1
|
Yin F, Vakkalanka MD, Wiley W, Woolf MS, Basir Y, Shah K, Wheeler AM, Yuan M, Mylott WR, Baratta M. A simple surrogate approach for the quantitation of C4 (7α-hydroxy-4-cholesten-3-one) in human serum via LC-MS/MS and its application in a clinical study. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1261:124651. [PMID: 40382828 DOI: 10.1016/j.jchromb.2025.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
We present a validated LC-MS/MS assay for the quantitation of 7α-hydroxy-4-cholesten-3-one (C4), a key intermediate in the bile acid synthesis pathway from cholesterol, in human serum. A surrogate matrix approach was employed to overcome the challenges posed by the endogenous C4 levels in the biological matrix. Human serum samples were spiked with stable isotope labeled internal standard (SIL-IS), processed using supported liquid extraction (SLE), and analyzed by LC-MS/MS. Parallelism was successfully demonstrated between human serum (authentic matrix) and 5 % bovine serum albumin in phosphate buffered saline containing 0.1 % tween 20 (5 % BSA in PBST) (surrogate matrix). The assay's linear analytical range was established from 0.200 to 200 ng/mL. This validated LC-MS/MS method exhibited excellent accuracy and precision. The overall accuracy was between 97.9 % and 101 % with %CV less than 4.0 % for C4 in human serum. C4 was found to be stable in human serum for up to 24.7 h at room temperature, up to 34 days when stored at -25 °C or - 80 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human serum samples to support a clinical study.
Collapse
Affiliation(s)
- Feng Yin
- Department of Biomarker Science and Technologies, Takeda Development Center Americas, Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA.
| | - Mani Deepika Vakkalanka
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Walter Wiley
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - M Shane Woolf
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Yousef Basir
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Kumar Shah
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Aaron M Wheeler
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Moucun Yuan
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - William R Mylott
- Department of Chromatographic Services, PPD Laboratory Services (a part of Thermo Fisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Mike Baratta
- Department of Biomarker Science and Technologies, Takeda Development Center Americas, Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Ayala I, Hebbale SK, Mononen J, Brearley-Sholto MC, Shannon CE, Valdez I, Fourcaudot M, Bakewell TM, Zagorska A, Romero G, Asmis M, Musa FA, Sily JT, Smelter AA, Hinostroza EA, Freitas Lima LC, de Aguiar Vallim TQ, Heikkinen S, Norton L. The Spatial Transcriptional Activity of Hepatic TCF7L2 Regulates Zonated Metabolic Pathways that Contribute to Liver Fibrosis. Nat Commun 2025; 16:3408. [PMID: 40210847 PMCID: PMC11986045 DOI: 10.1038/s41467-025-58714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
The molecular mechanisms regulating the zonal distribution of metabolism in liver are incompletely understood. Here we use single nuclei genomics techniques to examine the spatial transcriptional function of transcription factor 7-like 2 (TCF7L2) in mouse liver, and determine the consequences of TCF7L2 transcriptional inactivation on the metabolic architecture of the liver and the function of zonated metabolic pathways. We report that while Tcf7l2 mRNA expression is ubiquitous across the liver lobule, accessibility of the consensus TCF/LEF DNA binding motif is restricted to pericentral (PC) hepatocytes in zone 3. In mice expressing functionally inactive TCF7L2 in liver, PC hepatocyte-specific gene expression is absent, which we demonstrate promotes hepatic cholesterol accumulation, impaired bile acid synthesis, disruption to glutamine/glutamate homeostasis and pronounced dietary-induced hepatic fibrosis. In summary, TCF7L2 is a key regulator of hepatic zonal gene expression and regulates several zonated metabolic pathways that may contribute to the development of fibrotic liver disease.
Collapse
Affiliation(s)
- Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Skanda K Hebbale
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Juho Mononen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Christopher E Shannon
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ivan Valdez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Terry M Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Fatima A Musa
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jonah T Sily
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Thomas Q de Aguiar Vallim
- Department of Cardiology, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Cadena Sandoval M, Haeusler RA. Bile acid metabolism in type 2 diabetes mellitus. Nat Rev Endocrinol 2025; 21:203-213. [PMID: 39757322 PMCID: PMC12053743 DOI: 10.1038/s41574-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Type 2 diabetes mellitus is a complex disorder associated with insulin resistance and hyperinsulinaemia that is insufficient to maintain normal glucose metabolism. Changes in insulin signalling and insulin levels are thought to directly explain many of the metabolic abnormalities that occur in diabetes mellitus, such as impaired glucose disposal. However, molecules that are directly affected by abnormal insulin signalling might subsequently go on to cause secondary metabolic effects that contribute to the pathology of type 2 diabetes mellitus. In the past several years, evidence has linked insulin resistance with the concentration, composition and distribution of bile acids. As bile acids are known to regulate glucose metabolism, lipid metabolism and energy balance, these findings suggest that bile acids are potential mediators of metabolic distress in type 2 diabetes mellitus. In this Review, we highlight advances in our understanding of the complex regulation of bile acids during insulin resistance, as well as how bile acids contribute to metabolic control.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Atkins JS, Keevil BG, Taylor AE, Ludwig C, Hawley JM. Development and validation of a novel 7α-hydroxy-4-cholesten-3-one (C4) liquid chromatography tandem mass spectrometry method and its utility to assess pre-analytical stability. Clin Chem Lab Med 2025; 63:154-163. [PMID: 39097844 DOI: 10.1515/cclm-2024-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVES 7α-Hydroxy-4-cholesten-3-one (C4) is the common intermediary of both primary bile acids. C4 is recommended by the British Society of Gastroenterology for the investigation of bile acid diarrhoea (BAD) in patients with chronic diarrhoea. This project aimed to develop and validate an assay to quantitate C4 in serum and assess the stability of C4 in unseparated blood. METHODS Accuracy was underpinned by calibrating to quantitative nuclear magnetic resonance analysis. C4 was analysed in a 96-well plate format with a deuterated C4 internal standard and liquid-liquid extraction. Validation followed the 2018 Food and Drug Administration guidelines. To assess C4 stability, healthy volunteers (n=12) donated 8 fasted samples each. Samples were incubated at 20 °C for up to 72 h and retrieved, centrifuged, aliquoted and frozen for storage at different time points prior to C4 analysis. RESULTS The C4 method demonstrated excellent analytical performance and passed all validation criteria. The method was found to be accurate, precise, free from matrix effects and interference. After 72 h of delayed sample separation, C4 concentration gradually declined by up to 14 % from baseline. However, the change was not significant for up to 12 h. CONCLUSIONS We present a robust method of analysing serum C4, offering a convenient alternative to 75SeHCAT for BAD investigation. C4 was found to decline in unseparated blood over time; however, after 12 h the mean change was <5 % from baseline. Our results suggest C4 is suitable for collection from both primary and secondary care prior to gastroenterology referral.
Collapse
Affiliation(s)
- Jonathan S Atkins
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Brian G Keevil
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, UK
| | - James M Hawley
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe, UK
- Medical Research Council, Laboratory of Medical Sciences, London, UK
| |
Collapse
|
5
|
Maresca R, Mignini I, Varca S, Calvez V, Termite F, Esposto G, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Bowel Diseases and Non-Alcoholic Fatty Liver Disease: Piecing a Complex Puzzle Together. Int J Mol Sci 2024; 25:3278. [PMID: 38542249 PMCID: PMC10970310 DOI: 10.3390/ijms25063278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
Inflammatory bowel diseases (IBD), comprising Crohn's disease and ulcerative colitis, are systemic and multifaceted disorders which affect other organs in addition to the gastrointestinal tract in up to 50% of cases. Extraintestinal manifestations may present before or after IBD diagnosis and negatively impact the intestinal disease course and patients' quality of life, often requiring additional diagnostic evaluations or specific treatments. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Current evidence shows an increased prevalence of NAFLD (and its more advanced stages, such as liver fibrosis and steatohepatitis) in IBD patients compared to the general population. Many different IBD-specific etiopathogenetic mechanisms have been hypothesized, including chronic inflammation, malabsorption, previous surgical interventions, changes in fecal microbiota, and drugs. However, the pathophysiological link between these two diseases is still poorly understood. In this review, we aim to provide a comprehensive overview of the potential mechanisms which have been investigated so far and highlight open issues still to be addressed for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University of Rome, 00168 Rome, Italy; (R.M.); (I.M.); (S.V.); (V.C.); (F.T.); (G.E.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
6
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
7
|
Lalloyer F, Mogilenko DA, Verrijken A, Haas JT, Lamazière A, Kouach M, Descat A, Caron S, Vallez E, Derudas B, Gheeraert C, Baugé E, Despres G, Dirinck E, Tailleux A, Dombrowicz D, Van Gaal L, Eeckhoute J, Lefebvre P, Goossens JF, Francque S, Staels B. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J Hepatol 2023; 79:898-909. [PMID: 37230231 DOI: 10.1016/j.jhep.2023.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.
Collapse
Affiliation(s)
- Fanny Lalloyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Denis A Mogilenko
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France; Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ann Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Mostafa Kouach
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Amandine Descat
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sandrine Caron
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eric Baugé
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Gaëtan Despres
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Eveline Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Jerôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, ERN RARE-LIVER, 2650, Edegem, Antwerp, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
8
|
Ge W, Sun Q, Yang Y, Ding Z, Liu J, Zhang J. Circadian PER1 controls daily fat absorption with the regulation of PER1-PKA on phosphorylation of bile acid synthetase. J Lipid Res 2023; 64:100390. [PMID: 37209828 PMCID: PMC10276160 DOI: 10.1016/j.jlr.2023.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Several epidemiological studies suggest a correlation between eating time and obesity. Night eating syndrome characterized by a time-delayed eating pattern is positively associated with obesity in humans as well as in experimental animals. Here, we show that oil intake at night significantly makes more fat than that at day in wild-type mice, and circadian Period 1 (Per1) contributes to this day-night difference. Per1-knockout mice are protected from high-fat diet-induced obesity, which is accompanied by a reduction in the size of the bile acid pool, and the oral administration of bile acids restores fat absorption and accumulation. We identify that PER1 directly binds to the major hepatic enzymes involved in bile acid synthesis such as cholesterol 7alpha-hydroxylase and sterol 12alpha-hydroxylase. A biosynthesis rhythm of bile acids is accompanied by the activity and instability of bile acid synthases with PER1/PKA-mediated phosphorylation pathways. Both fasting and high fat stress enhance Per1 expression, increasing the fat absorption and accumulation. Our findings reveal that Per1 is an energy regulator and controls daily fat absorption and accumulation. Circadian Per1 controls daily fat absorption and accumulation, suggesting Per1 is a potential candidate of a key regulator in stress response and the relevant obesity risk.
Collapse
Affiliation(s)
- Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
9
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Verzijl CRC, van de Peppel IP, Eilers RE, Bloks VW, Wolters JC, Koehorst M, Kloosterhuis NJ, Havinga R, Jalving M, Struik D, Jonker JW. Pharmacological inhibition of MEK1/2 signaling disrupts bile acid metabolism through loss of Shp and enhanced Cyp7a1 expression. Biomed Pharmacother 2023; 159:114270. [PMID: 36680812 DOI: 10.1016/j.biopha.2023.114270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption. A better molecular understanding of on-target, off-tumor effects may improve toxicity management. In the present study, we aimed to identify early initiating biological changes in the liver upon pharmacological inhibition of the RAS-MAPK signaling pathway. To this end, we tested the effect of MEK inhibitor PD0325901 using mice and human hepatocyte cell lines. Male C57BL/6 mice were treated with either vehicle or PD0325901 for six days, followed by transcriptome analysis of the liver and phenotypic characterization. Pharmacological MEK inhibition altered the expression of 423 genes, of which 78 were upregulated and 345 were downregulated. We identified Shp, a transcriptional repressor, and Cyp7a1, the rate-limiting enzyme in converting cholesterol to bile acids, as the top differentially expressed genes. PD0325901 treatment also affected other genes involved in bile acid regulation, which was associated with changes in the composition of plasma bile acids and composition and total levels of fecal bile acids and elevated predictive biomarkers of early liver toxicity. In conclusion, short-term pharmacological MEK inhibition results in profound changes in bile acid metabolism, which may explain some of the clinical adverse effects of pharmacological inhibition of the RAS-MAPK pathway, including gastrointestinal complications and hepatotoxicity.
