1
|
Nogales F, Pajuelo E, Romero-Herrera I, Carreras O, Merchán F, Carrasco López JA, Ojeda ML. Uncovering the Role of Selenite and Selenium Nanoparticles (SeNPs) in Adolescent Rat Adipose Tissue beyond Oxidative Balance: Transcriptomic Analysis. Antioxidants (Basel) 2024; 13:750. [PMID: 38929188 PMCID: PMC11200624 DOI: 10.3390/antiox13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Studies on adolescent rats, when body composition is changing deeply, reveal that the administration of sodium selenite and selenium nanoparticles (SeNPs), at the same dose, have opposite effects on adipogenesis in white adipose tissue (WAT). To investigate the mechanisms involved in these contrasting effects by means of transcriptomic analysis, three groups of male adolescent rats (n = 18) were used: control (C), selenite supplemented (S), and SeNPs supplemented (NS). Both treated groups received a twofold increase in Se dose compared to the control group through water intake for three weeks. Following treatment, WAT was removed and frozen at -80 °C until subsequent use for RNA extraction, endogenous antioxidant enzymatic activities determination, and quantification of H2O2 and malondialdehyde. NS rats displayed a larger number of differentially expressed genes and cellular processes impacted than S rats. Remarkably, these changes involved upregulation of gene expression associated with the immune system, catabolism, mitochondrial function, and oxidative balance. NS rats presented an increase in antioxidant enzymes activity, alongside an accumulation of H2O2 and malondialdehyde levels. The expression level of 81 genes related to oxidative stress was significantly affected in NS rats. Analyzing the KEGG pathway enrichment revealed that NS rats exhibited increased activity in key catabolic pathways and decreased activity in crucial growth signaling processes. These changes contribute to the mass decrease in WAT found in NS rats. These results suggest a possible application of SeNPs in WAT reduction and induction of the immune response during adolescence.
Collapse
Affiliation(s)
- Fátima Nogales
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.N.); (I.R.-H.); (O.C.)
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.P.); (F.M.)
| | - Inés Romero-Herrera
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.N.); (I.R.-H.); (O.C.)
| | - Olimpia Carreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.N.); (I.R.-H.); (O.C.)
| | - Francisco Merchán
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.P.); (F.M.)
| | - José A. Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.P.); (F.M.)
| | - María Luisa Ojeda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.N.); (I.R.-H.); (O.C.)
| |
Collapse
|
2
|
Liu J, Lu W, Yan D, Guo J, Zhou L, Shi B, Su X. Mitochondrial respiratory complex I deficiency inhibits brown adipogenesis by limiting heme regulation of histone demethylation. Mitochondrion 2023; 72:22-32. [PMID: 37451354 DOI: 10.1016/j.mito.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial functions play a crucial role in determining the metabolic and thermogenic status of brown adipocytes. Increasing evidence reveals that the mitochondrial oxidative phosphorylation (OXPHOS) system plays an important role in brown adipogenesis, but the mechanistic insights are limited. Herein, we explored the potential metabolic mechanisms leading to OXPHOS regulation of brown adipogenesis in pharmacological and genetic models of mitochondrial respiratory complex I deficiency. OXPHOS deficiency inhibits brown adipogenesis through disruption of the brown adipogenic transcription circuit without affecting ATP levels. Neither blockage of calcium signaling nor antioxidant treatment can rescue the suppressed brown adipogenesis. Metabolomics analysis revealed a decrease in levels of tricarboxylic acid cycle intermediates and heme. Heme supplementation specifically enhances respiratory complex I activity without affecting complex II and partially reverses the inhibited brown adipogenesis by OXPHOS deficiency. Moreover, the regulation of brown adipogenesis by the OXPHOS-heme axis may be due to the suppressed histone methylation status by increasing histone demethylation. In summary, our findings identified a heme-sensing retrograde signaling pathway that connects mitochondrial OXPHOS to the regulation of brown adipocyte differentiation and metabolic functions.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dongyue Yan
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Junyuan Guo
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Li Zhou
- Department of Nutrition, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Gao P, Fang L, Pan Y, Jiang L. Effect of Grape Seed Proanthocyanidins on Fat Metabolism and Adipocytokines in Obese Rats. Metabolites 2023; 13:metabo13040568. [PMID: 37110226 PMCID: PMC10142576 DOI: 10.3390/metabo13040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the effect of Grape Seed Proanthocyanidin (GSP) on fat metabolism and adipocytokines in obese rats. Fifty 5-week-old rats were randomly assigned to five groups (n = 10 per group) and given either a basal diet, a high-fat diet, or a high-fat diet supplemented with GSP (25, 50, and 100 mg/d) per group. The experiment lasted for five weeks, including a one-week adaptation period and a four-week treatment period. At the end of the experimental period, serum and adipose tissue samples were collected and analyzed. Additionally, we co-cultured 3T3-L1 preadipocytes with varying concentrations of GSP to explore its effect on adipocyte metabolism. The results demonstrated that GSP supplementation reduced weight, daily gain, and abdominal fat weight coefficient (p < 0.05). It also decreased levels of glucose, cholesterol (TC) (p < 0.05), triglycerides (TG) (p < 0.05), low-density lipoprotein (LDL), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in adipose tissue. Furthermore, GSP addition caused adipocyte crumpling in vitro and reduced the mRNA expression of COX-2, LEP, and TNF-α in adipocytes in vitro. These findings provide compelling evidence for exploring the role of GSP in the prevention and treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Pengxiang Gao
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Luoyun Fang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yucong Pan
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Department of Animal Science, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
4
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
5
|
Wang C, Zhang X, Luo L, Luo Y, Wu D, Spilca D, Le Q, Yang X, Alvarez K, Hines WC, Yang XO, Liu M. COX-2 Deficiency Promotes White Adipogenesis via PGE2-Mediated Paracrine Mechanism and Exacerbates Diet-Induced Obesity. Cells 2022; 11:1819. [PMID: 35681514 PMCID: PMC9180646 DOI: 10.3390/cells11111819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) plays a critical role in regulating innate immunity and metabolism by producing prostaglandins (PGs) and other lipid mediators. However, the implication of adipose COX-2 in obesity remains largely unknown. Using adipocyte-specific COX-2 knockout (KO) mice, we showed that depleting COX-2 in adipocytes promoted white adipose tissue development accompanied with increased size and number of adipocytes and predisposed diet-induced adiposity, obesity, and insulin resistance. The increased size and number of adipocytes by COX-2 KO were reversed by the treatment of prostaglandin E2 (PGE2) but not PGI2 and PGD2 during adipocyte differentiation. PGE2 suppresses PPARγ expression through the PKA pathway at the early phase of adipogenesis, and treatment of PGE2 or PKA activator isoproterenol diminished the increased lipid droplets in size and number in COX-2 KO primary adipocytes. Administration of PGE2 attenuated increased fat mass and fat percentage in COX-2 deficient mice. Taken together, our study demonstrated the suppressing effect of adipocyte COX-2 on adipogenesis and reveals that COX-2 restrains adipose tissue expansion via the PGE2-mediated paracrine mechanism and prevents the development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (D.W.); (X.O.Y.)
| | - Dianna Spilca
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Que Le
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Katelyn Alvarez
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (D.W.); (X.O.Y.)
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Ida Y, Watanabe M, Umetsu A, Ohguro H, Hikage F. Addition of EP2 agonists to an FP agonist additively and synergistically modulates adipogenesis and the physical properties of 3D 3T3-L1 sphenoids. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102315. [PMID: 34246925 DOI: 10.1016/j.plefa.2021.102315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
The additive effects of prostaglandin (PG)-EP2 agonists on a PG-FP agonist toward adipogenesis in two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells was examined by lipid staining, the mRNA expression of adipogenesis related genes, and extracellular matrixes (ECMs) including collagen molecules (Col) -1, -4 and -6, and fibronectin (Fn), and the sizes and physical properties of 3D sphenoids, as measured by a micro-squeezer. The results indicate that adipogenesis induced 1) an enlargement in the sizes of 3D sphenoids, 2) a substantial enhancement in lipid staining, the expression of the PParγ, Ap2 and Leptin genes, and 3) a significant decrease in the stiffness of the 3D sphenoids. These effects were inhibited by bimatoprost acid (BIM-A), but 4) adipogenesis induced significant down-regulation of Col1 and Fn, and the significant up-regulation of the Col4 and Col6 genes were unchanged by BIM-A. On the addition of an EP2 agonist, such as omidenepag (OMD) or butaprost (Buta), to BIM-A, 1) the sizes of the 3D sphenoids were further decreased, 2) lipid staining was decreased (2D; OMD, 3D; Buta) 3) the stiffness of the 3D sphenoids was increased by Buta, 4) the expression of PParγ was up-regulated (2D; Buta) or unchanged (3D), the expression of Ap2 was down-regulated (2D; OMD) or up-regulated (3D; Buta), and the expression of Leptin was increased (2D), 5) the expression of all four (OMD) or all except Col4 (buta) in 2D, and Col1and Col4 (OMD) in 3D were up-regulated. These collective findings indicate that the addition of an EP2 agonist, OMD or Buta significantly modulated the BIM-A induced suppression of adipogenesis as well as physical properties of 2D and 3D cultured 3T3-L1 cells in different manners.
