1
|
Vahdat-Lasemi F, Farhoudi L, Hosseinikhah SM, Santos RD, Sahebkar A. Angiopoietin-like protein inhibitors: Promising agents for the treatment of familial hypercholesterolemia and atherogenic dyslipidemia. Atherosclerosis 2025; 405:119235. [PMID: 40344904 DOI: 10.1016/j.atherosclerosis.2025.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND AIMS This review examines the physiological functions of Angiopoietin-like proteins (ANGPTLs) in lipid metabolism and the epidemiology of atherosclerotic cardiovascular disease (ASCVD), while discussing their potential as therapies for dyslipidemias. METHODS A review of contemporary literature on ANGPTLs was conducted. RESULTS ANGPTLs comprise eight secreted proteins that share structural similarities with the angiopoietin family and serve as key regulators of various physiological and biochemical functions. Notably, ANGPTL3, ANGPTL4, and ANGPTL8 act as physiological inhibitors of lipoprotein lipase (LPL), playing a crucial role in lipoprotein and triglyceride metabolism in response to the body's nutritional status. A deficiency in these proteins is linked to hypolipidemia, characterized by a decrease in all lipid fractions, and genetic studies indicate a reduced risk of ASCVD in individuals with loss-of-function variants in ANGPTL3 and ANGPTL4. Conversely, elevated levels of ANGPTL3, ANGPTL4, and ANGPTL8 seem to increase the risk of cardiovascular disease. The role of ANGPTLs in regulating lipid metabolism underscores their potential in targeted therapies for managing dyslipidemias and lowering ASCVD risk, particularly in patients with difficult-to-control dyslipidemia phenotypes, such as homozygous Familial Hypercholesterolemia and mixed dyslipidemia. CONCLUSIONS The development of ANGPTL inhibitors could provide an effective strategy for preventing ASCVD.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Academic Research Organization, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tamehri Zadeh SS, Toth PP, Shapiro MD, Surma S, Banach M. ANGPTL3 vital role in different kidney diseases. Current knowledge and future perspectives. Biomed Pharmacother 2025; 188:118189. [PMID: 40412362 DOI: 10.1016/j.biopha.2025.118189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Accumulating evidence has shown that angiopoietin-like-3 (ANGPTL3) plays pivotal roles in biological processes and pathological changes, including kidney diseases. ANGPTL3 expression is overexpressed in patients with proteinuria and glomerular disease. ANGPTL3 up-regulation increases podocyte motility via changes in the expression of nephrin and inducing f-Actin rearrangement, and its suppression mitigates pathological changes in kidney diseases via reducing the apoptotic cells, detached cells, and podocyte loss. Moreover, ANGPTL3 suppression can protect podocytes from injury by inhibiting the ROS/GRP78 signaling pathway in acute kidney injury. ANGPTL3 can indirectly participate in renal pathology by inducing hyperlipidaemia and inflammation. In general, ANGPTL3 inhibition holds promising therapeutic potential for management of kidney diseases, especially those linked to lipid abnormalities. However, it is essential to carefully evaluate potential side effects of ANGPTL inhibitors to guarantee their effective and safe use in clinical settings. The present review summarizes existing knowledge on the role of ANGPTL3 in kidney diseases and ANGPTL3-inhibiting therapies that can be considered as potential treatments for kidney diseases.
Collapse
Affiliation(s)
| | - Peter P Toth
- Preventive Cardiology, CGH Medical Center, Rock Falls, IL, USA; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Stanisław Surma
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| | - Maciej Banach
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Faculty of Medicine, John Paul II Catholic University of Lublin, Poland.
| |
Collapse
|
3
|
Kumari A, Larsen SWR, Bondesen S, Qian Y, Tian HD, Walker SG, Davies BSJ, Remaley AT, Young SG, Konrad RJ, Jørgensen TJD, Ploug M. ANGPTL3/8 is an atypical unfoldase that regulates intravascular lipolysis by catalyzing unfolding of lipoprotein lipase. Proc Natl Acad Sci U S A 2025; 122:e2420721122. [PMID: 40112106 PMCID: PMC11962473 DOI: 10.1073/pnas.2420721122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Lipoprotein lipase (LPL) carries out the lipolytic processing of triglyceride-rich lipoproteins (TRL) along the luminal surface of capillaries. LPL activity is regulated by the angiopoietin-like proteins (ANGPTL3, ANGPTL4, ANGPTL8), which control the delivery of TRL-derived lipid nutrients to tissues in a temporal and spatial fashion. This regulation of LPL mediates the partitioning of lipid delivery to adipose tissue and striated muscle according to nutritional status. A complex between ANGPTL3 and ANGPTL8 (ANGPTL3/8) inhibits LPL activity in oxidative tissues, but its mode of action has remained unknown. Here, we used biophysical techniques to define how ANGPTL3/8 and ANGPTL3 interact with LPL and how they drive LPL inactivation. We demonstrate, by mass photometry, that ANGPTL3/8 is a heterotrimer with a 2:1 ANGPTL3:ANGPTL8 stoichiometry and that ANGPTL3 is a homotrimer. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies revealed that ANGPTL3/8 and ANGPTL3 use the proximal portion of their N-terminal α-helices to interact with sequences surrounding the catalytic pocket in LPL. That binding event triggers unfolding of LPL's α/β-hydrolase domain and irreversible loss of LPL catalytic activity. The binding of LPL to its endothelial transporter protein (GPIHBP1) or to heparan-sulfate proteoglycans protects LPL from unfolding and inactivation, particularly against the unfolding triggered by ANGPTL3. Pulse-labeling HDX-MS studies revealed that ANGPTL3/8 and ANGPTL3 catalyze LPL unfolding in an ATP-independent fashion, which categorizes these LPL inhibitors as atypical unfoldases. The catalytic nature of LPL unfolding by ANGPTL3/8 explains why low plasma concentrations of ANGPTL3/8 are effective in inhibiting a molar excess of LPL in capillaries.
Collapse
Affiliation(s)
- Anni Kumari
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen NDK–2200, Denmark
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
| | - Sanne W. R. Larsen
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense MDK–5320, Denmark
| | - Signe Bondesen
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense MDK–5320, Denmark
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Hao D. Tian
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20814
| | - Sydney G. Walker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA52242
| | - Brandon S. J. Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA52242
| | - Alan T. Remaley
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20814
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, University of California, Los Angeles, CA90095
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense MDK–5320, Denmark
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen NDK–2200, Denmark
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
| |
Collapse
|
4
|
Nikolova D, Kamenov Z. New Markers for the Assessment of Microvascular Complications in Patients with Metabolic Syndrome. Metabolites 2025; 15:184. [PMID: 40137149 PMCID: PMC11943473 DOI: 10.3390/metabo15030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Metabolic syndrome is a complex disorder characterized by the coexistence of multiple risk factors, including dysglycemia, hypertension, dyslipidemia, and visceral obesity. Both metabolic syndrome and diabetes mellitus are closely associated with the onset of microvascular complications such as retinopathy, polyneuropathy, and nephropathy. Methods: This narrative review analyzed 137 studies published up to 2025, retrieved from PubMed and Crossref databases. The objective was to identify and evaluate potential biomarkers that could facilitate the early detection of microvascular complications in patients with metabolic syndrome. Results: Several biomarkers demonstrated a strong correlation with microvascular complications in individuals with metabolic syndrome. These findings suggest their potential role in early diagnosis and risk assessment. Conclusions: The identification of reliable biomarkers may enhance early detection and targeted interventions for microvascular complications in metabolic syndrome. Further research is essential to validate these markers and establish their clinical applicability in routine medical practice.
Collapse
Affiliation(s)
| | - Zdravko Kamenov
- Department of Internal Medicine, Aleksandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| |
Collapse
|
5
|
Zhang Y, Zhou S, Zhao R, Xiong C, Huang Y, Zhang M, Wang Y. Multilayer regulation of postprandial triglyceride metabolism in response to acute cold exposure. J Lipid Res 2025; 66:100751. [PMID: 39892721 PMCID: PMC11903801 DOI: 10.1016/j.jlr.2025.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Triglyceride-rich lipoproteins carry lipids in the bloodstream, where the fatty acid moieties are liberated by lipoprotein lipase (LPL) and taken up by peripheral tissues such as brown adipose tissue (BAT) and white adipose tissue (WAT), whereas the remaining cholesterol-rich remnant particles are cleared mainly by the liver. Elevated triglyceride (TG) levels and prolonged circulation of cholesterol-rich remnants are risk factors for cardiovascular diseases. Acute cold exposure decreases postprandial TG levels and is a potential therapeutic approach to treat hypertriglyceridemia. However, how acute cold exposure regulates TG metabolism remains incompletely understood. In the current study, we found that acute cold exposure simultaneously increases postprandial very-low-density lipoprotein production and TG clearance, with the latter playing a dominant role and resulting in decreased TG levels. Acute cold exposure increases LPL activity and TG uptake in BAT, while suppressing LPL activity and TG uptake in WAT. Mechanistically, acute cold exposure increases BAT LPL activity through transcriptional upregulation of Lpl and posttranscriptional regulation via inhibiting the hepatic insulin-ANGPTL8-ANGPTL3 axis, while suppressing WAT LPL activity through upregulation of ANGPTL4. Angptl8 knockout mice have dramatically decreased levels of circulating TG. In the absence of ANGPTL8, acute cold exposure increases rather than decreases circulating TG levels. Thus, our study reveals multilayered regulation of acute cold response and postprandial TG metabolism, highlighting the key functions of ANGPTL3, 4, and 8 in response to acute cold exposure.