Collapse
Affiliation(s)
- Cristy R C Verzijl
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivo P van de Peppel
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roos E Eilers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, GZ, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dicky Struik
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Saponara E, Penno C, Orsini V, Wang ZY, Fischer A, Aebi A, Matadamas-Guzman ML, Brun V, Fischer B, Brousseau M, O'Donnell P, Turner J, Graff Meyer A, Bollepalli L, d'Ario G, Roma G, Carbone W, Annunziato S, Obrecht M, Beckmann N, Saravanan C, Osmont A, Tropberger P, Richards SM, Genoud C, Ley S, Ksiazek I, Nigsch F, Terracciano LM, Schadt HS, Bouwmeester T, Tchorz JS, Ruffner H. Loss of Hepatic Leucine-Rich Repeat-Containing G-Protein Coupled Receptors 4 and 5 Promotes Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:161-181. [PMID: 36410420 DOI: 10.1016/j.ajpath.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
The roof plate-specific spondin-leucine-rich repeat-containing G-protein coupled receptor 4/5 (LGR4/5)-zinc and ring finger 3 (ZNRF3)/ring finger protein 43 (RNF43) module is a master regulator of hepatic Wnt/β-catenin signaling and metabolic zonation. However, its impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. The current study investigated whether hepatic epithelial cell-specific loss of the Wnt/β-catenin modulator Lgr4/5 promoted NAFLD. The 3- and 6-month-old mice with hepatic epithelial cell-specific deletion of both receptors Lgr4/5 (Lgr4/5dLKO) were compared with control mice fed with normal diet (ND) or high-fat diet (HFD). Six-month-old HFD-fed Lgr4/5dLKO mice developed hepatic steatosis and fibrosis but the control mice did not. Serum cholesterol-high-density lipoprotein and total cholesterol levels in 3- and 6-month-old HFD-fed Lgr4/5dLKO mice were decreased compared with those in control mice. An ex vivo primary hepatocyte culture assay and a comprehensive bile acid (BA) characterization in liver, plasma, bile, and feces demonstrated that ND-fed Lgr4/5dLKO mice had impaired BA secretion, predisposing them to develop cholestatic characteristics. Lipidome and RNA-sequencing analyses demonstrated severe alterations in several lipid species and pathways controlling lipid metabolism in the livers of Lgr4/5dLKO mice. In conclusion, loss of hepatic Wnt/β-catenin activity by Lgr4/5 deletion led to loss of BA secretion, cholestatic features, altered lipid homeostasis, and deregulation of lipoprotein pathways. Both BA and intrinsic lipid alterations contributed to the onset of NAFLD.
Collapse
Affiliation(s)
- Enrica Saponara
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carlos Penno
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Vanessa Orsini
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Zhong-Yi Wang
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Alexandra Aebi
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Meztli L Matadamas-Guzman
- Instituto Nacional de Medicina Genómica-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Virginie Brun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Margaret Brousseau
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts
| | - Peter O'Donnell
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts
| | - Jonathan Turner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Alexandra Graff Meyer
- Friedrich Miescher Institute for BioMedical Research, Facility for Advanced Imaging and Microscopy, Basel, Switzerland
| | - Laura Bollepalli
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Giovanni d'Ario
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Michael Obrecht
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nicolau Beckmann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Chandra Saravanan
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts
| | - Arnaud Osmont
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Philipp Tropberger
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Shola M Richards
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Svenja Ley
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Anatomia Patologica, Rozzano, Milan, Italy
| | - Heiko S Schadt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Heinz Ruffner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
12
|
Wilbaux M, Yang S, Jullion A, Demanse D, Porta DG, Myers A, Meille C, Gu Y. Integration of Pharmacokinetics, Pharmacodynamics, Safety, and Efficacy into Model-Informed Dose Selection in Oncology First-in-Human Study: A Case of Roblitinib (FGF401). Clin Pharmacol Ther 2022; 112:1329-1339. [PMID: 36131557 DOI: 10.1002/cpt.2752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 01/31/2023]
Abstract
Model-informed dose selection has been drawing increasing interest in oncology early clinical development. The current paper describes the example of FGF401, a selective fibroblast growth factor receptor 4 (FGFR4) inhibitor, in which a comprehensive modeling and simulation (M&S) framework, using both pharmacometrics and statistical methods, was established during its first-in-human clinical development using the totality of pharmacokinetics (PK), pharmacodynamic (PD) biomarkers, and safety and efficacy data in patients with cancer. These M&S results were used to inform FGF401 dose selection for future development. A two-compartment population PK (PopPK) model with a delayed 0-order absorption and linear elimination adequately described FGF401 PK. Indirect PopPK/PD models including a precursor compartment were independently established for two biomarkers: circulating FGF19 and 7α-hydroxy-4-cholesten-3-one (C4). Model simulations indicated a close-to-maximal PD effect achieved at the clinical exposure range. Time-to-progression was analyzed by Kaplan-Meier method which favored a trough concentration (Ctrough )-driven efficacy requiring Ctrough above a threshold close to the drug concentration producing 90% inhibition of phospho-FGFR4. Clinical tumor growth inhibition was described by a PopPK/PD model that reproduced the dose-dependent effect on tumor growth. Exposure-safety analyses on the expected on-target adverse events, including elevation of aspartate aminotransferase and diarrhea, indicated a lack of clinically relevant relationship with FGF401 exposure. Simulations from an indirect PopPK/PD model established for alanine aminotransferase, including a chain of three precursor compartments, further supported that maximal target inhibition was achieved and there was a lack of safety-exposure relationship. This M&S framework supported a dose selection of 120 mg once daily fasted or with a low-fat meal and provides a practical example that might be applied broadly in oncology early clinical development.
Collapse
Affiliation(s)
| | - Shu Yang
- Pharmacometrics, Novartis, East Hanover, New Jersey, USA
| | - Astrid Jullion
- Early Development Analytics, Novartis, Basel, Switzerland
| | - David Demanse
- Early Development Analytics, Novartis, Basel, Switzerland
| | - Diana Graus Porta
- Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andrea Myers
- Global Drug Development, Novartis, East Hanover, New Jersey, USA
| | | | - Yi Gu
- Pharmacokinetic Sciences, Translational Medicine, Novartis, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Min YW, Rezaie A, Pimentel M. Bile Acid and Gut Microbiota in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:549-561. [PMID: 36250362 PMCID: PMC9577585 DOI: 10.5056/jnm22129] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023] Open
Abstract
Gut microbiota and their metabolites like bile acid (BA) have been investigated as causes of irritable bowel syndrome (IBS) symptoms. Primary BAs are synthesized and conjugated in the liver and released into the duodenum. BA biotransformation by gut microbiota begins in the intestine and results in production of a broad range of secondary BAs. Deconjugation is considered the gateway reaction for further modification and is mediated by bile salt hydrolase, which is widely expressed by the gut microbiota. However, gut bacteria that convert primary BAs to secondary BAs belong to a limited number of species, mainly Clostridiales. Like gut microbiota modify BA profile, BAs can shape gut microbiota via direct and indirect actions. BAs have prosecretory effects and regulates gut motility. BAs can also affect gut sensitivity. Because of the vital role of the gut microbiota and BAs in gut function, their bidirectional relationship may contribute to the pathophysiology of IBS. Individuals with IBS have been reported to have altered microbial profiles and modified BA profiles. A significant increase in fecal primary BA and a corresponding decrease in secondary BA have been observed in IBS with predominant diarrhea. In addition, primary BA was positively correlated with IBS symptoms. In IBS with predominant diarrhea, bacteria with reduced abundance mainly belonged to the genera in Ruminococcaceae and exhibited a negative correlation with primary BAs. Integrating the analysis of the gut microbiota and BAs could better understanding of IBS pathophysiology. The gap in this field needs to be further filled in the future.
Collapse
Affiliation(s)
- Yang Won Min
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
14
|
Fan Y, Xu C, Xie L, Wang Y, Zhu S, An J, Li Y, Tian Z, Yan Y, Yu S, Liu H, Jia B, Wang Y, Wang L, Yang L, Bian Y. Abnormal bile acid metabolism is an important feature of gut microbiota and fecal metabolites in patients with slow transit constipation. Front Cell Infect Microbiol 2022; 12:956528. [PMID: 35967856 PMCID: PMC9366892 DOI: 10.3389/fcimb.2022.956528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Destructions in the intestinal ecosystem are implicated with changes in slow transit constipation (STC), which is a kind of intractable constipation characterized by colonic motility disorder. In order to deepen the understanding of the structure of the STC gut microbiota and the relationship between the gut microbiota and fecal metabolites, we first used 16S rRNA amplicon sequencing to evaluate the gut microbiota in 30 STC patients and 30 healthy subjects. The α-diversity of the STC group was changed to a certain degree, and the β-diversity was significantly different, which indicated that the composition of the gut microbiota of STC patients was inconsistent with healthy subjects. Among them, Bacteroides, Parabacteroides, Desulfovibrionaceae, and Ruminiclostridium were significantly upregulated, while Subdoligranulum was significantly downregulated. The metabolomics showed that different metabolites between the STC and the control group were involved in the process of bile acids and lipid metabolism, including taurocholate, taurochenodeoxycholate, taurine, deoxycholic acid, cyclohexylsulfamate, cholic acid, chenodeoxycholate, arachidonic acid, and 4-pyridoxic acid. We found that the colon histomorphology of STC patients was significantly disrupted, and TGR5 and FXR were significantly downregulated. The differences in metabolites were related to changes in the abundance of specific bacteria and patients’ intestinal dysfunction. Analysis of the fecal genomics and metabolomics enabled separation of the STC from controls based on random forest model prediction [STC vs. control (14 gut microbiota and metabolite biomarkers)—Sensitivity: 1, Specificity: 0.877]. This study provided a perspective for the diagnosis and intervention of STC related with abnormal bile acid metabolism.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lulu Xie
- School of Medicine, Nankai University, Tianjin, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Zhu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiren An
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhikui Tian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Wang
- The Pharmacy Department, Tianjin Second People's Hospital, Tianjin, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong Bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong Bian,
| |
Collapse
|
15
|
Ahmed M. Functional, Diagnostic and Therapeutic Aspects of Bile. Clin Exp Gastroenterol 2022; 15:105-120. [PMID: 35898963 PMCID: PMC9309561 DOI: 10.2147/ceg.s360563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bile is a unique body fluid synthesized in our liver. Enterohepatic circulation preserves bile in our body through its efficient synthesis, transport, absorption, and reuptake. Bile is the main excretory route for bile salts, bilirubin, and potentially harmful exogenous lipophilic substances. The primary way of eliminating cholesterol is bile. Although bile has many organic and inorganic contents, bile acid is the most physiologically active component. Bile acids have a multitude of critical physiologic functions in our body. These include emulsification of dietary fat, absorption of fat and fat-soluble vitamins, maintaining glucose, lipid, and energy homeostasis, sustenance of intestinal epithelial integrity and epithelial cell proliferation, reducing inflammation in the intestine, and prevention of enteric infection due to its antimicrobial properties. But bile acids can be harmful in certain altered conditions like cholecystectomy, terminal ileal disease or resection, cholestasis, duodenogastric bile reflux, duodenogastroesophageal bile reflux, and bile acid diarrhea. Bile acids can have malignant potentials as well. There are also important diagnostic and therapeutic roles of bile acid and bile acid modulation.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
16
|
Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int J Mol Sci 2022; 23:ijms23116046. [PMID: 35682726 PMCID: PMC9181207 DOI: 10.3390/ijms23116046] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Bile acids (BAs) are a group of amphiphilic molecules consisting of a rigid steroid core attached to a hydroxyl group with a varying number, position, and orientation, and a hydrophilic side chain. While BAs act as detergents to solubilize lipophilic nutrients in the small intestine during digestion and absorption, they also act as hormones. Farnesoid X receptor (FXR) is a nuclear receptor that forms a heterodimer with retinoid X receptor α (RXRα), is activated by BAs in the enterohepatic circulation reabsorbed via transporters in the ileum and the colon, and plays a critical role in regulating gene expression involved in cholesterol, BA, and lipid metabolism in the liver. The FXR/RXRα heterodimer also exists in the distal ileum and regulates production of fibroblast growth factor (FGF) 15/FGF19, a hormone traveling via the enterohepatic circulation that activates hepatic FGF receptor 4 (FGFR4)-β-klotho receptor complex and regulates gene expression involved in cholesterol, BA, and lipid metabolism, as well as those regulating cell proliferation. Agonists for FXR and analogs for FGF15/19 are currently recognized as a promising therapeutic target for metabolic syndrome and cholestatic diseases.
