1
|
Wang X, Yang Y, Wu G, Liu S, Cui Y, Wu J. The causal relationship between 179 lipid species and urolithiasis: a bidirectional and multivariable Mendelian randomization study combined with meta-analysis. Lipids Health Dis 2025; 24:159. [PMID: 40281584 PMCID: PMC12023426 DOI: 10.1186/s12944-025-02573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Previous research has suggested a potential link between urolithiasis and lipid species levels. A Mendelian randomization (MR) study was conducted to investigate whether a causal relationship exists between genetic susceptibility to plasma lipids and the risk of urolithiasis. METHODS Data on lipid species were collected from genome-wide association (GWAS) analyses of plasma lipidomes. For the initial analysis, GWAS data on urolithiasis were extracted using the GWAS ID ebi-a-GCST90018935. The inverse variance weighted (IVW) approach was utilized as the main method for MR analysis. Multivariable MR, multiple supplementary analyses, and comprehensive sensitivity analyses were also conducted. Additional independent datasets were utilized for replication analysis and meta-analysis. RESULTS Findings from the IVW method, repeated analyses, and meta-analysis revealed six significant causal effects of lipid species on urolithiasis. The specific lipid species identified were: phosphatidylcholine (PC; 16:1_20:4) levels [OR: 0.92; 95%CI: 0.87, 0.96; P = 6 × 10- 4], PC (16:0_20:4) levels [OR: 0.94; 95%CI: 0.90, 0.98; P = 0.0017], phosphatidylethanolamine (PE; 18:2_0:0) levels [OR: 1.10; 95%CI: 1.04, 1.15; P = 4 × 10- 4], PE (16:0_20:4) levels [OR: 1.05; 95%CI: 1.01, 1.09; P = 0.0028], PE (18:1_18:1) levels [OR: 1.06; 95%CI: 1.01, 1.11; P = 0.0136], and sterol ester (SE; 27:1/20:4) levels [OR: 0.93; 95%CI: 0.89, 0.96; P = 1.5 × 10- 4]. CONCLUSION The MR study proposes a potential causal link between six plasma lipids and urolithiasis. Particularly, SEs (27:1/20:4), PC (16:0_20:4), and PC (16:1_20:4) may serve as potential inhibitors of calcium-containing urolithiasis growth. The integration of genomics and lipidomics in MR analysis holds promise for early screening, prevention, and treatment of urinary tract stones.
Collapse
Affiliation(s)
- Xidong Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, NO. 20 East Yuhuangding Road, Yantai, Shandong, China
| | - Yingying Yang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, NO. 20 East Yuhuangding Road, Yantai, Shandong, China
| | - Gang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, NO. 20 East Yuhuangding Road, Yantai, Shandong, China
| | - Shangjing Liu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, NO. 20 East Yuhuangding Road, Yantai, Shandong, China
| | - Yuanshan Cui
- Department of Urology, Weifang People's Hospital, NO. 151 Guangwen Street, Weifang, Shandong, China.
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, NO. 20 East Yuhuangding Road, Yantai, Shandong, China.
| |
Collapse
|
2
|
Jirakran K, Vasupanrajit A, Tunvirachaisakul C, Almulla AF, Kubera M, Maes M. Lipid profiles in major depression, both with and without metabolic syndrome: associations with suicidal behaviors and neuroticism. BMC Psychiatry 2025; 25:379. [PMID: 40234788 PMCID: PMC11998271 DOI: 10.1186/s12888-025-06734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Significant associations exist between major depressive disorder (MDD), metabolic syndrome (MetS), and cardiovascular disease, potentially attributable to heightened atherogenicity. This study aimed to ascertain if MDD, depression severity, suicidal behaviors, and neuroticism associate with elevated pro-atherogenic indices and reduced anti-atherogenic indices, including a reverse cholesterol transport (RCT) index. METHODS This study comprised 34 healthy controls and 33 MDD patients without MetS, and 35 controls and 31 MDD patients with MetS. It assessed total cholesterol (TC) and free cholesterol (FC), high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc), triglycerides (TG), apolipoprotein (ApoA), ApoB, cholesterol esterification rate, and a RCT composite. RESULTS No significant associations between MDD and lipids were seen in the total study group that combined individuals with and without MetS. In individuals devoid of MetS, MDD is significantly correlated with (a) elevated FC, TG, ApoB, Castelli risk index 1, and ApoB/ApoA, and (b) diminished HDLc, ApoA, and RCT index. In individuals without MetS, there are notable correlations between the severity of depression, suicidal tendencies, neuroticism, and ApoB/ApoA, Castelli risk, and RCT indices. CONCLUSIONS The link between lipids and MDD features cannot be adequately estimated by combining participants with and without MetS. It should be examined in a study sample that excludes subjects with MetS. The depression phenome, suicidal behaviors, and neuroticism correlate with diminished RCT and heightened atherogenicity, which are likely implicated in the pathophysiology of MDD. Increased atherogenicity and lowered RCT may represent novel drug targets for the treatment and prevention of MDD, neuroticism, and suicidal behaviors.
Collapse
Affiliation(s)
- Ketsupar Jirakran
- School of Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the, Thai Red Cross Societyaq , Bangkok, Thailand
- Department of Pediatric, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the, Thai Red Cross Societyaq , Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the, Thai Red Cross Societyaq , Bangkok, Thailand.
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Abbas F Almulla
- School of Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the, Thai Red Cross Societyaq , Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smetna 12, Krakow, 31-343, Poland
| | - Michael Maes
- School of Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the, Thai Red Cross Societyaq , Bangkok, Thailand.
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Center, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research and Innovation Program for the Development of MU - PLOVDIV- (SRIPD-MUP), Creation of a network of research higher schools, National plan for recovery and sustainability, European Union - NextGeneration, EU, Maastricht, Netherlands.
- Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea.
| |
Collapse
|
3
|
Mathias RA, Velkoska E, Didichenko SA, Greene BH, Tan X, Navdaev AV, Collins HL, Adelman SJ, Young K, Gille A, Duffy D, Gibson CM, Pelzing M, Kingwell BA. Apolipoprotein A1 (CSL112) Increases Lecithin-Cholesterol Acyltransferase Levels in HDL Particles and Promotes Reverse Cholesterol Transport. JACC Basic Transl Sci 2025; 10:405-418. [PMID: 40306849 DOI: 10.1016/j.jacbts.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 05/02/2025]
Abstract
Although high-density lipoprotein (HDL) cholesterol is inversely correlated with cardiovascular risk, an emerging paradigm is focused on increasing reverse cholesterol transport (RCT) and HDL function via apolipoprotein A1 (ApoA1). The objective of this study was to investigate the effect of ApoA1 (CSL112) infusion on HDL protein composition, cholesterol esterification rate (CER), and cholesterol efflux capacity (CEC) in patients treated after acute myocardial infarction. CSL112 reduced levels of apolipoproteins A2, B, C, and E and serum amyloids A1 and A4, whereas ApoA1, ApoM, and lecithin-cholesterol acyltransferase were significantly elevated. Increased CEC, plasma HDL cholesterol levels, CER, and CEC also were observed in CSL112-treated patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - C Michael Gibson
- PERFUSE Study Group, Boston and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
4
|
Coleman B, Bedi S, Hill JH, Morris J, Manthei KA, Hart RC, He Y, Shah AS, Jerome WG, Vaisar T, Bornfeldt KE, Song H, Segrest JP, Heinecke JW, Aller SG, Tesmer JJG, Davidson WS. Lecithin:cholesterol acyltransferase binds a discontinuous binding site on adjacent apolipoprotein A-I belts in HDL. J Lipid Res 2025; 66:100786. [PMID: 40147634 PMCID: PMC12049944 DOI: 10.1016/j.jlr.2025.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a high-density lipoprotein (HDL) modifying protein that profoundly affects the composition and function of HDL subspecies. The cholesterol esterification activity of LCAT is dramatically increased by apolipoprotein A-I (APOA1) on HDL, but the mechanism remains unclear. Using site-directed mutagenesis, cross-linking, mass spectrometry, electron microscopy, protein engineering, and molecular docking, we identified two LCAT binding sites formed by helices 4 and 6 from two antiparallel APOA1 molecules in HDL. Although the reciprocating APOA1 "belts" form two ostensibly symmetrical binding locations, LCAT can adopt distinct orientations at each site, as shown by our 9.8 Å cryoEM envelope. In one case, LCAT membrane binding domains align with the APOA1 belts and, in the other, the HDL phospholipids. By introducing disulfide bonds between the APOA1 helical domains, we demonstrated that LCAT does not require helical separation during its reaction cycle. This indicates that LCAT, anchored to APOA1 belts, accesses substrates and deposits products through interactions with the planar lipid surface. This model of the LCAT/APOA1 interaction provides insights into how LCAT and possibly other HDL-modifying factors engage the APOA1 scaffold, offering potential strategies to enhance LCAT activity in individuals with genetic defects.
