1
|
Feto NA, Asuzu P, Wan J, Stentz F, Dagogo-Jack S, Mandal N. Do circulating sphingolipid species correlate with age? A study in a normoglycemic biracial population. Biogerontology 2025; 26:106. [PMID: 40323517 PMCID: PMC12052799 DOI: 10.1007/s10522-025-10244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Sphingolipids (SPLs) are essential membrane lipids with significant bioactive roles involved in various cellular processes, and their alterations have been found to be linked to many diseases, including age-related diseases. However, comprehensive studies on the association of plasma sphingolipids with aging in large, diverse cohorts remain limited. The objective of this study was to investigate the relationship between plasma sphingolipid levels and aging in a cohort of 240 normoglycemic, biracial individuals (Black and White), aged 19-65 years. Using a targeted lipidomics approach, we measured 76 sphingolipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in picomole/mL and determined changes in their levels with age and their correlations with aging. We found significant age-related changes in several sphingolipid species, including ceramide C18:1 and several very long-chain sphingomyelins (VLC SMs), such as C28:1 and C30:1, increases with age, showing a positive correlation. On the other hand, glycosphingolipids (monohexosylceramide, MHC; lactosylceramide, LacCer) and sphingosine (So) showed strong negative correlations with aging. A significant correlation was also observed between the ratios of saturate/monosaturated sphingolipid species with aging. In conclusion, our findings provide novel insights into the dynamic changes of circulating sphingolipids with aging. Specific sphingolipid species, such as Ceramide C18:1 and SM, accumulate with age, while others, including MHC, LacCer, and So decrease. These results suggest that the plasma SPL profile may provide valuable information about healthy aging and age-associated disease conditions.
Collapse
Affiliation(s)
- Naser Aliye Feto
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, 930 Madison Ave., Memphis, TN, 38163, USA
| | - Peace Asuzu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Frankie Stentz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sam Dagogo-Jack
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, 930 Madison Ave., Memphis, TN, 38163, USA.
- Research, Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
2
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Leng M, Yang F, Zhao J, Xiong Y, Zhou Y, Zhao M, Jia S, Liu L, Zheng Q, Gan L, Ye J, Zheng M. Mitophagy-mediated S1P facilitates muscle adaptive responses to endurance exercise through SPHK1-S1PR1/S1PR2 in slow-twitch myofibers. Autophagy 2025:1-19. [PMID: 40181214 DOI: 10.1080/15548627.2025.2488563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Endurance exercise triggers adaptive responses especially in slow-twitch myofibers of skeletal muscles, leading to the remodeling of myofiber structure and the mitochondrial network. However, molecular mechanisms underlying these adaptive responses, with a focus on the fiber type-specific perspective, remains largely unknown. In this study we analyzed the alterations of transcriptomics and metabolomics in distinct skeletal myofibers in response to endurance exercise. We determined that genes associated with sphingolipid metabolism, namely those encoding SPHK1, S1PR1, and S1PR2, are enriched in slow-twitch but not fast-twitch myofibers from both mouse and human skeletal muscles, and found that the SPHK1-S1PR pathway is essential for adaptive responses of slow-twitch to endurance exercise. Importantly, we demonstrate that endurance exercise causes the accumulation of ceramides on stressed mitochondria, and the mitophagic degradation of ceramides results in an increase of the sphingosine-1-phosphate (S1P) level. The elevated S1P thereby facilitates mitochondrial adaptation and enhances endurance capacity via the SPHK1-S1PR1/S1PR2 axis in slow-twitch muscles. Moreover, administration of S1P improves endurance performance in muscle atrophy mice by emulating these adaptive responses. Our findings reveal that the SPHK1-S1P-S1PR1/S1PR2 axis through mitophagic degradation of ceramides in slow-twitch myofibers is the central mediator to endurance exercise and highlight a potential therapeutic target for ameliorating muscle atrophy diseases.Abbreviations CQ: chloroquine; DMD: Duchenne muscular dystrophy; EDL: extensor digitorum longus; FCCP: carbonyl cyanide p-trifluoromethoxyphenyl hydrazone; FUNDC1: FUN14 domain containing 1; GTEx: genotype-tissue expression; MYH: myosin heavy chain; mtDNA: mitochondrial DNA; PPARGC1A/PGC-1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; RG: red gastrocnemius; S1P: sphingosine-1-phosphate; S1PR: sphingosine-1-phosphate receptor; Sol: soleus; SPHK1: sphingosine kinase 1; TA: tibialis anterior; WG: white gastrocnemius.
Collapse
Affiliation(s)
- Minghong Leng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Fenghe Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Junhui Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Yufei Xiong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Yiqing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Mingyang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Qiaoxia Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| | - Lebin Gan
- Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University), National Center for Trauma Medicine, Trauma Medicine Center, Peking University People's Hospital, Beijing, P.R. China
| | - Jingjing Ye
- Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University), National Center for Trauma Medicine, Trauma Medicine Center, Peking University People's Hospital, Beijing, P.R. China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P.R. China
| |
Collapse
|
4
|
Crescenzi MA, Gallart-Ayala H, Stellato C, Popolo A, Ivanisevic J, Piacente S, Montoro P. A Targeted Mass Spectrometric Approach to Evaluate the Anti-Inflammatory Activity of the Major Metabolites of Foeniculum vulgare Mill. Waste in Human Bronchial Epithelium. Molecules 2025; 30:1407. [PMID: 40286023 PMCID: PMC11990374 DOI: 10.3390/molecules30071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Fennel waste is rich in compounds that may have beneficial effects on human health. For this reason, the most abundant metabolites in fennel were isolated as the following: quercetin-3-O-glucoside, quinic acid, 1,5-dicaffeoylquinic acid, kaempferol-3-O-glucuronide, and quercetin-3-O-glucuronide. After inducing inflammation in human bronchial epithelial cells by stimulating them with IL-1β, the cells were treated with the specialized Foeniculum vulgare metabolites at different concentrations to assess their anti-inflammatory effect. Eicosanoids, fatty acids, and sphingolipids were extracted from the cell medium and quantified by UPLC-ESI-QTRAP-MS/MS analysis. The anti-inflammatory activity of the metabolites isolated from fennel waste was demonstrated. They were able to alleviate the inflammatory state in human bronchial epithelium by modulating the metabolic expression of both pro- and anti-inflammatory eicosanoids, fatty acids, and sphingolipids. These findings suggest the potential use of fennel waste in the production of dietary supplements to alleviate the symptoms of chronic inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF), where the continuous use of antiphlogistics may have significant side effects.
Collapse
Affiliation(s)
- Maria Assunta Crescenzi
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (A.P.); (S.P.)
- Ph.D. Program in Drug Discovery & Development, Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, I-84084 Salerno, Italy;
| | - Ada Popolo
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (A.P.); (S.P.)
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Sonia Piacente
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (A.P.); (S.P.)
| | - Paola Montoro
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (A.P.); (S.P.)
| |
Collapse
|
5
|
Felippe TVD, Toro DM, de Carvalho JCS, Nobre-Azevedo P, Rodrigues LFM, Oliveira BTM, da Silva-Neto PV, Vilela AFL, Almeida F, Faccioli LH, Sorgi CA. High-resolution targeted mass spectrometry for comprehensive quantification of sphingolipids: clinical applications and characterization of extracellular vesicles. Anal Biochem 2025; 698:115732. [PMID: 39622401 DOI: 10.1016/j.ab.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sphingolipids (SL), a class of membrane lipids, play important roles in numerous biological processes. Their significant structural diversity poses challenges for accurate quantification. To address this, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for sphingolipidomics, capable of profiling these lipids comprehensively. In this study, we utilized LC-MS/MS with high-resolution mass spectrometry (MRMHR) to develop a targeted method for the identification and quantification of various SL species. This method, based on validated parameters such as precursor/fragment ions (m/z) and retention time, demonstrated high sensitivity and accuracy, successfully identifying SL species across 12 distinct classes. Its open-panel design also facilitates the analysis of new SL-species targets. Notably, using this approach, we identified 40 SL species in plasma samples from COVID-19 patients, and we determined the influence of matrix metalloproteinase-3 (MMP-3) expression on the positive downstream of SL metabolism. Beyond plasma analysis, this method has potential applications in other biomedical contexts, such as extracellular vesicles (EVs), describing the cargo of sphingosine-1-phosphate (S1P) on macrophage-derived EVs. The establishment of this targeted workflow enabling precise quantification of a wide range of SL species, holds promise for identifying novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thiago V D Felippe
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Pedro Nobre-Azevedo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Luiz F M Rodrigues
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Bianca T M Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Adriana F L Vilela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil.
| |
Collapse
|
6
|
Lassallette E, Pierron A, Tardieu D, Reymondaud S, Gallissot M, Rodriguez MA, Collén PN, Roy O, Guerre P. Biomarkers of Fumonisin Exposure in Pigs Fed the Maximum Recommended Level in Europe. Toxins (Basel) 2025; 17:69. [PMID: 39998086 PMCID: PMC11861712 DOI: 10.3390/toxins17020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigated biomarkers of fumonisin exposure in pigs fed diets contaminated with fumonisins at the European Union's maximum recommended level. Pigs were assigned to either a fumonisin (FB) diet or a fumonisin plus AlgoClay (FB + AC) diet for durations of 4, 9, and 14 days. At 14 days, the plasma Sa1P:So1P ratio increased in pigs fed the FB diet, while the Sa:So ratio remained unchanged. In the liver, FB1 was detected at four days of exposure, with the concentration tending to increase through day 14. The Sa:So and C22-24:C16 ratios of 18:1-, 18:2-, and m18:1-ceramides were elevated at 9 and 14 days, respectively. In the kidneys, FB1 was only detectable at 14 days, and the Sa:So and C22-24:C16 ratios of 18:1-ceramides were increased. In both the liver and kidneys, the increase in the C22-24:C16 ratio was attributed to a reduction of C16 ceramides. In the lungs, no FB1 was detected; however, the Sa:So and Sa1P:So1P ratios increased, and C16 ceramide concentrations decreased at 14 days. Feeding the pigs the FB + AC diet resulted in a reduction of the FB1 tissue-to-feed ratio in the liver and kidneys but did not affect the Sa:So or Sa1P:So1P ratios. Interestingly, the decreases in C16 ceramides observed in the FB diet group were no longer detectable in the FB + AC group. Overall, these findings highlight the complexity of the relationship between FB1 tissue concentrations and sphingolipid changes, suggesting that a comprehensive analysis of multiple biomarkers is required to fully understand fumonisin's effects.
