013; 61:112-22. [PMID: 24277113 DOI: 10.1007/s12630-013-0087-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although pain is an adaptive sensory experience necessary to prevent further bodily harm, the transition from acute to chronic pain is not adaptive and results in the development of a chronic clinical condition. How this transition occurs has been the focus of intense study for some time. The focus of the current review is on changes in neuronal plasticity as well as the role of immune cells and glia in the development of chronic pain from acute tissue injury and pain. PRINCIPAL FINDINGS Our understanding of the complex pathways that mediate the transition from acute to chronic pain continues to increase. Work in this area has already revealed the complex interactions between the nervous and immune system that result in both peripheral and central sensitization, essential components to the development of chronic pain. Taken together, a thorough characterization of the cellular mechanisms that generate chronic pain states is essential for the development of new therapies and treatments. Basic research leading to the development of new therapeutic targets is promising with the development of chloride extrusion enhancers. It is hoped that one day they will provide relief to patients with chronic pain. CONCLUSIONS A better understanding of how chronic pain develops at a mechanistic level can aid clinicians in treating their patients by showing how the underlying biology of chronic pain contributes to the clinical manifestations of pain. A thorough understanding of how chronic pain develops may also help identify new targets for future analgesic drugs.
Collapse
|
46
|
Yoneda H, Niijima-Yaoita F, Tsuchiya M, Kumamoto H, Watanbe M, Ohtsu H, Yanai K, Tadano T, Sasaki K, Sugawara S, Endo Y. Roles played by histamine in strenuous or prolonged masseter muscle activity in mice. Clin Exp Pharmacol Physiol 2013; 40:848-55. [DOI: 10.1111/1440-1681.12167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroyuki Yoneda
- Division of Oral Molecular Regulation; Graduate School of Dentistry; Tohoku University; Sendai Japan
- Division of Advanced Prosthetic Dentistry; Graduate School of Dentistry; Tohoku University; Sendai Japan
| | | | - Masahiro Tsuchiya
- Division of Aging and Geriatric Dentistry; Graduate School of Dentistry; Tohoku University; Sendai Japan
| | - Hiroyuki Kumamoto
- Division of Oral Pathology; Graduate School of Dentistry; Tohoku University; Sendai Japan
| | - Makoto Watanbe
- Division of Aging and Geriatric Dentistry; Graduate School of Dentistry; Tohoku University; Sendai Japan
| | - Hiroshi Ohtsu
- Department of Applied Quantum Medical Engineering; School of Engineering; Tohoku University; Sendai Japan
| | - Kazuhiko Yanai
- Department of Pharmacology; Graduate School of Medicine; Tohoku University; Sendai Japan
| | - Takeshi Tadano
- Laboratory of Environmental and Health Sciences; College of Medical Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry; Graduate School of Dentistry; Tohoku University; Sendai Japan
| | - Shunji Sugawara
- Division of Oral Molecular Regulation; Graduate School of Dentistry; Tohoku University; Sendai Japan
| | - Yasuo Endo
- Division of Oral Molecular Regulation; Graduate School of Dentistry; Tohoku University; Sendai Japan
| |
Collapse
|
47
|