Collapse
|
17
|
Wichman BE, Nilson J, Govindan S, Chen A, Jain A, Arun V, Derdoy J, Krebs J, Jain AK. Beyond lipids: Novel mechanisms for parenteral nutrition-associated liver disease. Nutr Clin Pract 2022; 37:265-273. [PMID: 35124837 PMCID: PMC8930621 DOI: 10.1002/ncp.10830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parenteral nutrition (PN) is a therapy that delivers essential nutrients intravenously to patients who are unable to meet their nutrition requirements via standard enteral feeding. This methodology is often referred to as PN when accompanied by minimal or no enteral nutrition (EN). Although PN is lifesaving, significant complications can arise, such as intestinal failure-associated liver disease and gut-mucosal atrophy. The exact mechanism of injury remains ill defined. This review was designed to explore the available literature related to the drivers of injury mechanisms. The Farnesoid X receptor and fibroblast growth factor 19 signaling pathway seems to play an important role in gut-systemic signaling, and its alteration during PN provides insights into mechanistic links. Central line infections also play a key role in mediating PN-associated injury. Although lipid reduction strategies, as well as the use of multicomponent lipid emulsions and vitamin E, have shown promise, the cornerstone of preventing injury is the early establishment of EN.
Collapse
Affiliation(s)
- Brittany E Wichman
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jamie Nilson
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Srinivas Govindan
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Alan Chen
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Aditya Jain
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Varsha Arun
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Juana Derdoy
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Krebs
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ajay K Jain
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Boutte HJ, Chen J, Wylie TN, Wylie KM, Xie Y, Geisman M, Prabu A, Gazit V, Tarr PI, Levin MS, Warner BW, Davidson NO, Rubin DC. Fecal microbiome and bile acid metabolome in adult short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2022; 322:G154-G168. [PMID: 34816756 PMCID: PMC8793869 DOI: 10.1152/ajpgi.00091.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Stool and sera were collected from healthy controls and from patients with SBS (n = 52) with ileostomy, jejunostomy, ileocolonic, and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling, and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS and serum amino acid analyses. Patients with SBS exhibited altered gut microbiota with reduced gut microbial diversity compared with healthy controls. We observed differences in the microbiomes of patients with SBS with ileostomy versus jejunostomy, jejunocolonic versus ileocolonic anastomoses, and PN dependence compared with those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in patients with SBS, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who were weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic aicd. Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select patients with SBS, promoting the ability to wean from PN. Proadaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.NEW & NOTEWORTHY Loss of intestinal surface area causes short bowel syndrome, intestinal failure, and parenteral nutrition dependence. We analyzed the gut microbiota and bile acid metabolome of a large cohort of short bowel syndrome adult patients with different postsurgical anatomies. We report a novel analysis of the microbiome of patients with ileostomy and jejunostomy. Enrichment of specific microbial and bile acid species may be associated with the ability to wean from parenteral nutrition.
Collapse
Affiliation(s)
- Harold J. Boutte
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline Chen
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Todd N. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Kristine M. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mackenzie Geisman
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Anirudh Prabu
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Vered Gazit
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I. Tarr
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,4Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Marc S. Levin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,7Veterans Administration Saint Louis Health Care System, St. Louis, Missouri
| | - Brad W. Warner
- 5Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah C. Rubin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Memon N, Lee CW, Herdt A, Weinberger BI, Hegyi T, Carayannopoulos MO, Aleksunes LM, Guo GL, Griffin IJ. Suppression of Bile Acid Synthesis in a Preterm Infant Receiving Prolonged Parenteral Nutrition. J Clin Exp Hepatol 2022; 12:200-203. [PMID: 35068799 PMCID: PMC8766543 DOI: 10.1016/j.jceh.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bile acid metabolism is altered in neonates on parenteral nutrition (PN), predisposing them to parenteral nutrition-associated liver disease. Cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the bile acid synthesis pathway, is repressed by fibroblast growth factor 19 (FGF19) and phytosterols (PS). We describe a case of a preterm infant who developed necrotizing enterocolitis (NEC) and received exclusive PN for over 2 months. Our objective was to serially assess CYP7A1 activity and plasma FGF19 and PS concentrations in this infant case compared to five healthy preterm infants. We found that CYP7A1 activity increased during the first 2 weeks of life in control infants but was undetectable in the infant case. FGF19 concentrations were high at birth in all infants and subsequently declined and did not differ between the case and control infants. As expected, PS concentrations were elevated in the infant case and continued to increase despite lipid minimization. In conclusion, CYP7A1 activity was gradually upregulated in healthy preterm infants but remained suppressed in the infant requiring prolonged PN. Preterm infants also had elevated FGF19 concentrations at birth, which decreased with advancing postnatal age.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BA, bile acid
- C4, 7α-hydroxy-4-cholestene-3-one
- CYP7A1, cholesterol 7α-hydroxylase
- DMG, N, N-dimethylglycine
- DOL, day of life
- ELISA, enzyme-linked immunosorbent assay
- FGF19, fibroblast growth factor 19
- FXR, Farnesoid X receptor
- IRB, institutional review board
- LC-MS/MS, liquid chromatography/tandem mass spectrometry
- NEC, necrotizing enterocolitis
- NPO, nil per os
- PN, parenteral nutrition
- PNALD, parenteral nutrition-associated liver disease
- PS, phytosterols
- bile acid metabolism
- cholesterol 7-alpha hydroxylase
- farnesoid x receptor
- fibroblast growth factor 19
- intravenous lipid emulsion
Collapse
Affiliation(s)
- Naureen Memon
- MidAtlantic Neonatology Associates, Morristown, NJ, USA,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA,Address for correspondence: MidAtlantic Neonatology Associates, Goryeb Children's Hospital, Atlantic Health System, 100 Madison Avenue, Morristown, NJ, 07962, USA. Tel.: (973) 971-5488, Fax: +(973) 290 7175.
| | - Chris W. Lee
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | - Aimee Herdt
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | | | - Thomas Hegyi
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Ian J. Griffin
- MidAtlantic Neonatology Associates, Morristown, NJ, USA,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
| |
Collapse
|
20
|
Pregnancy and weaning regulate human maternal liver size and function. Proc Natl Acad Sci U S A 2021; 118:2107269118. [PMID: 34815335 PMCID: PMC8640831 DOI: 10.1073/pnas.2107269118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
During pregnancy, the rodent liver undergoes hepatocyte proliferation and increases in size, followed by weaning-induced involution via hepatocyte cell death and stromal remodeling, creating a prometastatic niche. These data suggest a mechanism for increased liver metastasis in breast cancer patients with recent childbirth. It is unknown whether the human liver changes in size and function during pregnancy and weaning. In this study, abdominal imaging was obtained in healthy women at early and late pregnancy and postwean. During pregnancy time points, glucose production and utilization and circulating bile acids were measured. Independently of weight gain, most women's livers increased in size with pregnancy, then returned to baseline postwean. Putative roles for bile acids in liver growth and regression were observed. Together, the data support the hypothesis that the human liver is regulated by reproductive state with growth during pregnancy and volume loss postwean. These findings have implications for sex-specific liver diseases and for breast cancer outcomes.
Collapse
|
21
|
Koelfat KV, Picot D, Chang X, Desille‐Dugast M, van Eijk HM, van Kuijk SM, Lenicek M, Layec S, Carsin M, Dussaulx L, Seynhaeve E, Trivin F, Lacaze L, Thibault R, Schaap FG, Olde Damink SW. Chyme Reinfusion Restores the Regulatory Bile Salt-FGF19 Axis in Patients With Intestinal Failure. Hepatology 2021; 74:2670-2683. [PMID: 34133768 PMCID: PMC8596508 DOI: 10.1002/hep.32017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Automated chyme reinfusion (CR) in patients with intestinal failure (IF) and a temporary double enterostomy (TDE) restores intestinal function and protects against liver injury, but the mechanisms are incompletely understood. The aim was to investigate whether the beneficial effects of CR relate to functional recovery of enterohepatic signaling through the bile salt-FGF19 axis. APPROACH AND RESULTS Blood samples were collected from 12 patients, 3 days before, at start, and 1, 3, 5, and 7 weeks after CR initiation. Plasma FGF19, total bile salts (TBS), 7-α-hydroxy-4-cholesten-3-one (C4; a marker of bile salt synthesis), citrulline (CIT), bile salt composition, liver tests, and nutritional risk indices were determined. Paired small bowel biopsies prior to CR and after 21 days were taken, and genes related to bile salt homeostasis and enterocyte function were assessed. CR induced an increase in plasma FGF19 and decreased C4 levels, indicating restored regulation of bile salt synthesis through endocrine FGF19 action. TBS remained unaltered during CR. Intestinal farnesoid X receptor was up-regulated after 21 days of CR. Secondary and deconjugated bile salt fractions were increased after CR, reflecting restored microbial metabolism of host bile salts. Furthermore, CIT and albumin levels gradually rose after CR, while abnormal serum liver tests normalized after CR, indicating restored intestinal function, improved nutritional status, and amelioration of liver injury. CR increased gene transcripts related to enterocyte number, carbohydrate handling, and bile salt homeostasis. Finally, the reciprocal FGF19/C4 response after 7 days predicted the plasma CIT time course. CONCLUSIONS CR in patients with IF-TDE restored bile salt-FGF19 signaling and improved gut-liver function. Beneficial effects of CR are partly mediated by recovery of the bile salt-FGF19 axis and subsequent homeostatic regulation of bile salt synthesis.
Collapse
Affiliation(s)
- Kiran V.K. Koelfat
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Denis Picot
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Xinwei Chang
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Mireille Desille‐Dugast
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Hans M. van Eijk
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Sander M.J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology AssessmentMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Martin Lenicek
- Institute of Medical Biochemistry and Laboratory Diagnostics1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Sabrina Layec
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Marie Carsin
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Laurence Dussaulx
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Eloi Seynhaeve
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Florence Trivin
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Laurence Lacaze
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Ronan Thibault
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Frank G. Schaap
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Steven W.M. Olde Damink
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| |
Collapse
|
22
|
Ferrell JM, Chiang JY. Bile acid receptors and signaling crosstalk in the liver, gut and brain. LIVER RESEARCH 2021; 5:105-118. [PMID: 39957847 PMCID: PMC11791822 DOI: 10.1016/j.livres.2021.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Bile acids are physiological detergents derived from cholesterol that aid in digestion and nutrient absorption, and they play roles in glucose, lipid, and energy metabolism and in gut microbiome and metabolic homeostasis. Bile acids mediate crosstalk between the liver and gut through bactericidal modulation of the gut microbiome, while gut microbes influence the composition of the circulating bile acid pool. Recent research indicates bile acids may also be important mediators of neurological disease by acting as peripheral signaling molecules that activate bile acid receptors in the blood-brain barrier and in the brain itself. This review highlights the role of bile acids in maintaining liver and gut microbe homeostasis, as well as their function as mediators of cellular signaling in the liver-gut-brain axis.