Collapse
Affiliation(s)
- Elodie Lassallette
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Alix Pierron
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Solène Reymondaud
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Marie Gallissot
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | | | - Pi Nyvall Collén
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Olivier Roy
- Cebiphar, 1 Rue de la Bodinière, 37230 Fondettes, France;
| | - Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| |
Collapse
|
7
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Montefusco D, Jamil M, Canals D, Saligrama S, Yue Y, Allegood J, Cowart LA. SPTLC3 regulates plasma membrane sphingolipid composition to facilitate hepatic gluconeogenesis. Cell Rep 2024; 43:115054. [PMID: 39661520 PMCID: PMC12004358 DOI: 10.1016/j.celrep.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes. Stable isotope tracing revealed suppression of the gluconeogenic pathway, finding that SPTLC3 was required to maintain expression of key gluconeogenic genes via adenylate cyclase/cyclic AMP (cAMP)/cAMP response element binding protein (CREB) signaling. Additionally, by employing a combination of a recently developed lipidomics methodology, exogenous C14/C16 fatty acid treatment, and in situ adenylate cyclase activity, we implicated a functional interaction between sphingomyelin with a d16 backbone and adenylate cyclase at the plasma membrane. This work pinpoints a specific sphingolipid-protein functional interaction with broad implications for understanding sphingolipid signaling and metabolic disease.
Collapse
Affiliation(s)
- David Montefusco
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Maryam Jamil
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Siri Saligrama
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yang Yue
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Allegood
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - L Ashley Cowart
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
9
|
Zhang J, Sjøberg KA, Gong S, Wang T, Li F, Kuo A, Durot S, Majcher A, Ardicoglu R, Desgeorges T, Mann CG, Soro Arnáiz I, Fitzgerald G, Gilardoni P, Abel ED, Kon S, Olivares-Villagómez D, Zamboni N, Wolfrum C, Hornemann T, Morscher R, Tisch N, Ghesquière B, Kopf M, Richter EA, De Bock K. Endothelial metabolic control of insulin sensitivity through resident macrophages. Cell Metab 2024; 36:2383-2401.e9. [PMID: 39270655 DOI: 10.1016/j.cmet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kim Anker Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Songlin Gong
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Tongtong Wang
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, Hefei, China
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Stephan Durot
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Charlotte Greta Mann
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Ines Soro Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphael Morscher
- Pediatric Cancer Metabolism Laboratory, Children`s Research Center, University of Zürich, 8032 Zürich, Switzerland
| | - Nathalie Tisch
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
10
|
Armistead J, Höpfl S, Goldhausen P, Müller-Hartmann A, Fahle E, Hatzold J, Franzen R, Brodesser S, Radde NE, Hammerschmidt M. A sphingolipid rheostat controls apoptosis versus apical cell extrusion as alternative tumour-suppressive mechanisms. Cell Death Dis 2024; 15:746. [PMID: 39397024 PMCID: PMC11471799 DOI: 10.1038/s41419-024-07134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously. This healing is driven by Matriptase-dependent increased sphingosine kinase (SphK) activity and sphingosine-1-phosphate (S1P)-mediated keratinocyte loss via apical cell extrusion. In contrast, amorphic hai1afr26 mutants with even higher Matriptase-1 and SphK activity die within a few days. Here we show that this lethality is not due to epidermal carcinogenesis, but to aberrant tp53-independent apoptosis of keratinocytes caused by increased levels of pro-apoptotic C16 ceramides, sphingolipid counterparts to S1P within the sphingolipid rheostat, which severely compromises the epidermal barrier. Mathematical modelling of sphingolipid rheostat homeostasis, combined with in vivo manipulations of components of the rheostat or the ceramide de novo synthesis pathway, indicate that this unexpected overproduction of ceramides is caused by a negative feedback loop sensing ceramide levels and controlling ceramide replenishment via de novo synthesis. Therefore, despite their initial decrease due to increased conversion to S1P, ceramides eventually reach cell death-inducing levels, making transformed pre-neoplastic keratinocytes die even before they are extruded, thereby abrogating the normally barrier-preserving mode of apical live cell extrusion. Our results offer an in vivo perspective of the dynamics of sphingolipid homeostasis and its relevance for epithelial cell survival versus cell death, linking apical cell extrusion and apoptosis. Implications for human carcinomas and their treatments are discussed.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Pierre Goldhausen
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | | | - Evelin Fahle
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics/Metabolomics Facility, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicole E Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Dagogo-Jack S, Asuzu P, Wan J, Grambergs R, Stentz F, Mandal N. Plasma Ceramides and Other Sphingolipids in Relation to Incident Prediabetes in a Longitudinal Biracial Cohort. J Clin Endocrinol Metab 2024; 109:2530-2540. [PMID: 38501230 PMCID: PMC11403313 DOI: 10.1210/clinem/dgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT Sphingolipids are linked to the pathogenesis of type 2 diabetes. OBJECTIVE To test the hypothesis that plasma sphingolipid profiles predict incident prediabetes. DESIGN A case-control study nested in the Pathobiology of Prediabetes in a Biracial Cohort study, a 5-year follow-up study. SETTING Academic health center. PARTICIPANTS Normoglycemic adults enrolled in the Pathobiology of Prediabetes in a Biracial Cohort study. Assessments included oral glucose tolerance test, insulin sensitivity, and insulin secretion. Participants with incident prediabetes were matched in age, sex, and ethnicity with nonprogressors. INTERVENTIONS We assayed 58 sphingolipid species (ceramides, monohexosyl ceramides, sphingomyelins, and sphingosine) using liquid chromatography/tandem mass spectrometry in baseline plasma levels from participants and determined association with prediabetes risk. MAIN OUTCOME MEASURE The primary outcome was progression from normoglycemia to prediabetes, defined as impaired fasting glucose or impaired glucose tolerance. RESULTS The mean age of participants (N = 140; 50% Black, 50% female) was 48.1 ± 8.69 years, body mass index 30.1 ± 5.78 kg/m2, fasting plasma glucose 92.7 ± 5.84 mg/dL, and 2-hour plasma glucose 121 ± 23.3 mg/dL. Of the 58 sphingolipid species assayed, higher ratios of sphingomyelin C26:0/C26:1 (OR, 2.73 [95% CI, 1.172-4.408], P = .015) and ceramide C18:0/C18:1 (OR, 1.236 [95% CI, 1.042-1.466], P = .015) in baseline plasma specimens were significantly associated with progression to prediabetes during the 5-year follow-up period, after adjustments for age, race, sex, body mass index, fasting plasma glucose, 2-hour plasma glucose, insulin sensitivity, and insulin secretion. CONCLUSION We conclude that the saturated-to-monounsaturated ratios of long-chain ceramide C18:0/C18:1 and very-long-chain sphingomyelin C26:0/C26:1 are potential biomarkers of prediabetes risk among individuals with parental history of type 2 diabetes.
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard Grambergs
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
12
|
Li X, Tian S, Riezman I, Qin Y, Riezman H, Feng S. A sensitive, expandable AQC-based LC-MS/MS method to measure amino metabolites and sphingolipids in cell and serum samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124256. [PMID: 39094252 DOI: 10.1016/j.jchromb.2024.124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Sphingolipids are a major lipid species found in all eukaryotes. Among structurally complex and diversified lipids, sphingoid bases have been heavily linked to various metabolic diseases. However, most current LC-MS-based methods lack the sensitivity to detect low-abundant sphingoid bases. The 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization reagent, which efficiently forms covalent bonds with amino groups, has been widely used for amino acid detection. Nevertheless, the commonly used reverse-phase HPLC method for amino acid analysis is not suitable for amphipathic sphingolipids. To address this issue, we report a robust reverse-phase HPLC-MS/MS method capable of separating and detecting hydrophilic amino acids and sphingoid bases in a single run with high sensitivity. This method is also inclusive of other amino metabolites with an expandable target list. We tested this method under various conditions and samples, demonstrating its high reproducibility and sensitivity. Using this approach, we systematically analyzed human serum samples from healthy individuals, dyslipidemia, and type II diabetes mellitus (T2DM) patients, respectively. Two sphingolipids and five amino acids were identified with significant differences between the control and T2DM groups, highlighting the potential of this method in clinical studies.
Collapse
Affiliation(s)
- Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwei Tian
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71000, Shanxi, China
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Yujiao Qin
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
13
|
Kovilakath A, Mauro AG, Valentine YA, Raucci FJ, Jamil M, Carter C, Thompson J, Chen Q, Beutner G, Yue Y, Allegood J, Wang XX, Dail J, Devarakonda T, Myakala K, Windle JJ, Subler MA, Montefusco D, Willard B, Javaheri A, Bernas T, Mahata SK, Levi M, Liu J, Porter GA, Lesnefsky EJ, Salloum FN, Cowart LA. SPTLC3 Is Essential for Complex I Activity and Contributes to Ischemic Cardiomyopathy. Circulation 2024; 150:622-641. [PMID: 38660786 PMCID: PMC11333184 DOI: 10.1161/circulationaha.123.066879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Adolfo G Mauro
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Yolander A Valentine
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research (Y.A.V.), Virginia Commonwealth University, Richmond
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Frank J Raucci
- Department of Pediatrics, Division of Pediatric Cardiology (F.J.R.), Virginia Commonwealth University, Richmond
| | - Maryam Jamil
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Gisela Beutner
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
| | - Yang Yue
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jordan Dail
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Teja Devarakonda
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jolene J Windle
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - Mark A Subler
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - David Montefusco
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Belinda Willard
- Proteomics and Metabolomics Shared Laboratory Resource, Lerner Research Institute, Cleveland Clinic, OH (B.W.)
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (A.J.)
- St. Louis Veterans' Affairs Medical Center, MO (A.J.)
| | - Tytus Bernas
- Department of Anatomy and Neurobiology (T.B.), Virginia Commonwealth University, Richmond
| | - Sushil K Mahata
- Veterans' Affairs San Diego Healthcare System and University of California San Diego, (S.K.M)
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jinze Liu
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - George A Porter
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
- Department of Pharmacology and Physiology (G.A.P.), University of Rochester Medical Center, NY
- Aab Cardiovascular Research Institute (G.A.P.), University of Rochester Medical Center, NY
| | - Edward J Lesnefsky
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| | - Fadi N Salloum
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| |
Collapse
|
14
|
Castillo-Ribelles L, Arranz-Amo JA, Hernández-Vara J, Samaniego-Toro D, Enriquez-Calzada S, Pozo SLD, Camprodon-Gomez M, Laguna A, Gonzalo MA, Ferrer R, Martinez-Vicente M, Carnicer-Caceres C. Evaluation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Analysis of Glucosylceramide and Galactosylceramide Isoforms in Cerebrospinal Fluid of Parkinson's Disease Patients. Anal Chem 2024; 96:12875-12882. [PMID: 39047057 PMCID: PMC11308999 DOI: 10.1021/acs.analchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson's disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.