Collapse
Affiliation(s)
- Bethany Coleman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - John H Hill
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelly A Manthei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yi He
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Hyun Song
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Chen J, Pei B, Shi S. Association between egg consumption and risk of obesity: A comprehensive review: EGG CONSUMPTION AND OBESITY. Poult Sci 2025; 104:104660. [PMID: 39721264 PMCID: PMC11731440 DOI: 10.1016/j.psj.2024.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Eggs serve as a vital source of high-quality protein and lipids in the human diet, contributing significantly to nutritional intake; however, the relation between egg intake and health risks has been controversial. This study aimed to assess the relationship between egg intake and obesity and the effects of the various nutrients in eggs on obesity were separately investigated. This review involved searching Scopus, PubMed, Google Scholar for relevant articles from 2002 to 2022. Studies suggested that moderate egg consumption exerts little effect on blood lipid levels, that due to the body regulates endogenous cholesterol production in response to the external cholesterol intake. Furthermore, certain studies also verified that the presence of other nutrients in eggs, such as lecithin, unsaturated fatty acids, and apolipoproteins, not only does not contribute to elevated blood lipids but also plays a role in regulating lipid metabolism to prevent obesity. Additionally, the study reveals that different cooking methods significantly impact the nutritional composition of eggs, with soft-boiled eggs generally being the most advantageous for human health. This article reveals that dietary cholesterol or moderate egg intake was not significantly associated with a higher risk of obesity in healthy adults. Nevertheless, cholesterol-sensitive individuals should ensure moderate cholesterol intake.
Collapse
Affiliation(s)
- Jinglong Chen
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| | - Bixuan Pei
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| | - Shourong Shi
- Jiangsu Institute of Poultry Science, Yangzhou, 225125, China.
| |
Collapse
|
6
|
Ding W, Sun Y, Han Y, Liu Y, Jin S. Transcriptome comparison revealed the difference in subcutaneous fat metabolism of Qinghai yak under different feeding conditions. PLoS One 2024; 19:e0311224. [PMID: 39637129 PMCID: PMC11620555 DOI: 10.1371/journal.pone.0311224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/16/2024] [Indexed: 12/07/2024] Open
Abstract
In order to explore the differences in subcutaneous fat metabolism and pathway information in yaks under different feeding conditions, this experiment used Illumina high-throughput sequencing technology to sequence the transcriptome of subcutaneous fat tissues of yaks under different feeding conditions and analyzed them bioinformatically. 9 naturally grazed yaks at 18 months of age were randomly divided into 3 groups, one group (G18_SF) was slaughtered, one group (G24_SF) continued to graze until 24 months of age was slaughtered, and one group (F24_SF) was housed until 24 months of age was slaughtered, and subcutaneous fat tissue was collected from the back of the yaks. A total of 15,261 expressed genes were identified in the nine samples, with 13,959 coexpressed genes and 533 differential expressed genes (DEGs), G18_SF vs F24_SF 133 DEGs, G18_SF vs G24_SF 469 DEGs, F24_SF vs G24_SF 5 DEGs. GO functional annotation analysis found that DEGs were mainly annotated in BP and CC, which included biological regulation, metabolic processes and cellular processes. KEGG revealed that the DEGs are mainly enriched for PPAR signaling pathway, AMPK signaling pathway and other pathways related to lipid metabolism. This study provides a scientific basis for further research on the effects of mRNA on subcutaneous fat in yaks under different feeding conditions.
Collapse
Affiliation(s)
- Weiqin Ding
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yonggang Sun
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yincang Han
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yaqian Liu
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Shengwei Jin
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| |
Collapse
|
7
|
Sarkar S, Morris J, You Y, Sexmith H, Street SE, Thibert SM, Attah IK, Hutchinson Bunch CM, Novikova IV, Evans JE, Shah AS, Gordon SM, Segrest JP, Bornfeldt KE, Vaisar T, Heinecke JW, Davidson WS, Melchior JT. APOA2 increases cholesterol efflux capacity to plasma HDL by displacing the C-terminus of resident APOA1. J Lipid Res 2024; 65:100686. [PMID: 39490930 PMCID: PMC11617996 DOI: 10.1016/j.jlr.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity. APOA2 likewise increased the cholesterol efflux capacity of isolated HDL with the maximum effect occurring when equal masses of APOA1 and APOA2 coexisted on the particles. Follow-up experiments with reconstituted HDL corroborated that the presence of both APOA1 and APOA2 were necessary for the increased efflux. Using limited proteolysis and chemical cross-linking mass spectrometry, we found that APOA2 induced a conformational change in the N- and C-terminal helices of APOA1. Using reconstituted HDL with APOA1 deletion mutants, we further showed that APOA2 lost its ability to stimulate ABCA1 efflux to HDL if the C-terminal domain of APOA1 was absent, but retained this ability when the N-terminal domain was absent. Based on these findings, we propose a model in which APOA2 displaces the C-terminal helix of APOA1 from the HDL surface which can then interact with ABCA1-much like it does in lipid-poor APOA1. These findings suggest APOA2 may be a novel therapeutic target given this ability to open a large, high-capacity pool of HDL particles to enhance ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Snigdha Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hannah Sexmith
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Scott E Street
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephanie M Thibert
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James E Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Scott M Gordon
- Department of Physiology and the Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle WA, USA
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle WA, USA
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - John T Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 PMCID: PMC11536265 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T. Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R. da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A. Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
9
|
Gu L, Pillay RP, Aronson R, Kaur M. Cholesteryl ester transfer protein knock-down in conjunction with a cholesterol-depleting agent decreases tamoxifen resistance in breast cancer cells. IUBMB Life 2024; 76:712-730. [PMID: 38733508 DOI: 10.1002/iub.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 05/13/2024]
Abstract
The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. CETP knock-down resulted in a >50% decrease in cell proliferation in both 'estrogen receptor-positive' (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and 'triple-negative' breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of CETP together with the combination treatment of tamoxifen (5 μM) and acetyl plumbagin (a cholesterol-depleting agent) (5 μM) resulted in twofold to threefold increase in apoptosis in both cell lines. CETP knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT2 Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-CETP knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated CETP's role as a cancer survival gene as knock-down of CETP stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.
Collapse
Affiliation(s)
- Liang Gu
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruvesh Pascal Pillay
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ruth Aronson
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mandeep Kaur
- Department of School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Niemelä A, Koivuniemi A. Systematic evaluation of lecithin:cholesterol acyltransferase binding sites in apolipoproteins via peptide based nanodiscs: regulatory role of charged residues at positions 4 and 7. PLoS Comput Biol 2024; 20:e1012137. [PMID: 38805510 PMCID: PMC11161081 DOI: 10.1371/journal.pcbi.1012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and β-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT β-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.