Collapse
Affiliation(s)
- Yiliang Zhang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shengyang Zhou
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Runming Zhao
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chunyu Xiong
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingzhen Huang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Minzhu Zhang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yan Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Leander K, Chen YQ, Vikström M, Silveira A, Fisher RM, Konrad RJ, van 't Hooft FM. Circulating ANGPTL3/8 Concentrations Are Associated With an Atherogenic Lipoprotein Profile and Increased CHD Risk in Swedish Population-Based Studies. Arterioscler Thromb Vasc Biol 2025; 45:443-451. [PMID: 39882603 DOI: 10.1161/atvbaha.124.321308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Binding of ANGPTL (angiopoietin-like protein)-3 to ANGPTL8 generates a protein complex (ANGPTL3/8) that strongly inhibits LPL (lipoprotein lipase) activity, as compared with ANGPTL3 alone, suggesting that ANGPTL3/8 concentrations are critical for the regulation of circulation lipoprotein concentrations and subsequent increased coronary heart disease (CHD) risk. To test this hypothesis in humans, we evaluated the associations of circulating free ANGPTL3 and ANGPTL3/8 complex concentrations with lipoprotein concentrations and CHD risk in 2 prospective cohort studies. METHODS Fasting blood samples were obtained in conjunction with the baseline evaluation of 9479 subjects from 2 population-based Swedish cohorts of middle-aged men and women. Standard biochemical blood analyses, including all lipid/lipoprotein measurements, were performed in these samples at baseline. Additional serum samples were stored at -80 °C and used at a later stage for ANGPTL3 and ANGPTL3/8 concentration measurements. Information about incident CHD was obtained for both cohorts by matching to the Swedish National Patient Register and the Cause of Death Register. RESULTS ANGPTL3 concentrations showed modest, positive associations with all lipoprotein concentrations but were not associated with CHD risk. In contrast, ANGPTL3/8 concentrations were associated in both cohorts with an atherogenic lipoprotein profile (characterized by increased triglyceride and LDL [low-density lipoprotein] concentrations and reduced HDL [high-density lipoprotein] concentrations). In the combined cohort, ANGPTL3/8 was associated with increased CHD risk. Hazard ratio per 1 SD increase was 1.10 (95% CI, 1.03-1.17) after adjustment for age, sex, cohort, smoking, and hypertension. CONCLUSIONS Elevated concentrations of ANGPTL3/8, but not ANGPTL3, are associated with an atherogenic lipoprotein profile and increased CHD risk in humans.
Collapse
Affiliation(s)
- Karin Leander
- Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology (K.L., M.V.), Karolinska Institutet, Stockholm, Sweden
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., R.J.K.)
| | - Max Vikström
- Institute of Environmental Medicine, Unit of Cardiovascular and Nutritional Epidemiology (K.L., M.V.), Karolinska Institutet, Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (A.S., R.M.F., F.M.v.H.), Karolinska Institutet, Stockholm, Sweden
| | - Rachel M Fisher
- Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (A.S., R.M.F., F.M.v.H.), Karolinska Institutet, Stockholm, Sweden
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., R.J.K.)
| | - Ferdinand M van 't Hooft
- Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (A.S., R.M.F., F.M.v.H.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Silbernagel G, Chen YQ, Li H, Lemen D, Wen Y, Zhen EY, Rief M, Kleber ME, Delgado GE, Sarzynski MA, Qian YW, Schmidt B, Erbel R, Trampisch US, Moissl AP, Rudolf H, Schunkert H, Stang A, März W, Trampisch HJ, Scharnagl H, Konrad RJ. Associations of Circulating ANGPTL3, C-Terminal Domain-Containing ANGPTL4, and ANGPTL3/8 and ANGPTL4/8 Complexes with LPL Activity, Diabetes, Inflammation, and Cardiovascular Mortality. Circulation 2025; 151:218-234. [PMID: 39392008 DOI: 10.1161/circulationaha.124.069272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND ANGPTL3/4/8 (angiopoietin-like proteins 3, 4, and 8) are important regulators of LPL (lipoprotein lipase). ANGPTL8 forms complexes with ANGPTL3 and ANGPTL4. ANGPTL4/8 complex formation converts ANGPTL4 from a furin substrate to a plasmin substrate, and both cleavages generate similar C-terminal domain-containing (CD)-ANGPTL4 fragments. Whereas several studies have investigated associations of free ANGPTL proteins with cardiovascular risk, there are no data describing associations of the complexes and CD-ANGPTL4 with outcomes or describing the effects of the complexes on LPL bound to GPIHBP1 (glycosylphosphatidylinositol HDL-binding protein 1). METHODS Recombinant protein assays were used to study ANGPTL protein and complex effects on GPIHBP1-LPL activity. ANGPTL3/8, ANGPTL3, ANGPTL4/8, and CD-ANGPTL4 were measured with dedicated immunoassays in 2394 LURIC (Ludwigshafen Risk and Cardiovascular Health) study participants undergoing coronary angiography and 6188 getABI study (German Epidemiological Trial on Ankle Brachial Index) participants undergoing ankle brachial index measurement. There was a follow-up for cardiovascular death with a median (interquartile range) duration of 9.80 (8.75-10.40) years in the LURIC study and 7.06 (7.00-7.14) years in the getABI study. RESULTS ANGPTL3/8 potently inhibited GPIHBP1-LPL activity and showed positive associations with LDL-C (low-density lipoprotein cholesterol) and triglycerides (both P<0.001). However, in neither study did ANGPTL3/8 correlate with cardiovascular death. Free ANGPTL3 was positively associated with cardiovascular death in the getABI study but not the LURIC study. ANGPTL4/8 and especially CD-ANGPTL4 were positively associated with the prevalence of diabetes, CRP (C-reactive protein; all P<0.001), and cardiovascular death in both studies. In the LURIC and getABI studies, respective hazard ratios for cardiovascular mortality comparing the third with the first ANGPTL4/8 tertile were 1.47 (1.15-1.88) and 1.68 (1.25-2.27) when adjusted for sex, age, body mass index, and diabetes. For CD-ANGPTL4, these hazard ratios were 2.44 (1.86-3.20) and 2.76 (2.00-3.82). CONCLUSIONS ANGPTL3/8 potently inhibited GPIHBP1-LPL enzymatic activity, consistent with its positive association with serum lipids. However, ANGPTL3/8, LDL-C, and triglyceride levels were not associated with cardiovascular death in the LURIC and getABI cohorts. In contrast, concentrations of ANGPTL4/8 and particularly CD-ANGPTL4 were positively associated with inflammation, the prevalence of diabetes, and cardiovascular mortality.
Collapse
Affiliation(s)
- Günther Silbernagel
- Division of Angiology, Department of Internal Medicine (G.S.), Medical University of Graz, Austria
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Hongxia Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Deven Lemen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Martin Rief
- Anaesthesiology and Intensive Care Medicine (M.R.), Medical University of Graz, Austria
| | - Marcus E Kleber
- 5th Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (W.M., M.E.K., G.E.D.)
- Synlab Medizinisches Versorgungszentrum Humangenetik Mannheim, GmbH, Germany (M.E.K.)
| | - Graciela E Delgado
- 5th Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (W.M., M.E.K., G.E.D.)
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia (M.A.S.)
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| | - Boerge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Germany (A.S., B.S., R.E.)
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Germany (A.S., B.S., R.E.)
| | - Ulrike S Trampisch
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University, Bochum, Germany (U.S.T., H.J.T.)
| | - Angela P Moissl
- Institute of Nutritional Sciences Friedrich Schiller University and Competence Cluster for Nutrition and Cardiovascular Health, Halle-Jena-Leipzig, Jena, Germany (A.P.M.)
| | - Henrik Rudolf
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University, Germany (H.R.)
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University of Munich and Partner Site Munich Heart Alliance, German Center for Cardiovascular Disease, Germany (H.S.)
| | - Andreas Stang
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Germany (A.S., B.S., R.E.)
- School of Public Health, Department of Epidemiology, Boston University, MA (A.S.)
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (W.M., H.S.), Medical University of Graz, Austria
- 5th Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (W.M., M.E.K., G.E.D.)
- Synlab Academy, Synlab Holding Germany, Mannheim (W.M.)
| | - Hans J Trampisch
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University, Bochum, Germany (U.S.T., H.J.T.)