Collapse
Affiliation(s)
- Laura Castillo-Ribelles
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Antonio Arranz-Amo
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
| | | | - Silvia Enriquez-Calzada
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Sara Lucas-Del Pozo
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
- Department
of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Maria Camprodon-Gomez
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Unit
of Hereditary Metabolic Disorders, Internal Medicine Department, Vall d’Hebron University Hospital, Barcelona 08035, Spain
| | - Ariadna Laguna
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Mercedes Arrúe Gonzalo
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Roser Ferrer
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Martinez-Vicente
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Clara Carnicer-Caceres
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
15
|
Kuchar L, Berna L, Poupetova H, Ledvinova J, Ruzicka P, Dostalova G, Reichmannova S, Asfaw B, Linhart A, Sikora J. LysoGb3 quantification facilitates phenotypic categorization of Fabry disease patients: Insights gained by a novel MS/MS method. Clin Chim Acta 2024; 561:119824. [PMID: 38906396 DOI: 10.1016/j.cca.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Fabry disease (FD) is an X-linked lysosomal storage disease resulting from pathogenic variants in the GLA gene coding α-galactosidase A (AGAL) and cleaving terminal alpha-linked galactose. Globotriaosylceramide (Gb3) is the predominantly accumulated sphingolipid. Gb3, deacylated-Gb3 (lysoGb3), and methylated-Gb3 (metGb3) have been suggested as FD biomarkers. MATERIALS AND METHODS We developed a novel LC-MS/MS method for assessing lysoGb3 levels in plasma and Gb3 and metGb3 in urine and tested 62 FD patients, 34 patients with GLA variants of unknown significance (VUS) and 59 healthy controls. AGAL activity in white blood cells (WBCs) and plasma was evaluated in parallel. RESULTS In males, lysoGb3 concentrations in plasma separated classic and late-onset FD patients from each other and from individuals carrying GLA VUS and healthy controls. Calculating AGAL activity/plasmatic lysoGb3 ratio allowed to correctly categorize all females with classic and majority of patients with late-onset FD phenotypes. Correlation of AGAL activity in WBCS with lipid biomarkers identified threshold activity values under which the biomarkers' concentrations increase. CONCLUSION We developed a novel simplified LC-MS/MS method for quantitation of plasma lysoGb3. AGAL activity/plasma lysoGb3 ratio was identified as the best predictor for FD. AGAL activity correlated with plasma lysoGb3 and corresponded to individual FD phenotypes.
Collapse
Affiliation(s)
- Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | - Linda Berna
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Helena Poupetova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Ledvinova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Ruzicka
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Gabriela Dostalova
- Second Department of Internal Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Stella Reichmannova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Befekadu Asfaw
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ales Linhart
- Second Department of Internal Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
16
|
Wang Z, Zhang D, Wu J, Zhang W, Xia Y. Illuminating the dark space of neutral glycosphingolipidome by selective enrichment and profiling at multi-structural levels. Nat Commun 2024; 15:5627. [PMID: 38965283 PMCID: PMC11224418 DOI: 10.1038/s41467-024-50014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Glycosphingolipids (GSLs) are essential components of cell membranes, particularly enriched in the nervous system. Altered molecular distributions of GSLs are increasingly associated with human diseases, emphasizing the significance of lipidomic profiling. Traditional GSL analysis methods are hampered by matrix effect from phospholipids and the difficulty in distinguishing structural isomers. Herein, we introduce a highly sensitive workflow that harnesses magnetic TiO2 nanoparticle-based selective enrichment, charge-tagging Paternò-Büchi reaction, and liquid chromatography-tandem mass spectrometry. This approach enables mapping over 300 distinct GSLs in brain tissues by defining sugar types, long chain bases, N-acyl chains, and the locations of desaturation and hydroxylation. Relative quantitation of GSLs across multiple structural levels provides evidence of dysregulated gene and protein expressions of FA2H and CerS2 in human glioma tissue. Based on the structural features of GSLs, our method accurately differentiates human glioma with/without isocitrate dehydrogenase genetic mutation, and normal brain tissue.
Collapse
Affiliation(s)
- Zidan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Junhan Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Mondal K, Del Mar NA, Gary AA, Grambergs RC, Yousuf M, Tahia F, Stephenson B, Stephenson DJ, Chalfant CE, Reiner A, Mandal N. Sphingolipid changes in mouse brain and plasma after mild traumatic brain injury at the acute phases. Lipids Health Dis 2024; 23:200. [PMID: 38937745 PMCID: PMC11209960 DOI: 10.1186/s12944-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Molecular Diagnostics Laboratory, Department of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, Kolkata, WB, 700 063, India
| | - Nobel A Del Mar
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Ashlyn A Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard C Grambergs
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Mohd Yousuf
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Faiza Tahia
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Benjamin Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Research Service, Richmond VA Medical Center, Richmond, VA, 23298, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
18
|
Mandal N, Stentz F, Asuzu PC, Nyenwe E, Wan J, Dagogo-Jack S. Plasma Sphingolipid Profile of Healthy Black and White Adults Differs Based on Their Parental History of Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:740-749. [PMID: 37804534 PMCID: PMC10876402 DOI: 10.1210/clinem/dgad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
CONTEXT Ceramides and sphingolipids have been linked to type 2 diabetes (T2D). The Ceramides and Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study is designed to determine the association of plasma sphingolipids with the pathophysiology of human T2D. OBJECTIVE A comparison of plasma sphingolipids profiles in Black and White adults with (FH+) and without (FH-) family history of T2D. DESIGN We recruited 100 Black and White FH- (54 Black, 46 White) and 140 FH+ (75 Black, 65 White) adults. Fasting plasma levels of 58 sphingolipid species, including 18 each from 3 major classes (ceramides, monohexosylceramides, and sphingomyelins, all with 18:1 sphingoid base) and 4 long-chain sphingoid base-containing species, were measured by liquid chromatography/mass spectrometry. RESULTS Sphingomyelin was the most abundant sphingolipid in plasma (89% in FH-), and was significantly elevated in FH+ subjects (93%). Ceramides and monohexosylceramides comprised 5% and 6% of total sphingolipids in the plasma of FH- subjects, and were reduced significantly in FH+ subjects (3% and 4%, respectively). In FH+ subjects, most ceramide and monohexosylceramide species were decreased but sphingomyelin species were increased. The level of C18:1 species of all 3 classes was elevated in FH+ subjects. CONCLUSION Elevated levels of sphingomyelin, the major sphingolipids of plasma, and oleic acid-containing sphingolipids in healthy FH+ subjects compared with healthy FH- subjects may reflect heritable elements linking sphingolipids and the development of T2D.
Collapse
Affiliation(s)
- Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Chiamaka Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer Nyenwe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Busey GW, Manjegowda MC, Huang T, Iobst WH, Naphade SS, Kennedy JA, Doyle CA, Seegren PV, Lynch KR, Desai BN. Analogs of FTY720 inhibit TRPM7 but not S1PRs and exert multimodal anti-inflammatory effects. J Gen Physiol 2024; 156:e202313419. [PMID: 37943249 PMCID: PMC10635799 DOI: 10.1085/jgp.202313419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
TRPM7, a TRP channel with ion conductance and kinase activities, has emerged as an attractive drug target for immunomodulation. Reverse genetics and cell biological studies have already established a key role for TRPM7 in the inflammatory activation of macrophages. Advancing TRPM7 as a viable molecular target for immunomodulation requires selective TRPM7 inhibitors with in vivo tolerability and efficacy. Such inhibitors have the potential to interdict inflammatory cascades mediated by systemic and tissue-specialized macrophages. FTY720, an FDA-approved drug for multiple sclerosis inhibits TRPM7. However, FTY720 is a prodrug and its metabolite, FTY720-phosphate, is a potent agonist of sphingosine-1-phosphate (S1P) receptors. In this study, we test non-phosphorylatable FTY720 analogs, which are inert against S1PRs and well tolerated in vivo, for activity against TRPM7 and tissue bioavailability. Using patch clamp electrophysiology, we show that VPC01091.4 and AAL-149 block TRPM7 current at low micromolar concentrations. In culture, they act directly on macrophages to blunt LPS-induced inflammatory cytokine expression, though this likely occurrs through multiple molecular targets. We found that VPC01091.4 has significant and rapid accumulation in the brain and lungs, along with direct anti-inflammatory action on alveolar macrophages and microglia. Finally, using a mouse model of endotoxemia, we show VPC01091.4 to be an efficacious anti-inflammatory agent that arrests systemic inflammation in vivo. Together, these findings identify novel small molecule inhibitors that allow TRPM7 channel inhibition independent of S1P receptor targeting which demonstrate potent, polymodal anti-inflammatory activities ex vivo and in vivo.
Collapse
Affiliation(s)
- Gregory W. Busey
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mohan C. Manjegowda
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tao Huang
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wesley H. Iobst
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shardul S. Naphade
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joel A. Kennedy
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Catherine A. Doyle
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Philip V. Seegren
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kevin R. Lynch
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bimal N. Desai
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
20
|
Hayashi Y, Tanikawa T. Analysis of the Effects of Brefeldin A on Deuterium-Labeled Sphinganine Metabolism Using Liquid Chromatography-Tandem Mass Spectrometry. Biol Pharm Bull 2024; 47:2173-2181. [PMID: 39756932 DOI: 10.1248/bpb.b24-00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ceramide (Cer) is synthesized in the endoplasmic reticulum (ER) using sphinganine as the common backbone and is then transported to the Golgi apparatus to synthesize two complex sphingolipids, sphingomyelin (SM) and glucosylceramide (GlcCer). Brefeldin A (BFA) affects the structure of the Golgi apparatus, resulting in the redistribution of the Golgi proteins into the ER. Therefore, BFA has been used to examine the ER-to-Golgi trafficking of lipids, but the detailed lipid changes in cells upon BFA treatment are not fully understood. Here, we examined the metabolism of deuterium-labeled sphinganine in HEK293T cells treated with BFA using liquid chromatography-tandem mass spectrometry. The BFA-pretreated cells were incubated in the presence of deuterium-labeled sphinganine and BFA for 5 min to 8 h, and the levels of dihydroceramide, Cer, dihydrosphingomyelin, SM, GlcCer, and phosphatidylcholine (PC) were investigated. The levels of Cer species in BFA-treated cells were lower than those in untreated cells within 2 h of incubation, but following >4 h of incubation, the levels of C14-20 Cer, encompassing C14-20 acyl chains, were similar in BFA-treated and untreated cells. Furthermore, BFA treatment increased the levels of C14-20 GlcCer but had little effect on those of C22-24 GlcCer. Moreover, after incubation for >4 h, BFA treatment decreased the levels of saturated C30-32 PC but had almost little effect on those of PC containing a monounsaturated C32-34 acyl chain. Our findings showed that BFA affected the metabolism of various lipids depending on the length and saturation of the fatty acid chain.