Collapse
Affiliation(s)
- Akseli Niemelä
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Artturi Koivuniemi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Strickland MR, Rau MJ, Summers B, Basore K, Wulf J, Jiang H, Chen Y, Ulrich JD, Randolph GJ, Zhang R, Fitzpatrick JAJ, Cashikar AG, Holtzman DM. Apolipoprotein E secreted by astrocytes forms antiparallel dimers in discoidal lipoproteins. Neuron 2024; 112:1100-1109.e5. [PMID: 38266643 PMCID: PMC10994765 DOI: 10.1016/j.neuron.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The Apolipoprotein E gene (APOE) is of great interest due to its role as a risk factor for late-onset Alzheimer's disease. ApoE is secreted by astrocytes in the central nervous system in high-density lipoprotein (HDL)-like lipoproteins. Structural models of lipidated ApoE of high resolution could aid in a mechanistic understanding of how ApoE functions in health and disease. Using monoclonal Fab and F(ab')2 fragments, we characterize the structure of lipidated ApoE on astrocyte-secreted lipoproteins. Our results provide support for the "double-belt" model of ApoE in nascent discoidal HDL-like lipoproteins, where two ApoE proteins wrap around the nanodisc in an antiparallel conformation. We further show that lipidated, recombinant ApoE accurately models astrocyte-secreted ApoE lipoproteins. Cryogenic electron microscopy of recombinant lipidated ApoE further supports ApoE adopting antiparallel dimers in nascent discoidal lipoproteins.
Collapse
Affiliation(s)
| | - Michael J Rau
- Washington University Center for Cellular Imaging, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - John Wulf
- Washington University Center for Cellular Imaging, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Neurology, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Department of Pathology and Immunology, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Department of Neurology, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park Ave., St. Louis, MO 63108, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Anil G Cashikar
- Hope Center for Neurological Disorders, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Department of Psychiatry, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Taylor Family institute for Innovative Psychiatric Research, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park Ave., St. Louis, MO 63108, USA.
| |
Collapse
|
13
|
Caron NS, Aly AEE, Findlay Black H, Martin DDO, Schmidt ME, Ko S, Anderson C, Harvey EM, Casal LL, Anderson LM, Rahavi SMR, Reid GSD, Oda MN, Stanimirovic D, Abulrob A, McBride JL, Leavitt BR, Hayden MR. Systemic delivery of mutant huntingtin lowering antisense oligonucleotides to the brain using apolipoprotein A-I nanodisks for Huntington disease. J Control Release 2024; 367:27-44. [PMID: 38215984 DOI: 10.1016/j.jconrel.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Emily M Harvey
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seyed M R Rahavi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S D Reid
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Hong BV, Zheng J, Zivkovic AM. HDL Function across the Lifespan: From Childhood, to Pregnancy, to Old Age. Int J Mol Sci 2023; 24:15305. [PMID: 37894984 PMCID: PMC10607703 DOI: 10.3390/ijms242015305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.
Collapse
Affiliation(s)
| | | | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.)
| |
Collapse
|
15
|
Dai W, Castleberry M, Zheng Z. Tale of two systems: the intertwining duality of fibrinolysis and lipoprotein metabolism. J Thromb Haemost 2023; 21:2679-2696. [PMID: 37579878 PMCID: PMC10599797 DOI: 10.1016/j.jtha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, USA.
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
16
|
Atehortua L, Morris J, Street SE, Bedel N, Davidson WS, Chougnet CA. Apolipoprotein E-containing HDL decreases caspase-dependent apoptosis of memory regulatory T lymphocytes. J Lipid Res 2023; 64:100425. [PMID: 37579971 PMCID: PMC10507648 DOI: 10.1016/j.jlr.2023.100425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
Plasma levels of HDL cholesterol are inversely associated with CVD progression. It is becoming increasingly clear that HDL plays important roles in immunity that go beyond its traditionally understood roles in lipid transport. We previously reported that HDL interaction with regulatory T cells (Treg) protected them from apoptosis, which could be a mechanism underlying the broad anti-inflammatory effect of HDL. Herein, we extend our work to show that HDL interacts mainly with memory Treg, particularly with the highly suppressive effector memory Treg, by limiting caspase-dependent apoptosis in an Akt-dependent manner. Reconstitution experiments identified the protein component of HDL as the primary driver of the effect, though the most abundant HDL protein, apolipoprotein A-I (APOA1), was inactive. In contrast, APOE-depleted HDL failed to rescue effector memory Treg, suggesting the critical role of APOE proteins. HDL particles reconstituted with APOE, and synthetic phospholipids blunted Treg apoptosis at physiological concentrations. The APOE3 and APOE4 isoforms were the most efficient. Similar results were obtained when lipid-free recombinant APOEs were tested. Binding experiments showed that lipid-free APOE3 bound to memory Treg but not to naive Treg. Overall, our results show that APOE interaction with Treg results in blunted caspase-dependent apoptosis and increased survival. As dysregulation of HDL-APOE levels has been reported in CVD and obesity, our data bring new insight on how this defect may contribute to these diseases.
Collapse
Affiliation(s)
- Laura Atehortua
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jamie Morris
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott E Street
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nicholas Bedel
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - W Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Merrill NJ, Davidson WS, He Y, Díaz Ludovico I, Sarkar S, Berger MR, McDermott JE, Van Eldik LJ, Wilcock DM, Monroe ME, Kyle JE, Bruce KD, Heinecke JW, Vaisar T, Raber J, Quinn JF, Melchior JT. Human cerebrospinal fluid contains diverse lipoprotein subspecies enriched in proteins implicated in central nervous system health. SCIENCE ADVANCES 2023; 9:eadi5571. [PMID: 37647397 PMCID: PMC10468133 DOI: 10.1126/sciadv.adi5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Lipoproteins in cerebrospinal fluid (CSF) of the central nervous system (CNS) resemble plasma high-density lipoproteins (HDLs), which are a compositionally and structurally diverse spectrum of nanoparticles with pleiotropic functionality. Whether CSF lipoproteins (CSF-Lps) exhibit similar heterogeneity is poorly understood because they are present at 100-fold lower concentrations than plasma HDL. To investigate the diversity of CSF-Lps, we developed a sensitive fluorescent technology to characterize lipoprotein subspecies in small volumes of human CSF. We identified 10 distinctly sized populations of CSF-Lps, most of which were larger than plasma HDL. Mass spectrometric analysis identified 303 proteins across the populations, over half of which have not been reported in plasma HDL. Computational analysis revealed that CSF-Lps are enriched in proteins important for wound healing, inflammation, immune response, and both neuron generation and development. Network analysis indicated that different subpopulations of CSF-Lps contain unique combinations of these proteins. Our study demonstrates that CSF-Lp subspecies likely exist that contain compositional signatures related to CNS health.
Collapse
Affiliation(s)
- Nathaniel J. Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yi He
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Snigdha Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Madelyn R. Berger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay W. Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jacob Raber
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Department of Behavioral Neuroscience and Radiation Medicine, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland OR 97239, USA
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
18
|
Li Y, Luo X, Hua Z, Xue X, Wang X, Pang M, Wang T, Lyu A, Liu Y. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int J Biol Sci 2023; 19:4493-4510. [PMID: 37781031 PMCID: PMC10535700 DOI: 10.7150/ijbs.86475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
19
|
Aly AEE, Caron NS, Black HF, Schmidt ME, Anderson C, Ko S, Baddeley HJE, Anderson L, Casal LL, Rahavi RSM, Martin DDO, Hayden MR. Delivery of mutant huntingtin-lowering antisense oligonucleotides to the brain by intranasally administered apolipoprotein A-I nanodisks. J Control Release 2023; 360:913-927. [PMID: 37468110 DOI: 10.1016/j.jconrel.2023.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.
Collapse
Affiliation(s)
- Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Helen J E Baddeley
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lisa Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Reza S M Rahavi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's a Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
20
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
21
|
Carrasco-Luna J, Navarro-Solera M, Gombert M, Martín-Carbonell V, Carrasco-García Á, Del Castillo-Villaescusa C, García-Pérez MÁ, Codoñer-Franch P. Association of the rs17782313, rs17773430 and rs34114122 Polymorphisms of/near MC4R Gene with Obesity-Related Biomarkers in a Spanish Pediatric Cohort. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1221. [PMID: 37508717 PMCID: PMC10378299 DOI: 10.3390/children10071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Obesity is a multifactorial disease whose onset and development are shaped by the individual genetic background. The melanocortin 4 receptor gene (MC4R) is involved in the regulation of food intake and energy expenditure. Some of the single nucleotide polymorphisms (SNPs) of this gene are related to obesity and metabolic risk factors. The present study was undertaken to assess the relationship between three polymorphism SNPs, namely, rs17782313, rs17773430 and rs34114122, and obesity and metabolic risk factors. One hundred seventy-eight children with obesity aged between 7 and 16 years were studied to determine anthropometric variables and biochemical and inflammatory parameters. Our results highlight that metabolic risk factors, especially alterations in carbohydrate metabolism, were related to rs17782313. The presence of the minor C allele in the three variants (C-C-C) was significantly associated with anthropometric measures indicative of obesity, such as the body mass and fat mass indexes, and increased the values of insulinemia to 21.91 µIU/mL with respect to the wild type values. Our study suggests that the C-C-C haplotype of the SNPs rs17782313, rs17773430 and rs34114122 of the MC4R gene potentiates metabolic risk factors at early ages in children with obesity.