Collapse
Affiliation(s)
- Yosuke Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Japan.
| |
Collapse
|
7
|
Farhadi S, Shodja Ghias J, Hasanpur K, Mohammadi SA, Ebrahimie E. Molecular mechanisms of fat deposition: IL-6 is a hub gene in fat lipolysis, comparing thin-tailed with fat-tailed sheep breeds. Arch Anim Breed 2021; 64:53-68. [PMID: 34084904 PMCID: PMC8130542 DOI: 10.5194/aab-64-53-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Tail fat content affects meat quality and varies significantly among different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important Iranian local sheep breeds with different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two mentioned sheep breeds. Seven (Zel = 4 and Ghezel = 3) 7-month-old male lambs were used for this experiment. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein-protein interaction (PPI) and network and module analyses. Some of the DEGs, such as LIPG, SAA1, SOCS3, HIF-1 α , and especially IL-6, had a close association with lipid metabolism. Furthermore, functional enrichment analysis revealed pathways associated with fat deposition, including "fatty acid metabolism", "fatty acid biosynthesis" and "HIF-1 signaling pathway". The structural classification of proteins showed that major down-regulated DEGs in the Zel (thin-tailed) breed were classified under transporter class and that most of them belonged to the solute carrier transporter (SLC) families. In addition, DEGs under the transcription factor class with an important role in lipolysis were up-regulated in the Zel (thin-tailed) breed. Also, network analysis revealed that IL-6 and JUNB were hub genes for up-regulated PPI networks, and HMGCS1, VPS35 and VPS26A were hub genes for down-regulated PPI networks. Among the up-regulated DEGs, the IL-6 gene seems to play an important role in lipolysis of tail fat in thin-tailed sheep breeds via various pathways such as tumor necrosis factor (TNF) signaling and mitogen-activated protein kinase (MAPK) signaling pathways. Due to the probable role of the IL-6 gene in fat lipolysis and also due to the strong interaction of IL-6 with the other up-regulated DEGs, it seems that IL-6 accelerates the degradation of lipids in tail fat cells.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, South Australia 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
8
|
Kabir F, Nahar K, Rahman MM, Mamun F, Lasker S, Khan F, Yasmin T, Akter KA, Subhan N, Alam MA. Etoricoxib treatment prevented body weight gain and ameliorated oxidative stress in the liver of high-fat diet-fed rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:33-47. [PMID: 32780227 DOI: 10.1007/s00210-020-01960-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The main focus of this study was to determine the role of etoricoxib in counterbalancing the oxidative stress, metabolic disturbances, and inflammation in high-fat (HF) diet-induced obese rats. To conduct this study, 28 male Wistar rats (weighing 190-210 g) were distributed randomly into four groups: control, control + etoricoxib, HF, and HF + etoricoxib. After 8 weeks of treatment with etoricoxib (200 mg/kg), all the animals were sacrificed followed by the collection of blood and tissue samples in order to perform biochemical tests along with histological staining on hepatic tissues. According to this study, etoricoxib treatment prevented the body weight gain in HF diet-fed rats. Furthermore, rats of HF + etoricoxib group exhibited better blood glucose tolerance than the rats of HF diet-fed group. In addition, etoricoxib also markedly normalized HF diet-mediated rise of hepatic enzyme activity. Etoricoxib treatment lowered the level of oxidative stress indicators significantly with a parallel augmentation of antioxidant enzyme activities. Furthermore, etoricoxib administration helped in preventing inflammatory cell invasion, collagen accumulation, and fibrotic catastrophe in HF diet-fed rats. The findings of the present work are suggestive of the helpful role of etoricoxib in deterring the metabolic syndrome as well as other deleterious pathological changes afflicting the HF diet-fed rats.
Collapse
Affiliation(s)
- Fariha Kabir
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Kamrun Nahar
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Fariha Mamun
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Tahmina Yasmin
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh.
| |
Collapse
|
9
|
A Representative GIIA Phospholipase A 2 Activates Preadipocytes to Produce Inflammatory Mediators Implicated in Obesity Development. Biomolecules 2020; 10:biom10121593. [PMID: 33255269 PMCID: PMC7760919 DOI: 10.3390/biom10121593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue secretes proinflammatory mediators which promote systemic and adipose tissue inflammation seen in obesity. Group IIA (GIIA)-secreted phospholipase A2 (sPLA2) enzymes are found to be elevated in plasma and adipose tissue from obese patients and are active during inflammation, generating proinflammatory mediators, including prostaglandin E2 (PGE2). PGE2 exerts anti-lipolytic actions and increases triacylglycerol levels in adipose tissue. However, the inflammatory actions of GIIA sPLA2s in adipose tissue cells and mechanisms leading to increased PGE2 levels in these cells are unclear. This study investigates the ability of a representative GIIA sPLA2, MT-III, to activate proinflammatory responses in preadipocytes, focusing on the biosynthesis of prostaglandins, adipocytokines and mechanisms involved in these effects. Our results showed that MT-III induced biosynthesis of PGE2, PGI2, MCP-1, IL-6 and gene expression of leptin and adiponectin in preadipocytes. The MT-III-induced PGE2 biosynthesis was dependent on cytosolic PLA2 (cPLA2)-α, cyclooxygenases (COX)-1 and COX-2 pathways and regulated by a positive loop via the EP4 receptor. Moreover, MT-III upregulated COX-2 and microsomal prostaglandin synthase (mPGES)-1 protein expression. MCP-1 biosynthesis induced by MT-III was dependent on the EP4 receptor, while IL-6 biosynthesis was dependent on EP3 receptor engagement by PGE2. These data highlight preadipocytes as targets for GIIA sPLA2s and provide insight into the roles played by this group of sPLA2s in obesity.
Collapse
|
10
|
Kang NH, Mukherjee S, Jang MH, Pham HG, Choi M, Yun JW. Ketoprofen alleviates diet-induced obesity and promotes white fat browning in mice via the activation of COX-2 through mTORC1-p38 signaling pathway. Pflugers Arch 2020; 472:583-596. [PMID: 32358780 DOI: 10.1007/s00424-020-02380-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
|
11
|
Cao Y, Wang S, Liu S, Wang Y, Jin H, Ma H, Luo X, Cao Y, Lian Z. Effects of Long-Chain Fatty Acyl-CoA Synthetase 1 on Diglyceride Synthesis and Arachidonic Acid Metabolism in Sheep Adipocytes. Int J Mol Sci 2020; 21:E2044. [PMID: 32192050 PMCID: PMC7139739 DOI: 10.3390/ijms21062044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/25/2022] Open
Abstract
Long-chain fatty acyl-CoA synthetase (ACSLs) is an essential enzyme for the synthesis of fatty acyl-CoA. ACSL1 plays a key role in the synthesis of triglycerides, phospholipids, and cholesterol esters. BACKGROUND In the current study, triglyceride content did not increase after overexpression of the ACSL1 gene. METHODS RNA-seq and lipid metabolome profiling were performed to determine why triglyceride levels did not change with ACSL1 overexpression. RESULTS Fatty acyl-CoA produced by ACSL1 was determined to be involved in the diglyceride synthesis pathway, and diglyceride content significantly increased when ACSL1 was overexpressed. Moreover, the arachidonic acid (AA) content in sheep adipocytes significantly increased, and the level of cyclooxygenase 2 (COX2) expression, the downstream metabolic gene, was significantly downregulated. Knocking down the ACSL1 gene was associated with an increase in COX2 mRNA expression, as well as an increase in prostaglandin content, which is the downstream metabolite of AA. CONCLUSIONS The overexpression of the ACSL1 gene promotes the production of AA via downregulation of COX2 gene expression.