Collapse
Affiliation(s)
| | - Takashi Tanikawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
21
|
Guo W, Ortega EF, Wu D, Li L, Bronson RT, Boehm SK, Meydani SN. Life-long consumption of high level of fruits and vegetables reduces tumor incidence and extends median lifespan in mice. Front Nutr 2023; 10:1286792. [PMID: 38125727 PMCID: PMC10731956 DOI: 10.3389/fnut.2023.1286792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Objective Epidemiological studies suggest that consumption of fruits and vegetables (FV) is negatively associated with the incidence of certain cancers and mortality. However, a causal relationship has not been demonstrated. Thus, we investigated the effect of life-long consumption of high level of FV on median lifespan, key biological functions, and pathologies in mice fed low-fat (LF) or high-fat (HF) diets and the underlying mechanisms. Methods Using a 2 × 2 factorial design, 5 weeks-old male C57BL/6J mice were randomly assigned to one of four groups (n = 60/group): LF (LF-C, 10% kcal fat), HF (HF-C, 45% kcal fat) or each supplemented with 15% (w/w) of a unique FV mixture (LF + FV and HF + FV, respectively). Mice were euthanized when one group reached 50% mortality. Body weight and composition, tumor incidence, and death were monitored. Blood levels of lipids and pro-inflammatory cytokines were assessed. Results After 21 months of feeding, HF-C group reached 50% mortality, at which time mice in all groups were terminated. HF-C had higher mortality (50.0%) compared to the LF-C group (18.3%, p = 0.0008). Notably, HF-FV had lower mortality (23.3%) compared to HF-C group (p = 0.008); there was no significant difference in mortality between HF-FV and LF-C groups. Tumors were found in all groups, and were predominantly present in the liver, followed by those of lung, intestine, and seminal vesicle. Tumor incidence in the HF-C group (73.3%) was higher than that in LF-C group (30.0%, p < 0.0001). HF + FV group had 23.3% lower tumor incidence compared to the HF-C group (p = 0.014). No significant difference in tumor incidence between the LF-C and LF + FV groups was observed. Long-term FV supplementation reduced systemic inflammation and blood lipids. Conclusion We provide the first causal evidence that life-long intake of a diet, containing a high level and large variety of FV, decreases tumor incidence and extends median lifespan in mice fed a western-style high-fat diet. These effects of FV are at least in part due to reduced blood levels of pro-inflammatory cytokines and improved dyslipidemia.
Collapse
Affiliation(s)
- Weimin Guo
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Edwin F. Ortega
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Dayong Wu
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Lijun Li
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Roderick T. Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, United States
| | - Sarah K. Boehm
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
22
|
Hammerschmidt P, Steculorum SM, Bandet CL, Del Río-Martín A, Steuernagel L, Kohlhaas V, Feldmann M, Varela L, Majcher A, Quatorze Correia M, Klar RFU, Bauder CA, Kaya E, Porniece M, Biglari N, Sieben A, Horvath TL, Hornemann T, Brodesser S, Brüning JC. CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice. Nat Commun 2023; 14:7824. [PMID: 38016943 PMCID: PMC10684560 DOI: 10.1038/s41467-023-42595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
Dysregulation of hypothalamic ceramides has been associated with disrupted neuronal pathways in control of energy and glucose homeostasis. However, the specific ceramide species promoting neuronal lipotoxicity in obesity have remained obscure. Here, we find increased expression of the C16:0 ceramide-producing ceramide synthase (CerS)6 in cultured hypothalamic neurons exposed to palmitate in vitro and in the hypothalamus of obese mice. Conditional deletion of CerS6 in hypothalamic neurons attenuates high-fat diet (HFD)-dependent weight gain and improves glucose metabolism. Specifically, CerS6 deficiency in neurons expressing pro-opiomelanocortin (POMC) or steroidogenic factor 1 (SF-1) alters feeding behavior and alleviates the adverse metabolic effects of HFD feeding on insulin sensitivity and glucose tolerance. POMC-expressing cell-selective deletion of CerS6 prevents the diet-induced alterations of mitochondrial morphology and improves cellular leptin sensitivity. Our experiments reveal functions of CerS6-derived ceramides in hypothalamic lipotoxicity, altered mitochondrial dynamics, and ER/mitochondrial stress in the deregulation of food intake and glucose metabolism in obesity.
Collapse
Affiliation(s)
- Philipp Hammerschmidt
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sophie M Steculorum
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research, Research Group Neurocircuit Wiring and Function, Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Cécile L Bandet
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Almudena Del Río-Martín
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vivien Kohlhaas
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marvin Feldmann
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Marta Quatorze Correia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Rhena F U Klar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Corinna A Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ecem Kaya
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marta Porniece
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nasim Biglari
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Sieben
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamas L Horvath
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
23
|
Antonisamy B, Shailesh H, Hani Y, Ahmed LHM, Noor S, Ahmed SY, Alfaki M, Muhayimana A, Jacob SS, Balayya SK, Soloviov O, Liu L, Mathew LS, Wang K, Tomei S, Al Massih A, Mathew R, Karim MY, Ramanjaneya M, Worgall S, Janahi IA. Sphingolipids in Childhood Asthma and Obesity (SOAP Study): A Protocol of a Cross-Sectional Study. Metabolites 2023; 13:1146. [PMID: 37999242 PMCID: PMC10673587 DOI: 10.3390/metabo13111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Asthma and obesity are two of the most common chronic conditions in children and adolescents. There is increasing evidence that sphingolipid metabolism is altered in childhood asthma and is linked to airway hyperreactivity. Dysregulated sphingolipid metabolism is also reported in obesity. However, the functional link between sphingolipid metabolism, asthma, and obesity is not completely understood. This paper describes the protocol of an ongoing study on sphingolipids that aims to examine the pathophysiology of sphingolipids in childhood asthma and obesity. In addition, this study aims to explore the novel biomarkers through a comprehensive multi-omics approach including genomics, genome-wide DNA methylation, RNA-Seq, microRNA (miRNA) profiling, lipidomics, metabolomics, and cytokine profiling. This is a cross-sectional study aiming to recruit 440 children from different groups: children with asthma and normal weight (n = 100), asthma with overweight or obesity (n = 100), overweight or obesity (n = 100), normal weight (n = 70), and siblings of asthmatic children with normal weight, overweight, or obesity (n = 70). These participants will be recruited from the pediatric pulmonology, pediatric endocrinology, and general pediatric outpatient clinics at Sidra Medicine, Doha, Qatar. Information will be obtained from self-reported questionnaires on asthma, quality of life, food frequency (FFQ), and a 3-day food diary that are completed by the children and their parents. Clinical measurements will include anthropometry, blood pressure, biochemistry, bioelectrical impedance, and pulmonary function tests. Blood samples will be obtained for sphingolipid analysis, serine palmitoyltransferase (SPT) assay, whole-genome sequencing (WGS), genome-wide DNA methylation study, RNA-Seq, miRNA profiling, metabolomics, lipidomics, and cytokine analysis. Group comparisons of continuous outcome variables will be carried out by a one-way analysis of variance or the Kruskal-Wallis test using an appropriate pairwise multiple comparison test. The chi-squared test or a Fisher's exact test will be used to test the associations between categorical variables. Finally, multivariate analysis will be carried out to integrate the clinical data with multi-omics data. This study will help us to understand the role of dysregulated sphingolipid metabolism in obesity and asthma. In addition, the multi-omics data from the study will help to identify novel genetic and epigenetic signatures, inflammatory markers, and mechanistic pathways that link asthma and obesity in children. Furthermore, the integration of clinical and multi-omics data will help us to uncover the potential interactions between these diseases and to offer a new paradigm for the treatment of pediatric obesity-associated asthma.
Collapse
Affiliation(s)
- Belavendra Antonisamy
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Harshita Shailesh
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Yahya Hani
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Lina Hayati M. Ahmed
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Safa Noor
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Salma Yahya Ahmed
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Mohamed Alfaki
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Abidan Muhayimana
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Shana Sunny Jacob
- Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.S.J.); (S.K.B.)
| | - Saroja Kotegar Balayya
- Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.S.J.); (S.K.B.)
| | - Oleksandr Soloviov
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Li Liu
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Lisa Sara Mathew
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Kun Wang
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Mohammed Yousuf Karim
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar;
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ibrahim A. Janahi
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
- Department of Pediatrics, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
24
|
Troppmair N, Kopczynski D, Assinger A, Lehmann R, Coman C, Ahrends R. Accurate Sphingolipid Quantification Reducing Fragmentation Bias by Nonlinear Models. Anal Chem 2023; 95:15227-15235. [PMID: 37782305 PMCID: PMC10585660 DOI: 10.1021/acs.analchem.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Quantitative sphingolipid analysis is crucial for understanding the roles of these bioactive molecules in various physiological and pathological contexts. Molecular sphingolipid species are typically quantified using sphingoid base-derived fragments relative to a class-specific internal standard. However, the commonly employed "one standard per class" strategy fails to account for fragmentation differences presented by the structural diversity of sphingolipids. To address this limitation, we developed a novel approach for quantitative sphingolipid analysis. This approach utilizes fragmentation models to correct for structural differences and thus overcomes the limitations associated with using a limited number of standards for quantification. Importantly, our method is independent of the internal standard, instrumental setup, and collision energy. Furthermore, we integrated this method into a user-friendly KNIME workflow. The validation results illustrate the effectiveness of our approach in accurately quantifying ceramide subclasses from various biological matrices. This breakthrough opens up new avenues for exploring sphingolipid metabolism and gaining insights into its implications.