Collapse
Affiliation(s)
- Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John Y.L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
23
|
Andersen ME, Hagenbuch B, Apte U, Corton JC, Fletcher T, Lau C, Roth WL, Staels B, Vega GL, Clewell HJ, Longnecker MP. Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology 2021; 459:152845. [PMID: 34246716 PMCID: PMC9048712 DOI: 10.1016/j.tox.2021.152845] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 06/22/2021] [Indexed: 01/09/2023]
Abstract
Serum concentrations of cholesterol are positively correlated with exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in humans. The associated change in cholesterol is small across a broad range of exposure to PFOA and PFOS. Animal studies generally have not indicated a mechanism that would account for the association in humans. The extent to which the relationship is causal is an open question. Nonetheless, the association is of particular importance because increased serum cholesterol has been considered as an endpoint to derive a point of departure in at least one recent risk assessment. To gain insight into potential mechanisms for the association, both causal and non-causal, an expert workshop was held Oct 31 and Nov 1, 2019 to discuss relevant data and propose new studies. In this report, we summarize the relevant background data, the discussion among the attendees, and their recommendations for further research.
Collapse
Affiliation(s)
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd - MS 1018, Kansas City, KS 66160, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd - MS 1018, Kansas City, KS 66160, USA.
| | - J Christopher Corton
- Advanced Experimental Toxicology Models Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr., MD B105-03, Research Triangle Park, NC 27711, USA.
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Christopher Lau
- Reproductive and Developmental Toxicology Branch, Public Health and Integrated Toxicology Division, Mail Code B105-04, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William L Roth
- U.S. Food and Drug Administration (Retired), Numerical Animals, 16005 Frontier Rd., Reno, NV 89508, USA.
| | - Bart Staels
- Univ. Lille, Inserm, CHU de Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France.
| | - Gloria L Vega
- Center for Human Nutrition, Dallas, TX, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9052, USA.
| | - Harvey J Clewell
- Ramboll US Consulting, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, USA.
| | - Matthew P Longnecker
- Ramboll US Consulting, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, USA.
| |
Collapse
|
24
|
Stellaard F, Lütjohann D. Dynamics of the enterohepatic circulation of bile acids in healthy humans. Am J Physiol Gastrointest Liver Physiol 2021; 321:G55-G66. [PMID: 33978477 DOI: 10.1152/ajpgi.00476.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of bile acid metabolism is normally discussed as the regulation of bile acid synthesis, which serves to compensate for intestinal loss in order to maintain a constant pool size. After a meal, bile acids start cycling in the enterohepatic circulation. Farnesoid X receptor-dependent ileal and hepatic processes lead to negative feedback inhibition of bile acid synthesis. When the intestinal bile acid flux decreases, the inhibition of synthesis is released. The degree of inhibition of synthesis and the mechanism and degree of activation are still unknown. Moreover, in humans, a biphasic diurnal expression pattern of bile acid synthesis has been documented, indicating maximal synthesis around 3 PM and 9 PM. Quantitative data on the hourly synthesis schedule as compensation for intestinal loss are lacking. In this review, we describe the classical view on bile acid metabolism and present alternative concepts that are based on the overlooked feature that bile acids transit through the enterohepatic circulation very rapidly. A daily profile of the cycling and total bile acid pool sizes and potential controlled and uncontrolled mechanisms for synthesis are predicted. It remains to be elucidated by which mechanism clock genes interact with the Farnesoid X receptor-controlled regulation of bile acid synthesis. This mechanism could become an attractive target to enhance bile acid synthesis at night, when cholesterol synthesis is high, thus lowering serum LDL-cholesterol.
Collapse
Affiliation(s)
- Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
25
|
Markers of Bile Acid Metabolism in Pediatric Diarrhea Predominant Irritable Bowel Syndrome and Healthy Controls. J Pediatr Gastroenterol Nutr 2021; 72:859-865. [PMID: 33976086 DOI: 10.1097/mpg.0000000000003067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Excessive fecal bile acids in adults have been associated with diarrhea-predominant irritable bowel syndrome (IBS-D), but their role in pediatric IBS-D is unknown. Serum markers including 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor-19 (FGF-19) were validated in adults to detect bile acid diarrhea (BAD) compared to 48-hour fecal bile acid collection (48FBA). Our aims were to assess fasting serum C4 and FGF-19 and 48FBA in a pediatric population, to compare measurements in IBS-D patients and healthy controls (HC), and to determine the prevalence of BAD among children with IBS-D. METHODS Using a cross-sectional design, 26 patients with IBS-D and 56 HC were recruited in two pediatric tertiary care centers. Fasting serum C4 and FGF-19 and 48FBA were obtained. Participants completed a 7-day bowel diary coinciding with stool collection. Associations were analyzed using Spearman correlations. RESULTS Mean age was 14.7 ± 2.5 years (42.3% female) in IBS-D and 12.6 ± 2.4 years (39.3% female) in HC. There was a significant correlation of C4 with 48FBA (r = 0.48, P < 0.05) and an inverse association with FGF-19 (r = -0.43, P < 0.05). No significant differences were noted in C4 (P = 0.32), FGF-19 (P = 0.1), or 48FBA (P = 0.5) between IBS-D and HC groups; however, 20% of IBS-D patients had elevated C4 and 28% had low FGF-19 values.Fecal primary BA was significantly correlated with stool frequency (r = 0.45, P < 0.002). CONCLUSIONS Correlations of C4 with 48FBA and FGF-19 are confirmed in a pediatric population. Twenty percent of pediatric patients with IBS-D had abnormal fasting serum C4. This serum test could be applied to identify BAD in pediatric IBS-D.
Collapse
|
26
|
Mercer KE, Maurer A, Pack LM, Ono-Moore K, Spray BJ, Campbell C, Chandler CJ, Burnett D, Souza E, Casazza G, Keim N, Newman J, Hunter G, Fernadez J, Garvey WT, Harper ME, Hoppel C, Adams SH, Thyfault J. Exercise training and diet-induced weight loss increase markers of hepatic bile acid (BA) synthesis and reduce serum total BA concentrations in obese women. Am J Physiol Endocrinol Metab 2021; 320:E864-E873. [PMID: 33645254 PMCID: PMC8238126 DOI: 10.1152/ajpendo.00644.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regular exercise has profound metabolic influence on the liver, but effects on bile acid (BA) metabolism are less well known. BAs are synthesized exclusively in the liver from cholesterol via the rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1). BAs contribute to the solubilization and absorption of lipids and serve as important signaling molecules, capable of systemic endocrine function. Circulating BAs increase with obesity and insulin resistance, but effects following exercise and diet-induced weight loss are unknown. To test if improvements in fitness and weight loss as a result of exercise training enhance BA metabolism, we measured serum concentrations of total BAs (conjugated and unconjugated primary and secondary BAs) in sedentary, obese, insulin-resistant women (N = 11) before (PRE) and after (POST) a ∼14-wk exercise and diet-induced weight loss intervention. BAs were measured in serum collected after an overnight fast and during an oral glucose tolerance test (OGTT). Serum fibroblast growth factor 19 (FGF19; a regulator of BA synthesis) and 7-alpha-hydroxy-cholesten-3-one (C4, a marker of CYP7A1 enzymatic activity) also were measured. Using linear mixed-model analyses and the change in V̇O2peak (mL/min/kg) as a covariate, we observed that exercise and weight loss intervention decreased total fasting serum BA by ∼30% (P = 0.001) and increased fasting serum C4 concentrations by 55% (P = 0.004). C4 was significantly correlated with serum total BAs only in the POST condition, whereas serum FGF19 was unchanged. These data indicate that a fitness and weight loss intervention modifies BA metabolism in obese women and suggest that improved metabolic health associates with higher postabsorptive (fasting) BA synthesis. Furthermore, pre- vs. postintervention patterns of serum C4 following an OGTT support the hypothesis that responsiveness of BA synthesis to postprandial inhibition is improved after exercise and weight loss.NEW & NOTEWORTHY Exercise and weight loss in previously sedentary, insulin-resistant women facilitates a significant improvement in insulin sensitivity and fitness that may be linked to changes in bile acid metabolism. Diet-induced weight loss plus exercise-induced increases in fitness promote greater postabsorptive bile acid synthesis while also sensitizing the bile acid metabolic system to feedback inhibition during a glucose challenge when glucose and insulin are elevated.
Collapse
Affiliation(s)
- Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Adrianna Maurer
- Departments of Molecular and Integrative Physiology and Internal Medicine, Kansas Medical Center, Kansas City, Kansas
| | - Lindsay M Pack
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | | | - Beverly J Spray
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Caitlin Campbell
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Carol J Chandler
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Dustin Burnett
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Elaine Souza
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Gretchen Casazza
- Sports Medicine Program, University of California, Davis School of Medicine, Sacramento, California
| | - Nancy Keim
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - John Newman
- United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Gary Hunter
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - Jose Fernadez
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama, Birmingham, Alabama
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Charles Hoppel
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Sean H Adams
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California, Davis School of Medicine, Sacramento, California
| | - John Thyfault
- Departments of Molecular and Integrative Physiology and Internal Medicine, Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
27
|
Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.
Collapse
|
28
|
Konishi KI, Mizuochi T, Takei H, Yasuda R, Sakaguchi H, Ishihara J, Takaki Y, Kinoshita M, Hashizume N, Fukahori S, Shoji H, Miyano G, Yoshimaru K, Matsuura T, Sanada Y, Tainaka T, Uchida H, Kubo Y, Tanaka H, Sasaki H, Murai T, Fujishiro J, Yamashita Y, Nio M, Nittono H, Kimura A. A Japanese prospective multicenter study of urinary oxysterols in biliary atresia. Sci Rep 2021; 11:4986. [PMID: 33654186 PMCID: PMC7925559 DOI: 10.1038/s41598-021-84445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Diagnosis of biliary atresia (BA) can involve uncertainties. In the present prospective multicenter study, we considered whether urinary oxysterols represent a useful marker for diagnosis of BA in Japanese children. Subjects under 6 months old at 7 pediatric centers in Japan were prospectively enrolled, including patients with cholestasis and healthy controls (HC) without liver disease. Patients with cholestasis constituted 2 groups representing BA patients and others with cholestasis from other causes (non-BA). We quantitatively analyzed 7 oxysterols including 4β-, 20(S)-, 22(S)-, 22(R)-, 24(S)-, 25-, and 27-hydroxycholesterol by liquid chromatography/electrospray ionization-tandem mass spectrometry. Enrolled subjects included 14 with BA (median age 68 days; range 26-170) and 10 non-BA cholestatic controls (59; 14-162), as well as 10 HC (57; 25-120). Total urinary oxysterols were significantly greater in BA (median, 153.0 μmol/mol creatinine; range 24.1-486.7; P < 0.001) and non-BA (36.2; 5.8-411.3; P < 0.05) than in HC (2.7; 0.8-7.6). In patients with BA, urinary 27-hydroxycholesterol (3.61; 0.42-11.09; P < 0.01) was significantly greater than in non-BA (0.71; 0-5.62). In receiver operating characteristic (ROC) curve analysis for distinguishing BA from non-BA, the area under the ROC curve for urinary 27-hydroxycholesterol was 0.83. In conclusion, this first report of urinary oxysterol analysis in patients with BA indicated that 27-hydroxycholesterol may be a useful marker for distinguishing BA from other causes of neonatal cholestasis.
Collapse
Affiliation(s)
- Ken-Ichiro Konishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan.
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Ryosuke Yasuda
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Hirotaka Sakaguchi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Jun Ishihara
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Yugo Takaki
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Masahiro Kinoshita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiromichi Shoji
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Go Miyano
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Sanada
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Takahisa Tainaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroo Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumiko Kubo
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiromu Tanaka
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideyuki Sasaki
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| |
Collapse
|
29
|
Jose S, Mukherjee A, Horrigan O, Setchell KDR, Zhang W, Moreno-Fernandez ME, Andersen H, Sharma D, Haslam DB, Divanovic S, Madan R. Obeticholic acid ameliorates severity of Clostridioides difficile infection in high fat diet-induced obese mice. Mucosal Immunol 2021; 14:500-510. [PMID: 32811993 PMCID: PMC7889747 DOI: 10.1038/s41385-020-00338-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Severe Clostridiodes difficile infection (CDI) is life-threatening and responds poorly to treatment. Obesity is associated with development of severe CDI. Therefore, to define the mechanisms that exacerbate disease severity, we examined CDI pathogenesis in high-fat diet (HFD)-fed obese mice. Compared to control mice, HFD-fed mice failed to clear C. difficile bacteria which resulted in protracted diarrhea, weight loss and colonic damage. After infection, HFD-induced obese mice had an intestinal bile acid (BA) pool that was dominated by primary BAs which are known promoters of C. difficile spore germination, and lacked secondary BAs that inhibit C. difficile growth. Concurrently, synthesis of primary BAs from liver was significantly increased in C. difficile-infected HFD-fed mice. A key pathway that regulates hepatic BA synthesis is via feedback inhibition from intestinal Farnesoid X receptors (FXRs). Our data reveal that the proportion of FXR agonist BAs to FXR antagonist BAs in the intestinal lumen was significantly reduced in HFD-fed mice after CDI. Treatment of HFD-fed mice with an FXR agonist Obeticholic acid, resulted in decreased primary BA synthesis, fewer C. difficile bacteria and better CDI outcomes. Thus, OCA treatment holds promise as a therapy for severe CDI.