Collapse
Affiliation(s)
- Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
- Department for Biotechnology, Faculty of Experimental Science, Catholic University of Valencia, 46001 Valencia, Spain
| | - María Navarro-Solera
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Vanessa Martín-Carbonell
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Álvaro Carrasco-García
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Cristina Del Castillo-Villaescusa
- Department of Pediatrics, University Hospital Doctor Peset, Foundation of Promotion of Health, Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain;
| | - Miguel Ángel García-Pérez
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, INCLIVA, 46100 Valencia, Spain;
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
- Department of Pediatrics, University Hospital Doctor Peset, Foundation of Promotion of Health, Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain;
| |
Collapse
|
22
|
Kubo A, Matsubara K, Matsubara Y, Nakaoka H, Sugiyama T. The Influence of Nicotine on Trophoblast-Derived Exosomes in a Mouse Model of Pathogenic Preeclampsia. Int J Mol Sci 2023; 24:11126. [PMID: 37446304 DOI: 10.3390/ijms241311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Preeclampsia (PE) is a serious complication of pregnancy with a pathogenesis that is not fully understood, though it involves the impaired invasion of extravillous trophoblasts (EVTs) into the decidual layer during implantation. Because the risk of PE is actually decreased by cigarette smoking, we considered the possibility that nicotine, a critical component of tobacco smoke, might protect against PE by modifying the content of exosomes from EVTs. We investigated the effects of nicotine on our PE model mouse and evaluated blood pressure. Next, exosomes were extracted from nicotine-treated extravillous trophoblasts (HTR-8/SVneo), and the peptide samples were evaluated by DIA (Data Independent Acquisition) proteomic analysis following nano LC-MS/MS. Hub proteins were identified using bioinformatic analysis. We found that nicotine significantly reduced blood pressure in a PE mouse model. Furthermore, we identified many proteins whose abundance in exosomes was modified by nicotine treatment of EVTs, and we used bioinformatic annotation and network analysis to select five key hub proteins with potential roles in the pathogenesis or prevention of PE. EVT-derived exosomes might influence the pathogenesis of PE because the cargo delivered by exosomes can signal to and modify the receiving cells and their environment.
Collapse
Affiliation(s)
- Ayane Kubo
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Hirotomo Nakaoka
- Advanced Research Support Center, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
23
|
Huang M, Zheng J, Chen L, You S, Huang H. Advances in the study of the pathogenesis of obesity: Based on apolipoproteins. Clin Chim Acta 2023; 545:117359. [PMID: 37086940 DOI: 10.1016/j.cca.2023.117359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Obesity is a state presented by excessive accumulation and abnormal distribution of body fat, with metabolic disorders being one of its distinguishing features. Obesity is associated with dyslipidemia, apolipoproteins are important structural components of plasma lipoproteins, which influence lipid metabolism in the body by participating in lipoprotein metabolism and are closely related to the progression of obesity. Apolipoproteins influence the progression of obesity from lipid metabolism, energy expenditure and inflammatory response. In this review, we discuss the alterations of apolipoproteins in obesity, understand the potential mechanisms by which apolipoproteins affect obesity, as well as provide new targets for the treatment of obesity.
Collapse
Affiliation(s)
- Mingjing Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lijun Chen
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
24
|
Bhale AS, Venkataraman K. Delineating the impact of pathogenic mutations on the conformational dynamics of HDL's vital protein ApoA1: a combined computational and molecular dynamic simulation approach. J Biomol Struct Dyn 2023; 41:15661-15681. [PMID: 36943736 DOI: 10.1080/07391102.2023.2191131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Apolipoprotein A1 (ApoA1), is the important component of high-density lipoproteins (HDL), that has key role in HDL biogenesis, cholesterol trafficking, and reverse cholesterol transport (RCT). Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in ApoA1 have been linked to cardiovascular diseases and amyloidosis as they alter the protein's native structure and function. Therefore in this study, we attempted to understand the molecular pathogenicity profile of nsSNPs of ApoA1 using various computational approaches. We used state-of-the-art computational methods to thoroughly investigate the 295 ApoA1 nsSNPs at sequence and structural levels. Seven nsSNPs (L13R, L84R, L84P, L99P, R173P, L187P, and L238P) out of 295 were classified as the most deleterious and destabilizing. In order to estimate the effect of such destabilizing mutations on the protein conformation, all-atom molecular dynamics simulations (MDS) of ApoA1 wild-type (WT), L99P and R173P for 100 ns, was carried out using GROMACS 5.0.1 package. The MD simulation investigation revealed significant structural alterations in L99P and R173P. In addition, they had changed principal component analysis and electrostatic surface potential, decreased structural compactness, and intramolecular hydrogen bonds, which supported the rationale underpinning ApoA1 dysfunction with such mutations. This work sheds light on ApoA1 dysfunction due to single amino acid alterations, and offers new insight into the molecular basis of ApoA1-related diseases progression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
25
|
Clarke R, Von Ende A, Schmidt LE, Yin X, Hill M, Hughes AD, Pechlaner R, Willeit J, Kiechl S, Watkins H, Theofilatos K, Hopewell JC, Mayr M. Apolipoprotein Proteomics for Residual Lipid-Related Risk in Coronary Heart Disease. Circ Res 2023; 132:452-464. [PMID: 36691918 PMCID: PMC9930889 DOI: 10.1161/circresaha.122.321690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recognition of the importance of conventional lipid measures and the advent of novel lipid-lowering medications have prompted the need for more comprehensive lipid panels to guide use of emerging treatments for the prevention of coronary heart disease (CHD). This report assessed the relevance of 13 apolipoproteins measured using a single mass-spectrometry assay for risk of CHD in the PROCARDIS case-control study of CHD (941 cases/975 controls). METHODS The associations of apolipoproteins with CHD were assessed after adjustment for established risk factors and correction for statin use. Apolipoproteins were grouped into 4 lipid-related classes [lipoprotein(a), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides] and their associations with CHD were adjusted for established CHD risk factors and conventional lipids. Analyses of these apolipoproteins in a subset of the ASCOT trial (Anglo-Scandinavian Cardiac Outcomes Trial) were used to assess their within-person variability and to estimate a correction for statin use. The findings in the PROCARDIS study were compared with those for incident cardiovascular disease in the Bruneck prospective study (n=688), including new measurements of Apo(a). RESULTS Triglyceride-carrying apolipoproteins (ApoC1, ApoC3, and ApoE) were most strongly associated with the risk of CHD (2- to 3-fold higher odds ratios for top versus bottom quintile) independent of conventional lipid measures. Likewise, ApoB was independently associated with a 2-fold higher odds ratios of CHD. Lipoprotein(a) was measured using peptides from the Apo(a)-kringle repeat and Apo(a)-constant regions, but neither of these associations differed from the association with conventionally measured lipoprotein(a). Among HDL-related apolipoproteins, ApoA4 and ApoM were inversely related to CHD, independent of conventional lipid measures. The disease associations with all apolipoproteins were directionally consistent in the PROCARDIS and Bruneck studies, with the exception of ApoM. CONCLUSIONS Apolipoproteins were associated with CHD independent of conventional risk factors and lipids, suggesting apolipoproteins could help to identify patients with residual lipid-related risk and guide personalized approaches to CHD risk reduction.
Collapse
Affiliation(s)
- Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom (R.C., A.V.E., M.H., J.C.H.)
| | - Adam Von Ende
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom (R.C., A.V.E., M.H., J.C.H.)
| | - Lukas E. Schmidt
- King’s British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Michael Hill
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom (R.C., A.V.E., M.H., J.C.H.)
| | - Alun D. Hughes
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, United Kingdom (A.D.H.)