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (W.M., H.S.), Medical University of Graz, Austria
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (Y.Q.C., H.L., D.L., Y.W., E.Y.Z., Y.Q., R.J.K.)
| |
Collapse
|
8
|
Perera SD, Wang J, McIntyre AD, Hegele RA. Lipoprotein Lipase: Structure, Function, and Genetic Variation. Genes (Basel) 2025; 16:55. [PMID: 39858602 PMCID: PMC11764694 DOI: 10.3390/genes16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Biallelic rare pathogenic loss-of-function (LOF) variants in lipoprotein lipase (LPL) cause familial chylomicronemia syndrome (FCS). Heterozygosity for these same variants is associated with a highly variable plasma triglyceride (TG) phenotype ranging from normal to severe hypertriglyceridemia (HTG), with longitudinal variation in phenotype severity seen often in a given carrier. Here, we provide an updated overview of genetic variation in LPL in the context of HTG, with a focus on disease-causing and/or disease-associated variants. We provide a curated list of 300 disease-causing variants discovered in LPL, as well as an exon-by-exon breakdown of the LPL gene and protein, highlighting the impact of variants and the various functional residues of domains of the LPL protein. We also provide a curated list of variants of unknown or uncertain significance, many of which may be upgraded to pathogenic/likely pathogenic classification should an additional case and/or segregation data be reported. Finally, we also review the association between benign/likely benign variants in LPL, many of which are common polymorphisms, and the TG phenotype.
Collapse
Affiliation(s)
- Shehan D. Perera
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, ON N6A 5B7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Ghosh A, Chénier I, Leung YH, Oppong AK, Peyot ML, Madiraju SRM, Al-Khairi I, Abubaker J, Al-Mulla F, Prentki M, Abu-Farha M. Adipocyte Angptl8 deletion improves glucose and energy metabolism and obesity associated inflammation in mice. iScience 2024; 27:111292. [PMID: 39640567 PMCID: PMC11617963 DOI: 10.1016/j.isci.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/28/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Angiopoietin-like protein 8 (Angptl8), expressed in the liver and adipocytes, forms a complex with Angptl3 or Angptl4, which regulates lipoprotein lipase and triglyceride metabolism. However, the precise functions of adipocyte Angptl8 remain elusive. Here we report that adipocyte-specific inducible Angptl8-knockout (AT-A8-KO) male mice on normal diet showed minor phenotypic changes, but after a high-fat high fructose (HFHF) diet, exhibited decreased body weight gain and glycemia, elevated rectal temperature and early dark phase energy expenditure compared to the Cre controls. AT-A8-KO mice also displayed improved glucose tolerance, a trend for better insulin sensitivity, improved insulin-stimulated glucose uptake in adipose tissues, and reduced visceral adipose tissue crown-like structures, plasma MCP-1 and leptin levels. The results indicate the importance of adipose Angptl8 in the context of nutri-stress and obesity, as its deletion in mice promotes a metabolically healthy obese phenotype by slightly ameliorating obesity, improving glucose and energy homeostasis, and mitigating inflammation.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chénier
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Abel K. Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
10
|
Chan DC, Watts GF. Inhibition of the ANGPTL3/8 Complex for the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 27:6. [PMID: 39565562 DOI: 10.1007/s11883-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW Dyslipidemia is a casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with dyslipidemias. Angiopoietin-like protein 3 (ANGPTL3) and ANGPTL8 play key roles in triglyceride trafficking and energy balance in humans. We review the functional role of these ANGPTL proteins in the regulation of lipoprotein metabolism, and recent clinical trials targeting ANGPTL3 and ANGPTL3/8 with monoclonal antibody and/or nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS Cumulative evidence supports the roles of ANGPTL3 and ANGPTL8 in lipid metabolism through inhibition of lipoprotein lipase and endothelial lipase activity. ANGPTL3 and ANGPTL3/8 inhibitors are effective in lowering plasma triglycerides and low-density lipoprotein (LDL)-cholesterol, with the possible advantage of raising high-density lipoprotein (HDL)-cholesterol with the inhibition of ANGPTL3/8. Therapeutic inhibition of ANGPTL3 and ANGPTL3/8 can lower plasma triglyceride and LDL-cholesterol levels possibly by lowering production and upregulating catabolism of triglyceride-rich lipoprotein and LDL particles. However, the effect of these novel agents on HDL metabolism remains unclear. The cardiovascular benefits of ANGPTL3 and ABGPTL3/8 inhibitors may also include improvement in vascular inflammation, but this requires further investigation.
Collapse
Affiliation(s)
- Dick C Chan
- Medical School, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Australia.
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
11
|
Gugliucci A. Angiopoietin-like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies. J Clin Med 2024; 13:5229. [PMID: 39274442 PMCID: PMC11396212 DOI: 10.3390/jcm13175229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Over 50% of patients who take statins are still at risk of developing atherosclerotic cardiovascular disease (ASCVD) and do not achieve their goal LDL-C levels. This residual risk is largely dependent on triglyceride-rich lipoproteins (TRL) and their remnants. In essence, remnant cholesterol-rich chylomicron (CM) and very-low-density lipoprotein (VLDL) particles play a role in atherogenesis. These remnants increase when lipoprotein lipase (LPL) activity is inhibited. ApoCIII has been thoroughly studied as a chief inhibitor and therapeutic options to curb its effect are available. On top of apoCIII regulation of LPL activity, there is a more precise control of LPL in various tissues, which makes it easier to physiologically divide the TRL burden according to the body's requirements. In general, oxidative tissues such as skeletal and cardiac muscle preferentially take up lipids during fasting. Conversely, LPL activity in adipocytes increases significantly after feeding, while its activity in oxidative tissues decreases concurrently. This perspective addresses the recent improvements in our understanding of circadian LPL regulations and their therapeutic implications. Three major tissue-specific lipolysis regulators have been identified: ANGPTL3, ANGPTL4, and ANGPTL8. Briefly, during the postprandial phase, liver ANGPTL8 acts on ANGPTL3 (which is released continuously from the liver) to inhibit LPL in the heart and muscle through an endocrine mechanism. On the other hand, when fasting, ANGPTL4, which is released by adipocytes, inhibits lipoprotein lipase in adipose tissue in a paracrine manner. ANGPTL3 inhibitors may play a therapeutic role in the treatment of hypertriglyceridemia. Several approaches are under development. We look forward to future studies to clarify (a) the nature of hormonal and nutritional factors that determine ANGPTL3, 4, and 8 activities, along with what long-term impacts may be expected if their regulation is impaired pharmacologically; (b) the understanding of the quantitative hierarchy and interaction of the regulatory actions of apoCIII, apoAV, and ANGPTL on LPL activity; (c) strategies for the safe and proper treatment of postprandial lipemia; and (d) the effect of fructose restriction on ANGPTL3, ANGPTL4, and ANGPTL8.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
12
|
Bilgin AG, Ekici B, Ozuynuk-Ertugrul AS, Erkan AF, Coban N. The minor allele of ANGPTL8 rs2278426 has a protective effect against CAD in T2DM patients. Gene 2024; 914:148418. [PMID: 38552749 DOI: 10.1016/j.gene.2024.148418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide despite advanced treatment and diagnosis strategies. Angiopoietin-like protein 8 (ANGPTL8) mainly functions in the lipid mechanism, which is a dysregulated mechanism during CAD pathogenesis. In this study, we aimed to determine the associations between an ANGPTL8 polymorphism rs2278426 and the severity, presence, and risk factors of CAD. METHODS A total of 1367 unrelated Turkish individuals who underwent coronary angiography were recruited for the study and grouped as CAD (n = 736, ≥50 stenosis) and non-CAD (n = 549, ≤30 stenosis). Also, subjects were further divided into groups regarding type 2 diabetes mellitus (T2DM) status. Subjects were genotyped for rs2278426 (C/T) by quantitative real-time PCR. Secondary structure analyses of protein interactions were revealed using I-TASSER and PyMOL. RESULTS Among CAD patients, T allele carriage frequency was lower in the T2DM group (p = 0.046). Moreover, in male non-CAD group, T allele carriage was more prevalent among T2DM patients than non-T2DM (p = 0.033). In logistic regression analysis adjusted for obesity, T allele carrier males had an increased risk for T2DM in non-CAD group (OR = 2.244, 95 % CI: 1.057-4.761, p = 0.035). Also, in T2DM group, stenosis (p = 0.002) and SYNTAX score (p = 0.040) were lower in T allele carrier males than in non-carriers. Analyzes of secondary structure showed that ANGPTL8 could not directly form complexes with ANGPTL3 or ANGPTL4. CONCLUSION In conclusion, T allele carriage of ANGPTL8 rs2278426 has a protective effect on CAD in T2DM patients. Further research should be conducted to explore the association between ANGPTL8 polymorphism (rs2778426) and CAD.