Collapse
Affiliation(s)
- Shinsmon Jose
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Anindita Mukherjee
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Olivia Horrigan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Heidi Andersen
- Department of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Divya Sharma
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David B Haslam
- Department of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
| |
Collapse
|
30
|
Männistö V, Kaminska D, Käkelä P, Neuvonen M, Niemi M, Alvarez M, Pajukanta P, Romeo S, Nieuwdorp M, Groen AK, Pihlajamäki J. Protein Phosphatase 1 Regulatory Subunit 3B Genotype at rs4240624 Has a Major Effect on Gallbladder Bile Composition. Hepatol Commun 2021; 5:244-257. [PMID: 33553972 PMCID: PMC7850313 DOI: 10.1002/hep4.1630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
The protein phosphatase 1 regulatory subunit 3B (PPP1R3B) gene is a target of farnesoid X receptor (FXR), which is a major regulator of bile acid metabolism. Both PPP1R3B and FXR have been suggested to take part in glycogen metabolism, which may explain the association of PPP1R3B gene variants with altered hepatic computed tomography attenuation. We analyzed the effect of PPP1R3B rs4240624 variant on bile acid composition in individuals with obesity. The study cohort consisted of 242 individuals from the Kuopio Obesity Surgery Study (73 men, 169 women, age 47.6 ± 9.0 years, body mass index 43.2 ± 5.4 kg/m2) with PPP1R3B genotype and liver RNA sequencing (RNA-seq) data available. Fasting plasma and gallbladder bile samples were collected from 50 individuals. Bile acids in plasma did not differ based on the PPP1R3B rs4240624 genotype. However, the concentration of total bile acids (109 ± 55 vs. 35 ± 19 mM; P = 1.0 × 10-5) and all individual bile acids (also 7α-hydroxy-4-cholesten-3-one [C4]) measured from bile were significantly lower in those with the AG genotype compared to those with the AA genotype. In addition, total cholesterol (P = 0.011) and phospholipid (P = 0.001) levels were lower in individuals with the AG genotype, but cholesterol saturation index did not differ, indicating that the decrease in cholesterol and phospholipid levels was secondary to the change in bile acids. Liver RNA-seq data demonstrated that expression of PPP1R3B, tankyrase (TNKS), Homo sapiens chromosome 8 clone RP11-10A14.5 (AC022784.1 [LOC157273]), Homo sapiens chromosome 8 clone RP11-375N15.1 (AC021242.1), and Homo sapiens chromosome 8, clone RP11-10A14 (AC022784.6) associated with the PPP1R3B genotype. In addition, genes enriched in transmembrane transport and phospholipid binding pathways were associated with the genotype. Conclusion: The rs4240624 variant in PPP1R3B has a major effect on the composition of gallbladder bile. Other transcripts in the same loci may be important mediators of the variant effect.
Collapse
Affiliation(s)
- Ville Männistö
- Department of MedicineUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland.,Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Dorota Kaminska
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Pirjo Käkelä
- Department of SurgeryUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| | - Mikko Neuvonen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland.,Department of Clinical PharmacologyHUS Diagnostic Services, Helsinki University HospitalHelsinkiFinland.,Individualized Drug Therapy Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland.,Department of Clinical PharmacologyHUS Diagnostic Services, Helsinki University HospitalHelsinkiFinland.,Individualized Drug Therapy Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Marcus Alvarez
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Päivi Pajukanta
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCAUSA.,Bioinformatics Interdepartmental ProgramUniversity of California Los AngelesLos AngelesCAUSA.,Institute for Precision HealthUniversity of California Los AngelesLos AngelesCAUSA
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden.,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden.,Clinical Nutrition Department of Medical and Surgical ScienceUniversity Magna GraeciaCatanzaroItaly
| | - Max Nieuwdorp
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Albert K Groen
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland.,Department of Medicine, Endocrinology, and Clinical NutritionKuopio University HospitalKuopioFinland
| |
Collapse
|
31
|
Vijayvargiya P, Camilleri M, Carlson P, Nair A, Nord SL, Ryks M, Rhoten D, Burton D, Busciglio I, Lueke A, Harmsen WS, Donato LJ. Effects of Colesevelam on Bowel Symptoms, Biomarkers, and Colonic Mucosal Gene Expression in Patients With Bile Acid Diarrhea in a Randomized Trial. Clin Gastroenterol Hepatol 2020; 18:2962-2970.e6. [PMID: 32088296 PMCID: PMC7442687 DOI: 10.1016/j.cgh.2020.02.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Approximately one-third of patients with IBS-diarrhea (IBS-D) have increased bile acid (BA) synthesis or excretion. An open-label study showed benefits of colesevelam on bowel functions, consistent with luminal BA sequestration by colesevelam. We compared the effects of colesevelam vs placebo on symptoms and gene expression patterns in the sigmoid colon mucosa in patients with BA diarrhea associated with IBS-D. METHODS We performed a double-blind, parallel-group study of 30 adults with IBS-D and evidence of increased BA synthesis or fecal excretion, from December 2017 through December 2018 at a single center. Patients were randomly assigned (1:1) to groups given colesevelam (3 tablets, 625 mg each) or matching placebo, orally twice daily for 4 weeks. Stool diaries documented bowel functions for 8 days before and 28 days during colesevelam or placebo. Stool and fasting serum samples were collected for analyses of fecal BAs and serum levels of C4 and FGF19. We measured colonic transit by scintigraphy, mucosal permeability by in vivo excretion of saccharide probes, and mRNA levels in rectosigmoid biopsies. All measurements were made at baseline and on the last days of treatment. The primary endpoints were change in total fecal BA concentration and stool consistency. RESULTS Compared with placebo, colesevelam was associated with significant changes in sequestered fecal total BA excretion (P < .001) and serum levels of C4 and FGF19 (both P < .001), and with a mean increase in fecal level of deoxycholic acid (10%; P = .07) compared to placebo. Colesevelam decreased colon mucosal expression of NR1H4 and P2RY4 and increased expression of GPBAR1, compared with baseline. Stool frequency and consistency, colonic transit, and permeability did not differ significantly between groups. Colesevelam was well tolerated. CONCLUSIONS In a randomized trial, we found that colesevelam increases delivery of total and secondary BAs to stool, hepatic BA synthesis, and colonic mucosal expression of genes that regulate BA, farnesoid X, and GPBAR1 receptors. Larger studies are needed to determine the effects on clinical responses. ClinicalTrials.gov no: NCT03270085.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota.
| | - Paula Carlson
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Sara Linker Nord
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Ryks
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Deborah Rhoten
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Duane Burton
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Irene Busciglio
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Alan Lueke
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - W Scott Harmsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Leslie J Donato
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
32
|
Maurer A, Ward JL, Dean K, Billinger SA, Lin H, Mercer KE, Adams SH, Thyfault JP. Divergence in aerobic capacity impacts bile acid metabolism in young women. J Appl Physiol (1985) 2020; 129:768-778. [PMID: 32853107 PMCID: PMC7654689 DOI: 10.1152/japplphysiol.00577.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Liver adaptations may be critical for regular exercise and high aerobic capacity to protect against metabolic disease, but mechanisms remain unknown. Bile acids (BAs) synthesized in the liver are bioactive and can putatively modify energy metabolism. Regular exercise influences BA metabolism in rodents, but effects in humans are unknown. This study tested whether female subjects screened for high aerobic capacity (Hi-Fit, n = 19) [peak oxygen consumption (V̇o2peak) ≥45 mL·kg-1·min-1] have increased hepatic BA synthesis and different circulating BA composition compared with those matched for age and body mass with low aerobic capacity (Lo-Fit, n = 19) (V̇o2peak ≤35 mL·kg-1·min-1). Diet patterns, activity level, stool, and blood were collected at baseline before participants received a 1-wk standardized, eucaloric diet. After the 1-wk standardized diet, stool and blood were again collected and an oral glucose tolerance test (OGTT) was performed to assess insulin sensitivity and postprandial BA response. Contrary to our hypothesis, serum 7α-hydroxy-4-cholesten-3-one (C4), a surrogate of BA synthesis, was not different between groups, whereas Hi-Fit women had lower fecal BA concentrations compared with Lo-Fit women. However, Lo-Fit women had a higher and more sustained rise in circulating conjugated BAs during the OGTT. Hi-Fit women showed a significant post-OGTT elevation of the secondary BA, lithocholic acid (a potent TGR5 agonist), in contrast to Lo-Fit women where no response was observed. A 1-wk control diet eliminated most differences in circulating BA species between groups. Overall, the results emphasize the importance of using a standardized diet when evaluating BAs and indicate that regular exercise and aerobic capacity modulate BA metabolism under postprandial conditions.NEW & NOTEWORTHY Women with contrasting exercise and aerobic capacity levels show clear differences in bile acid (BA) metabolism. Women with low aerobic capacity (Lo-Fit) have increased circulating conjugated BAs post oral glucose tolerance test (OGTT), whereas women with high aerobic capacity (Hi-Fit) display a transient increase. Hi-Fit women show an increase in the secondary BA, lithocholic acid, during the OGTT not seen in Lo-Fit women. Differences in circulating BA species between Hi- and Lo-Fit women possibly contribute to differences in insulin sensitivity and energy regulation via different signaling mechanisms.
Collapse
Affiliation(s)
- Adrianna Maurer
- Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jaimie L Ward
- Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Kelsey Dean
- Center for Children's Healthy Lifestyles & Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandra A Billinger
- Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Haixia Lin
- Arkansas Children's Nutrition Center, and University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, and University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sean H Adams
- Arkansas Children's Nutrition Center, and University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Thyfault
- Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyle and Nutrition, Kansas City, Missouri
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
33
|
Zhao L, Yang W, Chen Y, Huang F, Lu L, Lin C, Huang T, Ning Z, Zhai L, Zhong LL, Lam W, Yang Z, Zhang X, Cheng C, Han L, Qiu Q, Shang X, Huang R, Xiao H, Ren Z, Chen D, Sun S, El-Nezami H, Cai Z, Lu A, Fang X, Jia W, Bian Z. A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J Clin Invest 2020; 130:438-450. [PMID: 31815740 PMCID: PMC6934182 DOI: 10.1172/jci130976] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
An excess of fecal bile acids (BAs) is thought to be one of the mechanisms for diarrhea-predominant irritable bowel syndrome (IBS-D). However, the factors causing excessive BA excretion remain incompletely studied. Given the importance of gut microbiota in BA metabolism, we hypothesized that gut dysbiosis might contribute to excessive BA excretion in IBS-D. By performing BA-related metabolic and metagenomic analyses in 290 IBS-D patients and 89 healthy volunteers, we found that 24.5% of IBS-D patients exhibited excessive excretion of total BAs and alteration of BA-transforming bacteria in feces. Notably, the increase in Clostridia bacteria (e.g., C. scindens) was positively associated with the levels of fecal BAs and serum 7α-hydroxy-4-cholesten-3-one (C4), but negatively correlated with serum fibroblast growth factor 19 (FGF19) concentration. Furthermore, colonization with Clostridia-rich IBS-D fecal microbiota or C. scindens individually enhanced serum C4 and hepatic conjugated BAs but reduced ileal FGF19 expression in mice. Inhibition of Clostridium species with vancomycin yielded opposite results. Clostridia-derived BAs suppressed the intestinal FGF19 expression in vitro and in vivo. In conclusion, this study demonstrates that the Clostridia-rich microbiota contributes to excessive BA excretion in IBS-D patients, which provides a mechanistic hypothesis with testable clinical implications.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Yang
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Lu
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tao Huang
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ziwan Ning
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lixiang Zhai
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Linda Ld Zhong
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Waiching Lam
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhen Yang
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xuan Zhang
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chungwah Cheng
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lijuan Han
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinwei Qiu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Shang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhenxing Ren
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Zongwei Cai
- School of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaodong Fang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Cancer Biology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Zhaoxiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.,Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
34
|
So SSY, Yeung CHC, Schooling CM, El-Nezami H. Targeting bile acid metabolism in obesity reduction: A systematic review and meta-analysis. Obes Rev 2020; 21:e13017. [PMID: 32187830 DOI: 10.1111/obr.13017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
A systematic review and meta-analysis was conducted of studies that address the association of bile acid (BA) with obesity and of studies on the effects of treatment in patients with obesity on BA metabolism, assessed from systemic BA, fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4) level, and faecal BA. We searched PubMed, Embase, and the Cochrane Library from inception to 1 August 2019 using the keywords obesity, obese, body mass index, and overweight with bile acid, FGF19, FXR, and TGR5. Two reviewers independently searched, selected, and assessed the quality of studies. Data were analysed using either fixed or random effect models with inverse variance weighting. Of 3771 articles, 33 papers were relevant for the association of BA with obesity of which 22 were included in the meta-analysis, and 50 papers were relevant for the effect of obesity interventions on BA of which 20 were included in the meta-analysis. Circulating fasting total BA was not associated with obesity. FGF19 was inversely and faecal BA excretion was positively associated with obesity. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) modulated BA metabolism, ie, increased BA and FGF19. Our results indicate that BA metabolism is altered in obesity. Certain bariatric surgeries including RYGB and SG modulate BA, whether these underlie the beneficial effect of the treatment should be investigated.