Collapse
Affiliation(s)
- Yang Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Shunqi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
| | - Yanli Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Huihai Ma
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Xiaotong Luo
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
| |
Collapse
|
12
|
Ouellette MÈ, Bérubé JC, Bourget JM, Vallée M, Bossé Y, Fradette J. Linoleic acid supplementation of cell culture media influences the phospholipid and lipid profiles of human reconstructed adipose tissue. PLoS One 2019; 14:e0224228. [PMID: 31639818 PMCID: PMC6805161 DOI: 10.1371/journal.pone.0224228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Reconstructed human adipose tissues represent novel tools available to perform in vitro pharmaco-toxicological studies. We used adipose-derived human stromal/stem cells to reconstruct, using tissue engineering techniques, such an adipose tridimensional model. To determine to what extent the in vitro model is representative of its native counterpart, adipogenic differentiation, triglycerides accumulation and phospholipids profiles were analysed. Ingenuity Pathway Analysis software revealed pathways enriched with differentially-expressed genes between native and reconstructed human adipose tissues. Interestingly, genes related to fatty acid metabolism were downregulated in vitro, which could be explained in part by the insufficient amount of essential fatty acids provided by the fetal calf serum used for the culture. Indeed, the lipid profile of the reconstructed human adipose tissues indicated a particular lack of linoleic acid, which could interfere with physiological cell processes such as membrane trafficking, signaling and inflammatory responses. Supplementation in the culture medium was able to influence the lipid profile of the reconstructed human adipose tissues. This study demonstrates the possibility to directly modulate the phospholipid profile of reconstructed human adipose tissues. This reinforces its use as a relevant physiological or pathological model for further pharmacological and metabolic studies of human adipose tissue functions.
Collapse
Affiliation(s)
- Marie-Ève Ouellette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Jean-Christophe Bérubé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jean-Michel Bourget
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Maud Vallée
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Yohan Bossé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
13
|
Scoditti E, Carpi S, Massaro M, Pellegrino M, Polini B, Carluccio MA, Wabitsch M, Verri T, Nieri P, De Caterina R. Hydroxytyrosol Modulates Adipocyte Gene and miRNA Expression Under Inflammatory Condition. Nutrients 2019; 11:nu11102493. [PMID: 31627295 PMCID: PMC6836288 DOI: 10.3390/nu11102493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation of the adipose tissue (AT) is a major contributor to obesity-associated cardiometabolic complications. The olive oil polyphenol hydroxytyrosol (HT) contributes to Mediterranean diet cardiometabolic benefits through mechanisms still partially unknown. We investigated HT (1 and 10 μmol/L) effects on gene expression (mRNA and microRNA) related to inflammation induced by 10 ng/mL tumor necrosis factor (TNF)-α in human Simpson–Golabi–Behmel Syndrome (SGBS) adipocytes. At real-time PCR, HT significantly inhibited TNF-α-induced mRNA levels, of monocyte chemoattractant protein-1, C-X-C Motif Ligand-10, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, plasminogen activator inhibitor-1, cyclooxygenase-2, macrophage colony-stimulating factor, matrix metalloproteinase-2, Cu/Zn superoxide dismutase-1, and glutathione peroxidase, as well as surface expression of intercellular adhesion molecule-1, and reverted the TNF-α-mediated inhibition of endothelial nitric oxide synthase, peroxisome proliferator-activated receptor coactivator-1α, and glucose transporter-4. We found similar effects in adipocytes stimulated by macrophage-conditioned media. Accordingly, HT significantly counteracted miR-155-5p, miR-34a-5p, and let-7c-5p expression in both cells and exosomes, and prevented NF-κB activation and production of reactive oxygen species. HT can therefore modulate adipocyte gene expression profile through mechanisms involving a reduction of oxidative stress and NF-κB inhibition. By such mechanisms, HT may blunt macrophage recruitment and improve AT inflammation, preventing the deregulation of pathways involved in obesity-related diseases.
Collapse
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Sara Carpi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Mariangela Pellegrino
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Beatrice Polini
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany.
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Paola Nieri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | |
Collapse
|
14
|
Labrecque J, Michaud A, Gauthier MF, Pelletier M, Julien F, Bouvet-Bouchard L, Tchernof A. Interleukin-1β and prostaglandin-synthesizing enzymes as modulators of human omental and subcutaneous adipose tissue function. Prostaglandins Leukot Essent Fatty Acids 2019; 141:9-16. [PMID: 30661603 DOI: 10.1016/j.plefa.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023]
Abstract
IL-1β stimulates expression of prostaglandin (PG)-synthesizing enzymes cyclooxygenase (COX)-2 and aldo-keto reductase (AKR)1B1 in human preadipocytes. We aimed to examine the impact of IL-1β, COX-2 and AKR1B1 on markers of human visceral and subcutaneous adipose tissue function, and to assess whether PG synthesis by these enzymes mediates IL-1β effects. Omental and subcutaneous fat samples were obtained from bariatric surgery patients. PG release and expression of inflammatory and adipogenic markers were assessed in explants treated with COX-2 inhibitor NS-398 or AKR1B1 inhibitor Statil, with or without IL-1β. Preadipocyte differentiation experiments were also performed. IL-1β decreased expression of PPARγ in both fat depots compared to control and increased expression of NF-κB1, IL-6, CCL-5, ICAM-1 and VEGFA, especially in visceral fat for IL-6, CCL-5 and VEGFA. Adding Statil or NS-398 to IL-1β blunted PGF2α and PGE2 release, but did not alter IL-1β effects on adipose tissue function markers. IL-1β down-regulated adipocyte differentiation whereas NS-398 alone increased this process. However, NS-398 did not prevent IL-1β inhibition of adipogenesis. We conclude that IL-1β induces a pro-inflammatory response in human adipose tissues, particularly in visceral fat, and acts independently of concomitant PG release. IL-1β and COX-2 appear to be critical determinants of adipose tissue pathophysiologic remodeling in obesity.
Collapse
Affiliation(s)
- Jennifer Labrecque
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; École de nutrition - Université Laval, Québec, QC, Canada; Centre hospitalier universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Andréanne Michaud
- Montreal Neurological Institute - McGill University, Montreal, QC, Canada
| | - Marie-Frédérique Gauthier
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Mélissa Pelletier
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Centre hospitalier universitaire de Québec - Université Laval, Québec, QC, Canada
| | - François Julien
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Léonie Bouvet-Bouchard
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; École de nutrition - Université Laval, Québec, QC, Canada; Centre hospitalier universitaire de Québec - Université Laval, Québec, QC, Canada.
| |
Collapse
|
15
|
Choi EM, Suh KS, Jung WW, Park SY, Chin SO, Rhee SY, Kim Pak Y, Chon S. Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine 3T3-L1 adipocytes. J Appl Toxicol 2018; 38:1426-1436. [DOI: 10.1002/jat.3664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 28503 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University; College of Medicine Seoul 02447 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| |
Collapse
|
16
|
Cheng TM, Chin YT, Ho Y, Chen YR, Yang YN, Yang YC, Shih YJ, Lin TI, Lin HY, Davis PJ. Resveratrol induces sumoylated COX-2-dependent anti-proliferation in human prostate cancer LNCaP cells. Food Chem Toxicol 2017; 112:67-75. [PMID: 29242151 DOI: 10.1016/j.fct.2017.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022]
Abstract
Cyclooxygenase (COX)-2 has been implicated in cancer development. However, resveratrol-induced nuclear accumulation of COX-2 enhances p53-dependent anti-proliferation in different types of cancers. Treatment with resveratrol leads to phosphorylation and nuclear translocation of mitogen-activated protein kinase (ERK1/2), and accumulation of nuclear COX-2 to complex with pERK1/2 and p53. The consequence is Ser-15 phosphorylation of p53 (pSer15-p53), and induction of anti-proliferation in cancer cells. We investigated the mechanisms by which resveratrol-inducible COX-2 facilitates p53-dependent anti-proliferation in prostate cancer LNCaP cells. Resveratrol treatment caused nuclear accumulation and complexing of ERK1/2, pSer15-p53 and COX-2 which was activated ERK1/2-dependent. Knockdown of SUMO-1 by shRNA also reduced nuclear accumulation of COX-2. Inhibition of nuclear accumulation by the COX-2 specific inhibitor, NS-398, inhibited co-localization of nuclear COX-2 and SUMO-1. Similar results were observed in the PD98059-treated cells. Finally, inhibition of SUMO-1 expression also reduced resveratrol-induced expression of pro-apoptotic genes but increased the expression of proliferative genes. In summary, these results demonstrate that inducible COX-2 associates with phosphorylated ERK1/2 to induce the phosphorylation of Ser-15 in p53 and then complexes with p53 and SUMO-1 which binds to p53-responsive pro-apoptotic genes to enhance their expression. The inhibition of COX-2 expression and activity significantly blocks the pro-apoptotic effect of resveratrol.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Tang Chin
- College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yih Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yi-Ru Chen
- College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yung-Ning Yang
- Division of Pediatric Infectious Disease, Department of Pediatrics, E-Da Hospital/I-Shou University, Kaohsiung 84001, Taiwan.
| | - Yu-Chen Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ya-Jang Shih
- College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ting-I Lin
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 84001, Taiwan.