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Austria (R.P., J.W., S.K.)
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, Austria (R.P., J.W., S.K.)
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Austria (R.P., J.W., S.K.)
- Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria (S.K.)
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (H.W.)
| | - Konstantinos Theofilatos
- King’s British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Jemma C. Hopewell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom (R.C., A.V.E., M.H., J.C.H.)
| | - Manuel Mayr
- King’s British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| |
Collapse
|
26
|
Xu L, Cui H. Yinchenhao Tang alleviates high fat diet induced NAFLD by increasing NR1H4 and APOA1 expression. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
27
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
28
|
Li X, Zhao F, Fu C, Yang Y, Xu Q, Hao Y, Shi X, Chen D, Bi X, Gong Z, Wu S, Zhang H. Early- and whole-life exposures to florfenicol disrupts lipid metabolism and induces obesogenic effects in zebrafish (Danio rerio). CHEMOSPHERE 2022; 308:136429. [PMID: 36115475 DOI: 10.1016/j.chemosphere.2022.136429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Florfenicol (FF), a widely used veterinary antibiotic, has been frequently detected in both aquatic environments and human body fluids. As a result, there is a growing concern on its health risks. Previous studies have revealed various toxicities of FF on animals, while there are relatively limited researches on its metabolic toxicity. Herein, by employing zebrafish as an in vivo model, endpoints at multiple levels of biological organization were measured to investigate the metabolic toxicity, especially disturbances on lipid metabolism, of this emerging pollutant. Our results indicated that early-life exposure (from 2 h past fertilization (hpf) to 15 days past fertilization (dpf)) to FF significantly increased body mass index (BMI) values, staining areas of visceral lipids, and triacylglycerol (TAG) and total cholesterol (TC) contents of larvae. Further, by analyzing expression patterns of genes encoding key proteins regulating lipid metabolism, our data suggested that promoted intestinal absorption and hepatic de novo synthesis of lipids, suppressed TAG decomposition, and inhibited FFA oxidation all contributed to TAG accumulation in larvae. Following whole-life exposure (from 2 hpf to 120 dpf), BMI values, TAG and TC contents all increased significantly in males, and significant increases of hepatic TAG levels were also observed in females. Moreover, FF exposure interfered with lipid homeostasis of males and females in a gender-specific pattern. Our study revealed the obesogenic effects of FF at environmentally relevant concentrations (1, 10, and 100 μg/L) and therefore will benefit assessment of its health risks. Additionally, our results showed that FF exposure caused a more pronounced obesogenic effect in zebrafish larvae than adults, as suggested by significant increases of all endpoints at individual, tissular, and molecular levels in larvae. Therefore, our study also advances the application of zebrafish larval model in assessing metabolic toxicity of chemicals, due to the higher susceptibility of larvae than adults.
Collapse
Affiliation(s)
- Xinhui Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China.
| | - Chen Fu
- Chengdu Academy of Environmental Sciences, Chengdu 610072, PR China
| | - Yanyu Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Qianru Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Yinfei Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Zhilin Gong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Shujian Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Haifeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| |
Collapse
|
29
|
Giorgi L, Niemelä A, Kumpula EP, Natri O, Parkkila P, Huiskonen JT, Koivuniemi A. Mechanistic Insights into the Activation of Lecithin-Cholesterol Acyltransferase in Therapeutic Nanodiscs Composed of Apolipoprotein A-I Mimetic Peptides and Phospholipids. Mol Pharm 2022; 19:4135-4148. [PMID: 36111986 PMCID: PMC9644404 DOI: 10.1021/acs.molpharmaceut.2c00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
The mechanistic details behind the activation of lecithin-cholesterol acyltransferase (LCAT) by apolipoprotein A-I (apoA-I) and its mimetic peptides are still enigmatic. Resolving the fundamental principles behind LCAT activation will facilitate the design of advanced HDL-mimetic therapeutic nanodiscs for LCAT deficiencies and coronary heart disease and for several targeted drug delivery applications. Here, we have combined coarse-grained molecular dynamics simulations with complementary experiments to gain mechanistic insight into how apoA-Imimetic peptide 22A and its variants tune LCAT activity in peptide-lipid nanodiscs. Our results highlight that peptide 22A forms transient antiparallel dimers in the rim of nanodiscs. The dimerization tendency considerably decreases with the removal of C-terminal lysine K22, which has also been shown to reduce the cholesterol esterification activity of LCAT. In addition, our simulations revealed that LCAT prefers to localize to the rim of nanodiscs in a manner that shields the membrane-binding domain (MBD), αA-αA', and the lid amino acids from the water phase, following previous experimental evidence. Meanwhile, the location and conformation of LCAT in the rim of nanodiscs are spatially more restricted when the active site covering the lid of LCAT is in the open form. The average location and spatial dimensions of LCAT in its open form were highly compatible with the electron microscopy images. All peptide 22A variants studied here had a specific interaction site in the open LCAT structure flanked by the lid and MBD domain. The bound peptides showed different tendencies to form antiparallel dimers and, interestingly, the temporal binding site occupancies of the peptide variants affected their in vitro ability to promote LCAT-mediated cholesterol esterification.
Collapse
Affiliation(s)
- Laura Giorgi
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Akseli Niemelä
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Esa-Pekka Kumpula
- Institute
of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Ossi Natri
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Petteri Parkkila
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Goteborg 412 96, Sweden
| | - Juha T. Huiskonen
- Institute
of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
| | - Artturi Koivuniemi
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
30
|
Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Ferro-Flores G, González-Romero C, Mercado-López A, García-Marín R, Santos-Cuevas C, Estrada JA, Morales-Avila E. Engineered rHDL Nanoparticles as a Suitable Platform for Theranostic Applications. Molecules 2022; 27:7046. [PMID: 36296638 PMCID: PMC9610567 DOI: 10.3390/molecules27207046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Carlos González-Romero
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Alfredo Mercado-López
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Rodrigo García-Marín
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - José A. Estrada
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| |
Collapse
|
31
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
32
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
33
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
34
|
Bedi S, Morris J, Shah A, Hart RC, Jerome WG, Aller SG, Tang C, Vaisar T, Bornfeldt KE, Segrest JP, Heinecke JW, Davidson WS. Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. J Lipid Res 2022; 63:100168. [PMID: 35051413 PMCID: PMC8953623 DOI: 10.1016/j.jlr.2022.100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Amy Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chongren Tang
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
35
|
Ding Y, Liu X, Yuan Y, Sheng Y, Li D, Ojha SC, Sun C, Deng C. THRSP identified as a potential hepatocellular carcinoma marker by integrated bioinformatics analysis and experimental validation. Aging (Albany NY) 2022; 14:1743-1766. [PMID: 35196258 PMCID: PMC8908915 DOI: 10.18632/aging.203900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with high mortality and poor prognosis worldwide. This study aimed to identify hub genes and investigate the underlying molecular mechanisms in HCC progression by integrated bioinformatics analysis and experimental validation. Based on the Gene Expression Omnibus (GEO) databases and The Cancer Genome Atlas (TCGA), 12 critical differential co-expression genes were identified between tumor and normal tissues. Via survival analysis, we found higher expression of LCAT, ACSM3, IGF1, SRD5A2, THRSP and ACADS was associated with better prognoses in HCC patients. Among which, THRSP was selected for the next investigations. We found that THRSP mRNA expression was negatively correlated with its methylation and closely associated with clinical characteristics in HCC patients. Moreover, THRSP expression had a negative correlation with the infiltration levels of several immune cells (e.g., B cells and CD4+ T cells). qRT-PCR verified that THRSP was lower expressed in HCC tissues and cell lines compared with control. Silencing of THRSP promoted the migration, invasion, proliferation, and inhibited cell apoptosis of HCCLM and Huh7 cell lines. Decreased expression of THRSP promoted HCC progression by NF-κB, ERK1/2, and p38 MAPK signaling pathways. In conclusion, THRSP might serve as a novel biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Yuxi Ding
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoling Liu
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Yuan
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yunjian Sheng
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Decheng Li
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Suvash Chandra Ojha
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Changfeng Sun
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Cunliang Deng
- The Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,The Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Infection and Immunity, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
36
|
Ong KL, Cochran BBiotech BJ, Manandhar B, Thomas S, Rye KA. HDL maturation and remodelling. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159119. [PMID: 35121104 DOI: 10.1016/j.bbalip.2022.159119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol in the circulation is mostly transported in an esterified form as a component of lipoproteins. The majority of these cholesteryl esters are produced in nascent, discoidal high density lipoproteins (HDLs) by the enzyme, lecithin:cholesterol acyltransferase (LCAT). Discoidal HDLs are discrete populations of particles that consist of a phospholipid bilayer, the hydrophobic acyl chains of which are shielded from the aqueous environment by apolipoproteins that also confer water solubility on the particles. The progressive LCAT-mediated accumulation of cholesteryl esters in discoidal HDLs generates the spherical HDLs that predominate in normal human plasma. Spherical HDLs contain a core of water insoluble, neutral lipids (cholesteryl esters and triglycerides) that is surrounded by a surface monolayer of phospholipids with which apolipoproteins associate. Although spherical HDLs all have the same basic structure, they are extremely diverse in size, composition, and function. This review is concerned with how the biogenesis of discoidal and spherical HDLs is regulated and the mechanistic basis of their size and compositional heterogeneity. Current understanding of the impact of this heterogeneity on the therapeutic potential of HDLs of varying size and composition is also addressed in the context of several disease states.