Collapse
Affiliation(s)
- Stephanie Sik Yu So
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chris Ho Ching Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Graduate School of Public Health and Health Policy, City University of New York, New York, United States
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
35
|
Dysregulation of Circulating FGF19 and Bile Acids in Primary Biliary Cholangitis-Autoimmune Hepatitis Overlap Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1934541. [PMID: 32626734 PMCID: PMC7306076 DOI: 10.1155/2020/1934541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Background Primary biliary cholangitis-autoimmune hepatitis overlap syndrome (PBC-AIH OS), which exhibits features between autoimmune hepatitis and cholestasis, is a common condition and usually shows a progressive course toward cirrhosis and liver failure without adequate treatment. Synthesis of bile acids (BAs) plays an important role in liver injury in cholestasis, and the process is regulated by fibroblast growth factor 19 (FGF19). The overall role of circulating FGF19 in BA synthesis and PBC-AIH OS requires further investigation. Methods We analyzed BA synthesis and correlated clinical parameters with serum BAs and FGF19 in 35 patients with PBC-AIH OS. Serum concentrations of 7alpha-hydroxycholest-4-en-3-one (C4) were used to quantify the synthesis of BA directly. Results Serum FGF19 levels were higher, while C4 levels were substantially lower in PBC-AIH OS patients than those in healthy controls. Circulating FGF19 levels strongly correlated with C4 (r = −0.695, p < 0.0001), direct bilirubin (r = 0.598, p = 0.0001), and total bile acids (r = 0.595, p = 0.002). Moreover, circulating FGF19 levels strongly correlated with the model for end-stage liver disease score (r = 0.574, p = 0.0005) and Mayo risk score (r = 0.578, p = 0.001). Conclusions Serum FGF19 is significantly increased in patients with PBC-AIH OS, while BA synthesis is suppressed. Circulating FGF19 primarily controls the regulation of BA synthesis in response to cholestasis and under cholestatic conditions. Therefore, modulation of circulating FGF19 could provide a promising targeted therapy for patients with PBC-AIH OS.
Collapse
|
36
|
Johansson H, Svensson JF, Almström M, Van Hul N, Rudling M, Angelin B, Nowak G, Fischler B, Ellis E. Regulation of bile acid metabolism in biliary atresia: reduction of FGF19 by Kasai portoenterostomy and possible relation to early outcome. J Intern Med 2020; 287:534-545. [PMID: 31976601 DOI: 10.1111/joim.13028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fibroblast growth factor 19 (FGF19) is produced in the small intestine and is involved in suppression of hepatic bile acid (BA) synthesis. FGF19 is also expressed in the liver and serum levels are elevated in adults with cholestatic liver disease. This may reflect a rescue mechanism to dampen liver injury caused by increased intrahepatic BAs. OBJECTIVES To examine circulating FGF19 at early stages of biliary atresia and at short-term follow-up post-Kasai portoenterostomy (KPE) in relation to noncholestatic infants. The relationship between FGF19, BAs and markers for BA synthesis and hepatic gene expression of factors involved in BA metabolism were also evaluated. METHODS Liver tissue, portal and peripheral blood samples were obtained from fifteen patients at KPE; additional blood was collected 4-6 months after surgery. Two control groups were included; to examine possible changes related to surgery and to compare FGF19 in biliary atresia to noncholestatic infants. RESULTS Circulating FGF19 levels correlated to its hepatic gene expression at time of KPE in biliary atresia and levels were elevated compared to noncholestatic infants. At follow-up, FGF19 levels were markedly reduced, and the decline coincided with reductions in bilirubin and conjugated chenodeoxycholic acid and with increased levels of the BA synthesis marker C4. CONCLUSION Elevated circulating FGF19 in biliary atresia is of hepatic origin and reduced following KPE. Changes in serum FGF19 may reflect the level of restoration of the enterohepatic circulation, and this warrants further long-term studies on the role of FGF19 in the cholestatic liver.
Collapse
Affiliation(s)
- H Johansson
- From the, Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - J F Svensson
- Division of Pediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - M Almström
- Division of Pediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - N Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M Rudling
- Unit for Metabolism, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - B Angelin
- Unit for Metabolism, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - G Nowak
- From the, Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - B Fischler
- Division of Paediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - E Ellis
- From the, Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Weaver MJ, McHenry SA, Sayuk GS, Gyawali CP, Davidson NO. Bile Acid Diarrhea and NAFLD: Shared Pathways for Distinct Phenotypes. Hepatol Commun 2020; 4:493-503. [PMID: 32258945 PMCID: PMC7109338 DOI: 10.1002/hep4.1485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) and NAFLD are both common conditions that may be influenced by shared pathways of altered bile acid (BA) signaling and homeostatic regulation. Pathophysiological links between IBS-D and altered BA metabolism include altered signaling through the ileal enterokine and fibroblast growth factor 19 (FGF19) as well as increased circulating levels of 7α-hydroxy-4-cholesten-3-one, a metabolic intermediate that denotes increased hepatic BA production from cholesterol. Defective production or release of FGF19 is associated with increased BA production and BA diarrhea in some IBS-D patients. FGF19 functions as a negative regulator of hepatic cholesterol 7α-hydroxylase; therefore, reduced serum FGF19 effectively de-represses hepatic BA production in a subset of IBS-D patients, causing BA diarrhea. In addition, FGF19 modulates hepatic metabolic homeostatic response signaling by means of the fibroblast growth factor receptor 4/klotho beta receptor to activate cascades involved in hepatic lipogenesis, fatty acid oxidation, and insulin sensitivity. Emerging evidence of low circulating FGF19 levels in subsets of patients with pediatric and adult NAFLD demonstrates altered enterohepatic BA homeostasis in NAFLD. Conclusion: Here we outline how understanding of shared pathways of aberrant BA homeostatic signaling may guide targeted therapies in some patients with IBS-D and subsets of patients with NAFLD.
Collapse
Affiliation(s)
- Michael J. Weaver
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | - Scott A. McHenry
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | - Gregory S. Sayuk
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
- U.S. Department of Veterans AffairsVA St. Louis Health Care SystemJohn Cochran DivisionSt. LouisMO
| | - C. Prakash Gyawali
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | | |
Collapse
|
38
|
Straniero S, Laskar A, Savva C, Härdfeldt J, Angelin B, Rudling M. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J Lipid Res 2020; 61:480-491. [PMID: 32086245 DOI: 10.1194/jlr.ra119000307] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Compared with humans, rodents have higher synthesis of cholesterol and bile acids (BAs) and faster clearance and lower levels of serum LDL-cholesterol. Paradoxically, they increase BA synthesis in response to bile duct ligation (BDL). Another difference is the production of hydrophilic 6-hydroxylated muricholic acids (MCAs), which may antagonize the activation of FXRs, in rodents versus humans. We hypothesized that the presence of MCAs is key for many of these metabolic differences between mice and humans. We thus studied the effects of genetic deletion of the Cyp2c70 gene, previously proposed to control MCA formation. Compared with WT animals, KO mice created using the CRISPR/Cas9 system completely lacked MCAs, and displayed >50% reductions in BA and cholesterol synthesis and hepatic LDL receptors, leading to a marked increase in serum LDL-cholesterol. The doubling of BA synthesis following BDL in WT animals was abolished in KO mice, despite extinguished intestinal fibroblast growth factor (Fgf)15 expression in both groups. Accumulation of cholesterol-enriched particles ("Lp-X") in serum was almost eliminated in KO mice. Livers of KO mice were increased 18% in weight, and serum markers of liver function indicated liver damage. The human-like phenotype of BA metabolism in KO mice could not be fully explained by the activation of FXR-mediated changes. In conclusion, the presence of MCAs is critical for many of the known metabolic differences between mice and humans. The Cyp2c70-KO mouse should be useful in studies exploring potential therapeutic targets for human disease.
Collapse
Affiliation(s)
- Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Amit Laskar
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Christina Savva
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Jennifer Härdfeldt
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
39
|
Hepatobiliary Involvement in Cystic Fibrosis. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Jain AK, le Roux CW, Puri P, Tavakkoli A, Gletsu-Miller N, Laferrère B, Kellermayer R, DiBaise JK, Martindale RG, Wolfe BM. Proceedings of the 2017 ASPEN Research Workshop-Gastric Bypass: Role of the Gut. JPEN J Parenter Enteral Nutr 2019; 42:279-295. [PMID: 29443403 DOI: 10.1002/jpen.1121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Abstract
The goal of the National Institutes of Health-funded American Society for Parenteral and Enteral Nutrition 2017 research workshop (RW) "Gastric Bypass: Role of the Gut" was to focus on the exciting research evaluating gut-derived signals in modulating outcomes after bariatric surgery. Although gastric bypass surgery has undoubted positive effects, the mechanistic basis of improved outcomes cannot be solely explained by caloric restriction. Emerging data suggest that bile acid metabolic pathways, luminal contents, energy balance, gut mucosal integrity, as well as the gut microbiota are significantly modulated after bariatric surgery and may be responsible for the variable outcomes, each of which was rigorously evaluated. The RW served as a timely and novel academic meeting that brought together clinicians and researchers across the scientific spectrum, fostering a unique venue for interdisciplinary collaboration among investigators. It promoted engaging discussion and evolution of new research hypotheses and ideas, driving the development of novel ameliorative, therapeutic, and nonsurgical interventions targeting obesity and its comorbidities. Importantly, a critical evaluation of the current knowledge regarding gut-modulated signaling after bariatric surgery, potential pitfalls, and lacunae were thoroughly addressed.