Collapse
Affiliation(s)
- Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Dominik Kopczynski
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tuebingen, 72076 Tuebingen, Germany
| | - Cristina Coman
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Robert Ahrends
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
El-Amouri S, Karakashian A, Bieberich E, Nikolova-Karakashian M. Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes. J Lipid Res 2023; 64:100435. [PMID: 37640282 PMCID: PMC10550728 DOI: 10.1016/j.jlr.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling pathways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain- and loss- of function approach, and state-of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated translocation of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acyl-biotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
Collapse
Affiliation(s)
- S El-Amouri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - E Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - M Nikolova-Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
26
|
Moro K, Ichikawa H, Koyama Y, Abe S, Uchida H, Naruse K, Obata Y, Tsuchida J, Toshikawa C, Ikarashi M, Muneoka Y, Miura K, Tajima Y, Shimada Y, Kobayashi T, Sakata J, Takabe K, Wakai T. Oral Administration of Glucosylceramide Suppresses Tumor Growth by Affecting the Ceramide/Sphingosine-1-Phosphate Balance in Breast Cancer Tissue. World J Oncol 2023; 14:430-437. [PMID: 37869237 PMCID: PMC10588502 DOI: 10.14740/wjon1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Background Ceramide and sphingosine-1-phosphate (S1P) play opposing roles in cell death and survival, and maintain a dynamic balance called the sphingolipid rheostat. Glucosylceramide is a substrate to generate ceramide but its effect on breast cancer by oral administration was never tested. The purpose of this study was to reveal the anticancer activity of glucosylceramide and its potential as a new therapeutic agent in breast cancer. Methods E0771 cells were inoculated into the breast tissue of female C57BL/6NJcl mice. Glucosylceramide was administered orally to the mice for nine consecutive days. The concentrations of sphingolipid mediators including ceramide, glucosylceramide, and S1P in tumor tissues and serum were determined by mass spectrometry. Results Oral administration of glucosylceramide significantly suppressed E0771 tumor growth compared with the control group (P = 0.006). There were no significant differences in the serum concentrations of sphingolipid mediators including ceramide and S1P between the mice treated with glucosylceramide and control-treated mice. The ceramide concentration was significantly lower in tumor tissues (P = 0.026), and the S1P concentration was significantly higher than that in paired non-tumor tissues (P = 0.009). The S1P concentration in tumor tissues was significantly lower in mice treated with glucosylceramide than in control-treated mice (P = 0.001). The ceramide-to-S1P concentration ratio in tumor tissues was significantly higher in mice treated with glucosylceramide than in control-treated mice (P = 0.034). Conclusions Breast tumors could enhance their survival by increasing S1P conversion from ceramide. Oral administration of glucosylceramide suppressed tumor growth by affecting the ceramide/S1P balance. Oral administration of glucosylceramide is a promising basis for a new therapeutic approach.
Collapse
Affiliation(s)
- Kazuki Moro
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yu Koyama
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Nursing, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Shun Abe
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Haruka Uchida
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kana Naruse
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuo Obata
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Chie Toshikawa
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Mayuko Ikarashi
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Muneoka
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yosuke Tajima
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
27
|
Xatse MA, Olsen CP. Defining the glucosylceramide population of C. elegans. Front Physiol 2023; 14:1244158. [PMID: 37772059 PMCID: PMC10524606 DOI: 10.3389/fphys.2023.1244158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Glucosylceramides (GlcCer) are lipids that impact signaling pathways, serve as critical components of cellular membranes, and act as precursors for hundreds of other complex glycolipid species. Abnormal GlcCer metabolism is linked to many diseases, including cancers, diabetes, Gaucher disease, neurological disorders, and skin disorders. A key hurdle to fully understanding the role of GlcCer in disease is the development of methods to accurately detect and quantify these lipid species in a model organism. This will allow for the dissection of the role of this pool in vivo with a focus on all the individual types of GlcCer. In this review, we will discuss the analysis of the GlcCer population specifically in the nematode Caenorhabditis elegans, focusing on the mass spectrometry-based methods available for GlcCer quantification. We will also consider the combination of these approaches with genetic interrogation of GlcCer metabolic genes to define the biological role of these unique lipids. Furthermore, we will explore the implications and obstacles for future research.
Collapse
Affiliation(s)
| | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
28
|
Naylor CN, Nagy G. Permethylation and Metal Adduction: A Toolbox for the Improved Characterization of Glycolipids with Cyclic Ion Mobility Separations Coupled to Mass Spectrometry. Anal Chem 2023; 95:13725-13732. [PMID: 37650842 DOI: 10.1021/acs.analchem.3c03448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lipids are an important class of molecules involved in various biological functions but remain difficult to characterize through mass-spectrometry-based methods because of their many possible isomers. Glycolipids, specifically, play important roles in cell signaling but display an even greater level of isomeric heterogeneity as compared to other lipid classes stemming from the introduction of a carbohydrate and its corresponding linkage position and α/β anomericity at the headgroup. While liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidomics, it is still unable to characterize all isomeric species, thus presenting the need for new, orthogonal, methodologies. Ion mobility spectrometry-mass spectrometry (IMS-MS) can provide an additional dimension of information that supplements LC-MS/MS workflows, but has seen little use for glycolipid analyses. Herein, we present an analytical toolbox that enables the characterization of various glycolipid isomer sets using high-resolution cyclic ion mobility separations coupled with mass spectrometry (cIMS-MS). Specifically, we utilized a combination of both permethylation and metal adduction to fully resolve isomeric sphingolipids and ceramides with our cIMS-MS platform. We also introduce a new metric that can enable comparing peak-to-peak resolution across varying cIMS-MS pathlengths. Overall, we envision that our presented methodologies are highly amenable to existing LC-MS/MS-based workflows and can also have broad utility toward other omics-based analyses.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Busey GW, Manjegowda MC, Huang T, Iobst WH, Naphade SS, Kennedy JA, Doyle CA, Seegren PV, Lynch KR, Desai BN. Novel TRPM7 inhibitors with potent anti-inflammatory effects in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541802. [PMID: 37662207 PMCID: PMC10473597 DOI: 10.1101/2023.05.22.541802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
TRPM7, a TRP channel with ion conductance and kinase activities, has emerged as an attractive drug target for immunomodulation. Reverse genetics and cell biological studies have already established a key role for TRPM7 in the inflammatory activation of macrophages. Advancing TRPM7 as a viable molecular target for immunomodulation requires selective TRPM7 inhibitors with in vivo tolerability and efficacy. Such inhibitors have the potential to interdict inflammatory cascades mediated by systemic and tissue-specialized macrophages. FTY720, an FDA-approved drug for multiple sclerosis inhibits TRPM7. However, FTY720 is a prodrug and its metabolite, FTY720-phosphate, is a potent agonist of sphingosine 1-phosphate (S1P) receptors. In this study, we tested non-phosphorylatable FTY720 analogs, which are inert against S1PRs and well tolerated in vivo , for activity against TRPM7 and tissue bioavailability. Using patch clamp electrophysiology, we show that VPC01091.4 and AAL-149 block TRPM7 current at low micromolar concentrations. In culture, they act directly on macrophages to blunt LPS-induced inflammatory cytokine expression, an effect that is predominantly but not solely mediated by TRPM7. We found that VPC01091.4 has significant and rapid accumulation in the brain and lungs, along with direct anti-inflammatory action on alveolar macrophages and microglia. Finally, using a mouse model of endotoxemia, we show VPC01091.4 to be an efficacious anti-inflammatory agent that arrests systemic inflammation in vivo . Together, these findings identify novel small molecule inhibitors that allow TRPM7 channel inhibition independent of S1P receptor targeting. These inhibitors exhibit potent anti-inflammatory properties that are mediated by TRPM7 and likely other molecular targets that remain to be identified.
Collapse
|
30
|
Moggio M, Faramarzi B, Portaccio M, Manti L, Lepore M, Diano N. A Sphingolipidomic Profiling Approach for Comparing X-ray-Exposed and Unexposed HepG2 Cells. Int J Mol Sci 2023; 24:12364. [PMID: 37569739 PMCID: PMC10418425 DOI: 10.3390/ijms241512364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
An analytical method based on tandem mass spectrometry-shotgun is presently proposed to obtain sphingolipidomic profiles useful for the characterization of lipid extract from X-ray-exposed and unexposed hepatocellular carcinoma cells (HepG2). To obtain a targeted lipidic profile from a specific biological system, the best extraction method must be identified before instrumental analysis. Accordingly, four different classic lipid extraction protocols were compared in terms of efficiency, specificity, and reproducibility. The performance of each procedure was evaluated using the Fourier-transform infrared spectroscopic technique; subsequently, the quality of extracts was estimated using electrospray ionization tandem mass spectrometry. The selected procedure based on chloroform/methanol/water was successfully used in mass spectrometry-based shotgun sphingolipidomics, allowing for evaluation of the response of cells to X-ray irradiation, the most common anticancer therapy. Using a relative quantitative approach, the changes in the sphingolipid profiles of irradiated cell extracts were demonstrated, confirming that lipidomic technologies are also useful tools for studying the key sphingolipid role in regulating cancer growth during radiotherapy.
Collapse
Affiliation(s)
- Martina Moggio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (M.P.); (M.L.)
| | - Bahar Faramarzi
- Department of Mathematics and Physics, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marianna Portaccio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (M.P.); (M.L.)
| | - Lorenzo Manti
- Dipartimento di Fisica “E. Pancini”, Università Federico II di Napoli, 80126 Napoli, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, 80126 Napoli, Italy
| | - Maria Lepore
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (M.P.); (M.L.)
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (M.P.); (M.L.)
| |
Collapse
|
31
|
Mandal N, Asuzu P, Stentz F, Wan J, Dagogo-Jack S. Ceramides and other sphingolipids as predictors of incident dysglycemia (CASPID): Design, methods, and baseline characteristics. Exp Biol Med (Maywood) 2023; 248:1393-1402. [PMID: 37452717 PMCID: PMC10657588 DOI: 10.1177/15353702231184228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
The Ceramides and other Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study tests the overall hypothesis that sphingolipids are pathophysiologic mediators of transition from normal glucose regulation (NGR) to prediabetes, type 2 diabetes (T2DM), and associated complications. The CASPID study utilizes two longitudinal cohorts - the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC)/Pathobiology and Reversibility of Prediabetes in a Biracial Cohort (PROP-ABC) and the Diabetes Prevention Program (DPP)/DPP Outcomes Study (DPPOS). Normoglycemic POP-ABC/PROP-ABC were followed for 10 years for progression to prediabetes and offered lifestyle intervention to reverse prediabetes. The DPP/DPPOS participants had prediabetes at enrollment, were randomized to placebo, lifestyle intervention, or metformin treatment, and followed for 11 years for progression to T2DM. Using a case-control design, we analyze 76 targeted plasma sphingolipids as predictors of progression from NGR to prediabetes (Aim 1), prediabetes to T2DM (Aim 2), response to interventions (Aim 3), and development of diabetes complications (Aim 4). A sample size of 600 subjects provides >80% power to detect a 20% difference in sphingolipid profiles between comparison groups (alpha = 0.01). At enrollment, POP-ABC participants had a mean age of 47.7 ± 9.00 years, body mass index (BMI) 30.4 ± 6.10 kg/m2, fasting glucose 92.9 ± 6.90 mg/dL, and 2-h glucose 130 ± 28.8 mg/dL; DPP participants had a mean age of 51.9 ± 9.44 years, BMI 33.7 ± 6.33 kg/m2, fasting glucose 106 ± 7.88 mg/dL, and 2-h glucose 164 ± 16.9 mg/dL. Among normoglycemic participants, those with parental history of T2DM had significantly higher baseline levels of total sphingomyelins, and lower levels of total ceramides and sphingosine, compared with control subjects without familial diabetes history. As the first such study in longitudinal human cohorts, CASPID will elucidate the role of sphingolipids in the pathogenesis of dysglycemia and facilitate the discovery of novel predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
32
|
Toro DM, da Silva-Neto PV, de Carvalho JCS, Fuzo CA, Pérez MM, Pimentel VE, Fraga-Silva TFC, Oliveira CNS, Caruso GR, Vilela AFL, Nobre-Azevedo P, Defelippo-Felippe TV, Argolo JGM, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, Vilar FC, Gaspar GG, da Rocha JJR, Feres O, Costa GP, Maruyama SRC, Russo EMS, Fernandes APM, Santos IKFM, Malheiro A, Sadikot RT, Bonato VLD, Cardoso CRB, Dias-Baruffi M, Trapé ÁA, Faccioli LH, Sorgi CA, ImmunoCovid Consortium Group. Plasma Sphingomyelin Disturbances: Unveiling Its Dual Role as a Crucial Immunopathological Factor and a Severity Prognostic Biomarker in COVID-19. Cells 2023; 12:1938. [PMID: 37566018 PMCID: PMC10417089 DOI: 10.3390/cells12151938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.