| | - Hung-Yun Lin
- College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
17
|
Bou M, Montfort J, Le Cam A, Rallière C, Lebret V, Gabillard JC, Weil C, Gutiérrez J, Rescan PY, Capilla E, Navarro I. Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics 2017; 18:347. [PMID: 28472935 PMCID: PMC5418865 DOI: 10.1186/s12864-017-3728-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Excessive accumulation of adipose tissue in cultured fish is an outstanding problem in aquaculture. To understand the development of adiposity, it is crucial to identify the genes which expression is associated with adipogenic differentiation. Therefore, the transcriptomic profile at different time points (days 3, 8, 15 and 21) along primary culture development of rainbow trout preadipocytes has been investigated using an Agilent trout oligo microarray. RESULTS Our analysis identified 4026 genes differentially expressed (fold-change >3) that were divided into two major clusters corresponding to the main phases observed during the preadipocyte culture: proliferation and differentiation. Proliferation cluster comprised 1028 genes up-regulated from days 3 to 8 of culture meanwhile the differentiation cluster was characterized by 2140 induced genes from days 15 to 21. Proliferation was characterized by enrichment in genes involved in basic cellular and metabolic processes (transcription, ribosome biogenesis, translation and protein folding), cellular remodelling and autophagy. In addition, the implication of the eicosanoid signalling pathway was highlighted during this phase. On the other hand, the terminal differentiation phase was enriched with genes involved in energy production, lipid and carbohydrate metabolism. Moreover, during this phase an enrichment in genes involved in the formation of the lipid droplets was evidenced as well as the activation of the thyroid-receptor/retinoic X receptor (TR/RXR) and the peroxisome proliferator activated receptors (PPARs) signalling pathways. The whole adipogenic process was driven by a coordinated activation of transcription factors and epigenetic modulators. CONCLUSIONS Overall, our study demonstrates the coordinated expression of functionally related genes during proliferation and differentiation of rainbow trout adipocyte cells. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of fish adipogenesis.
Collapse
Affiliation(s)
- Marta Bou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,Present address: Nofima (Norwegian Institute of Food, Fisheries, and Aquaculture Research), P.O. Box 210, N-1432, Ås, Norway
| | - Jerôme Montfort
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Aurélie Le Cam
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Cécile Rallière
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Véronique Lebret
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Jean-Charles Gabillard
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Claudine Weil
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Pierre-Yves Rescan
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042, France
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
18
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
19
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
20
|
Adi N, Perriotte-Olson C, Desouza C, Ramalingam R, Saraswathi V. Hematopoietic cyclooxygenase-2 deficiency increases adipose tissue inflammation and adiposity in obesity. Obesity (Silver Spring) 2015; 23:2037-45. [PMID: 26316178 PMCID: PMC6368065 DOI: 10.1002/oby.21184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Adipose tissue (AT) macrophages mediate AT inflammation in obesity, and cyclooxygenase-2 (COX-2) is a major inflammatory gene. It was hypothesized that deletion of hematopoietic COX-2 will inhibit AT inflammation in obesity. METHODS Lethally irradiated wild-type (WT) mice were injected with bone marrow (BM) cells collected from WT or COX-2 knock-out (COX-2-/-) donor mice and fed a high-fat diet for 16 weeks. RESULTS The mice that received BM cells from COX-2-/- mice (BM-COX-2-/-) gained increased body weight, fat mass, and visceral AT (VAT) mass. These mice exhibited reduced inflammatory markers in the VAT stromal vascular cells (SVC). However, the inflammatory markers were increased in adipocyte fraction and/or whole VAT. The activation of ERK1/2 MAPK, a pro-inflammatory signaling pathway, was increased in BM-COX-2-/- mice. The molecular markers of adipogenesis were increased in the VAT or adipocyte fraction. Wnt signaling markers which inhibit adipogenesis, including Wnt3A and DVL3, were reduced, and Wnt5a/b which promotes inflammation was increased in the VAT and/or adipocytes. Finally, an increase in hepatic triglyceride levels in BM-COX-2-/- mice was noted. CONCLUSIONS The data suggest that COX-2 deletion in hematopoietic cells reduces SVC inflammation but increases VAT inflammation and promotes adiposity likely via altered Wnt signaling.
Collapse
Affiliation(s)
- Nikhil Adi
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Curtis Perriotte-Olson
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Cyrus Desouza
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Ramesh Ramalingam
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Viswanathan Saraswathi
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Address correspondence to: Viswanathan Saraswathi, Research Services, VA Nebraska Western Iowa Health Care System, Omaha, NE. Ph: 402-995-3033; Fax: 402-449-0604;
| |
Collapse
|
21
|
Mangum LH, Howell GE, Chambers JE. Exposure to p,p'-DDE enhances differentiation of 3T3-L1 preadipocytes in a model of sub-optimal differentiation. Toxicol Lett 2015. [PMID: 26200599 DOI: 10.1016/j.toxlet.2015.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incidence of obesity is increasing worldwide at an alarming rate. Recently, exposure to environmental contaminants, especially organochlorines such as p,p'-dichlorodiphenyldichloroethylene (DDE), has been implicated as a possible causative factor in the increasing obesity epidemic. The objective of this study was to evaluate the ability of DDE to alter adipogenesis in a model of sub-optimal differentiation. 3T3-L1 preadipocytes were induced to differentiate in the presence of DDE (0.01-100μM) using a sub-optimal differentiation cocktail. Eight days after the initiation of differentiation, adipogenesis was assessed through neutral lipid staining, triglyceride accumulation, and expression of markers of terminal differentiation. Exposure to DDE induced a concentration dependent increase in intracellular neutral lipid accumulation as determined by Oil Red O staining and triglyceride assay. Alterations in lipid accumulation were accompanied by upregulation of genetic markers of differentiation. DDE (10μM) enhanced expression of fatty acid binding protein 4 and Sterol regulatory element-binding protein-1c at the 2.5 and 20μM concentrations. DDE (2.5, 10, and 20μM) induced upregulation of leptin and fatty acid synthase, as compared to sub-optimal vehicle control (0.05% ethanol). Our results indicate that DDE is capable of enhancing adipogenesis and intracellular lipid accumulation in 3T3-L1 cells through upregulation of molecular targets responsible for lipid storage.
Collapse
Affiliation(s)
- Lauren H Mangum
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - George E Howell
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
22
|
Pastel E, Pointud JC, Loubeau G, Dani C, Slim K, Martin G, Volat F, Sahut-Barnola I, Val P, Martinez A, Lefrançois-Martinez AM. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species. Endocrinology 2015; 156:1671-84. [PMID: 25730106 DOI: 10.1210/en.2014-1750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.
Collapse
Affiliation(s)
- Emilie Pastel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293 (E.P., J.-C.P., G.L., I.S.-B., P.V., A.M., A.-M.L.-M.), INSERM Unité 1103, Génétique Reproduction et Développement, Clermont Université, 63171 Aubière, France; iBV (C.D.), Institute of Biology Valrose, Université Nice Sophia Antipolis, 06189 Nice, France; Service de Chirurgie Digestive (K.S., G.M.), Centre Hospitalier Universitaire Estaing, 63003 Clermont-Ferrand, France; and INSERM Unité Mixte de Recherche 1048 (F.V.), Institute of Metabolic and Cardiovascular Diseases, Université Paul Sabatier, 31432 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Masoodi M, Kuda O, Rossmeisl M, Flachs P, Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:503-18. [PMID: 25311170 DOI: 10.1016/j.bbalip.2014.09.023] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 02/08/2023]
Abstract
Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment H, 1015 Lausanne, Switzerland.
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Pavel Flachs
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
24
|
Fujimori K, Yano M, Miyake H, Kimura H. Termination mechanism of CREB-dependent activation of COX-2 expression in early phase of adipogenesis. Mol Cell Endocrinol 2014; 384:12-22. [PMID: 24378735 DOI: 10.1016/j.mce.2013.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
Abstract
We elucidated the molecular mechanism of prostaglandin (PG) E2- and PGF2α-mediated suppression of the early phase of adipogenesis through enhanced COX-2 expression in 3T3-L1 cells. 3-Isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase which catalyzes the conversion of cAMP to AMP, enhanced the activity of protein kinase A (PKA). Dibutyryl cAMP activated PKA and enhanced the phosphorylation of cAMP response element (CRE)-binding protein (CREB). The ability of CREB binding to the CRE of the COX-2 promoter was elevated for enhancement of the expression of the COX-2 gene. CREB siRNA suppressed the expression of the COX-2 gene. Furthermore, okadaic acid, a protein phosphatase (PP) 1/2A inhibitor, suppressed the progression of adipogenesis by preventing PP1/2A-mediated suppression of CREB-dependent COX-2 expression, thus resulting in increased production of anti-adipogenic PGE2 and PGF2α. These results indicate that CREB-dependent expression of COX-2 for the production of anti-adipogenic PGs is critical for the regulation of the early phase of adipogenesis.