Collapse
Affiliation(s)
- Kwok-Leung Ong
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Blake J Cochran BBiotech
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Bikash Manandhar
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Shane Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
37
|
Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc Ther 2022; 2022:4610834. [PMID: 35087605 PMCID: PMC8763555 DOI: 10.1155/2022/4610834] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia characterized by abnormal deposition of cholesterol in arteries can cause atherosclerosis and coronary artery occlusion, leading to atherosclerotic coronary heart disease. The body prevents atherosclerosis by reverse cholesterol transport to mobilize and excrete cholesterol and other lipids. Apolipoprotein A1, the major component of high-density lipoprotein, plays a key role in reverse cholesterol transport. Here, we reviewed the role of apolipoprotein A1-targeting molecules in antiatherosclerosis therapy, in particular ATP-binding cassette transporter A1, lecithin-cholesterol acyltransferase, and scavenger receptor class B type 1.
Collapse
|
38
|
Gu X, Jiang C, Zhao J, Qiao Q, Wu M, Cai B. Identification of lipid metabolism-associated genes as prognostic biomarkers based on the immune microenvironment in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:883059. [PMID: 36330335 PMCID: PMC9622944 DOI: 10.3389/fcell.2022.883059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid metabolism has been associated with progression of various cancers. However, the underlying mechanisms of the impact of lipid metabolism-associated genes (LMAGs) on the tumor immune microenvironment have not been well-elucidated. This study aimed to determine the effects of lipid metabolism on the progression and development of hepatocellular carcinoma (HCC). Expression profiles and clinical data of 371 and 231 patients with HCC were obtained from the TCGA and Internal Cancer Genome Consortium (ICGC) databases, respectively. Using Cox regression and LASSO regression analyses, a prognostic risk model was constructed based on the LMAG data. The tumor mutation burden (TMB), immune cell infiltration levels, and immune response checkpoints of the identified risk groups were determined and compared. A total of two clusters were identified based on the LMAG expression, showing significant differences in tumor stage and immune cell infiltration. A prognostic risk model based on four LMAGs was constructed and proven to have a significant prognostic value. The 1-, 3-, and 5-year survival rates in the high-risk group were 62.2%, 20.5%, and 8.1%, respectively, whereas those in the low-risk group were 78.9%, 28.1%, and 13.5%, respectively. The survival differences between the two risk groups were likely associated with TP53 mutation status, TMB score, degree of immunocyte infiltration, and immune checkpoint level. Likewise, the expression level of every LMAG included in the model had the same effect on the overall survival and immune cell infiltration levels. More importantly, the prognostic value of the signature was verified in an independent ICGC cohort. Thus, the expression levels of LMAGs are closely related to the tumor microenvironment in HCC and may serve as promising biological indicators for prognosis and immune therapy in patients with HCC.
Collapse
Affiliation(s)
| | | | | | | | - Mingyu Wu
- *Correspondence: Mingyu Wu, ; Bing Cai,
| | - Bing Cai
- *Correspondence: Mingyu Wu, ; Bing Cai,
| |
Collapse
|
39
|
Melchior JT, Street SE, Vaisar T, Hart R, Jerome J, Kuklenyik Z, Clouet-Foraison N, Thornock C, Bedi S, Shah AS, Segrest JP, Heinecke JW, Davidson WS. Apolipoprotein A-I modulates HDL particle size in the absence of apolipoprotein A-II. J Lipid Res 2021; 62:100099. [PMID: 34324889 PMCID: PMC8385444 DOI: 10.1016/j.jlr.2021.100099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Human high-density lipoproteins (HDL) are a complex mixture of structurally-related nanoparticles that perform distinct physiological functions. We previously showed human HDL containing apolipoprotein A-I (APOA1) but not apolipoprotein A-II (APOA2), designated LpA-I, is composed primarily of two discretely sized populations. Here, we isolated these particles directly from human plasma by antibody affinity chromatography, separated them by high-resolution size exclusion chromatography and performed a deep molecular characterization of each species. The large and small LpA-I populations were spherical with mean diameters of 109 Å and 91 Å, respectively. Unexpectedly, isotope dilution MS/MS with [15N]-APOA1 in concert with quantitation of particle concentration by calibrated ion mobility analysis demonstrated that the large particles contained fewer APOA1 molecules than the small particles; the stoichiometries were 3.0 and 3.7 molecules of APOA1 per particle, respectively. MS/MS experiments showed that the protein cargo of large LpA-I particles was more diverse. Human HDL and isolated particles containing both APOA1 and APOA2 exhibit a much wider range and variation of particle sizes than LpA-I, indicating that APOA2 is likely the major contributor to HDL size heterogeneity. We propose a ratchet model based on the trefoil structure of APOA1 whereby the helical cage maintaining particle structure has two 'settings' - large and small - that accounts for these findings. This understanding of the determinants of HDL particle size and protein cargo distribution serves as a basis for determining the roles of HDL subpopulations in metabolism and disease states.
Collapse
Affiliation(s)
- John T Melchior
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354
| | - Scott E Street
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Rachel Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jay Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341
| | - Noemie Clouet-Foraison
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Carissa Thornock
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Shimpi Bedi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - W Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|
40
|
Su L, Zhang G, Kong X. A Novel Five-Gene Signature for Prognosis Prediction in Hepatocellular Carcinoma. Front Oncol 2021; 11:642563. [PMID: 34336648 PMCID: PMC8322700 DOI: 10.3389/fonc.2021.642563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been a global health issue and attracted wide attention due to its high incidence and poor outcomes. In this study, our purpose was to explore an effective prognostic marker for HCC. Five cohort profile datasets from GEO (GSE25097, GSE36376, GSE62232, GSE76427 and GSE101685) were integrated with TCGA-LIHC and GTEx dataset to identify differentially expressed genes (DEGs) between normal and cancer tissues in HCC patients, then 5 upregulated differentially expressed genes and 32 downregulated DEGs were identified as common DEGs in total. Next, we systematically explored the relationship between the expression of 37 common DEGs in tumor tissues and overall survival (OS) rate of HCC patients in TCGA and constructed a novel prognostic model composed of five genes (AURKA, PZP, RACGAP1, ACOT12 and LCAT). Furthermore, the predicted performance of the five-gene signature was verified in ICGC and another independent clinical samples cohort, and the results demonstrated that the signature performed well in predicting the OS rate of patients with HCC. What is more, the signature was an independent hazard factor for HCC patients when considering other clinical factors in the three cohorts. Finally, we found the signature was significantly associated with HCC immune microenvironment. In conclusion, the prognostic five-gene signature identified in our present study could efficiently classify patients with HCC into subgroups with low and high risk of longer overall survival time and help clinicians make decisions for individualized treatment.