Collapse
Affiliation(s)
- Ajay Kumar Jain
- Department of Pediatrics, SSM Cardinal Glennon Children's Medical Center, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Carel W le Roux
- Diabetes Complications Research Center, University College Dublin, School of Medicine, Dublin, Ireland
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, Vieginia, USA
| | - Ali Tavakkoli
- Brigham and Women's Hospital, Center for Weight Management and Metabolic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Blandine Laferrère
- Department of Medicine, Division of Endocrinology, Columbia University, New York, New York, USA
| | | | - John K DiBaise
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Bruce M Wolfe
- Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
41
|
Hoogerland JA, Lei Y, Wolters JC, de Boer JF, Bos T, Bleeker A, Mulder NL, van Dijk TH, Kuivenhoven JA, Rajas F, Mithieux G, Haeusler RA, Verkade HJ, Bloks VW, Kuipers F, Oosterveer MH. Glucose-6-Phosphate Regulates Hepatic Bile Acid Synthesis in Mice. Hepatology 2019; 70:2171-2184. [PMID: 31102537 PMCID: PMC6859192 DOI: 10.1002/hep.30778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
It is well established that, besides facilitating lipid absorption, bile acids act as signaling molecules that modulate glucose and lipid metabolism. Bile acid metabolism, in turn, is controlled by several nutrient-sensitive transcription factors. Altered intrahepatic glucose signaling in type 2 diabetes associates with perturbed bile acid synthesis. We aimed to characterize the regulatory role of the primary intracellular metabolite of glucose, glucose-6-phosphate (G6P), on bile acid metabolism. Hepatic gene expression patterns and bile acid composition were analyzed in mice that accumulate G6P in the liver, that is, liver-specific glucose-6-phosphatase knockout (L-G6pc-/- ) mice, and mice treated with a pharmacological inhibitor of the G6P transporter. Hepatic G6P accumulation induces sterol 12α-hydroxylase (Cyp8b1) expression, which is mediated by the major glucose-sensitive transcription factor, carbohydrate response element-binding protein (ChREBP). Activation of the G6P-ChREBP-CYP8B1 axis increases the relative abundance of cholic-acid-derived bile acids and induces physiologically relevant shifts in bile composition. The G6P-ChREBP-dependent change in bile acid hydrophobicity associates with elevated plasma campesterol/cholesterol ratio and reduced fecal neutral sterol loss, compatible with enhanced intestinal cholesterol absorption. Conclusion: We report that G6P, the primary intracellular metabolite of glucose, controls hepatic bile acid synthesis. Our work identifies hepatic G6P-ChREBP-CYP8B1 signaling as a regulatory axis in control of bile acid and cholesterol metabolism.
Collapse
Affiliation(s)
- Joanne A. Hoogerland
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Yu Lei
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jan Freark de Boer
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
- Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Trijnie Bos
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Aycha Bleeker
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Niels L. Mulder
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Theo H. van Dijk
- Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jan A. Kuivenhoven
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213Université Claude Bernard LyonVilleurbanneFrance
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213Université Claude Bernard LyonVilleurbanneFrance
| | - Rebecca A. Haeusler
- Department of Pathology and Cell BiologyColumbia University College of Physicians and SurgeonsNew YorkNY
| | - Henkjan J. Verkade
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Vincent W. Bloks
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Folkert Kuipers
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
- Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Maaike H. Oosterveer
- Department of PediatricsUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
42
|
Salic K, Kleemann R, Wilkins-Port C, McNulty J, Verschuren L, Palmer M. Apical sodium-dependent bile acid transporter inhibition with volixibat improves metabolic aspects and components of non-alcoholic steatohepatitis in Ldlr-/-.Leiden mice. PLoS One 2019; 14:e0218459. [PMID: 31233523 PMCID: PMC6590809 DOI: 10.1371/journal.pone.0218459] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Interruption of bile acid recirculation through inhibition of the apical sodium-dependent bile acid transporter (ASBT) is a promising strategy to alleviate hepatic cholesterol accumulation in non-alcoholic steatohepatitis (NASH), and improve the metabolic aspects of the disease. Potential disease-attenuating effects of the ASBT inhibitor volixibat (5, 15, and 30 mg/kg) were investigated in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice over 24 weeks. Plasma and fecal bile acid levels, plasma insulin, lipids, and liver enzymes were monitored. Final analyses included liver histology, intrahepatic lipids, mesenteric white adipose tissue mass, and liver gene profiling. Consistent with its mechanism of action, volixibat significantly increased the total amount of bile acid in feces. At the highest dose, volixibat significantly attenuated the HFD-induced increase in hepatocyte hypertrophy, hepatic triglyceride and cholesteryl ester levels, and mesenteric white adipose tissue deposition. Non-alcoholic fatty liver disease activity score (NAS) was significantly lower in volixibat-treated mice than in the HFD controls. Gene profiling showed that volixibat reversed the inhibitory effect of the HFD on metabolic master regulators, including peroxisome proliferator-activated receptor-γ coactivator-1β, insulin receptor, and sterol regulatory element-binding transcription factor 2. Volixibat may have beneficial effects on physiological and metabolic aspects of NASH pathophysiology.
Collapse
Affiliation(s)
- Kanita Salic
- TNO, Department of Metabolic Health Research, Leiden, Netherlands
| | - Robert Kleemann
- TNO, Department of Metabolic Health Research, Leiden, Netherlands
| | - Cynthia Wilkins-Port
- Shire LLC, now part of Takeda, Cambridge, Massachusetts, United States of America
| | - John McNulty
- Shire LLC, now part of Takeda, Cambridge, Massachusetts, United States of America
| | - Lars Verschuren
- TNO, Department of Microbiology and Systems Biology, Zeist, Netherlands
| | - Melissa Palmer
- Shire LLC, now part of Takeda, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Struik D, Dommerholt MB, Jonker JW. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Curr Opin Lipidol 2019; 30:235-243. [PMID: 30893110 PMCID: PMC6530965 DOI: 10.1097/mol.0000000000000599] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Several members of the fibroblast growth factor (FGF) family have been identified as key regulators of energy metabolism in rodents and nonhuman primates. Translational studies show that their metabolic actions are largely conserved in humans, which led to the development of various FGF-based drugs, including FGF21-mimetics LY2405319, PF-05231023, and pegbelfermin, and the FGF19-mimetic NGM282. Recently, a number of clinical trials have been published that examined the safety and efficacy of these novel therapeutic proteins in the treatment of obesity, type 2 diabetes (T2D), nonalcoholic steatohepatitis (NASH), and cholestatic liver disease. In this review, we discuss the current understanding of FGFs in metabolic regulation and their clinical potential. RECENT FINDINGS FGF21-based drugs induce weight loss and improve dyslipidemia in patients with obesity and T2D, and reduce steatosis in patients with NASH. FGF19-based drugs reduce steatosis in patients with NASH, and ameliorate bile acid-induced liver damage in patients with cholestasis. In contrast to their potent antidiabetic effects in rodents and nonhuman primates, FGF-based drugs do not appear to improve glycemia in humans. In addition, various safety concerns, including elevation of low-density lipoprotein cholesterol, modulation of bone homeostasis, and increased blood pressure, have been reported as well. SUMMARY Clinical trials with FGF-based drugs report beneficial effects in lipid and bile acid metabolism, with clinical improvements in dyslipidemia, steatosis, weight loss, and liver damage. In contrast, glucose-lowering effects, as observed in preclinical models, are currently lacking.
Collapse
Affiliation(s)
- Dicky Struik
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
44
|
Vijayvargiya P, Gonsalves W, Burton D, Hogan WJ, Miceli T, Rossini W, Taylor A, Lueke A, Donato L, Camilleri M. Increased fecal primary bile acids in multiple myeloma with engraftment syndrome diarrhea after stem cell transplant. Bone Marrow Transplant 2019; 54:1898-1907. [PMID: 31148601 DOI: 10.1038/s41409-019-0581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 11/10/2022]
Abstract
Autologous stem cell transplant (ASCT) for multiple myeloma (MM) is associated with diarrhea during the peri-transplant period. We aimed to appraise mechanisms of peri-ASCT diarrhea in a prospective, longitudinal study of patients with MM. We compared by repeated measures (RM)-ANOVA daily bowel movements (BMs) and consistency [7-point Bristol Stool Form Scale (BSFS)], fecal calprotectin (intestinal inflammation), 13C-mannitol excretion in urine 0-2 h (small intestinal permeability), fasting serum C4 (bile acid synthesis) and total and primary bile acid in stool samples during baseline, peri-transplant period (Days 5-7 after stem cell infusion), and after hematological recovery post-ASCT. The 12 (5F, 7M) patients' median age was 61 y (IQR 54.8-63.3). All participants reported increased BMs (increase of 2 and 1 per day with and without engraftment syndrome, respectively). There were no significant increases in serum C4, total fecal bile acids, or intestinal permeability. Relative to patients without engraftment syndrome, four participants with engraftment syndrome had looser stool consistency (mean 2.6 points higher BSFS compared to without engraftment syndrome), increased primary fecal bile acids relative to baseline (>33 µmol/L vs. 6 µmol/L without engraftment syndrome), and increased fecal calprotectin compared to baseline (313 μg/mL vs. 35.6 μg/mL without engraftment syndrome; p = 0.06). Engraftment syndrome post-ASCT is associated with increased fecal primary bile acids.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN, USA
| | | | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN, USA
| | | | - Teresa Miceli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - William Rossini
- Division of Medicine Clinical Trials Unit, Mayo Clinic, Rochester, MN, USA
| | - Ann Taylor
- Division of Medicine Clinical Trials Unit, Mayo Clinic, Rochester, MN, USA
| | - Alan Lueke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Leslie Donato
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Schadt HS, Wolf A, Mahl JA, Wuersch K, Couttet P, Schwald M, Fischer A, Lienard M, Emotte C, Teng CH, Skuba E, Richardson TA, Manenti L, Weiss A, Graus Porta D, Fairhurst RA, Kullak-Ublick GA, Chibout SD, Pognan F, Kluwe W, Kinyamu-Akunda J. Bile Acid Sequestration by Cholestyramine Mitigates FGFR4 Inhibition-Induced ALT Elevation. Toxicol Sci 2019; 163:265-278. [PMID: 29432567 DOI: 10.1093/toxsci/kfy031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The FGF19- fibroblast growth factor receptor (FGFR4)-βKlotho (KLB) pathway plays an important role in the regulation of bile acid (BA) homeostasis. Aberrant activation of this pathway has been described in the development and progression of a subset of liver cancers including hepatocellular carcinoma, establishing FGFR4 as an attractive therapeutic target for such solid tumors. FGF401 is a highly selective FGFR4 kinase inhibitor being developed for hepatocellular carcinoma, currently in phase I/II clinical studies. In preclinical studies in mice and dogs, oral administration of FGF401 led to induction of Cyp7a1, elevation of its peripheral marker 7alpha-hydroxy-4-cholesten-3-one, increased BA pool size, decreased serum cholesterol and diarrhea in dogs. FGF401 was also associated with increases of serum aminotransferases, primarily alanine aminotransferase (ALT), in the absence of any observable adverse histopathological findings in the liver, or in any other organs. We hypothesized that the increase in ALT could be secondary to increased BAs and conducted an investigative study in dogs with FGF401 and coadministration of the BA sequestrant cholestyramine (CHO). CHO prevented and reversed FGF401-related increases in ALT in dogs in parallel to its ability to reduce BAs in the circulation. Correlation analysis showed that FGF401-mediated increases in ALT strongly correlated with increases in taurolithocholic acid and taurodeoxycholic acid, the major secondary BAs in dog plasma, indicating a mechanistic link between ALT elevation and changes in BA pool hydrophobicity. Thus, CHO may offer the potential to mitigate elevations in serum aminotransferases in human subjects that are caused by targeted FGFR4 inhibition and elevated intracellular BA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Corinne Emotte
- PK Sciences, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Chi-Hse Teng
- Biostatistics and Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | | | | | - Luigi Manenti
- Oncology, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| | | | | | - Robin A Fairhurst
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Mechanistic Safety, Novartis Global Drug Development, 4002 Basel, Switzerland.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Vijayvargiya P, Camilleri M, Chedid V, Carlson P, Busciglio I, Burton D, Donato LJ. Analysis of Fecal Primary Bile Acids Detects Increased Stool Weight and Colonic Transit in Patients With Chronic Functional Diarrhea. Clin Gastroenterol Hepatol 2019; 17:922-929.e2. [PMID: 29902647 PMCID: PMC6291372 DOI: 10.1016/j.cgh.2018.05.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with bile acid diarrhea (BAD) are identified based on increased levels of BAs in fecal samples collected over a 48-hr period while on a 100-gram fat diet (48-hr BA), retention of 75Se-labeled homocholic acid taurine, or serum levels of C4 or FGF19. BAD increases fecal weight and colonic transit. We investigated whether results of tests for BAD associate with increased fecal weight and more rapid colonic transit over a 24- or 48-hr period in patients with irritable bowel syndrome with diarrhea (IBS-D). We also estimated the prevalence of increased 48-hr fecal BAs in patients with chronic diarrhea. METHODS We performed a retrospective study of 64 patients with IBS-D, 30 patients with IBS-constipation, 30 healthy volunteers (controls). We collected data on fecal weights (measured over a 48-hr period), colonic transit over a 24-hr period (measured by scintigraphy), and percentages of different BAs in stool samples. Colonic transit was measured as the geometric center (weighted average) of colonic counts on a scale of 1 (100% in ascending colon) to 5 (100% in stool). We performed area under the curve (AUC) analyses to assess the association between result of serum and stool tests and high fecal weight (>400g/48 hrs) or rapid colonic transit (>3.34, corresponding to isotope geometric center in sigmoid colon). We estimated the prevalence of increased 48-hr fecal BAs among 938 patients with chronic diarrhea. RESULTS Total fecal 48-hr BA alone, or in combination with percentage of primary fecal BAs, identified patients with increased fecal weight with an AUROC of 0.86. Percentage of primary fecal BA alone identified patients with increased fecal weight with an AUROC of 0.73. Total fecal 48-hr BA alone identified patients with increased colonic transit with an AUROC of 0.65 and percentage of primary fecal BA alone identified patients with increased colonic transit with an AUROC of 0.69; combined data on these features identified patients with increased colonic transit with an AUROC of 0.70. Serum level of C4 identified patients with increased colonic transit with an AUROC of 0.60. Primary BAs >10% identified patients with increased fecal weight (sensitivity 49% and specificity 91%) and rapid colonic transit (sensitivity 48% and specificity 87%). Among the patients with chronic diarrhea, 45.6% had fecal primary BAs >10% and 27% had increased total fecal BAs (>2337 μmol/48 hrs). CONCLUSIONS In a retrospective analysis of patients with IBS-D, we found percentage of primary BAs in fecal samples to provide an alternative to total fecal BAs in identification of patients with BAD or chronic diarrhea.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota.