Collapse
Affiliation(s)
- Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Mutsumi Yano
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Haruka Miyake
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroko Kimura
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
25
|
Michaud A, Lacroix-Pépin N, Pelletier M, Veilleux A, Noël S, Bouchard C, Marceau P, Fortier MA, Tchernof A. Prostaglandin (PG) F2 alpha synthesis in human subcutaneous and omental adipose tissue: modulation by inflammatory cytokines and role of the human aldose reductase AKR1B1. PLoS One 2014; 9:e90861. [PMID: 24663124 PMCID: PMC3963845 DOI: 10.1371/journal.pone.0090861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 02/06/2014] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION PGF2α may be involved in the regulation of adipose tissue function. OBJECTIVES 1) To examine PGF2α release by primary preadipocytes, mature adipocytes and whole tissue explants from the subcutaneous and omental fat compartments; 2) To assess which PGF synthase is the most relevant in human adipose tissue. METHODS Fat samples were obtained by surgery in women. PGF2α release by preadipocytes, adipocytes and explants under stimulation by TNF-α, IL-1β or both was measured. Messenger RNA expression levels of AKR1B1 and AKR1C3 were measured by RT-PCR in whole adipose tissue and cytokine-treated preadipocytes. The effect of AKR1B1 inhibitor ponalrestat on PGF2α synthesis was investigated. RESULTS PGF2α release was significantly induced in response to cytokines compared to control in omental (p = 0.01) and to a lesser extent in subcutaneous preadipocytes (p = 0.02). Messenger RNA of COX-2 was significantly higher in omental compared to subcutaneous preadipocytes in response to combined TNF-α and IL-1β (p = 0.01). Inflammatory cytokines increased AKR1B1 mRNA expression and protein levels (p≤0.05), but failed to increase expression levels of AKR1C3 in cultured preadipocytes. Accordingly, ponalrestat blunted PGF2α synthesis by preadipocytes in basal and stimulated conditions (p≤0.05). Women with the highest PGF2α release by omental adipocytes had a higher BMI (p = 0.05), waist circumference (p≤0.05) and HOMAir index (p≤0.005) as well as higher mRNA expression of AKR1B1 in omental (p<0.10) and subcutaneous (p≤0.05) adipose tissue compared to women with low omental adipocytes PGF2α release. Positive correlations were observed between mRNA expression of AKR1B1 in both compartments and BMI, waist circumference as well as HOMAir index (p≤0.05 for all). CONCLUSION PGF2α release by omental mature adipocytes is increased in abdominally obese women. Moreover, COX-2 expression and PGF2α release is particularly responsive to inflammatory stimulation in omental preadipocytes. Yet, blockade of PGF synthase AKR1B1 inhibits most of the PGF2α release.
Collapse
Affiliation(s)
- Andréanne Michaud
- Endocrinology and Nephrology, Laval University Medical Center, Quebec City, Canada
- Department of Nutrition, Laval University, Quebec City, Canada
| | | | - Mélissa Pelletier
- Endocrinology and Nephrology, Laval University Medical Center, Quebec City, Canada
| | - Alain Veilleux
- Department of Nutrition, Laval University, Quebec City, Canada
| | - Suzanne Noël
- Gynecology Unit, Laval University Medical Center, Quebec City, Canada
| | - Céline Bouchard
- Gynecology Unit, Laval University Medical Center, Quebec City, Canada
| | - Picard Marceau
- Department of Surgery, Quebec Cardiology and Pulmonology Institute, Quebec City, Canada
| | - Michel A. Fortier
- Reproduction and Biology, Laval University Medical Center, Quebec City, Canada
| | - André Tchernof
- Endocrinology and Nephrology, Laval University Medical Center, Quebec City, Canada
- Department of Nutrition, Laval University, Quebec City, Canada
- * E-mail:
| |
Collapse
|
26
|
Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS One 2014; 9:e92608. [PMID: 24658703 PMCID: PMC3962431 DOI: 10.1371/journal.pone.0092608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) plays a pivotal role in promoting energy expenditure by the virtue of uncoupling protein-1 (UCP-1) that differentiates BAT from its energy storing white adipose tissue (WAT) counterpart. The clinical implication of “classical” BAT (originates from Myf5 positive myoblastic lineage) or the “beige” fat (originates through trans-differentiation of WAT) activation in improving metabolic parameters is now becoming apparent. However, the inducers and endogenous molecular determinants that govern the lineage commitment and differentiation of classical BAT remain obscure. We report here that in the absence of any forced gene expression, stimulation with bone morphogenetic protein 6 (BMP6) induces brown fat differentiation from skeletal muscle precursor cells of murine and human origins. Through a comprehensive transcriptional profiling approach, we have discovered that two days of BMP6 stimulation in C2C12 myoblast cells is sufficient to induce genes characteristic of brown preadipocytes. This developmental switch is modulated in part by newly identified regulators, Optineurin (Optn) and Cyclooxygenase-2 (Cox2). Furthermore, pathway analyses using the Causal Reasoning Engine (CRE) identified additional potential causal drivers of this BMP6 induced commitment switch. Subsequent analyses to decipher key pathway that facilitates terminal differentiation of these BMP6 primed cells identified a key role for Insulin Like Growth Factor-1 Receptor (IGF-1R). Collectively these data highlight a therapeutically innovative role for BMP6 by providing a means to enhance the amount of myogenic lineage derived brown fat.
Collapse
|
27
|
Cultured preadipocytes undergoing stable transfection with cyclooxygenase-1 in the antisense direction accelerate adipogenesis during the maturation phase of adipocytes. Appl Biochem Biotechnol 2013; 171:128-44. [PMID: 23817787 DOI: 10.1007/s12010-013-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
The arachidonate cyclooxygenase (COX) pathway is involved in the generation of several types of endogenous prostaglandins (PGs) with opposite effects on adipogenesis at different life stages of adipocytes. However, the specific role of COX isoforms, the rate-limiting enzymes for the pathway, remains elusive in the regulation of the endogenous synthesis of PGs. This study was aimed at the selective suppression of the constitutive COX-1 in cultured preadipocytes by the isolation of cloned preadipocytes transfected stably with a mammalian expression vector harboring cDNA encoding mouse COX-1 in the antisense direction. The gene expression analysis revealed that the transcript and protein levels of the constitutive COX-1 were substantially suppressed in the isolated cloned transfectants with antisense COX-1. By contrast, the expression of the inducible COX-2 was not affected in the stable transfectants with antisense COX-1. All of the cloned stable transfectants with antisense COX-1 exhibited a significant reduction in the immediate synthesis of PGE2 serving as an anti-adipogenic factor. The sustained expression of COX-1 in the antisense direction induced the appreciable stimulation of fat storage in adipocytes during the maturation phase, which was associated with the higher expression levels of adipocyte-specific genes, indicating the positive regulation of adipogenesis program. Moreover, the up-regulation of adipogenesis is accompanied by a higher production of J2 series PGs including 15-deoxy-Δ(12,14)-PGJ2 and Δ(12)-PGJ2, known as pro-adipogenic factors by the transfectants with antisense COX-1. The results suggest that the inducible COX-2 can contribute to the endogenous synthesis of PGJ2 derivatives acting as autocrine mediators to simulate adipogenesis during the maturation phase by way of compensation for the suppressed expression of the constitutive COX-1.
Collapse
|
28
|
Singh S, Pandey VP, Naaz H, Singh P, Dwivedi UN. Structural modeling and simulation studies of human cyclooxygenase (COX) isozymes with selected terpenes: Implications in drug designing and development. Comput Biol Med 2013; 43:744-50. [DOI: 10.1016/j.compbiomed.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 01/11/2023]
|
29
|
Silvestri C, Martella A, Poloso NJ, Piscitelli F, Capasso R, Izzo A, Woodward DF, Di Marzo V. Anandamide-derived prostamide F2α negatively regulates adipogenesis. J Biol Chem 2013; 288:23307-21. [PMID: 23801328 DOI: 10.1074/jbc.m113.489906] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipid mediators variedly affect adipocyte differentiation. Anandamide stimulates adipogenesis via CB1 receptors and peroxisome proliferator-activated receptor γ. Anandamide may be converted by PTGS2 (COX2) and prostaglandin F synthases, such as prostamide/prostaglandin F synthase, to prostaglandin F2α ethanolamide (PGF2αEA), of which bimatoprost is a potent synthetic analog. PGF2αEA/bimatoprost act via prostaglandin F2αFP receptor/FP alt4 splicing variant heterodimers. We investigated whether prostamide signaling occurs in preadipocytes and controls adipogenesis. Exposure of mouse 3T3-L1 or human preadipocytes to PGF2αEA/bimatoprost during early differentiation inhibits adipogenesis. PGF2αEA is produced from anandamide in preadipocytes and much less so in differentiating adipocytes, which express much less PTGS2, FP, and its alt4 splicing variant. Selective antagonism of PGF2αEA receptors counteracts prostamide effects on adipogenesis, as does inhibition of ERK1/2 phosphorylation. Selective inhibition of PGF2αEA versus prostaglandin F2α biosynthesis accelerates adipogenesis. PGF2αEA levels are reduced in the white adipose tissue of high fat diet-fed mice where there is a high requirement for new adipocytes. Prostamides also inhibit zebrafish larval adipogenesis in vivo. We propose that prostamide signaling in preadipocytes is a novel anandamide-derived antiadipogenic mechanism.