Martinez RM, Zarpelon AC, Cardoso RDR, Vicentini FTMC, Georgetti SR, Baracat MM, Andrei CC, Moreira IC, Verri WA, Casagrande R. Tephrosia sinapou ethyl acetate extract inhibits inflammatory pain in mice: opioid receptor dependent inhibition of TNFα and IL-1β production. PHARMACEUTICAL BIOLOGY 2013; 51:1262-1271. [PMID: 23855752 DOI: 10.3109/13880209.2013.786099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXT. Tephrosia toxicaria is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae) and is a source of compounds such as flavonoids that inhibit inflammatory pain. OBJECTIVE To investigate the analgesic effect and mechanisms of the ethyl acetate extract of T. sinapou in inflammatory pain in mice. MATERIALS AND METHODS Behavioral responses were evaluated using mechanical (1-24 h) and thermal hyperalgesia (0.5-5 h), writhing response (20 min) and rota-rod (1-5 h) tests. Neutrophil recruitment (myeloperoxidase activity), cytokines (tumor necrosis factor [TNF]α and interleukin [IL]-1β), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum levels were determined by colorimetric assays. Pharmacological treatments were opioid receptor antagonist (naloxone, 0.1-1 mg/kg) and control opioid (morphine, 5 mg/kg). Inflammatory stimuli were carrageenin (100 µg/paw), complete Freund's adjuvant (CFA, 10 µl/paw), prostaglandin E2 (PGE2, 100 ng/paw) and acetic acid (0.8%). RESULTS The intraperitoneal pre-treatment with extract inhibited in a dose-dependent (30-300 mg/kg) dependent manner the mechanical hyperalgesia induced by carrageenin (up to 93% inhibition). The post-treatment (100 mg/kg) inhibited CFA-induced hyperalgesia (up to 63% inhibition). Naloxone (1 mg/kg) prevented the inhibitory effect of the extract over carrageenin-induced mechanical (100%) and thermal (100%) hyperalgesia, neutrophil recruitment (52%) and TNFα (63%) and IL-1β (98%) production, thermal threshold in naïve mice (99%), PGE2-induced mechanical hyperalgesia (88%) and acetic acid-induced writhing response (49%). There was no significant alteration in the rota-rod test, and AST and ALT serum levels by extract treatment. Discussion and conclusion. Tephrosia sinapou ethyl acetate extract reduces inflammatory pain by activating an opioid receptor-dependent mechanism.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chatterjea D, Paredes L, Martinov T, Balsells E, Allen J, Sykes A, Ashbaugh A. TNF-alpha neutralizing antibody blocks thermal sensitivity induced by compound 48/80-provoked mast cell degranulation. F1000Res 2013; 2:178. [PMID: 24555087 PMCID: PMC3869523 DOI: 10.12688/f1000research.2-178.v2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 11/26/2022] Open
Abstract
Background: Neuro-inflammatory circuits in the tissue regulate the complex pathophysiology of pain. Protective nociceptive pain serves as an early warning system against noxious environmental stimuli. Tissue-resident mast cells orchestrate the increased thermal sensitivity following injection of basic secretagogue compound 48/80 in the hind paw tissues of ND4 mice. Here we investigated the effects of pre-treatment with TNF-α neutralizing antibody on compound 48/80-provoked thermal hyperalgesia. Methods: We treated ND4 Swiss male mice with intravenous anti-TNF-α antibody or vehicle 30 minutes prior to bilateral, intra-plantar compound 48/80 administration and measured changes in the timing of hind paw withdrawal observed subsequent to mice being placed on a 51oC hotplate. We also assessed changes in tissue swelling, TNF-α gene expression and protein abundance, mast cell degranulation, and neutrophil influx in the hind paw tissue. Findings: We found that TNF-α neutralization significantly blocked thermal hyperalgesia, and reduced early tissue swelling. TNF-α neutralization had no significant effect on mast cell degranulation or neutrophil influx into the tissue, however. Moreover, no changes in TNF-α protein or mRNA levels were detected within 3 hours of administration of compound 48/80. Interpretation: The neutralizing antibodies likely target pre-formed TNF-α including that stored in the granules of tissue-resident mast cells. Pre-formed TNF-α, released upon degranulation, has immediate effects on nociceptive signaling prior to the induction of neutrophil influx. These early effects on nociceptors are abrogated by TNF-α blockade, resulting in compromised nociceptive withdrawal responses to acute, harmful environmental stimuli.