Collapse
Affiliation(s)
- Aslihan Gizem Bilgin
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Berkay Ekici
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Aybike Sena Ozuynuk-Ertugrul
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Aycan Fahri Erkan
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
| |
Collapse
|
13
|
Zhang R, Zhang K. A unified model for regulating lipoprotein lipase activity. Trends Endocrinol Metab 2024; 35:490-504. [PMID: 38521668 PMCID: PMC11663433 DOI: 10.1016/j.tem.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Gao WY, Chen PY, Hsu HJ, Liou JW, Wu CL, Wu MJ, Yen JH. Xanthohumol, a prenylated chalcone, regulates lipid metabolism by modulating the LXRα/RXR-ANGPTL3-LPL axis in hepatic cell lines and high-fat diet-fed zebrafish models. Biomed Pharmacother 2024; 174:116598. [PMID: 38615609 DOI: 10.1016/j.biopha.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 μM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.
Collapse
Affiliation(s)
- Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Science and Engineering, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan.
| |
Collapse
|
15
|
Landfors F, Henneman P, Chorell E, Nilsson SK, Kersten S. Drug-target Mendelian randomization analysis supports lowering plasma ANGPTL3, ANGPTL4, and APOC3 levels as strategies for reducing cardiovascular disease risk. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae035. [PMID: 38895109 PMCID: PMC11182694 DOI: 10.1093/ehjopen/oeae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Aims APOC3, ANGPTL3, and ANGPTL4 are circulating proteins that are actively pursued as pharmacological targets to treat dyslipidaemia and reduce the risk of atherosclerotic cardiovascular disease. Here, we used human genetic data to compare the predicted therapeutic and adverse effects of APOC3, ANGPTL3, and ANGPTL4 inactivation. Methods and results We conducted drug-target Mendelian randomization analyses using variants in proximity to the genes associated with circulating protein levels to compare APOC3, ANGPTL3, and ANGPTL4 as drug targets. We obtained exposure and outcome data from large-scale genome-wide association studies and used generalized least squares to correct for linkage disequilibrium-related correlation. We evaluated five primary cardiometabolic endpoints and screened for potential side effects across 694 disease-related endpoints, 43 clinical laboratory tests, and 11 internal organ MRI measurements. Genetically lowering circulating ANGPTL4 levels reduced the odds of coronary artery disease (CAD) [odds ratio, 0.57 per s.d. protein (95% CI 0.47-0.70)] and Type 2 diabetes (T2D) [odds ratio, 0.73 per s.d. protein (95% CI 0.57-0.94)]. Genetically lowering circulating APOC3 levels also reduced the odds of CAD [odds ratio, 0.90 per s.d. protein (95% CI 0.82-0.99)]. Genetically lowered ANGPTL3 levels via common variants were not associated with CAD. However, meta-analysis of protein-truncating variants revealed that ANGPTL3 inactivation protected against CAD (odds ratio, 0.71 per allele [95%CI, 0.58-0.85]). Analysis of lowered ANGPTL3, ANGPTL4, and APOC3 levels did not identify important safety concerns. Conclusion Human genetic evidence suggests that therapies aimed at reducing circulating levels of ANGPTL3, ANGPTL4, and APOC3 reduce the risk of CAD. ANGPTL4 lowering may also reduce the risk of T2D.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, S-907 36 Umeå, Sweden
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
| | - Stefan K Nilsson
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, S-907 36 Umeå, Sweden
- Department of Medical Biosciences, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Wen Y, Chen YQ, Konrad RJ. Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism. Curr Opin Lipidol 2024; 35:58-65. [PMID: 37962908 DOI: 10.1097/mol.0000000000000910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
17
|
Ghosh A, Leung YH, Yu J, Sladek R, Chénier I, Oppong AK, Peyot ML, Madiraju SRM, Al-Khairi I, Thanaraj TA, Abubaker J, Al-Mulla F, Prentki M, Abu-Farha M. Silencing ANGPTL8 reduces mouse preadipocyte differentiation and insulin signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159461. [PMID: 38272177 DOI: 10.1016/j.bbalip.2024.159461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jeffrey Yu
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Robert Sladek
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Isabelle Chénier
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Abel K Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | | | | | | | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | | |
Collapse
|
18
|
Perera SD, Hegele RA. Genetic variation in apolipoprotein A-V in hypertriglyceridemia. Curr Opin Lipidol 2024; 35:66-77. [PMID: 38117614 PMCID: PMC10919278 DOI: 10.1097/mol.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE OF REVIEW While biallelic rare APOA5 pathogenic loss-of-function (LOF) variants cause familial chylomicronemia syndrome, heterozygosity for such variants is associated with highly variable triglyceride phenotypes ranging from normal to severe hypertriglyceridemia, often in the same individual at different time points. Here we provide an updated overview of rare APOA5 variants in hypertriglyceridemia. RECENT FINDINGS Currently, most variants in APOA5 that are considered to be pathogenic according to guidelines of the American College of Medical Genetics and Genomics are those resulting in premature termination codons. There are minimal high quality functional data on the impact of most rare APOA5 missense variants; many are considered as variants of unknown or uncertain significance. Furthermore, particular common polymorphisms of APOA5 , such as p.Ser19Trp and p.Gly185Cys in Caucasian and Asian populations, respectively, are statistically overrepresented in hypertriglyceridemia cohorts and are sometimes misattributed as being causal for chylomicronemia, when they are merely risk alleles for hypertriglyceridemia. SUMMARY Both biallelic and monoallelic LOF variants in APOA5 are associated with severe hypertriglyceridemia, although the biochemical phenotype in the monoallelic state is highly variable and is often exacerbated by secondary factors. Currently, with few exceptions, the principal definitive mechanism for APOA5 pathogenicity is through premature truncation. The pathogenic mechanisms of most missense variants in APOA5 remain unclear and require additional functional experiments or family studies.
Collapse
Affiliation(s)
- Shehan D Perera
- Departments of Biochemistry and Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, Ontario, Canada
| | | |
Collapse
|
19
|
Deng M, Kersten S. Characterization of sexual dimorphism in ANGPTL4 levels and function. J Lipid Res 2024; 65:100526. [PMID: 38431115 PMCID: PMC10973588 DOI: 10.1016/j.jlr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.
Collapse
Affiliation(s)
- Mingjuan Deng
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial lipase variant T111I does not alter inhibition by angiopoietin-like proteins. Sci Rep 2024; 14:4246. [PMID: 38379026 PMCID: PMC10879187 DOI: 10.1038/s41598-024-54705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA
| | - Kaleb C Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Michael J Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA.
| |
Collapse
|
21
|
Hoffmann WG, Chen YQ, Schwartz CS, Barber JL, Dev PK, Reasons RJ, Miranda Maravi JS, Armstrong B, Gerszten RE, Silbernagel G, Konrad RJ, Bouchard C, Sarzynski MA. Effects of exercise training on ANGPTL3/8 and ANGPTL4/8 and their associations with cardiometabolic traits. J Lipid Res 2024; 65:100495. [PMID: 38160757 PMCID: PMC10832466 DOI: 10.1016/j.jlr.2023.100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Angiopoietin-like protein (ANGPTL) complexes 3/8 and 4/8 are established inhibitors of LPL and novel therapeutic targets for dyslipidemia. However, the effects of regular exercise on ANGPTL3/8 and ANGPTL4/8 are unknown. We characterized ANGPTL3/8 and ANGPTL4/8 and their relationship with in vivo measurements of lipase activities and cardiometabolic traits before and after a 5-month endurance exercise training intervention in 642 adults from the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family Study. At baseline, higher levels of both ANGPTL3/8 and ANGPTL4/8 were associated with a worse lipid, lipoprotein, and cardiometabolic profile, with only ANGPTL3/8 associated with postheparin LPL and HL activities. ANGPTL3/8 significantly decreased with exercise training, which corresponded with increases in LPL activity and decreases in HL activity, plasma triglycerides, apoB, visceral fat, and fasting insulin (all P < 5.1 × 10-4). Exercise-induced changes in ANGPTL4/8 were directly correlated to concomitant changes in total cholesterol, LDL-C, apoB, and HDL-triglycerides and inversely related to change in insulin sensitivity index (all P < 7.0 × 10-4). In conclusion, exercise-induced decreases in ANGPTL3/8 and ANGPTL4/8 were related to concomitant improvements in lipase activity, lipid profile, and cardiometabolic risk factors. These findings reveal the ANGPTL3-4-8 model as a potential molecular mechanism contributing to adaptations in lipid metabolism in response to exercise training.
Collapse
Affiliation(s)
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Charles S Schwartz
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Jacob L Barber
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Prasun K Dev
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Riley J Reasons
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | | | - Bridget Armstrong
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Günther Silbernagel
- Division of Vascular Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
22
|
Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother 2023; 169:115874. [PMID: 37951027 DOI: 10.1016/j.biopha.2023.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.