Collapse
Affiliation(s)
- Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Flachs P, Rossmeisl M, Kuda O, Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:986-1003. [DOI: 10.1016/j.bbalip.2013.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/06/2023]
|
31
|
Xiao H, Wang J, Yuan L, Xiao C, Wang Y, Liu X. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1509-1520. [PMID: 23363008 DOI: 10.1021/jf3050268] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chicoric acid has been reported to possess various bioactivities. However, the antiobesity effects of chicoric acid remain poorly understood. In this study, we investigated the effects of chicoric acid on 3T3-L1 preadipocytes and its molecular mechanisms of apoptosis. Chicoric acid inhibited cell viability and induced apoptosis in 3T3-L1 preadipocytes which was characterized by chromatin condensation and poly ADP-ribose-polymerase (PARP) cleavage. Mitochondrial membrane potential (MMP) loss, Bax/Bcl-2 dysregulation, cytochrome c release, and caspase-3 activation were observed, indicating mitochondria-dependent apoptosis induced by chicoric acid. Furthermore, PI3K/Akt and MAPK (p38 MAPK, JNK, and ERK1/2) signaling pathways were involved in chicoric acid-induced apoptosis. The employment of protein kinase inhibitors LY294002, SB203580, SP600125, and U0126 revealed that PI3K/Akt signaling pathway interplayed with MAPK signaling pathways. Moreover, chicoric acid induced reactive oxygen species (ROS) generation. Pretreatment with the antioxidant N-acetylcysteine (NAC) significantly blocked cell death and changes of Akt and MAPK signalings induced by chicoric acid. In addition, chicoric acid down regulated HO-1 and COX-2 via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Haifang Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Prostaglandins as PPARγ Modulators in Adipogenesis. PPAR Res 2012; 2012:527607. [PMID: 23319937 PMCID: PMC3540890 DOI: 10.1155/2012/527607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/20/2012] [Indexed: 02/01/2023] Open
Abstract
Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. PPARγ is a ligand-dependent transcription factor and important in adipogenesis, as it enhances the expression of numerous adipogenic and lipogenic genes in adipocytes. Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE2 and PGF2α strongly suppress the early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of cycloxygenase-2, and they also suppress the function of PPARγ. In contrast, PGD2 and its non-enzymatic metabolite, Δ12-PGJ2, activate the middle-late phase of adipocyte differentiation through both DP2 receptors and PPARγ. This paper focuses on potential roles of PGs as PPARγ modulators in adipogenesis and regulators of obesity.
Collapse
|
33
|
Gochberg-Sarver A, Kedmi M, Gana-Weisz M, Bar-Shira A, Orr-Urtreger A. Tnfα, Cox2 and AdipoQ adipokine gene expression levels are modulated in murine adipose tissues by both nicotine and nACh receptors containing the β2 subunit. Mol Genet Metab 2012; 107:561-70. [PMID: 22926197 DOI: 10.1016/j.ymgme.2012.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/24/2022]
Abstract
Studies have provided evidences for the effects of nicotine on adipose tissues, as well as in inflammatory response. We hypothesized that nicotine affects adipokine gene expression in adipose tissues via specific neuronal nicotinic acetylcholine receptors (nAChRs). First, we described the expression of multiple nAChR subunit genes in mouse white and brown adipose tissues (WAT and BAT), and detected differential expression in WAT and BAT (α2>α5>β2 and α2>β2>β4, respectively). Additionally, when nicotine was administered to wild-type mice, it significantly affected the expression of adipokine genes, such as Tnfα, AdipoQ, Haptoglobin and Mcp1 in WAT. Next, we demonstrated that in mice deficient for the β2 nAChR subunit (β2-/- mice), the expression levels of Cox2 and Ngfβ genes in WAT, and Leptin, Cox2, AdipoQ and Haptoglobin in BAT, were significantly altered. Furthermore, interactions between mouse β2 subunit and nicotine treatment affected the expression levels of the adipokine genes Tnfα, Cox2 and AdipoQ in WAT and of AdipoQ in BAT. Finally, analysis of a cellular model of cultured adipocytes demonstrated that application of nicotine after silencing of the β2 nAChR subunit significantly elevated the expression level of Cox2 gene. Together, our data suggest a molecular link between the β2 nACh receptor subunit and the expression levels of specific adipokines, which is also affected by nicotine.
Collapse
|
34
|
An L, Pang YW, Gao HM, Tao L, Miao K, Wu ZH, Tian JH. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells. Biochem Biophys Res Commun 2012; 428:405-10. [PMID: 23103373 DOI: 10.1016/j.bbrc.2012.10.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.
Collapse
Affiliation(s)
- Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Inazumi T, Shirata N, Morimoto K, Takano H, Segi-Nishida E, Sugimoto Y. Prostaglandin E₂-EP4 signaling suppresses adipocyte differentiation in mouse embryonic fibroblasts via an autocrine mechanism. J Lipid Res 2011; 52:1500-8. [PMID: 21646392 DOI: 10.1194/jlr.m013615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The prostaglandin (PG) receptors EP4 and FP have the potential to exert negative effects on adipogenesis, but the exact contribution of endogenous PG-driven receptor signaling to this process is not fully understood. In this study, we employed an adipocyte differentiation system from mouse embryonic fibroblasts (MEF) and compared the effects of each PG receptor-deficiency on adipocyte differentiation. In wild-type (WT) MEF cells, inhibition of endogenous PG synthesis by indomethacin augmented the differentiation, whereas exogenous PGE₂, as well as an FP agonist, reversed the effect of indomethacin. In EP4-deficient cells, basal differentiation was upregulated to the levels in indomethacin-treated WT cells, and indomethacin did not further enhance differentiation. Differentiation in FP-deficient cells was equivalent to WT and was still sensitive to indomethacin. PGE₂ or indomethacin treatment of WT MEF cells for the first two days was enough to suppress or enhance transcription of the Pparg2 gene as well as the subsequent differentiation, respectively. Differentiation stimuli induced COX-2 gene and protein expression, as well as PGE₂ production, in WT MEF cells. These results suggest that PGE₂-EP4 signaling suppresses adipocyte differentiation by affecting Pparg2 expression in an autocrine manner and that FP-mediated inhibition is not directly involved in adipocyte differentiation in the MEF system.
Collapse
Affiliation(s)
- Tomoaki Inazumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Ghoshal S, Trivedi DB, Graf GA, Loftin CD. Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice. J Biol Chem 2011; 286:889-98. [PMID: 20961858 PMCID: PMC3013048 DOI: 10.1074/jbc.m110.139139] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/19/2010] [Indexed: 01/15/2023] Open
Abstract
Obesity is associated with a variety of disorders and is a significant health problem in developed countries. One factor controlling the level of adiposity is the differentiation of cells into adipocytes. Adipocyte differentiation requires expression of peroxisome proliferator-activated receptor γ (PPARγ), which is activated by ligands to regulate expression of genes involved in adipocyte differentiation. Although 15-deoxy-Δ(12,14)-prostaglandin (PG) J(2) (15d-PGJ(2)) has long been known to be a potent activator of PPARγ, the importance of its synthesis in adipose tissue in vivo is not clear. The current study utilized mice deficient in cyclooxygenase-2 (COX-2) to examine the role of COX-2-derived PGs as in vivo modulators of adiposity. As compared with strain- and age-matched wild-type controls, the genetic deficiency of COX-2 resulted in a significant reduction in total body weight and percent body fat. Although there were no significant differences in food consumption between groups, COX-2-deficient mice showed increased metabolic activity. Epididymal adipose tissue from wild-type mice produced a significantly greater level of 15d-PGJ(2), as compared with adipose tissue isolated from mice deficient in COX-2. Furthermore, production of the precursor required for 15d-PGJ(2) formation, PGD(2), was also significantly reduced in COX-2-deficient adipose tissue. The expression of markers for differentiated adipocytes was significantly reduced in adipose tissue from COX-2-deficient mice, whereas preadipocyte marker expression was increased. Macrophage-dependent inflammation was also significantly reduced in adipose tissue of COX-2-deficient mice. These findings suggest that reduced adiposity in COX-2-deficient mice results from attenuated PPARγ ligand production and adipocyte differentiation.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536 and
| | - Darshini B. Trivedi
- the Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes Health, Research Triangle Park, North Carolina 27709
| | - Gregory A. Graf
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536 and
| | - Charles D. Loftin
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536 and
| |
Collapse
|
37
|
Abstract
The measurement of the simultaneous expression values of thousands of genes or proteins from high throughput Omics platforms creates a large amount of data whose interpretation by inspection can be a daunting task. A major challenge of using such data is to translate these lists of genes/proteins into a better understanding of the underlying biological phenomena. We describe approaches to identify biological concepts in the form of Medical Subject Headings (MeSH terms) as extracted from MEDLINE that are significantly overrepresented within the identified gene set relative to those associated with the overall collection of genes on the underlying Omics platform. The method's principle strength is its ability to simultaneously depict similarities that may exist at the level of biological structure, molecular function, physiology, genetics, and clinically manifest diseases, just as a single published article about a gene of interest may report findings within several of these same dimensions.