Collapse
Affiliation(s)
| | - Luisa Paredes
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Tijana Martinov
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Evelyn Balsells
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Juliann Allen
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Akilah Sykes
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Alyssa Ashbaugh
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| |
Collapse
|
49
|
Chatterjea D, Paredes L, Martinov T, Balsells E, Allen J, Sykes A, Ashbaugh A. TNF-alpha neutralizing antibody blocks thermal sensitivity induced by compound 48/80-provoked mast cell degranulation. F1000Res 2013; 2:178. [PMID: 24555087 PMCID: PMC3869523 DOI: 10.12688/f1000research.2-178.v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Neuro-inflammatory circuits in the tissue regulate the complex pathophysiology of pain. Protective nociceptive pain serves as an early warning system against noxious environmental stimuli. Tissue-resident mast cells orchestrate the increased thermal sensitivity following injection of basic secretagogue compound 48/80 in the hind paw tissues of ND4 mice. Here we investigated the effects of pre-treatment with TNF-α neutralizing antibody on compound 48/80-provoked thermal hyperalgesia. METHODS We treated ND4 Swiss male mice with intravenous anti-TNF-α antibody or vehicle 30 minutes prior to bilateral, intra-plantar compound 48/80 administration and measured changes in the timing of hind paw withdrawal observed subsequent to mice being placed on a 51oC hotplate. We also assessed changes in tissue swelling, TNF-α gene expression and protein abundance, mast cell degranulation, and neutrophil influx in the hind paw tissue. FINDINGS We found that TNF-α neutralization significantly blocked thermal hyperalgesia, and reduced early tissue swelling. TNF-α neutralization had no significant effect on mast cell degranulation or neutrophil influx into the tissue, however. Moreover, no changes in TNF-α protein or mRNA levels were detected within 3 hours of administration of compound 48/80. INTERPRETATION The neutralizing antibodies likely target pre-formed TNF-α including that stored in the granules of tissue-resident mast cells. Pre-formed TNF-α, released upon degranulation, has immediate effects on nociceptive signaling prior to the induction of neutrophil influx. These early effects on nociceptors are abrogated by TNF-α blockade, resulting in compromised nociceptive withdrawal responses to acute, harmful environmental stimuli.
Collapse
Affiliation(s)
| | - Luisa Paredes
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Tijana Martinov
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Evelyn Balsells
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Juliann Allen
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Akilah Sykes
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| | - Alyssa Ashbaugh
- Biology Department, Macalester College, St. Paul, MN 55015, USA
| |
Collapse
|
50
|
Silveira KD, Coelho FM, Vieira AT, Barroso LC, Queiroz-Junior CM, Costa VV, Sousa LFC, Oliveira ML, Bader M, Silva TA, Santos RAS, Silva ACSE, Teixeira MM. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides 2013; 46:53-63. [PMID: 23727291 DOI: 10.1016/j.peptides.2013.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
Angiotensin (Ang) II and its AT1 receptors have been implicated in the pathogenesis of rheumatoid arthritis. Activation of the counter-regulatory Ang-(1-7)-Mas receptor axis may contribute to some of the effects of AT₁ receptor blockers (ARBs). In this study, we have used losartan, an ARB, to investigate the role of and the mechanisms by which AT₁ receptors participated in two experimental models of arthritis: antigen-induced arthritis (AIA) in mice and adjuvant-induced arthritis (AdIA) in rats. Treatment with losartan decreased neutrophil recruitment, hypernociception and the production of TNF-α, IL-1β and chemokine (C-X-C motif) ligand 1 in mice subjected to AIA. Histopathological analysis showed significant reduction of tissue injury and inflammation and decreased proteoglycan loss. In addition to decreasing cytokine production, losartan directly reduced leukocyte rolling and adhesion. Anti-inflammatory effects of losartan were not associated to Mas receptor activation and/or Ang-(1-7) production. Anti-inflammatory effects were reproduced in rats subjected to AdIA. This study shows that ARBs have potent anti-inflammatory effects in animal models of arthritis. Mechanistically, reduction of leukocyte accumulation and of joint damage was associated with local inhibition of cytokine production and direct inhibition of leukocyte-endothelium interactions. The anti-inflammatory actions of losartan were accompanied by functional improvement of the joint, as seen by reduced joint hypernociception. These findings support the use of ARBs for the treatment of human arthritis and provide potential mechanisms for the anti-inflammatory actions of these compounds.
Collapse
MESH Headings
- Angiotensin I/biosynthesis
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Rheumatoid/drug therapy
- Cell Adhesion/drug effects
- Chemokine CXCL1/biosynthesis
- Disease Models, Animal
- Female
- Hyperalgesia/drug therapy
- Inflammation/drug therapy
- Interleukin-1beta/biosynthesis
- Leukocyte Rolling/drug effects
- Losartan/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Neutrophil Infiltration/drug effects
- Peptide Fragments/biosynthesis
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Kátia D Silveira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|