Collapse
Affiliation(s)
- Lisa Su
- Department of Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Genhao Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Department of Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
He D, Liao S, Cai L, Huang W, Xie X, You M. Integrated analysis of methylation-driven genes and pretreatment prognostic factors in patients with hepatocellular carcinoma. BMC Cancer 2021; 21:599. [PMID: 34034705 PMCID: PMC8146257 DOI: 10.1186/s12885-021-08314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The potential reversibility of aberrant DNA methylation indicates an opportunity for oncotherapy. This study aimed to integrate methylation-driven genes and pretreatment prognostic factors and then construct a new individual prognostic model in hepatocellular carcinoma (HCC) patients. METHODS The gene methylation, gene expression dataset and clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Methylation-driven genes were screened with a Pearson's correlation coefficient less than - 0.3 and a P value less than 0.05. Univariable and multivariable Cox regression analyses were performed to construct a risk score model and identify independent prognostic factors from the clinical parameters of HCC patients. The least absolute shrinkage and selection operator (LASSO) technique was used to construct a nomogram that might act to predict an individual's OS, and then C-index, ROC curve and calibration plot were used to test the practicability. The correlation between clinical parameters and core methylation-driven genes of HCC patients was explored with Student's t-test. RESULTS In this study, 44 methylation-driven genes were discovered, and three prognostic signatures (LCAT, RPS6KA6, and C5orf58) were screened to construct a prognostic risk model of HCC patients. Five clinical factors, including T stage, risk score, cancer status, surgical method and new tumor events, were identified from 13 clinical parameters as pretreatment-independent prognostic factors. To avoid overfitting, LASSO analysis was used to construct a nomogram that could be used to calculate the OS in HCC patients. The C-index was superior to that from previous studies (0.75 vs 0.717, 0.676). Furthermore, LCAT was found to be correlated with T stage and new tumor events, and RPS6KA6 was found to be correlated with T stage. CONCLUSION We identified novel therapeutic targets and constructed an individual prognostic model that can be used to guide personalized treatment in HCC patients.
Collapse
Affiliation(s)
- Dongsheng He
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Shengyin Liao
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Lifang Cai
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Weiming Huang
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Xuehua Xie
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Mengxing You
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China.
| |
Collapse
|
42
|
González-Ortiz A, Galindo-Hernández O, Hernández-Acevedo GN, Hurtado-Ureta G, García-González V. Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. J Cancer 2021; 12:4307-4321. [PMID: 34093831 PMCID: PMC8176427 DOI: 10.7150/jca.54637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
ApoB-lipoproteins and their components modulate intracellular metabolism and have been associated with the development of neoplastic phenomena, such as proliferation, anchorage-independent growth, epithelial-mesenchymal transition, and cancer invasion. In cancer cells, the modulation of targets that regulate cholesterol metabolism, such as synthesis de novo, endocytosis, and oxidation, are contributing factors to cancer development. While mechanisms associated with sterol regulatory element-binding protein 2 (SREBP-2)/mevalonate, the low-density lipoprotein receptor (LDL-R) and liver X receptor (LXR) have been linked with tumor growth; metabolites derived from cholesterol-oxidation, such as oxysterols and epoxy-cholesterols, also have been described as tumor processes-inducers. From this notion, we perform an analysis of the role of lipoproteins, their association with intracellular cholesterol metabolism, and the impact of these conditions on breast cancer development, mechanisms that can be shared during atherogenesis promoted mainly by LDL. Pathways connecting plasma dyslipidemias in conjunction with the effect of cholesterol-derived metabolites on intracellular mechanisms and cellular plasticity phenomena could provide new approaches to elucidate the triggering factors of carcinogenesis, conditions that could be considered in the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, México
| |
Collapse
|
43
|
Revealing the Role of High-Density Lipoprotein in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073352. [PMID: 33805921 PMCID: PMC8037642 DOI: 10.3390/ijms22073352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy with multifactorial etiology, which includes metabolic alterations as contributors to disease development. Studies have shown that lipid status disorders are involved in colorectal carcinogenesis. In line with this, previous studies have also suggested that the serum high-density lipoprotein cholesterol (HDL-C) level decreases in patients with CRC, but more recently, the focus of investigations has shifted toward the exploration of qualitative properties of HDL in this malignancy. Herein, a comprehensive overview of available evidences regarding the putative role of HDL in CRC will be presented. We will analyze existing findings regarding alterations of HDL-C levels but also HDL particle structure and distribution in CRC. In addition, changes in HDL functionality in this malignancy will be discussed. Moreover, we will focus on the genetic regulation of HDL metabolism, as well as the involvement of HDL in disturbances of cholesterol trafficking in CRC. Finally, possible therapeutic implications related to HDL will be presented. Given the available evidence, future studies are needed to resolve all raised issues concerning the suggested protective role of HDL in CRC, its presumed function as a biomarker, and eventual therapeutic approaches based on HDL.
Collapse
|
44
|
Tárraga WA, Falomir-Lockhart LJ, Garda HA, González MC. Analysis of pyrene-labelled apolipoprotein A-I oligomerization in solution: Spectra deconvolution and changes in P-value and excimer formation. Arch Biochem Biophys 2021; 699:108748. [PMID: 33444627 DOI: 10.1016/j.abb.2020.108748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/15/2022]
Abstract
ApoA-I is the main protein of HDL which has anti-atherogenic properties attributed to reverse cholesterol transport. It shares with other exchangeable apolipoproteins a high level of structural plasticity. In the lipid-free state, the apolipoprotein amphipathic α-helices interact intra- and inter-molecularly, providing structural stabilization by a complex self-association mechanism. In this study, we employed a multi-parametric fluorescent probe to study the self-association of apoA-I. We constructed six single cysteine mutants spanning positions along three helices: F104C, K107C (H4), K133C, L137C (H5), F225C and K226C (H10); and labelled them with N-Maleimide Pyrene. Taking advantage of its spectral properties, namely formation of an excited dimer (excimer) and polarity-dependent changes in its fluorescence fine structure (P-value), we monitored the apoA-I self-association in its lipid-free form as a function of its concentration. Interactions in helices H5 (K133C) and H10 (F225C and K226C) were highlighted by excimer emission; while polarity changes were reported in helix H4 (K107C), as well as in helices H5 and H10. Mathematical models were developed to enrich data analysis and estimate association constants (KA) and oligomeric species distribution. Furthermore, we briefly discuss the usefulness of the multi-parametric fluorescent probe to monitor different equilibria, even at a single labelling position. Results suggest that apoA-I self-association must be considered to fully understand its physiological roles. Particularly, some contacts that stabilize discoidal HDL particles seem to be already present in the lipid-free apoA-I oligomers.
Collapse
Affiliation(s)
- Wilson A Tárraga
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina.
| | - Lisandro J Falomir-Lockhart
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 s/n, 1900, La Plata, Argentina.
| | - Horacio A Garda
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina.
| | - Marina C González
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina.