Collapse
Affiliation(s)
- Vinod Kumar
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, King of Prussia, PA, USA.
| |
Collapse
|
38
|
Mita R, Beaulieu MJ, Field C, Godbout R. Brain fatty acid-binding protein and omega-3/omega-6 fatty acids: mechanistic insight into malignant glioma cell migration. J Biol Chem 2010; 285:37005-15. [PMID: 20834042 DOI: 10.1074/jbc.m110.170076] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Malignant gliomas (MG) are highly infiltrative tumors that consistently recur despite aggressive treatment. Brain fatty acid-binding protein (FABP7), which binds docosahexaenoic acid (DHA) and arachidonic acid (AA), localizes to sites of tumor infiltration and is associated with a poor prognosis in MG. Manipulation of FABP7 expression in MG cell lines affects cell migration, suggesting a role for FABP7 in tumor infiltration and recurrence. Here, we show that DHA inhibits and AA stimulates migration in an FABP7-dependent manner in U87 MG cells. We demonstrate that DHA binds to and sequesters FABP7 to the nucleus, resulting in decreased cell migration. This anti-migratory effect is partially dependent on peroxisome proliferator-activated receptor γ, a DHA-activated transcription factor. Conversely, AA-bound FABP7 stimulates cell migration by activating cyclooxygenase-2 and reducing peroxisome proliferator-activated receptor γ levels. Our data provide mechanistic insight as to why FABP7 is associated with a poor prognosis in MG and suggest that relative levels of DHA and AA in the tumor environment can make a profound impact on tumor growth properties. We propose that FABP7 and its fatty acid ligands may be key therapeutic targets for controlling the dissemination of MG cells within the brain.
Collapse
Affiliation(s)
- Raja Mita
- Department of Oncology, School of Cancer, Engineering and Imaging Sciences, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2
| | | | | | | |
Collapse
|
39
|
De Taeye BM, Morisseau C, Coyle J, Covington JW, Luria A, Yang J, Murphy SB, Friedman DB, Hammock BB, Vaughan DE. Expression and regulation of soluble epoxide hydrolase in adipose tissue. Obesity (Silver Spring) 2010; 18:489-98. [PMID: 19644452 PMCID: PMC2864128 DOI: 10.1038/oby.2009.227] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Obesity is an increasingly important public health issue reaching epidemic proportions. Visceral obesity has been defined as an important element of the metabolic syndrome and expansion of the visceral fat mass has been shown to contribute to the development of insulin resistance and cardiovascular disease. To identify novel contributors to cardiovascular and metabolic abnormalities in obesity, we analyzed the adipose proteome and identified soluble epoxide hydrolase (sEH) in the epididymal fat pad from C57BL/6J mice that received either a regular diet or a "western diet." sEH was synthesized in adipocytes and expression levels increased upon differentiation of 3T3-L1 preadipocytes. Although normalized sEH mRNA and protein levels did not differ in the fat pads from mice receiving a regular or a "western diet," total adipose sEH activity was higher in the obese mice, even after normalization for body weight. Furthermore, peroxisome proliferator-activated receptor gamma (PPARgamma) agonists increased the expression of sEH in mature 3T3-L1 adipocytes in vitro and in adipose tissue in vivo. Considering the established role for sEH in inflammation, cardiovascular diseases, and lipid metabolism, and the suggested involvement of sEH in the development of type 2 diabetes, our study has identified adipose sEH as a potential novel therapeutic target that might affect the development of metabolic and cardiovascular abnormalities in obesity.
Collapse
Affiliation(s)
- Bart M De Taeye
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chu X, Nishimura K, Jisaka M, Nagaya T, Shono F, Yokota K. Up-regulation of adipogenesis in adipocytes expressing stably cyclooxygenase-2 in the antisense direction. Prostaglandins Other Lipid Mediat 2010; 91:1-9. [DOI: 10.1016/j.prostaglandins.2009.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/01/2009] [Accepted: 10/20/2009] [Indexed: 01/04/2023]
|
41
|
Noh MS, Lee SH. 15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.1.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
42
|
|
43
|
Abbott MJ, Tang T, Sul HS. The Role of Phospholipase A(2)-derived Mediators in Obesity. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2010; 7:e213-e218. [PMID: 21603130 PMCID: PMC3097474 DOI: 10.1016/j.ddmec.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity has become an epidemic and its prevalence is increasing exponentially. A great deal of focus has been given to understanding the molecular processes that regulate obesity. The characterization of phospholipase A(2)s, especially adipose-specific PLA(2), have lead to a proposed role of their downstream products in the progression of obesity and obesity related disorders. This review summarizes recent developments in the role of PLA(2) and their downstream effects in the development of metabolic disorders.
Collapse
Affiliation(s)
- Marcia J Abbott
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | | | | |
Collapse
|
44
|
Sen B, Styner M, Xie Z, Case N, Rubin CT, Rubin J. Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem 2009; 284:34607-17. [PMID: 19840939 DOI: 10.1074/jbc.m109.039453] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mechanical stimulation can prevent adipogenic and improve osteogenic lineage allocation of mesenchymal stem cells (MSC), an effect associated with the preservation of beta-catenin levels. We asked whether mechanical up-regulation of beta-catenin was critical to reduction in adipogenesis as well as other mechanical events inducing alternate MSC lineage selection. In MSC cultured under strong adipogenic conditions, mechanical load (3600 cycles/day, 2% strain) inactivated GSK3beta in a Wnt-independent fashion. Small interfering RNA targeting GSK3beta prevented both strain-induced induction of beta-catenin and an increase in COX2, a factor associated with increased osteoprogenitor phenotype. Small interfering RNA knockdown of beta-catenin blocked mechanical reduction of peroxisome proliferator-activated receptor gamma and adiponectin, implicating beta-catenin in strain inhibition of adipogenesis. In contrast, the effect of both mechanical and pharmacologic inhibition of GSK3beta on the putative beta-catenin target, COX2, was unaffected by beta-catenin knockdown. GSK3beta inhibition caused accumulation of nuclear NFATc1; mechanical strain increased nuclear NFATc1, independent of beta-catenin. NFATc1 knockdown prevented mechanical stimulation of COX2, implicating NFATc1 signaling. Finally, inhibition of GSK3beta caused association of RNA polymerase II with the COX2 gene, suggesting transcription initiation. These results demonstrate that mechanical inhibition of GSK3beta induces activation of both beta-catenin and NFATc1 signaling, limiting adipogenesis via the former and promoting osteoblastic differentiation via NFATc1/COX2. Our novel findings suggest that mechanical loading regulates mesenchymal stem cell differentiation through inhibition of GSK3beta, which in turn regulates multiple downstream effectors.
Collapse
Affiliation(s)
- Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Hossain MG, Iwata T, Mizusawa N, Shima SWN, Okutsu T, Ishimoto K, Yoshimoto K. Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J Biosci Bioeng 2009; 109:297-303. [PMID: 20159581 DOI: 10.1016/j.jbiosc.2009.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/25/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Various mechanical stimuli affect differentiation of mesoderm-derived cells such as osteoblasts or myoblasts, suggesting that adipogenesis may also be influenced by mechanical stimulation. However, effects of mechanical stimuli on adipogenesis are scarcely known. Compressive force was applied to a human preadipocyte cell line, SGBS. Levels of gene expression were estimated by real-time reverse transcription-polymerase chain reaction. The accumulation of lipids was evaluated by Sudan III or Oil Red O staining. In SGBS cells subjected to a compressive force of 226 Pa for 12 h before adipogenic induction, adipogenesis was inhibited. Compressive force immediately after adipogenic induction did not affect the adipogenesis. The expression of peroxisome proliferator-activated receptor (PPAR) gamma2 and CCAAT/enhancer binding protein (C/EBP) alpha mRNA during adipogenesis was inhibited by compressive force, whereas C/EBPbeta and C/EBPdelta mRNA levels were unaffected. In preadipocytes, compressive force increased mRNA levels of Krüppel-like factor 2, preadipocyte factor 1, WNT10b, and cyclooxygenase-2 (COX-2) which are known as negative regulators for the PPARgamma2 and C/EBPalpha genes. Furthermore, a COX-2 inhibitor completely reversed the inhibition of adipogenesis by compressive force. In conclusion, compressive force inhibited adipogenesis by suppressing expression of PPARgamma2 and C/EBPalpha in a COX-2-dependent manner.