| | - Victor Chedid
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Irene Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Leslie J Donato
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
47
|
Thompson MD, Derse A, Ferey JLA, Reid M, Xie Y, Christ M, Chatterjee D, Nguyen C, Harasymowicz N, Guilak F, Moley KH, Davidson NO. Transgenerational impact of maternal obesogenic diet on offspring bile acid homeostasis and nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2019; 316:E674-E686. [PMID: 30860882 PMCID: PMC6482665 DOI: 10.1152/ajpendo.00474.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Studies show maternal obesity is a risk factor for metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in offspring. Here we evaluated potential mechanisms underlying these phenotypes. Female C57Bl6 mice were fed chow or an obesogenic high-fat/high-sucrose (HF/HS) diet with subsequent mating of F1 and F2 female offspring to lean males to develop F2 and F3 generations, respectively. Offspring were fed chow or fibrogenic (high transfat, cholesterol, fructose) diets, and histopathological, metabolic changes, and bile acid (BA) homeostasis was evaluated. Chow-fed F1 offspring from maternal HF/HS lineages (HF/HS) developed periportal fibrosis and inflammation with aging, without differences in hepatic steatosis but increased BA pool size and shifts in BA composition. F1, but not F2 or F3, offspring from HF/HS showed increased steatosis on a fibrogenic diet, yet inflammation and fibrosis were paradoxically decreased in F1 offspring, a trend continued in F2 and F3 offspring. HF/HS feeding leads to increased periportal fibrosis and inflammation in chow-fed offspring without increased hepatic steatosis. By contrast, fibrogenic diet-fed F1 offspring from HF/HS dams exhibited worse hepatic steatosis but decreased inflammation and fibrosis. These findings highlight complex adaptations in NAFLD phenotypes with maternal diet.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Alaina Derse
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremie LA Ferey
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Michaela Reid
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Miranda Christ
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Deyali Chatterjee
- Deparment of Pathology, Washington University in St. Louis, St. Louis, Missouri
| | - Chau Nguyen
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Natalia Harasymowicz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Oliver Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
48
|
Vijayvargiya P, Camilleri M, Burton D, Busciglio I, Lueke A, Donato LJ. Bile and fat excretion are biomarkers of clinically significant diarrhoea and constipation in irritable bowel syndrome. Aliment Pharmacol Ther 2019; 49:744-758. [PMID: 30740753 DOI: 10.1111/apt.15106] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Biomarkers in irritable bowel syndrome (IBS) may guide targeted therapy in this multifactorial disease. It has been suggested that 75% accuracy and cost <$500 categorise biomarkers as cost-effective. AIM To identify differences in faecal bile acids, faecal fat and fasting serum C4 (7a-hydroxy-4-cholesten-3-one) and fibroblast growth factor 19 (FGF19) among patients with IBS-D, IBS-C and healthy controls and to determine accurate, cost-effective biomarkers for clinically relevant diarrhoea and constipation. METHODS We assessed daily stool frequency and consistency (Bristol Stool Form Scale) from validated bowel diaries, 48 hours total and individual faecal bile acids, 48 hours faecal fat and weight, fasting serum C4 and FGF19, and colonic transit by scintigraphy from healthy volunteers (HV) and patients with IBS-D and IBS-C (Rome III criteria). We utilised multivariate logistic regression to determine biomarkers of clinically significant diarrhoea or constipation based on stool frequency, consistency and weight. RESULTS Among the 126 HV (44M/82F, 37.5 ± 10.9 years [SD]), 64 IBS-D (5M/59F, 41.9 ± 12.2 years), and 30 IBS-C (0M/30F, 44.6 ± 10 years) patients, there were significant differences between all groups in stool weight, frequency, and consistency; in addition, there were differences in colonic transit at 48 hours, faecal fat, and total and individual faecal bile acids between IBS-D and IBS-C. Reduced total and primary faecal bile acids and increased faecal lithocholic acid were significant predictors of decreased faecal weight, frequency and consistency with AUC > 0.82 (sensitivity >76%, specificity >72%). Total and primary faecal bile acids and faecal fat were significant predictors of increased stool weight, frequency and consistency with AUC > 0.71 (sensitivity >55%, specificity >74%).The faecal parameters had a 11.5 positive likelihood ratio in predicting elevated faecal weight. CONCLUSIONS Faecal bile acids and faecal fat are cost-effective and accurate biomarkers associated with significant bowel dysfunction among IBS-D and IBS-C patients.
Collapse
Affiliation(s)
- Priya Vijayvargiya
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Irene Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Alan Lueke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Leslie J Donato
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Friedman ES, Li Y, Shen TCD, Jiang J, Chau L, Adorini L, Babakhani F, Edwards J, Shapiro D, Zhao C, Carr RM, Bittinger K, Li H, Wu GD. FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology 2018; 155:1741-1752.e5. [PMID: 30144429 PMCID: PMC6279623 DOI: 10.1053/j.gastro.2018.08.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Intestinal bacteria can modify the composition of bile acids and bile acids, which are regulated by the farnesoid X receptor, affect the survival and growth of gut bacteria. We studied the effects of obeticholic acid (OCA), a bile acid analogue and farnesoid X receptor agonist, on the intestinal microbiomes of humans and mice. METHODS We performed a phase I study in 24 healthy volunteers given OCA (5, 10, or 25 mg/d for 17 days). Fecal and plasma specimens were collected at baseline (day 0) and on days 17 (end of dosing) and 37 (end of study). The fecal specimens were analyzed by shotgun meta-genomic sequencing. A Uniref90 high-stringency genomic analysis was used to assign specific genes to the taxonomic signature of bacteria whose abundance was associated with OCA. Male C57BL/6 mice were gavage fed daily with water, vehicle, or OCA (10 mg/kg) for 2 weeks. Small intestine luminal contents were collected by flushing with saline and fecal pellets were collected at baseline and day 14. Mouse samples were analyzed by 16S-tagged sequencing. Culture experiments were performed to determine the taxonomic-specific effects of bile acids and OCA on bacterial growth. RESULTS Suppression of endogenous bile acid synthesis by OCA in subjects led to a reversible induction of gram-positive bacteria that are found in the small intestine and are components of the diet and oral microbiota. We found that bile acids decreased proliferation of these bacteria in minimum inhibitory concentration assays. In these organisms, there was an increase in the representation of microbial genomic pathways involved in DNA synthesis and amino acid metabolism with OCA treatment of subjects. Consistent with these findings, mice fed OCA had lower endogenous bile acid levels and an increased proportion of Firmicutes, specifically in the small intestine, compared with mice fed water or vehicle. CONCLUSIONS In studying the effects of OCA in humans and mice, we found evidence for interactions between bile acids and features of the small intestinal microbiome. These findings indicate that farnesoid X receptor activation alters the intestinal microbiota and could provide opportunities for microbiome biomarker discovery or new approaches to engineering the human microbiome. ClinicalTrials.gov, NCT01933503.
Collapse
Affiliation(s)
- Elliot S. Friedman
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack Jiang
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian Chau
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luciano Adorini
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Farah Babakhani
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Jeffrey Edwards
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - David Shapiro
- Intercept Pharmaceuticals, 4760 Eastgate Mall, San Diego, CA 92122, USA
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rotonya M. Carr
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary D. Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Correspondence:
| |
Collapse
|
50
|
Pan Q, Zhang X, Zhang L, Cheng Y, Zhao N, Li F, Zhou X, Chen S, Li J, Xu S, Huang D, Chen Y, Li L, Wang H, Chen W, Cai SY, Boyer JL, Chai J. Solute Carrier Organic Anion Transporter Family Member 3A1 Is a Bile Acid Efflux Transporter in Cholestasis. Gastroenterology 2018; 155:1578-1592.e16. [PMID: 30063921 PMCID: PMC6221191 DOI: 10.1053/j.gastro.2018.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Bile acid transporters maintain bile acid homeostasis. Little is known about the functions of some transporters in cholestasis or their regulatory mechanism. We investigated the hepatic expression of solute carrier organic anion transporter family member 3A1 (SLCO3A1, also called OATP3A1) and assessed its functions during development of cholestasis. METHODS We measured levels of OATP3A1 protein and messenger RNA and localized the protein in liver tissues from 22 patients with cholestasis and 21 patients without cholestasis, using real-time quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. We performed experiments with Slco3a1-knockout and C57BL/6J (control) mice. Mice and Sprague-Dawley rats underwent bile duct ligation (BDL) or a sham operation. Some mice were placed on a 1% cholic acid (CA) diet to induce cholestasis or on a control diet. Serum and liver tissues were collected and analyzed; hepatic levels of bile acids and 7-α-C4 were measured using liquid chromatography/mass spectrometry. Human primary hepatocytes and hepatoma (PLC/PRF/5) cell lines were used to study mechanisms that regulate OATP3A1 expression and transport. RESULTS Hepatic levels of OATP3A1 messenger RNA and protein were significantly increased in liver tissues from patients with cholestasis and from rodents with BDL or 1% CA diet-induced cholestasis. Levels of fibroblast growth factor 19 (FGF19, FGF15 in rodents) were also increased in liver tissues from patients and rodents with cholestasis. FGF19 signaling activated the Sp1 transcription factor and nuclear factor κB to increase expression of OATP3A1 in hepatocytes; we found binding sites for these factors in the SLCO3A1 promoter. Slco3a1-knockout mice had shorter survival times and increased hepatic levels of bile acid, and they developed more liver injury after the 1% CA diet or BDL than control mice. In hepatoma cell lines, we found OATP3A1 to take prostaglandin E2 and thyroxine into cells and efflux bile acids. CONCLUSIONS We found levels of OATP3A1 to be increased in cholestatic liver tissues from patients and rodents compared with healthy liver tissues. We show that OATP3A1 functions as a bile acid efflux transporter that is up-regulated as an adaptive response to cholestasis.
Collapse
Affiliation(s)
- Qiong Pan
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoxun Zhang
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liangjun Zhang
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Cheng
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Zhao
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fengju Li
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueqian Zhou
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Senlin Xu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihua Li
- Department of Cell Biology, Jinzhou Medical University, Liaoning, China
| | - Huaizhi Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wensheng Chen
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jin Chai
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|