Collapse
Affiliation(s)
- Shali Jiang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhuoqun Ren
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yutao Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
23
|
Hammad MM, Channanath AM, Abu-Farha M, Rahman A, Al Khairi I, Cherian P, Alramah T, Alam-Eldin N, Al-Mulla F, Thanaraj TA, Abubaker J. Adolescent obesity and ANGPTL8: correlations with high sensitivity C-reactive protein, leptin, and chemerin. Front Endocrinol (Lausanne) 2023; 14:1314211. [PMID: 38189043 PMCID: PMC10766807 DOI: 10.3389/fendo.2023.1314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) mediate many metabolic functions. We had recently reported increased plasma levels of ANGPTL8 in obese adults of Arab ethnicity. However, data on ANGPTL8 levels in adolescent obesity is lacking. Arab population is characterized by a rapid transition, due to sudden wealth seen in the post-oil era, in lifestyle, food habits and extent of physical activity. We adopted a cross-sectional study on Arab adolescents from Kuwait to examine the role of ANGPTL8 in adolescent obesity. The study cohort included 452 adolescents, aged 11-14 years, recruited from Middle Schools across Kuwait. BMI-for-age growth charts were used to categorize adolescents as normal-weight, overweight, and obese. ELISA and bead-based multiplexing assays were used to measure plasma levels of ANGPTL8 and other inflammation and obesity-related biomarkers. Data analysis showed significant differences in the plasma levels of ANGPTL8 among the three subgroups, with a significant increase in overweight and obese children compared to normal-weight children. This observation persisted even when the analysis was stratified by sex. Multinomial logistic regression analysis illustrated that adolescents with higher levels of ANGPTL8 were 7 times more likely to become obese and twice as likely to be overweight. ANGPTL8 levels were correlated with those of hsCRP, leptin and chemerin. ANGPTL8 level had a reasonable prognostic power for obesity with an AUC of 0.703 (95%-CI=0.648-0.759). These observations relating to increased ANGPTL8 levels corresponding to increased BMI-for-age z-scores indicate that ANGPTL8, along with hsCRP, leptin and chemerin, could play a role in the early stages of obesity development in children. ANGPTL8 is a potential early marker for adolescent obesity and is associated with well-known obesity and inflammatory markers.
Collapse
Affiliation(s)
- Maha M. Hammad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Arshad M. Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Irina Al Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Tahani Alramah
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
24
|
Kumar PV, Rasal KD, Acharya A, Dey D, Sonwane AA, Reang D, Rajeshkannan R, Pawar SS, Kurade NP, Bhendarkar MP, Krishnani KK, Nagpure NS, Brahmane MP. Muscle Transcriptome Sequencing Revealed Thermal Stress-Responsive Regulatory Genes in Farmed Rohu, Labeo rohita (Hamilton, 1822). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1057-1075. [PMID: 37878212 DOI: 10.1007/s10126-023-10259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Rohu, Labeo rohita, is one of the most important aquaculture species in the Indian subcontinent. Understanding the molecular-level physiological responses to thermal stress or climate change is essential. In the present work, transcriptome sequencing was carried out in the muscle tissue of the rohu in response to heat stress (35 °C) in comparison with the control (28 °C). A total of 125 Gb of sequence data was generated, and the raw-reads were filtered and trimmed, which resulted in 484 million quality reads. Reference-based assembly of reads was performed using L. rohita genome, and a total of 90.17% of reads were successfully mapped. A total of 37,462 contigs were assembled with an N50 value of 1854. The differential expression analysis revealed a total of 107 differentially expressed genes (DEGs) (15 up-, 37 down-, and 55 neutrally regulated) as compared to the control group (Log2FC > 2, P < 0.05). Gene enrichment analysis of DEGs indicates that transcripts were associated with molecular, biological, and cellular activities. The randomly selected differentially expressed transcripts were validated by RT-qPCR and found consistent expression patterns in line with the RNA-seq data. Several transcripts such as SERPINE1(HSP47), HSP70, HSP90alpha, Rano class II histocompatibility A beta, PGC-1 and ERR-induced regulator, proto-oncogene c-Fos, myozenin2, alpha-crystallin B chain-like protein, angiopoietin-like protein 8, and acetyl-CoA carboxylases have been identified in muscle tissue of rohu that are associated with stress/immunity. This study identified the key biomarker SERPINE1 (HSP47), which showed significant upregulation (~ 2- to threefold) in muscle tissue of rohu exposed to high temperature. This study can pave a path for the identification of stress-responsive biomarkers linked with thermal adaptations in the farmed carps.
Collapse
Affiliation(s)
- Pokanti Vinay Kumar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Diganta Dey
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Arvind A Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Dhalongsaih Reang
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - R Rajeshkannan
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sachin S Pawar
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Nitin P Kurade
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Mukesh P Bhendarkar
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Kishore K Krishnani
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Naresh S Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj P Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| |
Collapse
|
25
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
26
|
Kersten S. ANGPTL4/8 promotes plasmin-mediated cleavage of LPL inhibitors. J Lipid Res 2023; 64:100438. [PMID: 37690694 PMCID: PMC10570592 DOI: 10.1016/j.jlr.2023.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
27
|
Chen YQ, Zhen EY, Russell AM, Ehsani M, Siegel RW, Qian Y, Konrad RJ. Decoding the role of angiopoietin-like protein 4/8 complex-mediated plasmin generation in the regulation of LPL activity. J Lipid Res 2023; 64:100441. [PMID: 37666362 PMCID: PMC10550811 DOI: 10.1016/j.jlr.2023.100441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA
| | - Anna M Russell
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly, and Company, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Abu-Farha M, Alatrach M, Abubaker J, Al-Khairi I, Cherian P, Agyin K, Abdelgani S, Norton L, Adams J, Al-Saeed D, Al-Ozairi E, DeFronzo RA, Al-Mulla F, Abdul-Ghani M. Plasma insulin is required for the increase in plasma angiopoietin-like protein 8 in response to nutrient ingestion. Diabetes Metab Res Rev 2023; 39:e3643. [PMID: 36988137 DOI: 10.1002/dmrr.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Plasma levels of angiopoietin-like protein 8 (ANGPTL8) are regulated by feeding and they increase following glucose ingestion. Because both plasma glucose and insulin increase following food ingestion, we aimed to determine whether the increase in plasma insulin and glucose or both are responsible for the increase in ANGPTL8 levels. METHODS ANGPTL8 levels were measured in 30 subjects, 14 with impaired fasting glucose (IFG), and 16 with normal fasting glucose (NFG); the subjects received 75g glucose oral Glucose tolerance test (OGTT), multistep euglycaemic hyperinsulinemic clamp and hyperglycaemic clamp with pancreatic clamp. RESULTS Subjects with IFG had significantly higher ANGPTL8 than NGT subjects during the fasting state (p < 0.05). During the OGTT, plasma ANGPTL8 concentration increased by 62% above the fasting level (p < 0.0001), and the increase above fasting in ANGPTL8 levels was similar in NFG and IFG individuals. During the multistep insulin clamp, there was a dose-dependent increase in plasma ANGPTL8 concentration. During the 2-step hyperglycaemic clamp, the rise in plasma glucose concentration failed to cause any change in the plasma ANGPTL8 concentration from baseline. CONCLUSIONS In response to nutrient ingestion, ANGPTL8 level increased due to increased plasma insulin concentration, not to the rise in plasma glucose. The incremental increase above baseline in plasma ANGLPTL8 during OGTT was comparable between people with normal glucose tolerance and IFG.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mariam Alatrach
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Krisitn Agyin
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Siham Abdelgani
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Luke Norton
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - John Adams
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
29
|
Sylvers-Davie KL, Bierstedt KC, Schnieders MJ, Davies BSJ. Endothelial Lipase Variant, T111I, Does Not Alter Inhibition by Angiopoietin-like Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553740. [PMID: 37693454 PMCID: PMC10491130 DOI: 10.1101/2023.08.18.553740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.
Collapse
Affiliation(s)
- Kelli L. Sylvers-Davie
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| | - Kaleb C. Bierstedt
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Michael J. Schnieders
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - Brandon S. J. Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
30
|
Kumari A, Grønnemose AL, Kristensen KK, Winther AML, Young SG, Jørgensen TJD, Ploug M. Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase. Proc Natl Acad Sci U S A 2023; 120:e2221888120. [PMID: 37094117 PMCID: PMC10160976 DOI: 10.1073/pnas.2221888120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The lipolytic processing of triglyceride-rich lipoproteins (TRLs) by lipoprotein lipase (LPL) is crucial for the delivery of dietary lipids to the heart, skeletal muscle, and adipose tissue. The processing of TRLs by LPL is regulated in a tissue-specific manner by a complex interplay between activators and inhibitors. Angiopoietin-like protein 4 (ANGPTL4) inhibits LPL by reducing its thermal stability and catalyzing the irreversible unfolding of LPL's α/β-hydrolase domain. We previously mapped the ANGPTL4 binding site on LPL and defined the downstream unfolding events resulting in LPL inactivation. The binding of LPL to glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 protects against LPL unfolding. The binding site on LPL for an activating cofactor, apolipoprotein C2 (APOC2), and the mechanisms by which APOC2 activates LPL have been unclear and controversial. Using hydrogen-deuterium exchange/mass spectrometry, we now show that APOC2's C-terminal α-helix binds to regions of LPL surrounding the catalytic pocket. Remarkably, APOC2's binding site on LPL overlaps with that for ANGPTL4, but their effects on LPL conformation are distinct. In contrast to ANGPTL4, APOC2 increases the thermal stability of LPL and protects it from unfolding. Also, the regions of LPL that anchor the lid are stabilized by APOC2 but destabilized by ANGPTL4, providing a plausible explanation for why APOC2 is an activator of LPL, while ANGPTL4 is an inhibitor. Our studies provide fresh insights into the molecular mechanisms by which APOC2 binds and stabilizes LPL-and properties that we suspect are relevant to the conformational gating of LPL's active site.