Collapse
Affiliation(s)
- Diana Mota Toro
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
- Postgraduate Program in Basic and Applied Immunology–PPGIBA, Institute of Biological Sciences, Federal University of Amazonas–UFAM, Manaus 69080-900, AM, Brazil;
| | - Pedro V. da Silva-Neto
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
- Postgraduate Program in Basic and Applied Immunology–PPGIBA, Institute of Biological Sciences, Federal University of Amazonas–UFAM, Manaus 69080-900, AM, Brazil;
| | - Jonatan C. S. de Carvalho
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto–FFCLRP, University of São Paulo–USP, Ribeirão Preto 14040-901, SP, Brazil; (A.F.L.V.); (P.N.-A.); (T.V.D.-F.)
| | - Carlos A. Fuzo
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Malena M. Pérez
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Vinícius E. Pimentel
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Thais F. C. Fraga-Silva
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Camilla N. S. Oliveira
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Glaucia R. Caruso
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Adriana F. L. Vilela
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto–FFCLRP, University of São Paulo–USP, Ribeirão Preto 14040-901, SP, Brazil; (A.F.L.V.); (P.N.-A.); (T.V.D.-F.)
| | - Pedro Nobre-Azevedo
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto–FFCLRP, University of São Paulo–USP, Ribeirão Preto 14040-901, SP, Brazil; (A.F.L.V.); (P.N.-A.); (T.V.D.-F.)
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Thiago V. Defelippo-Felippe
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto–FFCLRP, University of São Paulo–USP, Ribeirão Preto 14040-901, SP, Brazil; (A.F.L.V.); (P.N.-A.); (T.V.D.-F.)
| | - Jamille G. M. Argolo
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto–EERP, University of São Paulo–USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (A.P.M.F.)
| | - Augusto M. Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto 14085-000, SP, Brazil; (A.M.D.); (F.M.O.)
| | - Fátima M. Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto 14085-000, SP, Brazil; (A.M.D.); (F.M.O.)
| | - Marley R. Feitosa
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto-FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
- Hospital São Paulo, Ribeirão Preto 14025-100, SP, Brazil;
| | - Rogerio S. Parra
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto-FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
- Hospital São Paulo, Ribeirão Preto 14025-100, SP, Brazil;
| | - Fernando C. Vilar
- Hospital São Paulo, Ribeirão Preto 14025-100, SP, Brazil;
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil;
| | - Gilberto G. Gaspar
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil;
| | - José J. R. da Rocha
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto-FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
| | - Omar Feres
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto-FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (M.R.F.); (R.S.P.); (J.J.R.d.R.); (O.F.)
- Hospital São Paulo, Ribeirão Preto 14025-100, SP, Brazil;
| | - Gabriel P. Costa
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo–USP, Ribeirão Preto 14040-900, SP, Brazil; (G.P.C.); (Á.A.T.)
| | - Sandra R. C. Maruyama
- Department of Genetics and Evolution, Center for Biological and Health Sciences, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Elisa M. S. Russo
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Ana Paula M. Fernandes
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto–EERP, University of São Paulo–USP, Ribeirão Preto 14040-902, SP, Brazil; (J.G.M.A.); (A.P.M.F.)
| | - Isabel K. F. M. Santos
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Adriana Malheiro
- Postgraduate Program in Basic and Applied Immunology–PPGIBA, Institute of Biological Sciences, Federal University of Amazonas–UFAM, Manaus 69080-900, AM, Brazil;
| | - Ruxana T. Sadikot
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Vânia L. D. Bonato
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | - Cristina R. B. Cardoso
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Marcelo Dias-Baruffi
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Átila A. Trapé
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo–USP, Ribeirão Preto 14040-900, SP, Brazil; (G.P.C.); (Á.A.T.)
| | - Lúcia H. Faccioli
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto–FCFRP, University of Sao Paulo–USP, Ribeirão Preto 14040-903, SP, Brazil; (D.M.T.); (P.V.d.S.-N.); (J.C.S.d.C.); (C.A.F.); (M.M.P.); (V.E.P.); (C.N.S.O.); (G.R.C.); (E.M.S.R.); (C.R.B.C.); (M.D.-B.); (L.H.F.)
| | - Carlos A. Sorgi
- Postgraduate Program in Basic and Applied Immunology–PPGIBA, Institute of Biological Sciences, Federal University of Amazonas–UFAM, Manaus 69080-900, AM, Brazil;
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto–FFCLRP, University of São Paulo–USP, Ribeirão Preto 14040-901, SP, Brazil; (A.F.L.V.); (P.N.-A.); (T.V.D.-F.)
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto–FMRP, University of São Paulo–USP, Ribeirão Preto 14049-900, SP, Brazil; (T.F.C.F.-S.); (I.K.F.M.S.); (V.L.D.B.)
| | | |
Collapse
|
33
|
Stephenson DJ, MacKnight HP, Hoeferlin LA, Washington SL, Sawyers C, Archer KJ, Strauss JF, Walsh SW, Chalfant CE. Bioactive lipid mediators in plasma are predictors of preeclampsia irrespective of aspirin therapy. J Lipid Res 2023; 64:100377. [PMID: 37119922 PMCID: PMC10230265 DOI: 10.1016/j.jlr.2023.100377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
There are few early biomarkers to identify pregnancies at risk of preeclampsia (PE) and abnormal placental function. In this cross-sectional study, we utilized targeted ultra-performance liquid chromatography-ESI MS/MS and a linear regression model to identify specific bioactive lipids that serve as early predictors of PE. Plasma samples were collected from 57 pregnant women prior to 24-weeks of gestation with outcomes of either PE (n = 26) or uncomplicated term pregnancies (n = 31), and the profiles of eicosanoids and sphingolipids were evaluated. Significant differences were revealed in the eicosanoid, (±)11,12 DHET, as well as multiple classes of sphingolipids; ceramides, ceramide-1-phosphate, sphingomyelin, and monohexosylceramides; all of which were associated with the subsequent development of PE regardless of aspirin therapy. Profiles of these bioactive lipids were found to vary based on self-designated race. Additional analyses demonstrated that PE patients can be stratified based on the lipid profile as to PE with a preterm birth linked to significant differences in the levels of 12-HETE, 15-HETE, and resolvin D1. Furthermore, subjects referred to a high-risk OB/GYN clinic had higher levels of 20-HETE, arachidonic acid, and Resolvin D1 versus subjects recruited from a routine, general OB/GYN clinic. Overall, this study shows that quantitative changes in plasma bioactive lipids detected by ultra-performance liquid chromatography-ESI-MS/MS can serve as an early predictor of PE and stratify pregnant people for PE type and risk.
Collapse
Affiliation(s)
- Daniel J Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - H Patrick MacKnight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kellie J Archer
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott W Walsh
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Charles E Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
34
|
Boyd AE, Grizzard PJ, Hylton Rorie K, Lima S. Lipidomic Profiling Reveals Biological Differences between Tumors of Self-Identified African Americans and Non-Hispanic Whites with Cancer. Cancers (Basel) 2023; 15:2238. [PMID: 37190166 PMCID: PMC10136787 DOI: 10.3390/cancers15082238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
In the US, the incidence and mortality of many cancers are disproportionately higher in African Americans (AA). Yet, AA remain poorly represented in molecular studies investigating the roles that biological factors might play in the development, progression, and outcomes of many cancers. Given that sphingolipids, key components of mammalian cellular membranes, have well-established roles in the etiology of cancer progression, malignancy, and responses to therapy, we conducted a robust mass spectrometry analysis of sphingolipids in normal adjacent uninvolved tissues and tumors of self-identified AA and non-Hispanic White (NHW) males with cancers of the lung, colon, liver, and head and neck and of self-identified AA and NHW females with endometrial cancer. In these cancers, AA have worse outcomes than NHW. The goal of our study was to identify biological candidates to be evaluated in future preclinical studies targeting race-specific alterations in the cancers of AA. We have identified that various sphingolipids are altered in race-specific patterns, but more importantly, the ratios of 24- to 16-carbon fatty acyl chain-length ceramides and glucosylceramides are higher in the tumors of AA. As there is evidence that ceramides with 24-carbon fatty acid chain length promote cellular survival and proliferation, whereas 16-carbon chain length promote apoptosis, these results provide important support for future studies tailored to evaluate the potential roles these differences may play in the outcomes of AA with cancer.