| |
Collapse
|
45
|
Laurenzi T, Parravicini C, Palazzolo L, Guerrini U, Gianazza E, Calabresi L, Eberini I. rHDL modeling and the anchoring mechanism of LCAT activation. J Lipid Res 2020; 62:100006. [PMID: 33518511 PMCID: PMC7859856 DOI: 10.1194/jlr.ra120000843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Lecithin:cholesterol-acyl transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodeling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT functionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands the LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
46
|
Li J, Han M, Li J, Ge Z, Wang Q, Zhou K, Yin X. Sterically stabilized recombined HDL composed of modified apolipoprotein A-I for efficient targeting toward glioma cells. Drug Deliv 2020; 27:530-541. [PMID: 32241173 PMCID: PMC7170284 DOI: 10.1080/10717544.2020.1745330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
Reconstituted high density lipoprotein (rHDL) has been regarded as a promising brain-targeting vehicle for anti-glioma drugs under the mediation of apolipoprotein A-I (apoA-I). However, some stability issues relating to drug leakage and consequent reduced targeting efficiency in the course of discoidal rHDL (d-rHDL) circulating in blood hinder its broad application. The objective of the study was to develop a novel stabilized d-rHDL by replacing cholesterol and apoA-I with mono-cholesterol glutarate (MCG) modified apoA-I (termed as mA) and to evaluate its allosteric behavior and glioma targeting. MCG was synthesized through esterifying the hydroxyl of cholesterol with glutaric anhydride and characterized by FI-IR and 1H NMR. d-rHDL assembled with mA (termed as m-d-rHDL) presented similar properties such as minute particle size and disk-like appearance resembling nascent HDL. Morphological transformation observation and in vitro release plots convinced that the modification of cholesterol could effectively inhibit the remolding of d-rHDL. The uptake of m-d-rHDL by LCAT-pretreated bEND.3 cells was significantly higher than that of d-rHDL, thereby serving as another proof for the capability of m-d-rHDL in enhancing targeting property. Besides, apoA-I anchoring into m-d-rHDL played a critical role in the endocytosis process into bEND.3 cells and C6 cells, which implied the possibility of traversing blood brain barrier and accumulating in the brain and glioma. These results suggested that the modification toward cholesterol to improve the stability of d-rHDL is advantageous, and that this obtained m-d-rHDL revealed great potential for realization of suppressing the remolding of d-rHDL in the brain-targeted treatment of glioma for drug delivery.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Kai Zhou
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiaoxing Yin
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
47
|
Gomes Kjerulf D, Wang S, Omer M, Pathak A, Subramanian S, Han CY, Tang C, den Hartigh LJ, Shao B, Chait A. Glycation of HDL blunts its anti-inflammatory and cholesterol efflux capacities in vitro, but has no effect in poorly controlled type 1 diabetes subjects. J Diabetes Complications 2020; 34:107693. [PMID: 32900591 PMCID: PMC7669727 DOI: 10.1016/j.jdiacomp.2020.107693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND High-density lipoproteins (HDL) modified by glycation have been reported to be dysfunctional. Little is known regarding the anti-inflammatory effects on adipocytes of glycated HDL. AIMS We tested whether modification of HDL in vitro by glycolaldehyde (GAD), malondialdehyde (MDA) or glucose affected HDL's anti-inflammatory properties and ability to promote cholesterol efflux. To determine whether similar changes occur in vivo, we examined modifications of apolipoprotein A1 (APOA1) and APOA2 and anti-inflammatory and cholesterol efflux properties of HDL isolated from subjects with type 1 diabetes in poor glycemic control. RESULTS In vitro modification with both GAD and MDA blunted HDL's ability to inhibit palmitate-induced inflammation and cholesterol efflux in adipocytes. Modification of HDL by glucose had little impact on HDL function, like the response using HDL isolated from subjects with diabetes. Mass spectrophotometric analysis revealed that lysine residues in APOA1 and APOA2 of HDL modified by GAD and MDA in vitro differed from those modified by glucose, which resembled that seen with HDL from patients with type1 diabetes. CONCLUSIONS Modification of lysine residues in HDL by GAD and MDA in vitro does not mirror the HDL glycation in vivo in patients with diabetes, but resembles HDL modified in vitro by glucose.
Collapse
Affiliation(s)
- Diego Gomes Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Asha Pathak
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Chang Yeop Han
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Chongren Tang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Baohai Shao
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
48
|
Yang L, Bai J, Ju Z, Jiang Q, Wang J, Gao Y, Zhang Y, Wei X, Huang J. Effect of functional single nucleotide polymorphism g.-572 A > G of apolipoprotein A1 gene on resistance to ketosis in Chinese Holstein cows. Res Vet Sci 2020; 135:310-316. [PMID: 33127092 DOI: 10.1016/j.rvsc.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022]
Abstract
The ketosis has negative effects on the high-yielding dairy cows during early lactation. Apolipoprotein A1 (APOA1) is a component of high-density lipoprotein. However, the association of APOA1 gene with ketosis, and the molecular mechanisms of expression of APOA1 gene are not fully understood in dairy cows. In this study, expression of APOA1 in the liver and blood was investigated by RT-qPCR and immunohistochemistry, and genetic variation in the 5'-flanking region of the AOPA1 gene was also screened and identified. In addition, correlation of the single nucleotide polymorphisms (SNPs) of APOA1 gene with blood ketone characters, and activity of APOA1 promoter were analyzed in dairy cows. The results showed that ApoA1 protein was expressed in the liver, and the mRNA level of APOA1 was significantly higher in the cows with ketosis comparing to the healthy cows. In addition, a novel SNP (g.-572 A > G) in the core promoter of the APOA1 gene was identified between base g.-714 and g.-68 through transient transfection in both HepG2 cell and FFb cell, and luciferase report assay. Moreover, there was lower concentration of blood β-hydroxybutyrate in cows with genotype GG comparing to the cows with genotypes AA and AG. This study reported for the first time that the genetic variant g.-572 A > G in the core promoter region of APOA1 gene was associated with the ketosis in Chinese Holstein cows, and g.-572 A > G may be used as a genetic marker for ketosis prevention.
Collapse
Affiliation(s)
- Ling Yang
- Department of Animal Science, School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jiachen Bai
- Department of Animal Science, School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Xiaochao Wei
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China.
| |
Collapse
|
49
|
Banaganapalli B, Mansour H, Mohammed A, Alharthi AM, Aljuaid NM, Nasser KK, Ahmad A, Saadah OI, Al-Aama JY, Elango R, Shaik NA. Exploring celiac disease candidate pathways by global gene expression profiling and gene network cluster analysis. Sci Rep 2020; 10:16290. [PMID: 33004927 PMCID: PMC7529771 DOI: 10.1038/s41598-020-73288-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CeD) is a gastrointestinal autoimmune disorder, whose specific molecular basis is not yet fully interpreted. Therefore, in this study, we compared the global gene expression profile of duodenum tissues from CeD patients, both at the time of disease diagnosis and after two years of the gluten-free diet. A series of advanced systems biology approaches like differential gene expression, protein–protein interactions, gene network-cluster analysis were deployed to annotate the candidate pathways relevant to CeD pathogenesis. The duodenum tissues from CeD patients revealed the differential expression of 106 up- and 193 down-regulated genes. The pathway enrichment of differentially expressed genes (DEGs) highlights the involvement of biological pathways related to loss of cell division regulation (cell cycle, p53 signalling pathway), immune system processes (NOD-like receptor signalling pathway, Th1, and Th2 cell differentiation, IL-17 signalling pathway) and impaired metabolism and absorption (mineral and vitamin absorptions and drug metabolism) in celiac disease. The molecular dysfunctions of these 3 biological events tend to increase the number of intraepithelial lymphocytes (IELs) and villous atrophy of the duodenal mucosa promoting the development of CeD. For the first time, this study highlights the involvement of aberrant cell division, immune system, absorption, and metabolism pathways in CeD pathophysiology and presents potential novel therapeutic opportunities.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifa Mansour
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa Mastoor Alharthi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Mohammed Aljuaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
50
|
Kim JT, Jedrychowski MP, Wei W, Fernandez D, Fischer CR, Banik SM, Spiegelman BM, Long JZ. A Plasma Protein Network Regulates PM20D1 and N-Acyl Amino Acid Bioactivity. Cell Chem Biol 2020; 27:1130-1139.e4. [PMID: 32402239 PMCID: PMC7502524 DOI: 10.1016/j.chembiol.2020.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
N-acyl amino acids are a family of cold-inducible circulating lipids that stimulate thermogenesis. Their biosynthesis is mediated by a secreted enzyme called PM20D1. The extracellular mechanisms that regulate PM20D1 or N-acyl amino acid activity in the complex environment of blood plasma remains unknown. Using quantitative proteomics, here we show that PM20D1 circulates in tight association with both low- and high-density lipoproteins. Lipoprotein particles are powerful co-activators of PM20D1 activity in vitro and N-acyl amino acid biosynthesis in vivo. We also identify serum albumin as a physiologic N-acyl amino acid carrier, which spatially segregates N-acyl amino acids away from their sites of production, confers resistance to hydrolytic degradation, and establishes an equilibrium between thermogenic "free" versus inactive "bound" fractions. These data establish lipoprotein particles as principal extracellular sites of N-acyl amino acid biosynthesis and identify a lipoprotein-albumin network that regulates the activity of a circulating thermogenic lipid family.
Collapse
Affiliation(s)
- Joon T Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | | | - Curt R Fischer
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|