Collapse
Affiliation(s)
- Anni Kumari
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK–5320Odense, Denmark
| | - Kristian K. Kristensen
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Anne-Marie L. Winther
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK–5320Odense, Denmark
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| |
Collapse
|
31
|
Roy PK, Islam J, Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt Heart J 2023; 75:24. [PMID: 37014444 PMCID: PMC10073393 DOI: 10.1186/s43044-023-00352-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND In normal circumstances, AT secretes anti-inflammatory adipokines (AAKs) which regulates lipid metabolism, insulin sensitivity, vascular hemostasis, and angiogenesis. However, during obesity AT dysfunction occurs and leads to microvascular imbalance and secretes several pro-inflammatory adipokines (PAKs), thereby favoring atherogenic dyslipidemia and insulin resistance. Literature suggests decreased levels of circulating AAKs and increased levels of PAKs in obesity-linked disorders. Importantly, AAKs have been reported to play a vital role in obesity-linked metabolic disorders mainly insulin resistance, type-2 diabetes mellitus and coronary heart diseases. Interestingly, AAKs counteract the microvascular imbalance in AT and exert cardioprotection via several signaling pathways such as PI3-AKT/PKB pathway. Although literature reviews have presented a number of investigations detailing specific pathways involved in obesity-linked disorders, literature concerning AT dysfunction and AAKs remains sketchy. In view of the above, in the present contribution an effort has been made to provide an insight on the AT dysfunction and role of AAKs in modulating the obesity and obesity-linked atherogenesis and insulin resistance. MAIN BODY "Obesity-linked insulin resistance", "obesity-linked cardiometabolic disease", "anti-inflammatory adipokines", "pro-inflammatory adipokines", "adipose tissue dysfunction" and "obesity-linked microvascular dysfunction" are the keywords used for searching article. Google scholar, Google, Pubmed and Scopus were used as search engines for the articles. CONCLUSIONS This review offers an overview on the pathophysiology of obesity, management of obesity-linked disorders, and areas in need of attention such as novel therapeutic adipokines and their possible future perspectives as therapeutic agents.
Collapse
Affiliation(s)
- Probin Kr Roy
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India.
| | - Johirul Islam
- Coromandel International Limited, Hyderabad, Telangana, 500101, India
| | - Hauzel Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India
| |
Collapse
|
32
|
Ossoli A, Minicocci I, Turri M, Di Costanzo A, D'Erasmo L, Bini S, Montavoci L, Veglia F, Calabresi L, Arca M. Genetically determined deficiency of ANGPTL3 does not alter HDL ability to preserve endothelial homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159263. [PMID: 36521735 DOI: 10.1016/j.bbalip.2022.159263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Individuals with loss-of-function mutations in the ANGPTL3 gene express a rare lipid phenotype called Familial Combined Hypolipidemia (FHBL2). FHBL2 individuals show reduced plasma concentrations of total cholesterol and triglycerides as well as of lipoprotein particles, including HDL. This feature is particularly remarkable in homozygotes in whom ANGPTL3 in blood is completely absent. ANGPTL3 acts as a circulating inhibitor of LPL and EL and it is thought that EL hyperactivity is the cause of plasma HDL reduction in FHBL2. Nevertheless, the consequences of ANGTPL3 deficiency on HDL functionality have been poorly explored. In this report, HDL isolated from homozygous and heterozygous FHBL2 individuals were evaluated for their ability to preserve endothelial homeostasis as compared to control HDL. It was found that only the complete absence of ANGPTL3 alters HDL subclass distribution, as homozygous, but not heterozygous, carriers have reduced content of large and increased content of small HDL with no alterations in HDL2 and HDL3 size. The plasma content of preβ-HDL was reduced in carriers and showed a positive correlation with plasma ANGPTL3 levels. Changes in composition did not however alter the functionality of FHBL2 HDL, as particles isolated from carriers retained their capacity to promote NO production and to inhibit VCAM-1 expression in endothelial cells. Furthermore, no significant changes in circulating levels of soluble ICAM-1 and E-selectin were detected in carriers. These results indicate that changes in HDL composition associated with the partial or complete absence of ANGPTL3 did not alter some of the potentially anti-atherogenic functions of these lipoproteins.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Linda Montavoci
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
33
|
Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159262. [PMID: 36521736 DOI: 10.1016/j.bbalip.2022.159262] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fasting and starvation were common occurrences during human evolution and accordingly have been an important environmental factor shaping human energy metabolism. Humans can tolerate fasting reasonably well through adaptative and well-orchestrated time-dependent changes in energy metabolism. Key features of the adaptive response to fasting are the breakdown of liver glycogen and muscle protein to produce glucose for the brain, as well as the gradual depletion of the fat stores, resulting in the release of glycerol and fatty acids into the bloodstream and the production of ketone bodies in the liver. In this paper, an overview is presented of our current understanding of the effects of fasting on adipose tissue metabolism. Fasting leads to reduced uptake of circulating triacylglycerols by adipocytes through inhibition of the activity of the rate-limiting enzyme lipoprotein lipase. In addition, fasting stimulates the degradation of stored triacylglycerols by activating the key enzyme adipose triglyceride lipase. The mechanisms underlying these events are discussed, with a special interest in insights gained from studies on humans. Furthermore, an overview is presented of the effects of fasting on other metabolic pathways in the adipose tissue, including fatty acid synthesis, glucose uptake, glyceroneogenesis, autophagy, and the endocrine function of adipose tissue.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
34
|
Zhen EY, Chen YQ, Russell AM, Ehsani M, Siegel RW, Qian Y, Konrad RJ. Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity. Proc Natl Acad Sci U S A 2023; 120:e2214081120. [PMID: 36763533 PMCID: PMC9963551 DOI: 10.1073/pnas.2214081120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Triglyceride (TG) metabolism is highly regulated by angiopoietin-like protein (ANGPTL) family members [Y. Q. Chen et al., J. Lipid Res. 61, 1203-1220 (2020)]. During feeding, ANGPTL8 forms complexes with the fibrinogen-like domain-containing protein ANGPTL4 in adipose tissue to decrease ANGPTL3/8- and ANGPTL4-mediated lipoprotein lipase (LPL)-inhibitory activity and promote TG hydrolysis and fatty acid (FA) uptake. The ANGPTL4/8 complex, however, tightly binds LPL and partially inhibits it in vitro. To try to reconcile the in vivo and in vitro data on ANGPTL4/8, we aimed to find novel binding partners of ANGPTL4/8. To that end, we performed pulldown experiments and found that ANGPTL4/8 bound both tissue plasminogen activator (tPA) and plasminogen, the precursor of the fibrinolytic enzyme plasmin. Remarkably, ANGPTL4/8 enhanced tPA activation of plasminogen to generate plasmin in a manner like that observed with fibrin, while minimal plasmin generation was observed with ANGPTL4 alone. The addition of tPA and plasminogen to LPL-bound ANGPTL4/8 caused rapid, complete ANGPTL4/8 cleavage and increased LPL activity. Restoration of LPL activity in the presence of ANGPTL4/8 was also achieved with plasmin but was blocked when catalytically inactive plasminogen (S760A) was added to tPA or when plasminogen activator inhibitor-1 was added to tPA + plasminogen, indicating that conversion of plasminogen to plasmin was essential. Together, these results suggest that LPL-bound ANGPTL4/8 mimics fibrin to recruit tPA and plasminogen to generate plasmin, which then cleaves ANGPTL4/8, enabling LPL activity to be increased. Our observations thus reveal a unique link between the ANGPTL4/8 complex and plasmin generation.