Collapse
Affiliation(s)
- April E. Boyd
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Pamela J. Grizzard
- Tissue and Data Acquisition and Analysis Core, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
35
|
Saitoh S, Takaki T, Nakajima K, Wo B, Terashima H, Shimo S, Nguyen HB, Thai TQ, Kumamoto K, Kunisawa K, Nagao S, Tojo A, Ohno N, Takahashi K. Treatment of tubular damage in high-fat-diet-fed obese mice using sodium-glucose co-transporter inhibitors. PLoS One 2023; 18:e0281770. [PMID: 36780539 PMCID: PMC9925073 DOI: 10.1371/journal.pone.0281770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
A long-term high-fat diet (HFD) causes obesity and changes in renal lipid metabolism and lysosomal dysfunction in mice, causing renal damage. Sodium-glucose co-transporter inhibitors, including phlorizin, exert nephroprotective effects in patients with chronic kidney disease, but the underlying mechanism remains unclear. A HFD or standard diet was fed to adult C57BL/6J male mice, and phlorizin was administered. Lamellar body components of the proximal tubular epithelial cells (PTECs) were investigated. After phlorizin administration in HFD-fed mice, sphingomyelin and ceramide in urine and tissues were assessed and label-free quantitative proteomics was performed using kidney tissue samples. Mitochondrial elongation by fusion was effective in the PTECs of HFD-fed obese mice under phlorizin administration, and many lamellar bodies were found in the apical portion of the S2 segment of the proximal tubule. Phlorizin functioned as a diuretic, releasing lamellar bodies from the apical membrane of PTECs and clearing the obstruction in nephrons. The main component of the lamellar bodies was sphingomyelin. On the first day of phlorizin administration in HFD-fed obese mice, the diuretic effect was increased, and more sphingomyelin was excreted through urine than in vehicle-treated mice. The expressions of three peroxisomal β-oxidation proteins involved in fatty acid metabolism were downregulated after phlorizin administration in the kidneys of HFD-fed mice. Fatty acid elongation protein levels increased with phlorizin administration, indicating an increase in long-chain fatty acids. Lamellar bodies accumulated in the proximal renal tubule of the S2 segment of the HFD-fed mice, indicating that the urinary excretion of lamellar bodies has nephroprotective effects.
Collapse
Affiliation(s)
- Sei Saitoh
- Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
- * E-mail:
| | - Takashi Takaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
- Center for Electron microscopy, Showa University School of Medicine, Tokyo, Japan
| | - Kazuki Nakajima
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Bao Wo
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
- Department of Histology and Embryology, Medical College of Chifeng University, Chifeng, China
| | | | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, Fujikawaguchiko, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh, Vietnam
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, Chuo, Japan
- Department of Histology Embryology Genetics, Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Kanako Kumamoto
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake, Japan
| | - Akihiro Tojo
- Division of Nephrology & Hypertension, Dokkyo Medical University, Mibu, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute of Physiological Sciences, Okazaki, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke, Japan
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
36
|
Metabolites Profiling and In Vitro Biological Characterization of Different Fractions of Cliona sp. Marine Sponge from the Red Sea Egypt. Molecules 2023; 28:molecules28041643. [PMID: 36838631 PMCID: PMC9966995 DOI: 10.3390/molecules28041643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Red Sea marine sponges are an important source of biologically active natural products. Therefore, the present study aimed to investigate, for the first time, the components of n-hexane, dichloromethane, and ethyl acetate fractions of Cliona sp. marine sponge collected from the Red Sea, Egypt using UPLC-ESI-MS/MS (Ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry) analysis. The analysis revealed the tentative identification of 23, 16, and 24 compounds from the n-hexane, dichloromethane, and ethyl acetate fractions of Cliona sp., respectively. In addition, the examination of these fractions resulted in the isolation and identification of three sterols and one amino acid. The identification of the isolated compounds was confirmed by 1D and 2D NMR (Nuclear Magnetic Resonance), and MS (Mass spectrometry), and IR (Infrared) spectroscopy. The in vitro cytotoxic, antioxidant, and antimicrobial activities of the total ethanolic extract and its sub-fractions were also evaluated. Interestingly, the ethyl acetate fraction showed potent cytotoxic activity against colon (HCT-116) and human larynx carcinoma (HEP-2) cell lines with IC50 (Half-maximal Inhibitory Concentration) 6.11 ± 0.2 and 12.6 ± 0.9 µg/mL, respectively. However, the dichloromethane fraction showed strong antioxidant activity, with IC50 75.53 ± 3.41 µg/mL. Notably, the total ethanolic extract showed the strongest antibacterial activity against Staphylococcus aureus and Escherichia coli, with MIC (Minimum Inhibitory Concentration) 62.5 ± 0.82 and 125 ± 0.62 µg/mL, respectively, compared to other fractions. In conclusion, this is the first report on the secondary metabolites content and biological activities of Cliona sp. from the Red Sea, Egypt. It also highlights the need for further research on the most active fractions against various cancer cell lines and resistant bacterial and fungal strains. Cliona sp. extract and its fractions could be a potential source of novel and safe natural drugs with a wide range of medicinal and pharmaceutical applications.
Collapse
|
37
|
Guzman G, Creek C, Farley S, Tafesse FG. Genetic Tools for Studying the Roles of Sphingolipids in Viral Infections. Methods Mol Biol 2022; 2610:1-16. [PMID: 36534277 DOI: 10.1007/978-1-0716-2895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Cameron Creek
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Scotland Farley
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
38
|
Capelluto DGS. The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition. Front Mol Biosci 2022; 9:1080161. [PMID: 36533082 PMCID: PMC9748700 DOI: 10.3389/fmolb.2022.1080161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2023] Open
Abstract
Sulfatide is an abundant glycosphingolipid in the mammalian nervous system, kidney, trachea, gastrointestinal tract, spleen, and pancreas and is found in low levels in other tissues. Sulfatide is characterized by the presence of a sulfate group in the hydrophilic galactose moiety, with isoforms differing in their sphingosine base and the length, unsaturation, and hydroxylation of their acyl chain. Sulfatide has been associated with a variety of cellular processes including immune responses, cell survival, myelin organization, platelet aggregation, and host-pathogen interactions. Structural studies of protein-sulfatide interactions markedly advanced our understanding of their molecular contacts, key-interacting residues, orientation of the sulfatide in its binding site, and in some cases, sulfatide-mediated protein oligomerization. To date, all protein-sulfatide interactions are reported to display dissociation constants in the low micromolar range. At least three distinct modes of protein-sulfatide binding were identified: 1) protein binding to short consensus stretches of amino acids that adopt α-helical-loop-α-helical conformations; 2) sulfatide-bound proteins that present the sulfatide head group to another protein; and 3) proteins that cage sulfatides. The scope of this review is to present an up-to-date overview of these molecular mechanisms of sulfatide recognition to better understand the role of this glycosphingolipid in physiological and pathological states.
Collapse
Affiliation(s)
- Daniel G. S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
39
|
DeBarry JD, Nural MV, Pakala SB, Nayak V, Warrenfeltz S, Humphrey J, Lapp SA, Cabrera-Mora M, Brito CFA, Jiang J, Saney CL, Hankus A, Stealey HM, DeBarry MB, Lackman N, Legall N, Lee K, Tang Y, Gupta A, Trippe ED, Bridger RR, Weatherly DB, Peterson MS, Jiang X, Tran V, Uppal K, Fonseca LL, Joyner CJ, Karpuzoglu E, Cordy RJ, Meyer EVS, Wells LL, Ory DS, Lee FEH, Tirouvanziam R, Gutiérrez JB, Ibegbu C, Lamb TJ, Pohl J, Pruett ST, Jones DP, Styczynski MP, Voit EO, Moreno A, Galinski MR, Kissinger JC. MaHPIC malaria systems biology data from Plasmodium cynomolgi sporozoite longitudinal infections in macaques. Sci Data 2022; 9:722. [PMID: 36433985 PMCID: PMC9700667 DOI: 10.1038/s41597-022-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.
Collapse
Affiliation(s)
- Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Suman B Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vishal Nayak
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Cancer Data Science Initiatives, Frederick National Laboratory for Cancer Research, Post Office Box B, Frederick, MD, 21702, USA
| | - Susanne Warrenfeltz
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jay Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Cristiana F A Brito
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Laboratório de Malária, Instituto René Rachou/Fiocruz Minas, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190 009, Brazil
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia L Saney
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30605, USA
| | - Allison Hankus
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Senior Public Health Informaticist, MITRE Corp, Atlanta, GA, 30345, USA
| | - Hannah M Stealey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan B DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Nicolas Lackman
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, Institute of Bioinformatics, Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Kevin Lee
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Tang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Valted Seq, 704 Quince Orchard Rd, Gaithersburg, MD, 20878, USA
| | - Elizabeth D Trippe
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Federal Drug Administration, Silver Spring, MD, 20993, USA
| | - Robert R Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Brent Weatherly
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Mariko S Peterson
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Xuntian Jiang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32603, USA
| | - Chester J Joyner
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ebru Karpuzoglu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Regina J Cordy
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biology, Wake Forest University, Winston Salem, NC, 27103, USA
| | - Esmeralda V S Meyer
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Institutional Animal Care and Use Committee, Research Compliance and Research Integrity Office, Emory University, Atlanta, GA, 30322, USA
| | - Lance L Wells
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel S Ory
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Casma Therapeutics, Cambridge, MA, 02139, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Juan B Gutiérrez
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chris Ibegbu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tracey J Lamb
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Sarah T Pruett
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
41
|
Vu NT, Kim M, Stephenson DJ, MacKnight HP, Chalfant CE. Ceramide Kinase Inhibition Drives Ferroptosis and Sensitivity to Cisplatin in Mutant KRAS Lung Cancer by Dysregulating VDAC-Mediated Mitochondria Function. Mol Cancer Res 2022; 20:1429-1442. [PMID: 35560154 PMCID: PMC9444881 DOI: 10.1158/1541-7786.mcr-22-0085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Ceramide kinase (CERK) is the mammalian lipid kinase from which the bioactive sphingolipid, ceramide-1-phosphate (C1P), is derived. CERK has been implicated in several promalignant phenotypes with little known as to mechanistic underpinnings. In this study, the mechanism of how CERK inhibition decreases cell survival in mutant (Mut) KRAS non-small cell lung cancer (NSCLC), a major lung cancer subtype, was revealed. Specifically, NSCLC cells possessing a KRAS mutation were more responsive to inhibition, downregulation, and genetic ablation of CERK compared with those with wild-type (WT) KRAS regarding a reduction in cell survival. Inhibition of CERK induced ferroptosis in Mut KRAS NSCLC cells, which required elevating VDAC-regulated mitochondria membrane potential (MMP) and the generation of cellular reactive oxygen species (ROS). Importantly, through modulation of VDAC, CERK inhibition synergized with the first-line NSCLC treatment, cisplatin, in reducing cell survival and in vivo tumor growth. Further mechanistic studies indicated that CERK inhibition affected MMP and cell survival by limiting AKT activation and translocation to mitochondria, and thus, blocking VDAC phosphorylation and tubulin recruitment. IMPLICATIONS Our findings depict how CERK inhibition may serve as a new key point in combination therapeutic strategy for NSCLC, specifically precision therapeutics targeting NSCLC possessing a KRAS mutation.