Collapse
Affiliation(s)
- Md Golam Hossain
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima City 770-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Hsieh PS, Jin JS, Chiang CF, Chan PC, Chen CH, Shih KC. COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity (Silver Spring) 2009; 17:1150-7. [PMID: 19247274 DOI: 10.1038/oby.2008.674] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim was to examine the role of cyclooxygenase (COX)-2-mediated inflammation in the development of obese linked insulin resistance and fatty liver. The rats were fed separately regular diet (CONT), high-fat diet (HFD) ad libitum, or energy restrictedly for 12 weeks. Rats fed HFD ad libitum were further divided into three subgroups co-treated with vehicle (HFa), or a selective COX-2 inhibitor celecoxib (HFa-Cel) or mesulid (HFa-Mes). Euglycemic hyperinsulinemic clamp (EHC) experiment was performed at the end of study. Another set of rats with similar grouping was further divided into those with a 4, 8, or 12-week intervention period for hepatic sampling. Body weight was increased significantly and similarly in HFa, HFa-Cel, and HFa-Mes. Time-dependent increases in plasma insulin, glucose, 8-isoprostanes, leptin levels, homeostasis model assessment of insulin resistance (HOMA-IR) and hepatic triglyceride contents shown in HFa were significantly reversed in HFa-Cel and HFa-Mes. During EHC period, the reduction in stimulation of whole body glucose uptake, suppression of hepatic glucose production and metabolic clearance rate of insulin shown in HFa were significantly reversed in HFa-Cel and HFa-Mes. The enhanced COX-2 and tumor necrosis factor-alpha (TNF-alpha) but attenuated PPAR-gamma and C/EBP-alpha mRNA expressions in epididymal fat shown in HFa were significantly reversed in HFa-Cel and HFa-Mes. The increases in average cell size of adipocytes and CD68 positive cells shown in HFa were also significantly reversed in HFa-Cel and HFa-Mes. Our findings suggest that COX-2 activation in fat inflammation is important in the development of insulin resistance and fatty liver in high fat induced obese rats.
Collapse
Affiliation(s)
- Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
47
|
Cyclooxygenase-2 inhibition reverts the decrease in adiponectin levels and attenuates the loss of white adipose tissue during chronic inflammation. Eur J Pharmacol 2009; 608:97-103. [DOI: 10.1016/j.ejphar.2009.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/13/2009] [Indexed: 12/21/2022]
|
48
|
Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, Lee HY, Samuel VT, Shulman GI, Kim KH, de Val S, Kang C, Sul HS. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 2009; 15:159-68. [PMID: 19136964 PMCID: PMC2863116 DOI: 10.1038/nm.1904] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/19/2008] [Indexed: 01/04/2023]
Abstract
A main function of white adipose tissue is to release fatty acids from stored triacylglycerol for other tissues to use as an energy source. Whereas endocrine regulation of lipolysis has been extensively studied, autocrine and paracrine regulation is not well understood. Here we describe the role of the newly identified major adipocyte phospholipase A(2), AdPLA (encoded by Pla2g16, also called HREV107), in the regulation of lipolysis and adiposity. AdPLA-null mice have a markedly higher rate of lipolysis owing to increased cyclic AMP levels arising from the marked reduction in the amount of adipose prostaglandin E(2) that binds the Galpha(i)-coupled receptor, EP3. AdPLA-null mice have markedly reduced adipose tissue mass and triglyceride content but normal adipogenesis. They also have higher energy expenditure with increased fatty acid oxidation within adipocytes. AdPLA-deficient ob/ob mice remain hyperphagic but lean, with increased energy expenditure, yet have ectopic triglyceride storage and insulin resistance. AdPLA is a major regulator of adipocyte lipolysis and is crucial for the development of obesity.
Collapse
Affiliation(s)
- Kathy Jaworski
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Maryam Ahmadian
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Robin E. Duncan
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Eszter Sarkadi-Nagy
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Krista A. Varady
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Marc K. Hellerstein
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Hui-Young Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Kee-Hong Kim
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Sarah de Val
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| | - Chulho Kang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Hei Sook Sul
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
49
|
Duncan RE, Sarkadi-Nagy E, Jaworski K, Ahmadian M, Sul HS. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem 2008; 283:25428-25436. [PMID: 18614531 PMCID: PMC2533091 DOI: 10.1074/jbc.m804146200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/09/2008] [Indexed: 12/24/2022] Open
Abstract
Phospholipases A(2) (PLA(2)s) catalyze hydrolysis of fatty acids from the sn-2 position of phospholipids. Here we report the identification and characterization of a membrane-associated intracellular calcium-dependent, adipose-specific PLA(2) that we named AdPLA (adipose-specific phospholipase A(2)). We found that AdPLA was highly expressed specifically in white adipose tissue and was induced during preadipocyte differentiation into adipocytes. Clearance of AdPLA by immunoprecipitation significantly decreased PLA activity in white adipose tissue lysates but had no effect on liver lysates, where expression was hardly detectable. In characterizing AdPLA, we employed radiochemical assays with TLC analysis of the enzyme activity of lysates from COS-7 cells overexpressing AdPLA. For kinetic studies, we produced purified recombinant AdPLA for use in a lipoxidase-coupled spectrophotometric assay. AdPLA generated free fatty acid and lysophospholipid from phosphatidylcholine with a preference for hydrolysis at the sn-2 position. Although we found low but detectable lysophospholipase activity, AdPLA showed no significant activity against a variety of other lipid substrates. Calcium was found to activate AdPLA but was not essential for activity. Studies with known phospholipase inhibitors, including bromoenolactone, methyl arachidonyl fluorophosphate, AACOCF(3), 7,7-dimethyl-5,8-eicosadienoic acid, and thioetheramide, supported that AdPLA is a phospholipase. Mutational studies showed that His-23 and Cys-113 are critical for activity of AdPLA and suggested that AdPLA is likely a His/Cys PLA(2). Overall, although AdPLA is similar to other histidine phospholipases in pH and calcium dependence, AdPLA showed different characteristics in many regards, including predicted catalytic mechanism. AdPLA may therefore represent the first member of a new group of PLA(2)s, group XVI.
Collapse
Affiliation(s)
- Robin E Duncan
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720
| | - Eszter Sarkadi-Nagy
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720
| | - Kathy Jaworski
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720
| | - Maryam Ahmadian
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720
| | - Hei Sook Sul
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720.
| |
Collapse
|
50
|
Wuest F, Kniess T, Bergmann R, Pietzsch J. Synthesis and evaluation in vitro and in vivo of a 11C-labeled cyclooxygenase-2 (COX-2) inhibitor. Bioorg Med Chem 2008; 16:7662-70. [PMID: 18650097 DOI: 10.1016/j.bmc.2008.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/30/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
The radiosynthesis and radiopharmacological evaluation of 1-[(11)C]methoxy-4-(2-(4-(methanesulfonyl)phenyl)cyclopent-1-enyl)-benzene [(11)C]5 as novel PET radiotracer for imaging of COX-2 expression is described. The radiotracer was prepared via O-methylation reaction with [(11)C]methyl iodide in 19% decay-corrected radiochemical yield at a specific activity of 20-25GBq/mumol at the end-of-synthesis within 35 min. The radiotracer [(11)C]5 was evaluated in vitro using various pro-inflammatory and tumor cell lines showing high functional expression of COX-2 at baseline or after induction. In vivo biodistribution of compound [(11)C]5 was characterized in male Wistar rats. Compound [(11)C]5 was rapidly metabolized in rat plasma, and more pronounced, in mouse plasma. In vivo kinetics and tumor uptake were demonstrated by dynamic small animal PET studies in a mouse tumor xenograft model. Tumor uptake of radioactivity was clearly visible overtime. However, radioactivity uptake in the tumor could not be blocked by the pre-injection of nonradioactive compound 5. Therefore, it can be concluded that radioactivity uptake in the tumor was not COX-2 mediated.
Collapse
Affiliation(s)
- Frank Wuest
- Institute of Radiopharmacy, Research Center Dresden-Rossendorf, PO Box 510119, 01314 Dresden, Germany.
| | | | | | | |
Collapse
|