Collapse
Affiliation(s)
- Eugene Y. Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Yan Q. Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Anna M. Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| |
Collapse
|
35
|
Shikida R, Kim M, Futohashi M, Nishihara K, Lee H, Suzuki Y, Baek Y, Masaki T, Ikuta K, Iwamoto E, Uemoto Y, Haga S, Terada F, Roh S. Physiological roles and regulation of hepatic angiopoietin-like protein 3 in Japanese Black cattle (Bos taurus) during the fattening period. J Anim Sci 2023; 101:skad198. [PMID: 37317898 PMCID: PMC10294557 DOI: 10.1093/jas/skad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/13/2023] [Indexed: 06/16/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is expressed predominantly in the liver and plays a major role in regulating the circulating triglyceride and lipoprotein fraction concentrations by inhibiting lipoprotein lipase (LPL) activity. Given these physiological roles, ANGPTL3 may play an important role in metabolic changes related to fat accumulation during the fattening period in Japanese Black. This study aimed to reveal the physiological roles of hepatic ANGPTL3 in Japanese Black steers (Bos taurus) during the fattening period and investigate the regulatory effects of hepatic ANGPTL3. To investigate the gene expression and protein localization of ANGPTL3, 18 tissue samples were collected from tree male Holstein bull calves aged 7 wk. Biopsied liver tissues and blood samples were collected from 21 Japanese Black steers during the early (T1; 13 mo of age), middle (T2; 20 mo), and late fattening phases (T3; 28 mo). Relative mRNA expression, blood metabolite concentrations, hormone concentrations, growth, and carcass traits were analyzed. To identify the regulatory factors of hepatic ANGPTL3, primary bovine hepatocytes collected by two Holstein calves aged 7 wk were incubated with insulin, palmitate, oleate, propionate, acetate, or beta-hydroxybutyric acid (BHBA). The ANGPTL3 gene was most highly expressed in the liver, with minor expression in the renal cortex, lungs, reticulum, and jejunum in Holstein bull calves. In Japanese Black steers, relative ANGPTL3 mRNA expressions were less as fattening progressed, and blood triglyceride, total cholesterol, and nonesterified fatty acid (NEFA) concentrations increased. Relative ANGPTL8 and Liver X receptor alpha (LXRα) mRNA expressions decreased in late and middle fattening phases, respectively. Furthermore, relative ANGTPL3 mRNA expression was positively correlated with ANGPTL8 (r = 0.650; P < 0.01) and ANGPTL4 (r = 0.540; P < 0.05) in T3 and T1, respectively, and LXRα showed no correlation with ANGPTL3. Relative ANGTPL3 mRNA expression was negatively correlated with total cholesterol (r = -0.434; P < 0.05) and triglyceride (r = -0.645; P < 0.01) concentrations in T3 and T1, respectively; There was no significant correlation between ANGTPL3 and carcass traits. Relative ANGTPL3 mRNA expression in cultured bovine hepatocytes was downregulated in oleate treatment. Together, these findings suggest that ANGPTL3 downregulation in late fattening phases is associated with the changes in lipid metabolism.
Collapse
Affiliation(s)
- Rika Shikida
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Minji Kim
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Makoto Futohashi
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Koki Nishihara
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Huseong Lee
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yutaka Suzuki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yeolchang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo 679-0198, Japan
| | - Kentaro Ikuta
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo 679-0198, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo 679-0198, Japan
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Satoshi Haga
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fuminori Terada
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
36
|
Carbinatti T, Régnier M, Parlati L, Benhamed F, Postic C. New insights into the inter-organ crosstalk mediated by ChREBP. Front Endocrinol (Lausanne) 2023; 14:1095440. [PMID: 36923222 PMCID: PMC10008936 DOI: 10.3389/fendo.2023.1095440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose responsive transcription factor recognized by its critical role in the transcriptional control of glycolysis and de novo lipogenesis. Substantial advances in the field have revealed novel ChREBP functions. Indeed, due to its actions in different tissues, ChREBP modulates the inter-organ communication through secretion of peptides and lipid factors, ensuring metabolic homeostasis. Dysregulation of these orchestrated interactions is associated with development of metabolic diseases such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Here, we recapitulate the current knowledge about ChREBP-mediated inter-organ crosstalk through secreted factors and its physiological implications. As the liver is considered a crucial endocrine organ, we will focus in this review on the role of ChREBP-regulated hepatokines. Lastly, we will discuss the involvement of ChREBP in the progression of metabolic pathologies, as well as how the impairment of ChREBP-dependent signaling factors contributes to the onset of such diseases.
Collapse
|
37
|
Surma S, Romańczyk M, Filipiak KJ. Angiopoietin-like proteins inhibitors: New horizons in the treatment of atherogenic dyslipidemia and familial hypercholesterolemia. Cardiol J 2023; 30:131-142. [PMID: 33470417 PMCID: PMC9987553 DOI: 10.5603/cj.a2021.0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Angiopoietin-like proteins (ANGPTL) are involved in the regulation of numerous physiological and biochemical processes. ANGPTL3, 4 and 8, which are involved in the regulation of lipoprotein metabolism, are particularly important. ANGPTL3, 4 and 8 have been shown to regulate triglyceride availability depending on the nutritional status of the body. In addition, a deficiency of these proteins has been found to cause hypolipidemia (reduction of all lipid fractions). Increases in ANGPTL3, 4 and 8 appear to be associated with cardiovascular risk. Animal studies indicate that the use of ANGPTL3 (evinacumab) inhibitors significantly reduces plasma total cholesterol, triglycerides and low-density lipoprotein concentrations. The use of evinacumab in clinical trials also led to the normalization of plasma lipid concentrations in patients with atherogenic dyslipidemia and homozygous familial hypercholesterolemia. The results of these studies indicate that evinacumab may in the future be used in the treatment of lipid disorders, especially those with hypertriglyceridemia.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Monika Romańczyk
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
38
|
Landfors F, Chorell E, Kersten S. Genetic Mimicry Analysis Reveals the Specific Lipases Targeted by the ANGPTL3-ANGPTL8 Complex and ANGPTL4. J Lipid Res 2023; 64:100313. [PMID: 36372100 PMCID: PMC9852701 DOI: 10.1016/j.jlr.2022.100313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden.
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
39
|
Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res 2022; 45:938-963. [PMCID: PMC9703441 DOI: 10.1007/s12272-022-01419-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
40
|
Critical Overview of Hepatic Factors That Link Non-Alcoholic Fatty Liver Disease and Acute Kidney Injury: Physiology and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms232012464. [PMID: 36293317 PMCID: PMC9604121 DOI: 10.3390/ijms232012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as a combination of a group of progressive diseases, presenting different structural features of the liver at different stages of the disease. According to epidemiological surveys, as living standards improve, the global prevalence of NAFLD increases. Acute kidney injury (AKI) is a class of clinical conditions characterized by a rapid decline in kidney function. NAFLD and AKI, as major public health diseases with high prevalence and mortality, respectively, worldwide, place a heavy burden on societal healthcare systems. Clinical observations of patients with NAFLD with AKI suggest a possible association between the two diseases. However, little is known about the pathogenic mechanisms linking NAFLD and AKI, and the combination of the diseases is poorly treated. Previous studies have revealed that liver-derived factors are transported to distal organs via circulation, such as the kidney, where they elicit specific effects. Of note, while NAFLD affects the expression of many hepatic factors, studies on the mechanisms whereby NAFLD mediates the generation of hepatic factors that lead to AKI are lacking. Considering the unique positioning of hepatic factors in coordinating systemic energy metabolism and maintaining energy homeostasis, we hypothesize that the effects of NAFLD are not only limited to the structural and functional changes in the liver but may also involve the entire body via the hepatic factors, e.g., playing an important role in the development of AKI. This raises the question of whether analogs of beneficial hepatic factors or inhibitors of detrimental hepatic factors could be used as a treatment for NAFLD-mediated and hepatic factor-driven AKI or other metabolic disorders. Accordingly, in this review, we describe the systemic effects of several types of hepatic factors, with a particular focus on the possible link between hepatic factors whose expression is altered under NAFLD and AKI. We also summarize the role of some key hepatic factors in metabolic control mechanisms and discuss their possible use as a preventive treatment for the progression of metabolic diseases.
Collapse
|
41
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
42
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Lipoprotein lipase (LPL) is the rate-limiting enzyme for intravascular processing of circulating triglyceride-rich lipoproteins (TRLs). One emerging strategy for therapeutic lowering of plasma triglyceride levels aims at increasing the longevity of LPL activity by attenuating its inhibition from angiopoietin-like proteins (ANGPTL) 3, 4 and 8. This mini-review focuses on recent insights into the molecular mechanisms underpinning the regulation of LPL activity in the intravascular unit by ANGPTLs with special emphasis on ANGPTL4. RECENT FINDINGS Our knowledge on the molecular interplays between LPL, its endothelial transporter GPIHBP1, and its inhibitor(s) ANGPTL4, ANGPTL3 and ANGPTL8 have advanced considerably in the last 2 years and provides an outlined on how these proteins regulate the activity and compartmentalization of LPL. A decisive determinant instigating this control is the inherent protein instability of LPL at normal body temperature, a property that is reciprocally impacted by the binding of GPIHBP1 and ANGPTLs. Additional layers in this complex LPL regulation is provided by the different modulation of ANGPTL4 and ANGPTL3 activities by ANGPTL8 and the inhibition of ANGPTL3/8 complexes by apolipoprotein A5 (APOA5). SUMMARY Posttranslational regulation of LPL activity in the intravascular space is essential for the differential partitioning of TRLs across tissues and their lipolytic processing in response to nutritional cues.
Collapse
Affiliation(s)
- Michael Ploug
- Finsen Laboratory, Rigshospitalet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Qin L, Rehemuding R, Ainiwaer A, Ma X. Correlation between betatrophin/angiogenin-likeprotein3/lipoprotein lipase pathway and severity of coronary artery disease in Kazakh patients with coronary heart disease. World J Clin Cases 2022; 10:2095-2105. [PMID: 35321188 PMCID: PMC8895170 DOI: 10.12998/wjcc.v10.i7.2095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/01/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The results of previous animal experiments and clinical studies have shown that there is a correlation between expression of betatrophin and blood lipid levels. However, there are still differences studies on the correlation and interaction mechanism between betatrophin, angiogenin-likeprotein3 (ANGPTL3) and lipoprotein lipase (LPL). In our previous studies, we found an increase in serum ANGPTL3 Levels in Chinese patients with coronary heart disease (CHD). Therefore, we retrospectively studied Kazakh CHD patients.