Collapse
Affiliation(s)
- Ngoc T. Vu
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Vietnam
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - H. Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903,Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903,Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, 22903,Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298,To whom correspondence should be addressed: Charles E. Chalfant, Professor, Department of Medicine, Division of Hematology & Oncology, P.O. Box 801398, University of Virginia, Charlottesville, VA, 22903, or
| |
Collapse
|
42
|
Sugawara T. Sphingolipids as Functional Food Components: Benefits in Skin Improvement and Disease Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9597-9609. [PMID: 35905137 DOI: 10.1021/acs.jafc.2c01731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sphingolipids are ubiquitous components in eukaryotic organisms and have attracted attention as physiologically functional lipids. Sphingolipids with diverse structures are present in foodstuffs as these structures depend on the biological species they are derived from, such as mammals, plants, and fungi. The physiological functions of dietary sphingolipids, especially those that improve skin barrier function, have recently been noted. In addition, the roles of dietary sphingolipids in the prevention of diseases, including cancer and metabolic syndrome, have been studied. However, the mechanisms underlying the health-improving effects of dietary sphingolipids, especially their metabolic fates, have not been elucidated. Here, we review dietary sphingolipids, including their chemical structures and contents in foodstuff; digestion, intestinal absorption, and metabolism; and nutraceutical functions, based on the available evidence and hypotheses. Further research is warranted to clearly define how dietary sphingolipids can influence human health.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
43
|
Schmieder SS, Tatituri R, Anderson M, Kelly K, Lencer WI. Structural basis for acyl chain control over glycosphingolipid sorting and vesicular trafficking. Cell Rep 2022; 40:111063. [PMID: 35830800 PMCID: PMC9358721 DOI: 10.1016/j.celrep.2022.111063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
The complex sphingolipids exhibit a diversity of ceramide acyl chain structures that influence their trafficking and intracellular distributions, but it remains unclear how the cell discerns among the different ceramides to affect such sorting. To address the mechanism, we synthesize a library of GM1 glycosphingolipids with naturally varied acyl chains and quantitatively assess their sorting among different endocytic pathways. We find that a stretch of at least 14 saturated carbons extending from C1 at the water-bilayer interface dictate lysosomal sorting by exclusion from endosome sorting tubules. Sorting to the lysosome by the C14∗ motif is cholesterol dependent. Perturbations of the C14∗ motif by unsaturation enable GM1 entry into endosomal sorting tubules of the recycling and retrograde pathways independent of cholesterol. Unsaturation occurring beyond the C14∗ motif in very long acyl chains rescues lysosomal sorting. These results define a structural motif underlying the membrane organization of sphingolipids and implicate cholesterol-sphingolipid nanodomain formation in sorting mechanisms.
Collapse
Affiliation(s)
| | - Raju Tatituri
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael Anderson
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Kate Kelly
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Gao T, Lott AA, Huang F, Rohokale R, Li Q, Olivos HJ, Chen S, Guo Z. Structural characterization and analysis of different epimers of neutral glycosphingolipid LcGg4 by ion mobility spectrometry-mass spectrometry. Analyst 2022; 147:3101-3108. [PMID: 35695136 DOI: 10.1039/d2an00224h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
LcGg4, a neutral glycosphingolipid (GSL) and cancer antigen, its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, and three lipid forms of GalNAc-LcGg4 were studied by mass spectrometry (MS). It was found that different forms of GalNAc-LcGg4 carrying homologous (d16:1/18:0) and (d18:1/18:0) lipids were easily separated and identified using liquid chromatography (LC)-MS. In addition, like gangliosides, homologous lipid forms of GalNAc-LcGg4 showed the same fragmentation pattern, except for a uniform shift of their glycolipid product ions by a certain m/z number determined by the varied lipid structure. It was also disclosed that LcGg4 and its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, which are different only in the C4-configuration of their non-reducing end sugar residues, gave the same MS/MS product ions in similar relative intensities, as well as the same LC retention time, suggesting the challenge to differentiate epimeric GSLs by LC-MS. However, ion mobility spectrometry (IMS)-MS was able to efficiently separate and distinguish these epimers. This study has demonstrated the promise of IMS-MS for isomeric GSL characterization and the IMS-MS and LC-MS/MS combination for natural GSL analysis.
Collapse
Affiliation(s)
- Tianqi Gao
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Aneirin A Lott
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Fanran Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Hernando J Olivos
- Waters Corporation, 5 Technology Drive, Building B, Milford, MA 01757, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
45
|
Lambour B, Glenz R, Forner C, Krischke M, Mueller MJ, Fekete A, Waller F. Sphingolipid Long-Chain Base Phosphate Degradation Can Be a Rate-Limiting Step in Long-Chain Base Homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:911073. [PMID: 35783987 PMCID: PMC9240600 DOI: 10.3389/fpls.2022.911073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.
Collapse
|
46
|
DeVeaux SA, Ogle ME, Vyshnya S, Chiappa NF, Leitmann B, Rudy R, Day A, Mortensen LJ, Kurtzberg J, Roy K, Botchwey EA. Characterizing human mesenchymal stromal cells' immune-modulatory potency using targeted lipidomic profiling of sphingolipids. Cytotherapy 2022; 24:608-618. [PMID: 35190267 PMCID: PMC10725732 DOI: 10.1016/j.jcyt.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Cell therapies are expected to increase over the next decade owing to increasing demand for clinical applications. Mesenchymal stromal cells (MSCs) have been explored to treat a number of diseases, with some successes in early clinical trials. Despite early successes, poor MSC characterization results in lessened therapeutic capacity once in vivo. Here, we characterized MSCs derived from bone marrow (BM), adipose tissue and umbilical cord tissue for sphingolipids (SLs), a class of bioactive lipids, using liquid chromatography/tandem mass spectrometry. We found that ceramide levels differed based on the donor's sex in BM-MSCs. We detected fatty acyl chain variants in MSCs from all three sources. Linear discriminant analysis revealed that MSCs separated based on tissue source. Principal component analysis showed that interferon-γ-primed and unstimulated MSCs separated according to their SL signature. Lastly, we detected higher ceramide levels in low indoleamine 2,3-dioxygenase MSCs, indicating that sphingomyelinase or ceramidase enzymatic activity may be involved in their immune potency.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Molly E. Ogle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Nathan F. Chiappa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Bobby Leitmann
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA
| | - Ryan Rudy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Abigail Day
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
47
|
Alessenko AV, Shupik MA, Gutner UA, Zateyshchikov DA, Minushkina LO, Rogozhina AA, Lebedev AT, Maloshitskaya OA, Sokolov SA, Kurochkin IN. Prospects for Using Chromatography–Mass Spectrometry for the Determination of Lipids in Clinical Cardiolipidology. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Terluk MR, Tieu J, Sahasrabudhe SA, Moser A, Watkins PA, Raymond GV, Kartha RV. Nervonic Acid Attenuates Accumulation of Very Long-Chain Fatty Acids and is a Potential Therapy for Adrenoleukodystrophy. Neurotherapeutics 2022; 19:1007-1017. [PMID: 35378685 PMCID: PMC9294126 DOI: 10.1007/s13311-022-01226-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 12/23/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is an X-linked inherited peroxisomal disorder due to mutations in the ALD protein and characterized by accumulation of very long-chain fatty acids (VLCFA), specifically hexacosanoic acid (C26:0). This can trigger other pathological processes such as mitochondrial dysfunction, oxidative stress, and inflammation, which if involves the brain tissues can result in a lethal form of the disease called childhood cerebral ALD. With the recent addition of ALD to the Recommended Uniform Screening Panel, there is an increase in the number of individuals who are identified with ALD. However, currently, there is no approved treatment for pre-symptomatic individuals that can arrest or delay symptom development. Here, we report our observations investigating nervonic acid, a monounsaturated fatty acid as a potential therapy for ALD. Using ALD patient-derived fibroblasts, we examined whether nervonic acid can reverse VLCFA accumulation similar to erucic acid, the active ingredient in Lorenzo's oil, a dietary intervention believed to alter disease course. We have shown that nervonic acid can reverse total lipid C26:0 accumulation in a concentration-dependent manner in ALD cell lines. Further, we show that nervonic acid can protect ALD fibroblasts from oxidative insults, presumably by increasing intracellular ATP production. Thus, nervonic acid can be a potential therapeutic for individuals with ALD, which can alter cellular biochemistry and improve its function.
Collapse
Affiliation(s)
- Marcia R Terluk
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Julianne Tieu
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ann Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
- Department of Neurology, John Hopkins University, Baltimore, MD, 21287, USA
| | - Paul A Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
- Department of Neurology, John Hopkins University, Baltimore, MD, 21287, USA
| | - Gerald V Raymond
- Department of Neurology, John Hopkins University, Baltimore, MD, 21287, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, University of Minnesota, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
49
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
50
|
Huang F, Bailey LS, Gao T, Jiang W, Yu L, Bennett DA, Zhao J, Basso KB, Guo Z. Analysis and Comparison of Mouse and Human Brain Gangliosides via Two-Stage Matching of MS/MS Spectra. ACS OMEGA 2022; 7:6403-6411. [PMID: 35224401 PMCID: PMC8867566 DOI: 10.1021/acsomega.1c07070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 05/13/2023]
Abstract
Glycosphingolipids (GSLs), including gangliosides, are essential components of the cell membrane. Because of their vital biological functions, a facile method for the analysis and comparison of GSLs in biological issues is desired. To this end, a new method for GSL analysis was developed based on two-stage matching of the carbohydrate and glycolipid product ions of experimental and reference MS/MS spectra of GSLs. The applicability of this method to the analysis of gangliosides in biological tissues was verified using human plasma and mouse brains spiked with standards. The method was then used to characterize endogenous gangliosides in mouse and human brains. It was shown that each endogenous ganglioside species had varied lipid forms and that mouse and human brains had different compositions of ganglioside species and lipid forms. Moreover, a 36-carbon ceramide is found to represent the major lipid form for mouse brain gangliosides, while the major lipid form for most human brain gangliosides is a 38-carbon ceramide. This study has verified that the two-stage MS/MS spectral matching method could be used to study gangliosides or GSLs and their lipid forms in complex biological samples, thereby having a broad application.
Collapse
Affiliation(s)
- Fanran Huang
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Laura S. Bailey
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tianqi Gao
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Wenjie Jiang
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lei Yu
- Rush
Alzheimer’s Disease Center, Rush
University Medical Center, Chicago, Illinois 60612, United States
| | - David A. Bennett
- Rush
Alzheimer’s Disease Center, Rush
University Medical Center, Chicago, Illinois 60612, United States
| | - Jinying Zhao
- Department
of Epidemiology, University of Florida, Gainesville, Florida 32611, United States
| | - Kari B. Basso
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|