AIM To explore the correlation between the betatrophin/ANGPTL3/LPL pathway and severity of coronary artery disease (CAD) in patients with CHD.
METHODS Nondiabetic patients diagnosed with CHD were selected as the case group; 79 were of Kazakh descent and 72 were of Han descent. The control groups comprised of 61 Kazakh and 65 Han individuals. The serum levels of betatrophin and LPL were detected by enzyme-linked immunosorbent assay (ELISA), and the double antibody sandwich ELISA was used to detect serum level of ANGPTL3. The levels of triglycerides, total cholesterol, and fasting blood glucose in each group were determined by an automatic biochemical analyzer. At the same time, the clinical baseline data of patients in each group were included.
RESULTS Betatrophin, ANGPTL3 and LPL levels of Kazakh patients were significantly higher than those of Han patients (P = 0.031, 0.038, 0.021 respectively). There was a positive correlation between the Gensini score and total cholesterol (TC), triglycerides (TG), low- density lipoprotein cholesterol (LDL-C), betatrophin, and LPL in Kazakh patients (r = 0.204, 0.453, 0.352, 0.471, and 0.382 respectively), (P = 0.043, 0.009, 0.048, 0.001, and P < 0.001 respectively). A positive correlation was found between the Gensini score and body mass index (BMI), TC, TG, LDL-C, LPL, betatrophin in Han patients (r = 0.438, 0.195, 0.296, 0.357, 0.328, and 0.446 respectively), (P = 0.044, 0.026, 0.003, 0.20, 0.004, and P < 0.001). TG and betatrophin were the risk factors of coronary artery disease in Kazakh patients, while BMI and betatrophin were the risk factors in Han patients.
CONCLUSION There was a correlation between the betatrophin/ANGPTL3/LPL pathway and severity of CAD in patients with CHD.
Collapse
Affiliation(s)
- Lian Qin
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| | - Rena Rehemuding
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| | - Aikeliyaer Ainiwaer
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University , Urumqi 830054, Xinjiang Uygur Autonomous region, China
| |
Collapse
|
45
|
Balasubramaniam D, Schroeder O, Russell AM, Fitchett JR, Austin AK, Beyer TP, Chen YQ, Day JW, Ehsani M, Heng AR, Zhen EY, Davies J, Glaesner W, Jones BE, Siegel RW, Qian YW, Konrad RJ. An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif. J Lipid Res 2022; 63:100198. [PMID: 35307397 PMCID: PMC9036128 DOI: 10.1016/j.jlr.2022.100198] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.
Collapse
Affiliation(s)
| | - Oliver Schroeder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anna M Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Aaron K Austin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Thomas P Beyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan W Day
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Aik Roy Heng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julian Davies
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Wolfgang Glaesner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Bryan E Jones
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
46
|
Zhao X, Liu H, Pan Y, Liu Y, Zhang F, Ao H, Zhang J, Xing K, Wang C. Identification of Potential Candidate Genes From Co-Expression Module Analysis During Preadipocyte Differentiation in Landrace Pig. Front Genet 2022; 12:753725. [PMID: 35178067 PMCID: PMC8843850 DOI: 10.3389/fgene.2021.753725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Preadipocyte differentiation plays an important role in lipid deposition and affects fattening efficiency in pigs. In the present study, preadipocytes isolated from the subcutaneous adipose tissue of three Landrace piglets were induced into mature adipocytes in vitro. Gene clusters associated with fat deposition were investigated using RNA sequencing data at four time points during preadipocyte differentiation. Twenty-seven co-expression modules were subsequently constructed using weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed three modules (blue, magenta, and brown) as being the most critical during preadipocyte differentiation. Based on these data and our previous differentially expressed gene analysis, angiopoietin-like 4 (ANGPTL4) was identified as a key regulator of preadipocyte differentiation and lipid metabolism. After inhibition of ANGPTL4, the expression of adipogenesis-related genes was reduced, except for that of lipoprotein lipase (LPL), which was negatively regulated by ANGPTL4 during preadipocyte differentiation. Our findings provide a new perspective to understand the mechanism of fat deposition.
Collapse
Affiliation(s)
- Xitong Zhao
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China.,China Agricultural University, Beijing, China
| | - Huatao Liu
- China Agricultural University, Beijing, China
| | - Yongjie Pan
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China
| | - Yibing Liu
- China Agricultural University, Beijing, China
| | | | - Hong Ao
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibin Zhang
- City of Hope National Medical Center, Duarte, CA, United States
| | - Kai Xing
- Beijing University of Agriculture, Beijing, China
| | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Over the last two decades, evolving discoveries around angiopoietin-like (ANGPTL) proteins, particularly ANGPTL3, ANGPTL4, and ANGPTL8, have generated significant interest in understanding their roles in fatty acid (FA) metabolism. Until recently, exactly how this protein family regulates lipoprotein lipase (LPL) in a tissue-specific manner to control FA partitioning has remained elusive. This review summarizes the latest insights into mechanisms by which ANGPTL3/4/8 proteins regulate postprandial FA partitioning. RECENT FINDINGS Accumulating evidence suggests that ANGPTL8 is an insulin-responsive protein that regulates ANGPTL3 and ANGPTL4 by forming complexes with them to increase or decrease markedly their respective LPL-inhibitory activities. After feeding, when insulin levels are high, ANGPTL3/8 secreted by hepatocytes acts in an endocrine manner to inhibit LPL in skeletal muscle, whereas ANGPTL4/8 secreted by adipocytes acts locally to preserve adipose tissue LPL activity, thus shifting FA toward the fat for storage. Insulin also decreases hepatic secretion of the endogenous ANGPTL3/8 inhibitor, apolipoprotein A5 (ApoA5), to accentuate ANGPTL3/8-mediated LPL inhibition in skeletal muscle. SUMMARY The ANGPTL3/4/8 protein family and ApoA5 play critical roles in directing FA toward adipose tissue postprandially. Selective targeting of these proteins holds significant promise for the treatment of dyslipidemias, metabolic syndrome, and their related comorbidities.
Collapse
Affiliation(s)
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
48
|
Kovrov O, Landfors F, Saar-Kovrov V, Näslund U, Olivecrona G. Lipoprotein size is a main determinant for the rate of hydrolysis by exogenous LPL in human plasma. J Lipid Res 2022; 63:100144. [PMID: 34710432 PMCID: PMC8953621 DOI: 10.1016/j.jlr.2021.100144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.
Collapse
Affiliation(s)
- Oleg Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Fredrik Landfors
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Valeria Saar-Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden; Department of Pathology, CARIM School for Cardiovascular Diseases MUMC+, Maastricht University, Maastricht, The Netherlands
| | - Ulf Näslund
- Heart Centre and Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
49
|
Zhang R, Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res 2022; 85:101140. [PMID: 34793860 PMCID: PMC8760165 DOI: 10.1016/j.plipres.2021.101140] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
In mammals, triglyceride (TG), the main form of lipids for storing and providing energy, is stored in white adipose tissue (WAT) after food intake, while during fasting it is routed to oxidative tissues (heart and skeletal muscle) for energy production, a process referred to as TG partitioning. Lipoprotein lipase (LPL), a rate-limiting enzyme in this fundamental physiological process, hydrolyzes circulating TG to generate free fatty acids that are taken up by peripheral tissues. The postprandial activity of LPL declines in oxidative tissues but rises in WAT, directing TG to WAT; the reverse is true during fasting. However, the molecular mechanism in regulating tissue-specific LPL activity during the fed-fast cycle has not been completely understood. Research on angiopoietin-like (ANGPTL) proteins (A3, A4, and A8) has resulted in an ANGPTL3-4-8 model to explain the TG partitioning between WAT and oxidative tissues. Food intake induces A8 expression in the liver and WAT. Liver A8 activates A3 by forming the A3-8 complex, which is then secreted into the circulation. The A3-8 complex acts in an endocrine manner to inhibit LPL in oxidative tissues. WAT A8 forms the A4-8 complex, which acts locally to block A4's LPL-inhibiting activity. Therefore, the postprandial activity of LPL is low in oxidative tissues but high in WAT, directing circulating TG to WAT. Conversely, during fasting, reduced A8 expression in the liver and WAT disables A3 from inhibiting oxidative-tissue LPL and restores WAT A4's LPL-inhibiting activity, respectively. Thus, the fasting LPL activity is high in oxidative tissues but low in WAT, directing TG to the former. According to the model, we hypothesize that A8 antagonism has the potential to simultaneously reduce TG and increase HDL-cholesterol plasma levels. Future research on A3, A4, and A8 can hopefully provide more insights into human health, disease, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
50
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|